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1 Introduction

Forecasters are well aware of the so–called principle of parsimony: “simple, parsimonious

models tend to be best for out–of–sample forecasting...” (Diebold (1998)). Although an

emphasis on parsimony may be justified on various grounds, parameter estimation error is

one key reason. In many practical situations, estimating additional parameters can raise

the forecast error variance above what might be obtained with a simple model. Such is

clearly true when the additional parameters have population values of zero. But the same

can apply even when the population values of the additional parameters are non–zero, if

the marginal explanatory power associated with the additional parameters is low enough.

In such cases, in finite samples the additional parameter estimation noise may raise the

forecast error variance more than including information from additional variables lowers it.

For example, simulation evidence in Clark and McCracken (2006) shows that even though

the true model relates inflation to the output gap, in finite samples a simple AR model for

inflation will often forecast as well as or better than the true model.1

As this discussion suggests, parameter estimation noise creates a forecast accuracy trade-

off. Excluding variables that truly belong in the model could adversely affect forecast ac-

curacy. Yet including the variables could raise the forecast error variance if the associated

parameters are estimated sufficiently imprecisely. In light of such a tradeoff, combining fore-

casts from the unrestricted and restricted (or parsimonious) models could improve forecast

accuracy. Such combination could be seen as a form of shrinkage, which various studies,

such as Stock and Watson (2003), have found to be effective in forecasting.

Accordingly, this paper presents analytical, Monte Carlo, and empirical evidence on the

effectiveness of combining forecasts from nested models. Our analytics are based on models

we characterize as “weakly” nested: the unrestricted model is the true model, but as the

sample size grows large, the data generating process (DGP) converges to the restricted

model. This analytic approach captures the practical reality that the predictive content of

some variables of interest is often quite low. Although we focus the presented analysis on

nested linear models, our results could be generalized to nested nonlinear models.

Under the weak nesting specification, we derive weights for combining the forecasts

from estimates of the restricted and unrestricted models that are optimal in the sense of

minimizing the forecast mean square error (MSE). We then characterize the settings under
1Clark and West (2006a,b) obtain a similar result for some other applications.
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which the combination forecast will be better than the restricted or unrestricted forecasts.

In the special case in which the coefficients on the extra variables in the unrestricted model

are of a magnitude that makes the restricted and unrestricted models equally accurate,

the MSE–minimizing forecast is a simple, equally–weighted average of the restricted and

unrestricted forecasts.

In the Monte Carlo and empirical analysis, we show our proposed approach of combining

forecasts from nested models to be effective for improving accuracy. To ensure the practical

relevance of our results, we base our Monte Carlo experiments on DGPs calibrated to

empirical applications, and, in our empirical work, we consider a range of applications.

In the applications, our proposed combination approaches work well compared to related

alternatives, consisting of Bayesian–type estimation with priors that push certain coefficients

toward zero and Bayesian model averaging of the restricted and unrestricted models.

Our results build on much prior work on forecast combination. Research focused on

non–nested models ranges from the early work of Bates and Granger (1969) to recent

contributions such as Stock and Watson (2003) and Elliott and Timmermann (2004).2

Combination of nested model forecasts has been considered only occasionally, in such studies

as Goyal and Welch (2003) and Hendry and Clements (2004). Forecasts based on Bayesian

model averaging as applied in such studies as Wright (2003) and Jacobson and Karlsson

(2004) could also combine forecasts from nested models. Of course, such Bayesian methods

of combination are predicated on model uncertainty. In contrast, our paper provides a

theoretical rationale for nested model combination in the absence of model uncertainty.

The paper proceeds as follows. Section 2 provides theoretical results on the possible

gains from combination of forecasts from nested models, including the optimal combination

weight. In section 3 we present Monte Carlo evidence on the finite sample effectiveness of

our proposed forecast combination methods. Section 4 compares the effectiveness of the

forecast methods in a range of empirical applications. Section 5 concludes. Additional

theoretical details are presented in Appendix 1.

2 Theory

We begin by using a simple example to illustrate our essential ideas and results. We then

proceed to the more general case. After detailing the necessary notation and assumptions,
2See Timmermann (2006) for a more complete survey of the extensive combination literature.
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we provide an analytical characterization of the bias-variance tradeoff, created by weak

predictability, involved in choosing among restricted, unrestricted, and combined forecasts.

In light of that tradeoff, we then derive the optimal combination weights.

2.1 A simple example

Suppose we are interested in forecasting yt+1 using a simple model relating yt+1 to a con-

stant and a strictly exogenous, scalar variable xt. Suppose, however, that the predictive

content of xt for yt+1 may be weak. To capture this possibility, we model the population

relationship between yt+1 and xt using local-to-zero asymptotics, such that, as the sample

size grows large, the predictive content of xt shrinks to zero (assume that, apart from the

local element, the model fits in the framework of the usual classical normal regression model,

with homoskedastic errors, etc.):

yt+1 = β0 +
β1√
T

xt + ut+1, E(xtut+1) = 0, E(u2
t+1) = σ2. (1)

In light of x’s weak predictive content, the forecast from an estimated model relating

yt+1 to a constant and xt (henceforth, the unrestricted model) could be less accurate than

a forecast from a model relating yt+1 to just a constant (the restricted model). Whether

that is so depends on the “signal” and “noise” associated with xt and its estimated coeffi-

cient. Under the local asymptotics incorporated in the DGP (1), the signal–to–noise ratio

is proportional to β2
1σ

2
x/σ2. Given σ2 and σ2

x (or β1), higher values of the coefficient on x

(or the variance of x) raise the signal relative to the noise; given the other parameters, a

higher residual variance σ2 increases the noise, reducing the signal-to-noise ratio.

In light of the tradeoff considerations described in the introduction, a combination of

the unrestricted and restricted model forecasts could be more accurate than either of the

individual forecasts. We consider a combined forecast that puts a weight of α∗t on the

restricted model forecast and 1−α∗t on the unrestricted model forecast. We then analytically

determine the weight α∗t that yields the forecast with lowest expected squared error in period

t + 1.

As we establish more formally below, the (estimated) MSE–minimizing combination

weight α∗t is a function of the signal–to–noise ratio:

α̂∗t =



1 +





(√
t b̂1

)2
σ̂2

x

σ̂2









−1

, (2)
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where b̂1 denotes the coefficient on x (
√

tb̂1 corresponds to an estimate of the local popula-

tion coefficient β1), σ̂2
x denotes the variance of x, and σ̂2 denotes the residual variance, all

estimated at time t (for forecasting at t+1).3 As this result indicates, if the predictive con-

tent of x is such that the signal-to-noise ratio equals 1, then α̂∗t = .5: the MSE–minimizing

forecast is a simple average of the restricted and unrestricted model forecasts.

2.2 The general case: environment

In the general case, the possibility of weak predictors is modeled using a sequence of linear

DGPs of the form (Assumption 1)

yT,j+τ = x′T,2,jβ
∗
T + uT,j+τ = x′T,1,jβ

∗
1 + x′T,22,j(T

−1/2β∗22) + uT,j+τ , (3)

ExT,2,juT,j+τ ≡ EhT,j+τ = 0 for all j = 1, ...t, t = T − P + 1, ...T,

where P denotes the number of predictions considered. Note that we allow the dependent

variable yT,j+τ , the predictors xT,2,j and the error term uT,j+τ to depend upon T , the final

forecast origin. We make this explicit in the notation to emphasize that as the overall

sample size is allowed to increase in our asymptotics, this parameterization affects their

marginal distributions. While this is obvious for yT,j+τ it is also true for xT,2,j if lagged

values of the dependent variable are used as predictors. As such, our analytical results are

based upon assumptions made on the triangular array {{yT,j , x′T,2,j}
T+τ
j=1 }T≥1.

For a fixed value of T , our forecasting agent observes the sequence {yT,j , x′T,2,j}t
j=1

sequentially at each forecast origin t = T −P +1, ...T . Forecasts of the scalar yT,t+τ , τ ≥ 1,

are generated using a (k×1, k = k1 +k2) vector of covariates xT,2,t = (x′T,1,t, x
′
T,22,t)

′, linear

parametric models x′T,i,tβ
∗
i , i = 1, 2, and a combination of the two models, αtx′T,1,tβ

∗
1 +

(1 − αt)x′T,2,tβ
∗
2. The parameters are estimated using OLS (Assumption 2) and hence

β̂i,t = arg min t−1 ∑t−τ
j=1 (yT,j+τ − x′T,i,jβi

)2, i = 1, 2, for the restricted and unrestricted

models, respectively. We denote the loss associated with the τ -step ahead forecast errors

as û2
T,i,t+τ = (yT,t+τ − x′T,i,tβ̂i,t)2, i = 1, 2, and û2

T,W,t+τ = (yT,t+τ − αtx′T,1,tβ̂1,t − (1 −

αt)x′T,2,tβ̂2,t)2 for the restricted, unrestricted, and combined, respectively.

The following additional notation will be used. Let HT,i(t) = (t−1 ∑t−τ
j=1 xT,i,juT,j+τ ) =

(t−1 ∑t−τ
j=1 hT,i,j+τ ), BT,i(t) = (t−1 ∑t−τ

j=1 xT,i,jx′T,i,j)
−1, and Bi = limT→∞(ExT,i,jx′T,i,j)

−1

for i = 1, 2 . For UT,j = (h′T,2,j+τ , vec(xT,2,jx′T,2,j)
′)′, let V =

∑τ−1
l=−τ+1 Ω11,l, where Ω11,l

3Clements and Hendry (1998) derive a similar result, for the combination of a forecast based on the
unconditional mean and a forecast based on an AR(1) model without intercept, the model assumed to
generate the data.
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is the upper block-diagonal element of Ωl defined below. For any (m × n) matrix A with

elements ai,j and column vectors aj , let: vec(A) denote the (mn× 1) vector [a′1, a′2, ..., a′n]′;

|A| denote the max norm; and tr(A) denote the trace. Let supt = supT−P+1≤t≤T and let

⇒ denote weak convergence. Finally, we define a variable selection matrix and a coefficient

vector that appears directly in our key combination results: J = (Ik1×k1 , 0k1×k2)′ and

δ = (01×k1 ,β
∗′
22)

′.

To derive our general results, we need two more assumptions (in addition to our assump-

tions (1 and 2) of a DGP with weak predictability and OLS–estimated linear forecasting

models).

Assumption 3: (a) T−1 ∑[rT ]
j=1 UT,jU ′T,j−l ⇒ rΩl where Ωl = limT→∞ T−1 ∑T

t=1 E(UT,jU ′T,j−l )

for all l ≥ 0, (b) Ω11,l = 0 all l ≥ τ , (c) supT−P+1≥1,s≤T E|UT,s|2q <∞ for some q > 1, (d)

UT,j − EUT,j = (h′T,2,j+τ , vec(xT,2,jx′T,2,j − ExT,2,jx′T,2,j)
′)′ is a zero mean triangular array

satisfying Theorem 3.2 of De Jong and Davidson (2000).

Assumption 4: For s ∈ (1− λP , 1], (a) αt ⇒ α(s) ∈ [0, 1], (b) limT→∞ P/T = λP ∈ (0, 1).

Assumption 3 imposes three types of conditions. First, in (a) and (c) we require that

the observables, while not necessarily covariance stationary, are asymptotically mean square

stationary with finite second moments. We do so in order to allow the observables to have

marginal distributions that vary as the weak predictive ability strengthens along with the

sample size but are ‘well-behaved’ enough that, for example, sample averages converge in

probability to the appropriate population means. Second, in (b) we impose the restriction

that the τ -step ahead forecast errors are MA(τ − 1). We do so in order to emphasize the

role that weak predictors have on forecasting without also introducing other forms of model

misspecification. Finally, in (d) we impose the high level assumption that, in particular,

hT,2,j+τ satisfies Theorem 3.2 of De Jong and Davidson (2000). By doing so we not only

insure (results needed in Appendix 1) that certain weighted partial sums converge weakly

to standard Brownian motion, but also allow ourselves to take advantage of various results

pertaining to convergence in distribution to stochastic integrals.

Our final assumption is unique: we permit the combining weights to change with time.

In this way, we allow the forecasting agent to balance the bias-variance tradeoff differently

across time as the increasing sample size provides stronger evidence of predictive ability.

Finally, we impose the requirement that limT→∞ P/T = λP ∈ (0, 1) and hence the duration
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of forecasting is finite but non-trivial.

2.3 Theoretical results on the tradeoff

Our characterization of the bias-variance tradeoff associated with weak predictability is

based on
∑T

t=T−P+1 (û2
T,2,t+τ − û2

T,W,t+τ ), the difference in the (normalized) MSEs of the

unrestricted and combined forecasts. In Appendix 1, we provide a general characterization

of the tradeoff, in Theorem 1. But in the absence of a closed form solution for the limiting

distribution of the loss differential (the distribution provided in Appendix 1), we proceed

in this section to focus on the mean of this loss differential.

From the general case proved in Appendix 1, we first establish the expected value of the

loss differential, in the following corollary.

Corollary 1: E
∑T

t=T−P+1 (û2
T,2,t+τ − û2

T,W,t+τ )→
∫ 1
1−λP

EξW (s) =
∫ 1
1−λP

(1− (1− α(s))2)s−1tr((−JB1J ′ + B2)V )ds−
∫ 1
1−λP

α2(s)δ′B−1
2 (−JB1J ′ + B2)B−1

2 δds.

This decomposition implies that the bias-variance tradeoff depends on: (1) the duration

of forecasting (λP ), (2) the dimension of the parameter vectors (through the dimension of

δ), (3) the magnitude of the predictive ability (as measured by quadratics of δ), (4) the

forecast horizon (via V , the long-run variance of hT,2,t+τ ), and (5) the second moments of

the predictors (Bi = limT→∞(ExT,i,tx′T,i,t)
−1).

The first term on the right-hand side of the decomposition can be interpreted as the

pure “variance” contribution to the mean difference in the unrestricted and combined MSEs.

The second term can be interpreted as the pure “bias” contribution. Clearly, when δ = 0

and thus there is no predictive ability associated with the predictors xT,22,t, the expected

difference in MSE is positive so long as α(s) += 0. Since the goal is to choose α(s) so

that
∫ 1
1−λP

EξW (s) is maximized, we immediately reach the intuitive conclusion that we

should always forecast using the restricted model and hence set α(s) = 1. When δ += 0,

and hence there is predictive ability associated with the predictors xT,22,t, forecast accuracy

is maximized by combining the restricted and unrestricted model forecasts. The following

corollary provides the optimal combination weight. Note that, to simplify notation in the

presented results, from this point forward we omit the subscript T from the predictors, so

that, e.g., xT,22,t is simply denoted x22,t.
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Corollary 2: The pointwise optimal combining weights satisfy

α∗(s) =
[

1 + s

(
β′22(Ex22,tx′22,t − Ex22,tx′1,t(Ex1,tx′1,t)−1Ex1,tx′22,t)β22

tr((−JB1J ′ + B2)V )

)]−1

. (4)

The optimal combination weight is derived by maximizing the arguments of the integrals

in Corollary 1 that contribute to the average expected mean square differential over the

duration of forecasting — hence our “pointwise optimal” characterization of the weight. In

particular, the results of Corollary 2 follow from maximizing

(1− (1− α(s))2)s−1tr((−JB1J
′ + B2)V )− α2(s)δ′B−1

2 (−JB1J
′ + B2)B−1

2 δ (5)

with respect to α(s) for each s.

As is apparent from the formula in Corollary 2, the combining weight is decreasing in

the marginal ‘signal to noise’ ratio

sβ′22(Ex22,tx
′
22,t − Ex22,tx

′
1,t(Ex1,tx

′
1,t)

−1Ex1,tx
′
22,t)β22/tr((−JB1J

′ + B2)V ).

As the marginal ‘signal’, sβ′22(Ex22,tx′22,t −Ex22,tx′1,t(Ex1,tx′1,t)−1Ex1,tx′22,t)β22, increases,

we place more weight on the unrestricted model and less on the restricted one. Conversely, as

the marginal ‘noise’, tr((−JB1J ′+B2)V ), increases, we place more weight on the restricted

model and less on the unrestricted model. Finally, as forecasting moves forward in time

and the estimation sample (represented by s) increases, we place increasing weight on the

unrestricted model.

In the special case in which the signal–to–noise ratio equals 1, the optimal combination

weight is 1/2. That is, for a given time period s, when

sβ′22(Ex22,tx
′
22,t − Ex22,tx

′
1,t(Ex1,tx

′
1,t)

−1Ex1,tx
′
22,t)β22 = tr((−JB1J

′ + B2)V ), (6)

and hence the restricted and unrestricted models are expected to be equally accurate,

α∗(s) = 1/2.

A bit more algebra establishes the determinants of the size of the benefits to combination.

If we substitute α∗(s) into (5), we find that Eξ∗W (s) takes the easily interpretable form

tr((−JB1J ′ + B2)V )2

s(sβ′22(Ex22,tx′22,t − Ex22,tx′1,t(Ex1,tx′1,t)−1Ex1,tx′22,t)β22 + tr((−JB1J ′ + B2)V ))
. (7)

This simplifies even more in the conditionally homoskedastic case, in which tr((−JB1J ′ +

B2)V ) = σ2k2. In either case, it is clear that we expect the optimal combination to pro-

vide the most benefit when the marginal ‘noise’, tr((−JB1J ′ + B2)V ), is large or when
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the marginal ‘signal’, sβ′22(Ex22,tx′22,t−Ex22,tx′1,t(Ex1,tx′1,t)−1Ex1,tx′22,t)β22, is small. And

again, we obtain the result that, as the estimation sample grows, any benefits from combi-

nation vanish as the parameter estimates become increasingly accurate.

Note, however, that the term β′22(Ex22,tx′22,t−Ex22,tx′1,t(Ex1,tx′1,t)−1Ex1,tx′22,t)β22 is a

function of the local-to-zero parameters β22. Moreover, note that these optimal combining

weights are not presented relative to an environment in which agents are forecasting in

‘real time’. Therefore, for practical use, we suggest a transformed formula. Let B̂i and

V̂ denote estimates of Bi and V , respectively, based on data through period t. If we let

T 1/2β̂22 denote an estimate of the local-to-zero parameter β∗22 and set s = t/T , we obtain

the following real time estimate of the pointwise optimal combining weight:4

α̂∗t =



1 + t



 β̂′22(t−1 ∑t−τ
j=1 x22,jx′22,j − (t−1 ∑t−τ

j=1 x22,jx′1,j)B̂1(t−1 ∑t−τ
j=1 x1,jx′22,j))β̂22

tr((−JB̂1J ′ + B̂2)V̂ )








−1

.

(8)

In doing so, though, we acknowledge that the parameter estimates are not consistent for

the local-to-zero parameters on which our theoretical derivations (Corollary 2) are based.

The local-to-zero asymptotics allow us to derive closed–form solutions for the optimal combi-

nation weights, but require knowledge of local-to-zero parameters that cannot be estimated

consistently. We therefore simply use rescaled OLS magnitudes to estimate (inconsistently)

the assumed local-to-zero values and subsequent optimal combining weights. Below we

use Monte Carlo experiments and empirical examples to determine whether the estimated

quantities perform well enough to be a valuable tool for forecasting.

Conceptually, our proposed combination (8) might be seen as a variant of a Stein rule

estimator.5 With conditionally homoskedastic, 1–step ahead forecast errors, the signal-to-

noise ratio in our combination coefficient α̂t is the conventional F–statistic for testing the

null of coefficients of 0 on the x22 variables. With additional (and strong) assumptions

of normality and strict exogeneity of the regressors, the F–statistic has a non–central F

distribution, with a mean that is a linear function of the population signal-to-noise ratio.
4We estimate Bi with B̂i = (t−1

∑t−τ

j=1
xi,jx

′
i,j)

−1, where xi,t is the vector of regressors in the forecasting

model (supposing the MSE stationarity assumed in the theoretical analysis). At a forecast horizon (τ) of one

period, we estimate V using V̂ = t−1
∑t−τ

j=1
û2

1,jx2,jx
′
2,j . At longer forecast horizons, we similarly compute

V with the Newey and West (1987) estimator (again, using the residual from the restricted model) and
2(τ − 1) lags. In all cases, we use the restricted model residual in computing V , in light of the evidence
in such studies as Godfrey and Orme (2004) that imposing such restrictions improves the small sample
properties of heteroskedasticity–robust variances.

5Our optimal, but infeasible, combining weights are closely related to the minimum-MSE estimator
provided in Theil (1971). Our results primarily differ in that we permit serially correlated and conditionally
heteroskedastic errors, and don’t require strict exogeneity of the regressors.
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Based on that mean, the population–level signal-to-noise ratio can be alternatively esti-

mated as F -statistic−1. A combination forecast based on this estimate is exactly the same

as the forecast that would be obtained by applying conventional Stein rule estimation to

the unrestricted model.

This Stein rule result suggests an alternative estimate of the optimal combination co-

efficient α∗t with potentially better small sample properties. Specifically, based on (i) the

equivalence of the directly estimated signal-to-noise ratio and the conventional F -statistic

result and (ii) the centering of the F distribution at a linear transform of the population

signal-to-noise ratio, we might consider replacing the signal-to-noise ratio estimate in (8)

with the signal-to-noise ratio estimate less 1. However, under this estimation approach,

the combination forecast could put a weight of more than 1 on the restricted model and

a negative weight on the unrestricted. As a result, we might consider a truncation that

bounds the weight between 0 and 1:

α̂∗t =
[
1 + max

(
0,

signal
noise

− 1
)]−1

, (9)

where the signal
noise term is the same as that in the baseline estimator (8)). In light of potential

concerns about the small sample properties of the estimator (8), we include a forecast

combination based on (9) in our Monte Carlo and empirical analyses.

More generally, in cases in which the marginal predictive content of the x22 variables

is small or modest, a simple average forecast might be more accurate than our proposed

estimated combinations based on (8) or (9). With β22 coefficients sized such that the

restricted and unrestricted models are nearly equally accurate, the population–level optimal

combination weight will be close to 1/2. As a result, forecast accuracy could be enhanced

by imposing a combination weight of 1/2 instead of estimating it, in light of the potential

for noise in the combination coefficient estimate. A parallel result is well–known in the

non–nested combination literature: simple averages are often more accurate than estimated

optimal combinations

Our proposed combination (8) might also be expected to have some relationship to

Bayesian methods. In the very simple case of the example of section 2.1, the proposed

combination forecast corresponds to a forecast from an unrestricted model with Bayesian

posterior mean coefficients estimated with a prior mean of 0 and variance proportional to

the signal–noise ratio.6 More generally, our proposed combination could correspond to the
6Specifically, using a prior variance of the signal–noise ratio times the OLS variance yields a posterior
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Bayesian model averaging considered in such studies as Wright (2003), Koop and Potter

(2004), and Stock and Watson (2005). Indeed, in the scalar environment of Stock and Wat-

son (2005), setting their weighting function to t-stat2/(1 + t-stat2) yields our combination

forecast. In the more general case, there may be some prior that makes a Bayesian average

of the restricted and unrestricted forecasts similar to the combination forecast based on

(8). Note, however, that the underlying rationale for Bayesian averaging is quite different

from the combination rationale developed in this paper. Bayesian averaging is generally

founded on model uncertainty. In contrast, our combination rationale is based on the bias–

variance tradeoff associated with parameter estimation error, in an environment without

model uncertainty.

3 Monte Carlo Evidence

We use Monte Carlo simulations of several multivariate data-generating processes to eval-

uate the finite–sample performance of the combination methods described above. In these

experiments, the DGPs relate the predictand y to lagged y and lagged x, with the coeffi-

cients on lagged x set at various values. Forecasts of y are generated with the combination

approaches considered above. Performance is evaluated using simple summary statistics of

the distribution of each forecast’s MSE: the average MSE across Monte Carlo draws and

the probability of equaling or beating the restricted model’s forecast MSE.

3.1 Experiment design

In light of the considerable practical interest in the out–of–sample predictability of inflation

(see, for example, Stock and Watson (1999, 2003), Atkeson and Ohanian (2001), Orphanides

and van Norden (2005), and Clark and McCracken (2006)), we present results for DGPs

based on estimates of quarterly U.S. inflation models. In particular, we consider models

based on the relationship of the change in core PCE inflation to (1) lags of the change

in inflation and the output gap, (2) lags of the change in inflation, the output gap, and

food and energy price inflation, and (3) lags of the change in inflation and five common

business cycle factors, estimated as in Stock and Watson (2005).7 We consider various

mean forecast equivalent to the combination forecast.
7See Section 4’s description of the applications for data details. The DGP coefficients are based on

models estimated with quarterly data from 1961:Q1 through 2006:Q2. For convenient scaling of the DGP
parameters, the common factors estimated from the data were multiplied by 10 prior to the estimation of
the regression models underlying the DGP specifications.
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combinations of forecasts from an unrestricted model that includes all variables in the DGP

to forecasts from a restricted model that takes an AR form (that is, a model that drops

from the unrestricted model all but the constant and lags of the dependent variable).

For each experiment, we conduct 10,000 simulations. With quarterly data in mind, we

evaluate forecast accuracy over forecast periods of various lengths: P = 1, 20, 40, and 80.

In our baseline results, the size of the sample used to generate the first (in time) forecast

at horizon τ is 80− τ + 1 (the estimation sample expands as forecasting moves forward in

time). In light of the potential for forecast combination to yield larger gains with smaller

model estimation samples, we also report selected results for experiments in which the size

of the sample used to generate the first (in time) forecast at horizon τ is 40− τ + 1.

The first DGP, based on the empirical relationship between the change in core inflation

(∆yt) and the output gap (x1,t), takes the form

∆yt = −.40∆yt−1 − .18∆yt−2 − .09∆yt−3 − .04∆yt−4 + b11x1,t−1 + ut

x1,t = 1.15x1,t−1 − .05x1,t−2 − .20x1,t−3 + v1,t (10)

var
(

ut

v1,t

)
=

(
.72
.02 .57

)
.

We consider experiments with two different settings of b11, the x1 coefficient, which cor-

responds to our theoretical construct β22/
√

T . The baseline value of b11 is the one that,

in population, makes the null and alternative models equally accurate (in expectation, at

the 1–step ahead horizon) in the first forecast period, period T − P + 2 — the value that

satisfies (6). Given the population moments implied by the DGP parameterization, this

value is b11 = .042. The second setting we consider is the empirical value: b11 = .10.

The second DGP, based on estimated relationships among inflation (∆yt), the output

gap (x1,t), and food and energy price inflation (x2,t), takes the form:

∆yt = −.47∆yt−1 − .24∆yt−2 − .15∆yt−3 − .10∆yt−4 + b11x1,t−1 + b21x2,t−1 + b22x2,t−2 + ut

x1,t = 1.15x1,t−1 − .05x1,t−2 − .20x1,t−3 + v1,t (11)

x2,t = .06x1,t−1 + .40x2,t−1 + .28x2,t−3 − .13x2,t−4 + v2,t

var




ut

v1,t

v2,t



 =




.62
.03 .57
−.06 .06 .70



 .

As with DGP 1, we consider experiments with two settings of the set of bij coefficients,

which correspond to the elements of β22/
√

T . One setting is based on empirical estimates:

b11 = .07, b21 = .27, b22 = .10. We take as the baseline experiment one in which all of these
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empirical values of the bij coefficients are multiplied by a constant less than one, such that,

in population, the null and alternative models are expected to be equally accurate (at the

1–step ahead horizon) in (the first) forecast period T −P + 2. In our baseline experiments,

this multiplying constant is .370.

The third DGP, based on estimated relationships among inflation (∆yt) and five business

cycle factors estimated as in Stock and Watson (2005) (xi,t, i = 1, . . . , 5), takes the form:

∆yt = −.40∆yt−1 − .19∆yt−2 − .10∆yt−3 − .04∆yt−4 +
5∑

i=1

bi1xi,t−1 + ut, var(ut) = .67

xi,t =
4∑

j=1

aijxi,t−1 + vi,t, i = 1, . . . , 5. (12)

As with DGPs 1 and 2, we consider experiments with two different settings of the set

of bij coefficients. One setting is based on empirical estimates: b11 = .04, b21 = .09,

b31 = .16, b41 = .04, b51 = .08.8 We take as the baseline experiment one in which all of

these empirical values of the bij coefficients are multiplied by a constant less than one, such

that, in population, the null and alternative models are expected to be equally accurate

(at the 1-step horizon) in forecast period T − P + 2. In our baseline experiments, this

multiplying constant is .748.

3.2 Forecast approaches

Following practices common in the literature from which our applications are taken (see,

e.g., Stock and Watson (2003)), direct multi–step forecasts one and four steps ahead are

formed from various combinations of estimates of the following forecasting models:

y(τ)
t+τ − yt = δ0 + δ1∆yt + δ2∆yt−1 + δ3∆yt−2 + δ4∆yt−3 + u1,t+τ (13)

y(τ)
t+τ − yt = γ0 + γ1∆yt + γ2∆yt−1 + γ3∆yt−2 + γ4∆yt−3 + Γ′22x22,t + u2,t+τ , (14)

where y(τ)
t+τ = (1/τ)

∑τ
s=1 yt+s and y(1)

t+1 ≡ yt+1. In the actual inflation data underlying

the DGP specification, y(τ)
t+τ corresponds to the average annual rate of price increase from

period t to t + τ . Across DGPs 1-3, the vector x22,t consists of, respectively, (1) (x1,t), (2)

(x1,t, x2,t, x2,t−1)′, and (3) (x1,t, x2,t, x3,t, x4,t, x5,t)′.

We examine the accuracy of forecasts from: (1) OLS estimates of the restricted model

(13); (2) OLS estimates of the unrestricted model (14); (3) the “known” optimal linear
8The coefficients of the AR models for the factors are as follows, in order from lags 1 to 4: factor 1: .81,

-.18, .19, -.19; factor 2: .80, -.05, .16, -.18; factor 3: -.36, .16, .22, .12; factor 4: .31, .08, .39, .01; and factor
5: .25, .15, .24, .05. The residual variances of the five factors are as follows, in order for factors 1 through
5: 6.36, 2.35, .92, 2.08, 1.62.
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combination of the restricted and unrestricted forecasts, using the weight implied by equa-

tion (4) and population moments implied by the DGP; (4) the estimated optimal linear

combination of the restricted and unrestricted forecasts, using the weight given in (8) and

estimated moments of the data; (5) the estimated optimal linear combination using the

Stein rule–variant weight given in (9); and (6) a simple average of the restricted and unre-

stricted forecasts (as noted above, weights of 1/2 are optimal if the signal associated with

the x variables equals the noise, making the models equally accurate).

3.3 Simulation results

In our Monte Carlo comparison of methods, we primarily base our evaluation on average

MSEs over a range of forecast samples. For simplicity, in presenting average MSEs, we

only report actual average MSEs for the restricted model (13). For all other forecasts, we

report the ratio of a forecast’s average MSE to the restricted model’s average MSE. To

capture potential differences in MSE distributions, we also present some evidence on the

probabilities of equaling or beating the restricted model.

3.3.1 Results for signal = noise experiments

We begin with the case in which the coefficients bij (elements of β22) on the lags of xit

(elements of x22) in the DGPs (10)–(12) are set such that, at the 1-step ahead horizon, the

restricted and unrestricted model forecasts for period T −P + 2 are expected to be equally

accurate — because the signal and noise associated with the xit variables are equalized

as of that period. In this setting, the optimally combined forecast should, on average, be

more accurate than either the restricted or unrestricted forecasts. Note, however, that the

models are scaled to make only 1–step ahead forecasts equally accurate. At the 4–step ahead

forecast horizon, the restricted model may be more or less accurate than the unrestricted,

depending on the DGP.

The average MSE results reported in Table 1 confirm the theoretical implications. Con-

sider first the 1–step ahead horizon. With all three DGPs, the ratio of the unrestricted

model’s average MSE to the restricted model’s average MSE is close to 1.000 for all forecast

samples. At the 4-step ahead horizon, for all DGPs the ratio of the unrestricted model’s

average MSE to the restricted model’s average MSE is generally above 1.000. The unre-

stricted model fares especially poorly relative to the restricted in the case of DGP 3, in

which the unrestricted model includes five more variables than the restricted. In general,

13



in all cases, the MSE ratios for 4-step ahead forecasts from the unrestricted model tend to

fall as P rises, reflecting the increase in the precision of the x coefficient (Γ22) estimates

that occurs as forecasting moves forward in time and the model estimation sample grows.

A combination of the restricted and unrestricted forecasts has a lower average MSE, with

the gains generally increasing in the number of variables omitted from the restricted model

and the forecast horizon. At the 1–step horizon, using the known optimal combination

weight α∗t yields P = 20 MSE ratios of .994, .983, and .974 for, respectively, DGPs 1, 2,

and 3. At the 4–step horizon, the forecast based on the known optimal combination weight

has P = 20 MSE ratios of .986, .962, and .973 for DGPs 1-3.9

Not surprisingly, having to estimate the optimal combination weight tends to slightly

reduce the gains to combination. For example, in the case of DGP 2 and P = 20, the

MSE ratio for the estimated optimal combination forecast is .989, compared to .983 for the

known optimal combination forecast. Using the Stein rule–based adjustment to the optimal

combination estimate (based on equation (9)) has mixed consequences, sometimes faring

a bit worse than the directly estimated optimal combination forecast (based on equation

(8)) and sometimes a bit worse. To use the same DGP 2 example, the P = 20 MSE ratio

for the Stein version of the estimated optimal combination is .990, compared to .989 for

the directly estimated optimal combination. However, in the case of 4-step ahead forecasts

for DGP 3 with the P = 20 sample, the MSE ratios of the known α∗t , estimated α̂∗t , and

Stein–adjusted α̂∗t are, respectively, .973, .991, and .985.

In the Table 1 experiments, the simple average of the restricted and unrestricted forecasts

is consistently a bit more accurate than the estimated optimal combination forecast. For

example, for DGP 3 and the P = 20 forecast sample, the MSE ratio of the simple average

forecast is .974 for both 1–step and 4–step ahead forecasts, compared to the estimated

optimal combination forecasts’ MSE ratios of .982 (1-step) and .991 (4-step). There are

two reasons a simple average fares so well. First, with the DGPs parameterized to make

signal = noise for one–step ahead forecasts for period T − P + 2, the theoretically optimal

combination weight is 1/2. Of course, as forecasting moves forward in time, the theoretically

optimal combination weight declines, because as more and more data become available for

estimation, the signal-to-noise ratio rises (e.g., in the case of DGP 3, the known optimal
9Compared to the restricted model, the gains to combination is a bit larger with DGP 2 than DGP 3.

However, consistent with our theory, when the combination forecast is compared to the unrestricted forecast,
the gains to combination are (considerably) larger for DGP 3 than DGP 2.
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weight for the forecast of the 80th observation in the prediction sample is about .33). But

the decline is gradual enough that only late in a long forecast sample would noticeable

differences emerge between the theoretically optimal combination forecast and the simple

average. A second reason is that, in practice, the optimal combination weight may not be

estimated with much precision. As a result, imposing a fixed weight of 1/2 is likely better

than trying to estimate a weight that is not dramatically different from 1/2.

3.3.2 Results for signal > noise experiments

In DGPs with larger bij (β22) coefficients — specifically, coefficient values set to those

obtained from empirical estimates of inflation models — the signal associated with the xit

(x22) variables exceeds the noise, such that the unrestricted model is expected to be more

accurate than the restricted model. In this setting, too, our asymptotic results imply the

optimal combination forecast should be more accurate than the unrestricted model forecast,

on average. However, relative to the accuracy of the unrestricted model forecast, the gains

to combination should be smaller than in DGPs with smaller bij coefficients.

The results for DGPs 1–3 reported in Table 2 confirm these theoretical implications.

At the 1–step ahead horizon, the unrestricted model’s average MSE is about 5-6 percent

lower than the restricted model’s MSE in DGP 1 and 3 experiments and roughly 15 percent

lower in DGP 2 experiments. At the 4–step ahead horizon, the unrestricted model is more

accurate than the restricted by about 12, 28, and 4 percent for DGPs 1, 2, and 3.

Combination using the known optimal combination weight α∗t improves accuracy further,

more so for DGP 3 (for which the unrestricted forecasting model is largest) than DGPs 1

and 2 and more so for the 4–step ahead horizon than the 1-step horizon. Consider, for

example, the forecast sample P = 1. For DGP 2, the known optimal combination forecast’s

MSE ratios are .839 (1-step) and .716 (4-step), compared to the unrestricted forecast’s MSE

ratios of, respectively, .845 and .723. For DGP 3, the known optimal combination forecast’s

MSE ratios are .924 (1-step) and .919 (4-step), compared to the unrestricted forecast’s MSE

ratios of, respectively, .947 and .971. Consistent with our theoretical results, the gains to

combination seem to be larger under conditions that likely reduce parameter estimation

precision (more variables and residual serial correlation created by the multi-step forecast

horizon).

Similarly, the gains to combination (gains relative to the unrestricted model’s forecast)

rise as the estimation sample gets smaller. Table 3 reports results for the same DGPs used in

15



Table 2, but for the case in which the initial estimation sample is 40 observations instead of

80. With the smaller estimation sample, DGP 2 simulations yield known optimal combina-

tion MSE ratios of .882 (1-step) and .807 (4-step), compared to the unrestricted forecast’s

MSE ratios of, respectively, .908 and .851. For DGP 3, the known optimal combination

forecast’s MSE ratios are .960 (1-step) and .959 (4-step), compared to the unrestricted

forecast’s MSE ratios of, respectively, 1.064 and 1.146.

Again, not surprisingly, having to estimate the optimal combination weight tends to

slightly reduce the gains to combination. For instance, in Table 2’s results for case DGP 2

and P = 1, the 4–step ahead MSE ratio for the estimated optimal combination forecast is

.723, compared to .716 for the known optimal combination forecast. Using the Stein rule–

based adjustment to the optimal combination estimate (based on equation (9)) typically

reduces forecast accuracy a bit more (to a MSE ratio of .732 in the same example), but

not always — the adjustment often improves forecast accuracy with DGP 3 and a small

estimation sample (Table 3).

Imposing simple equal weights in averaging the unrestricted and restricted model fore-

casts sometimes slightly improves upon the estimated optimal combination but other times

reduces accuracy. In Table 2’s results for DGPs 1 and 2, the estimated optimal combination

is always more accurate than the simple average. For example, with DGP 2 and the 4-step

horizon, the P = 20 MSE ratio of the estimated optimal combination forecast is .725, com-

pared to the simple average forecast’s MSE ratio of .767. But for DGP 3, the simple average

is often slightly more accurate than the estimated optimal combination. For instance, at

the 4-step horizon and with P = 20, the optimal combination and simple average forecast

MSEs are, respectively, .928 and .919.

As these results suggest, the merits of imposing equal combination weights over estimat-

ing weights depend on how far the true optimal weight is from 1/2 (which depends on the

population size and precision of the model coefficients) and the precision of the estimated

combination weight. In cases in which the known optimal weight is relatively close to 1/2

(DGP 3, 1-step forecast, Table 2), the simple average performs quite similarly to the known

optimal forecast, and better than the estimated optimal combination. In cases in which

the known optimal weight is far from 1/2 (DGP 2, 1-step forecast, Table 2), the simple

average is dominated by the known optimal forecast and, in turn, the estimated optimal

combination. Consistent with such reasoning, reducing the initial estimation sample gener-
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ally improves the accuracy of the simple average forecast relative to the estimated optimal

combination. For example, Table 3 shows that, with DGP 2 and the 4-step horizon, the P

= 20 MSE ratio of the simple average forecast is .789, compared to the estimated optimal

combination forecast’s MSE ratio of .775 (in Table 2, the corresponding figures are .767 and

.725).

3.3.3 Distributional results

In addition to helping to lower the average forecast MSE, combination of restricted and

unrestricted forecasts helps to tighten the distribution of relative accuracy — specifically,

the MSE relative to the MSE of the restricted model. The results in Table 4 indicate that

combination — especially simple averaging — often increases the probability of equaling or

beating the MSE of the restricted model, often by more than it lowers average MSE (note

that, to conserve space, the table omits results for DGP 1). For instance, with DGP 2

parameterized such that signal = noise for forecasting 1-step ahead to period T −P +2, the

frequency with which the unrestricted model’s MSE is less than or equal to the restricted

model’s MSE is 47.2 percent for P = 20. The frequency with which the known optimal

combination forecast’s MSE is below the restricted model’s MSE is 57.4 percent. Although

the estimated combination does not fare as well (probability of 51.4 percent), a simple

average fares even better, beating the MSE of the restricted model in 58.1 percent of the

simulations. Note also that, by this distributional metric, using the Stein variant of the

combination weight estimate often offers a material advantage over the direct approach to

estimating the combination weight. In the same example, the Stein–based combination

forecast has a probability of 55.3 percent, compared to the 51.4 percent for the directly

estimated combination forecast.

By this probability metric, the simple average (and, to a lesser extent, the optimal

combination based on the Stein rule estimate) also fares well in other experiments. Consider,

for example, the experiments with the signal > noise version of DGP 3, a forecast horizon

of 4 steps, and P = 20. In this case, the probability the unrestricted model yields a MSE

less than or equal to the restricted model’s MSE is 54.3 percent. The probabilities for the

estimated optimal combination, Stein–estimated optimal combination, and simple average

are, respectively, 62.9, 64.9, and 69.1 percent. Again, averaging, especially simple averaging,

greatly improves the probability of beating the accuracy of the restricted model forecast.
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4 Empirical Applications

To evaluate the empirical performance of our proposed forecast methods compared to some

related alternatives (described below), we consider the widely studied problem of forecasting

inflation with Phillips curve models. In particular, we examine forecasts of quarterly core

PCE (U.S.) inflation. In light of the potential for the benefits of forecast combination

to rise as the number of variables and, in turn, overall parameter estimation imprecision

increases, we consider a range of applications, including between one and five predictors

of core inflation. In a first application, patterned on analyses in such studies as Stock

and Watson (1999, 2003), Orphanides and van Norden (2005), and Clark and McCracken

(2006), the unrestricted forecasting model includes lags of inflation and the output gap. In a

second application, the unrestricted forecasting model is augmented to include lags of food

and energy price inflation, following Gordon’s (1998) approach of including supply shock

measures in the Phillips curve. In another set of applications, patterned on such studies

as Brave and Fisher (2004), Stock and Watson (2002, 2005), and Boivin and Ng (2005),

the unrestricted forecast model includes lags of inflation and 1, 2, 3, or 5 common business

cycle factors, estimated as in Stock and Watson (2005). This section proceeds by detailing

the data and forecasting models, describing some additional forecast methods included for

comparison, and presenting the results.

4.1 Data and model details

Inflation is measured in annualized percentage terms (as 400 times the log change in the

price index).10 The output gap is measured as the log of real GDP less the log of CBO’s

estimate of potential GDP. Following Gordon (1998), the food and energy price inflation

variable is measured as overall PCE inflation less core PCE inflation. The common factors

are estimated with the principal component approach of Stock and Watson (2002, 2005),

using a data set of 127 monthly series nearly identical to Stock and Watson’s (2005).11

Following the specifications of Stock and Watson (2005), we first transformed the data for

stationarity, screened for outliers, and standardized the data, and then computed principal
10Data on actual real GDP and the PCE price indexes are taken from the FAME database of the Federal

Reserve Board of Governors. Data on the CBO’s estimate of potential output are taken from the CBO’s
website. The data used to estimate business cycle factors are from a variety of sources, including FAME,
the Conference Board, and the BEA’s website.

11Due to changes in data availability, in a few cases we were unable to obtain continuous series for variables
used by Stock and Watson (2005).
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components at the monthly frequency. Following Stock and Watson (2005) and Boivin and

Ng (2005), the factors are estimated recursively for each month of the forecast sample,

applying the factor estimation algorithm to data through the given month. Quarterly data

on factors used in model estimation ending in quarter t are within–quarter averages of

monthly factors estimated with data from the beginning of the sample through the last

month of quarter t

Following the basic approach of Stock and Watson (1999, 2003), among others, we treat

inflation as having a unit root, and forecast a measure of the direct multi-step change in

inflation as a function of lags of the change in quarterly inflation and lags of other variables.

In particular, using the notation of the last section, we make y the log difference of the

quarterly core PCE price index (scaled by 400 to make y an annualized percentage change);

∆y is then the change in quarterly inflation. The predictand is y(τ)
t+τ−yt, where y(τ)

t+τ denotes

the average annual rate of price change from t to t + τ . The x variables denote the output

gap, relative food and energy price inflation, and the set of common factors included in

the model (with the number ranging from 1 to 5). The restricted model is autoregressive

— the multi-step change in inflation is a function of just lags of the one–period change

in inflation. The unrestricted model adds lags of x variables to the set of regressors. In

particular, the competing forecasting models take the forms of section 4’s equations (13)

and (14). All models include four lags of the change in inflation (∆yt). For the output gap

and the factors, the models use one lag. For food–energy inflation, the models include two

lags.

The forecasting models are estimated with data starting in 1961:Q1. The parameters

of the forecasting models are re-estimated with added data as forecasting moves forward

through time (that is, our forecasting scheme is the so–called recursive). The forecast sample

is 1985:Q1 (1985:Q4 for four–step ahead forecasts) through 2006:Q2. We report results —

MSEs — for forecast horizons of one quarter and one year.

4.2 Additional forecast methods

Because our proposed forecast combination methods correspond to a form of shrinkage, for

comparison we supplement our results to include not only our proposed methods but also

some alternative shrinkage forecasts based on Bayesian methods. Doan, Litterman, and

Sims (1984) suggest that conventional Bayesian estimation (specifically, the prior) provides

a flexible method for balancing the tradeoff between signal and parameter estimation noise.
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Accordingly, one alternative forecast is obtained from the unrestricted forecasting model

(for a given application) estimated with generalized ridge regression, which is similar to and

under some implementations identical to conventional BVAR estimation. Consistent with

the spirit of our proposed combination approaches, which try to limit the effects of sampling

noise in the coefficients of the x variables, the ridge estimator pushes the coefficients on the x

variables toward zero by imposing informative prior variances on the associated coefficients

(note that the tightness of the prior increases with the number of lags of x included). The

ridge estimator allows very large variances on the coefficients of the intercept and lagged

inflation terms. In the case of the 1–step ahead model, our generalized ridge estimator is

exactly the same as the conventional Bayesian or BVAR estimator of Litterman (1986),

except that we use flat priors on the intercept and lagged inflation terms.12 We apply the

same priors to the 4–step ahead model (based on some experimentation to ensure the prior

setting worked well).

We report a second alternative forecast constructed by applying Bayesian model aver-

aging (BMA) to the restricted and unrestricted models, following the BMA approach of

Fernandez, Ley, and Steel (2001). In particular, we first estimate the models imposing a

simple g–prior (but with a flat prior on intercepts), and then average the models based on

posterior probabilities calculated as in Fernandez, Ley, and Steel (2001). Based on Wright’s

(2003) findings on forecasting inflation with BMA methods, we set the g–prior coefficient

(g0j in the notation of Fernandez, et al., or 1/φ in Wright’s notation) at .20.

4.3 Results

In very broad terms, the results in Table 5 seem reasonably reflective of the overall literature

on forecasting U.S. inflation in data since the mid-1980s: the variables included in the

unrestricted model but not the restricted only sometimes improve forecast accuracy. Across

the 12 columns of Table 5 (covering six applications and two forecast horizons), the restricted

model’s MSE is lower than the unrestricted model’s in six cases, sometimes slightly (e.g.,

1–year ahead forecasts from the model with five factors) and sometimes dramatically (e.g.,

1–year ahead forecasts from the model with the output gap and food–energy inflation).

Combining forecasts with our proposed methods significantly improves upon the accu-
12In the notation of Litterman, we use the following parameter settings in determining the prior variances:

λ = .2 and θ = .5. In some supplemental analysis, we verified that this generalized ridge forecast was at least
as good as a similar ridge forecast that shrinks all coefficients, in line with conventional BVAR estimation.
Note that we describe the estimator as generalized ridge rather than BVAR because, in the multi–step case,
the estimator is not a proper Bayesian estimator.
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racy of the unrestricted model’s forecast, by enough that, in each column, at least one of

the average forecasts is more accurate than the restricted model’s forecast. For every appli-

cation and horizon, our estimated optimal combination forecast has a lower MSE than the

unrestricted model. For example, in the three factor application (lower block, middle), the

optimal combination forecast has a 1–year ahead MSE ratio of .791, while the unrestricted

model has a MSE ratio of .879. Consistent with our theoretical results, the advantage of

the combination forecast over the unrestricted forecast tends to rise as the number of x

variables in the unrestricted model increases (with the increase in the number of variables

tending to lower the signal–noise ratio) and as the forecast horizon increases. For example,

in the same (three factor) application, the 1–quarter ahead MSE ratios of the unrestricted

and optimal combination forecasts are, respectively, .950 and .935 — closer together than

for the 1–year ahead horizon. In the five factor application, the 1–year ahead MSE ratios

of the unrestricted and optimal combination forecasts are 1.001 and .834 — farther apart

than in the three factor application.

Estimating the optimal combination weight with our proposed Stein rule–based approach

yields a consistent, modest improvement in forecast accuracy. In all columns of Table 5, the

optimal combination forecast based on the Stein–estimated weight (9) has a lower MSE than

does the optimal combination based on the baseline approach (8). In the same three factor

application, at the 1–year horizon the optimal combination based on the Stein–estimated

weight has a MSE ratio of .781, compared to the directly estimated optimal combination

forecast’s MSE ratio of .791. With five factors and the 1–year horizon, the Stein–estimated

optimal combination’s MSE ratio is .807, while the directly estimated optimal combination

forecast’s MSE ratio is .834.

In most cases, imposing equal weights in combining the restricted and unrestricted model

forecasts further improves forecast accuracy, sometimes substantially. As a result, in many

cases, the simple average forecast is the best forecast of all considered. For instance, in

the output gap and food–energy inflation application, the 1–year ahead MSE ratios of the

simple average and Stein–estimated combination forecasts are .871 (the lowest among all

forecasts) and 1.020, respectively. In the application with two factors, the 1–year ahead

MSE ratios are .854 (again, the lowest among all forecasts) and .866 for, respectively, the

simple average and Stein–estimated combination forecasts. In some cases, though, the

simple average is only slightly better than or worse than our proposed Stein rule–based
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approach. For example, in the three factor application, the simple average forecast’s 1–year

ahead MSE ratio is .782, compared to the Stein–estimated combination forecast’s MSE ratio

of .781.

In these applications, our proposed combinations clearly dominate Bayesian model av-

eraging and are generally about as good as or better than ridge regression.13 For example,

in the two factor application, the 1–year ahead MSE ratio is .866 for the Stein–estimated

combination, .854 for the simple average, and .891 for the ridge regression forecast. In

the same application, though, the 1–quarter ahead MSE ratios are virtually identical, at

.953, .950, and .950, respectively. In the application with the output gap and food–energy

inflation as predictands, the 1–quarter ahead MSE ratios of the Stein-estimated, simple

average, and ridge regression forecasts are, respectively, 1.060, .983, and 1.032. However,

in all cases, the BMA forecast is less accurate than the Stein–estimated combination and

simple average forecasts. For instance, in the two factor application, the BMA forecast has

MSE ratios of .971 and .934 at the 1–quarter and 1–year ahead horizons (compared, e.g.,

to the Stein–estimated combination MSE ratios of .953 and .866).

5 Conclusion

As reflected in the principle of parsimony, when some variables are truly but weakly related

to the variable being forecast, having the additional variables in the model may detract

from forecast accuracy, because of parameter estimation error. Focusing on such cases of

weak predictability, we show that combining the forecasts of the parsimonious and larger

models can improve forecast accuracy. We first derive, theoretically, the optimal combina-

tion weight and combination benefit. In the special case in which the coefficients on the

variables of interest are of a magnitude that makes the restricted and unrestricted models

equally accurate, the MSE–minimizing forecast is a simple, equally–weighted average of the

restricted and unrestricted forecasts. A range of Monte Carlo experiments and empirical

examples show our proposed approach of combining forecasts from nested models to be

effective in practice.

13Of course, it is possible that alternative specifications of Bayesian/ridge estimation and BMA could
improve upon those we have considered (although we did experiment with some alternatives, none of which
beat those for which we have reported results). At a minimum, though, our proposed combination approaches
would seem likely to at least remain competitive with such alternative Bayesian approaches.
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6 Appendix 1: Theory Details

Note that, in the notation below, W (·) denotes a standard (k × 1) Brownian motion.

Theorem 1:
∑T

t=T−P+1 (û2
2,t+τ − û2

W,t+τ )→d

∫ 1
1−λP

ξW (s) =
{− 2

∫ 1
1−λP

α(s)s−1W ′(s)V 1/2(−JB1J ′ + B2)V 1/2dW (s)
+

∫ 1
1−λP

(1− (1− α(s))2)s−2W ′(s)V 1/2(−JB1J ′ + B2)V 1/2W (s)ds}
+ 2{−

∫ 1
1−λP

α(s)δ′B−1
2 (−JB1J ′ + B2)V 1/2dW (s)

+
∫ 1
1−λP

α2(s)s−1δ′B−1
2 (−JB1J ′ + B2)B−1

2 JB1J ′V 1/2W (s)ds

+
∫ 1
1−λP

α(s)(1− α(s))s−1δ′B−1
2 (−JB1J ′ + B2)V 1/2W (s)ds}

+ {−
∫ 1
1−λP

α(s)2δ′B−1
2 (−JB1J ′ + B2)B−1

2 δds}.

Proof of Theorem 1: The proof is provided in two stages. In the first stage we provide

an asymptotic expansion. In the second we apply a functional central limit theorem and a weak

convergence to stochastic integrals result, both from De Jong and Davidson (2000).
In the first stage we show that

∑T

t=T−P+1
(û2

T,2,t+τ − û2
T,W,t+τ ) (15)

= {− 2
∑T

t=T−P+1
αt(T−1/2h′T,2,t+τ )(−JB1J

′ + B2)(T 1/2HT,2(t))

+T−1
∑T

t=T−P+1
(1− (1− αt)2)(T 1/2H ′

T,2(t))(−JB1J
′ + B2)(T 1/2HT,2(t))}

+2{−
∑T

t=T−P+1
αtδ

′B−1
2 (−JB1J

′ + B2)(T−1/2hT,2,t+τ )

+T−1
∑T

t=T−P+1
α2

t δ
′B−1

2 (−JB1J
′ + B2)B−1

2 JB1J
′(T 1/2HT,2(t))

+T−1
∑T

t=T−P+1
αt(1− αt)δ′B−1

2 (−JB1J
′ + B2)(T 1/2HT,2(t))}

+{− T−1
∑T

t=T−P+1
α2

t δ
′B−1

2 (−JB1J
′ + B2)B−1

2 δ} + op(1).

To do so first note that straightforward algebra reveals that
∑T

t=T−P+1
(û2

2,t+τ − û2
W,t+τ ) (16)

= {− 2
∑T

t=T−P+1
αt(T−1/2h′T,2,t+τ )(−JB1(t)J ′ + B2(t))(T 1/2HT,2(t))

+T−1
∑T

t=T−P+1
(1− (1− αt)2)(T 1/2H ′

T,2(t))B2(t)xT,2,tx
′
T,2,tB2(t)(T 1/2HT,2(t))

−T−1
∑T

t=T−P+1
α2

t (T
1/2H ′

T,2(t))JB1(t)J ′xT,2,tx
′
T,2,tJB1(t)J ′(T 1/2HT,2(t))

−2T−1
∑T

t=T−P+1
αt(1− αt)(T 1/2H ′

T,2(t))B2(t)xT,2,tx
′
T,2,tJB1(t)J ′(T 1/2HT,2(t))}

+2{−
∑T

t=T−P+1
αtδ

′B−1
2 (t)(−JB1(t)J ′ + B2(t))(T−1/2hT,2,t+τ )

+T−1
∑T

t=T−P+1
α2

t δ
′B−1

2 (t)(−JB1(t)J ′ + B2(t))xT,2,tx
′
T,2,tJB1(t)J ′(T 1/2HT,2(t))

+T−1
∑T

t=T−P+1
αt(1− αt)δ′B−1

2 (t)(−JB1(t)J ′ + B2(t))xT,2,tx
′
T,2,tBT,2(t)(T 1/2HT,2(t))}

+{− T−1
∑T

t=T−P+1
α2

t δ
′B−1

2 (t)(−JB1(t)J ′ + B2(t))xT,2,tx
′
T,2,t(−JB1(t)J ′ + B2(t))B−1

2 (t)δ}.
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We must then show that each bracketed term from (15) corresponds to that in (16). For brevity

we will show this in detail only for the first bracketed term. The second and third follow from similar

arguments.
Consider the first bracketed term in (16). If we add and subtract −JB1J ′ + B2 in the first

component, and rearrange terms we obtain

−2
∑T

t=T−P+1
αt(T−1/2h′T,2,t+τ )(−JB1(t)J ′ + B2(t))(T 1/2HT,2(t))

= −2
∑T

t=T−P+1
αt(T−1/2h′T,2,t+τ )(−JB1J

′ + B2)(T 1/2HT,2(t))

−2T−1/2
∑T

t=T−P+1
αt[(T 1/2H ′

T,2(t))⊗ (T−1/2h′T,2,t+τ )]vec(T 1/2[(−JB1(t)J ′ + B2(t))− (−JB1J
′ + B2)]).

The first right-hand side term is the desired result. For the second right-hand side term first note

that Assumptions 3 and 4 suffice for each of α(t), T 1/2H ′
T,2(t) and vec(T 1/2[(−JB1(t)J ′ + B2(t))−

(−JB1J ′ + B2)]) to converge weakly. Applying Theorem 3.2 of de Jong and Davidson (2000) then

implies that the second right-hand side term is op(1) and the proof is complete.
For the second, third and fourth components of the first bracketed term note that adding and

subtracting B2, B−1
2 , B1 and B−1

1 provides

T−1
∑T

t=T−P+1
(1− (1− αt)2)(T 1/2H ′

T,2(t))B2(t)xT,2,tx
′
T,2,tB2(t)(T 1/2HT,2(t)) (17)

= T−1
∑T

t=T−P+1
(1− (1− αt)2)(T 1/2H ′

T,2(t))B2(T 1/2HT,2(t))

+2T−1
∑T

t=T−P+1
(1− (1− αt)2)(T 1/2H ′

T,2(t))(B2(t)−B2)(T 1/2HT,2(t))

+T−1
∑T

t=T−P+1
(1− (1− αt)2)(T 1/2H ′

T,2(t))B2(xT,2,tx
′
T,2,t −B−1

2 )B2(T 1/2HT,2(t))

+2T−1
∑T

t=T−P+1
(1− (1− αt)2)(T 1/2H ′

T,2(t))B2(xT,2,tx
′
T,2,t −B−1

2 )(B2(t)−B2)(T 1/2HT,2(t))

+T−1
∑T

t=T−P+1
(1− (1− αt)2)(T 1/2H ′

T,2(t))(B2(t)−B2)(xT,2,tx
′
T,2,t −B−1

2 )(B2(t)−B2)(T 1/2HT,2(t))

+2T−1
∑T

t=T−P+1
(1− (1− αt)2)(T 1/2H ′

T,2(t))(B2(t)−B2)B−1
2 (B2(t)−B2)(T 1/2HT,2(t)),

T−1
∑T

t=T−P+1
α2

t (T
1/2H ′

T,2(t))JB1(t)J ′xT,2,tx
′
T,2,tJB1(t)J ′(T 1/2HT,2(t)) (18)

= T−1
∑T

t=T−P+1
α2

t (T
1/2H ′

T,2(t))JB1J
′(T 1/2HT,2(t))

+2T−1
∑T

t=T−P+1
α2

t (T
1/2H ′

T,2(t))JB1J
′B−1

2 J(B1(t)−B1)J ′(T 1/2HT,2(t))

+T−1
∑T

t=T−P+1
α2

t (T
1/2H ′

T,2(t))JB1J
′(xT,2,tx

′
T,2,t −B−1

2 )JB1J
′(T 1/2HT,2(t))

+2T−1
∑T

t=T−P+1
α2

t (T
1/2H ′

T,2(t))JB1J
′(xT,2,tx

′
T,2,t −B−1

2 )J(B1(t)−B1)J ′(T 1/2HT,2(t))

+T−1
∑T

t=T−P+1
α2

t (T
1/2H ′

T,2(t))J(B1(t)−B1)J
′
(xT,2,tx

′
T,2,t −B−1

2 )J(B1(t)−B1)J ′(T 1/2HT,2(t))
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+T−1
∑T

t=T−P+1
α2

t (T
1/2H ′

T,2(t))J(B1(t)−B1)J ′B−1
2 J(B1(t)−B1)J ′(T 1/2HT,2(t)),

T−1
∑T

t=T−P+1
αt(1− αt)(T 1/2H ′

T,2(t))B2(t)xT,2,tx
′
T,2,tJB1(t)J ′(T 1/2HT,2(t)) (19)

= T−1
∑T

t=T−P+1
αt(1− αt)(T 1/2H ′

T,2(t))JB1J
′(T 1/2HT,2(t))

+T−1
∑T

t=T−P+1
αt(1− αt)(T 1/2H ′

T,2(t))B2(xT,2,tx
′
T,2,t −B−1

2 )JB1J
′(T 1/2HT,2(t))

+T−1
∑T

t=T−P+1
αt(1− αt)(T 1/2H ′

T,2(t))B2(xT,2,tx
′
T,2,t −B−1

2 )J(B1(t)−B1)J ′(T 1/2HT,2(t))

+T−1
∑T

t=T−P+1
αt(1− αt)(T 1/2H ′

T,2(t))(B2(t)−B2)B−1
2 JB1J

′(T 1/2HT,2(t))

+T−1
∑T

t=T−P+1
αt(1− αt)(T 1/2H ′

T,2(t))(B2(t)−B2)B−1
2 J(B1(t)−B1)J ′(T 1/2HT,2(t))

+T−1
∑T

t=T−P+1
αt(1− αt)(T 1/2H ′

T,2(t))J(B1(t)−B1)J ′(T 1/2HT,2(t))

+T−1
∑T

t=T−P+1
αt(1− αt)(T 1/2H ′

T,2(t))(B2(t)−B2)(xT,2,tx
′
T,2,t −B−1

2 )J(B1(t)−B1)J ′(T 1/2HT,2(t))

+T−1
∑T

t=T−P+1
αt(1− αt)(T 1/2H ′

T,2(t))(B2(t)−B2)(xT,2,tx
′
T,2,t −B−1

2 )JB1J
′(T 1/2HT,2(t)).

Note that the weighted sum of the first right-hand side term of each of (17) – (19) gives us

T−1
∑T

t=T−P+1
(1− (1− αt)2)(T 1/2H ′

T,2(t))B2(T 1/2HT,2(t))

−T−1
∑T

t=T−P+1
α2

t (T
1/2H ′

T,2(t))JB1J
′(T 1/2HT,2(t))

−2T−1
∑T

t=T−P+1
αt(1− αt)(T 1/2H ′

T,2(t))JB1J
′(T 1/2HT,2(t))

= T−1
∑T

t=T−P+1
(1− (1− αt)2)(T 1/2H ′

T,2(t))(−JB1J
′ + B2)(T 1/2HT,2(t))

the second right-hand side term in (15). We must therefore show that all of the remaining right-hand
side terms in (17)-(19) are op(1). The proof of each is very similar. For example, taking the absolute
value of the fifth right-hand side term in (17) provides

|T−1
∑T

t=T−P+1
(1− (1− αt)2)(T 1/2H ′

T,2(t))(B2(t)−B2)(xT,2,tx
′
T,2,t −B−1

2 )(B2(t)−B2)(T 1/2HT,2(t))|

≤ k4(sup
t

|T 1/2HT,2(t)|)2(sup
t

|B2(t)−B2|)2(T−1
∑T

t=T−P+1
|xT,2,tx

′
T,2,t −B−1

2 |).

Since assumptions 3 and 4 suffice for T−1
∑T

t=T−P+1 |xT,2,tx′T,2,t −B−1
2 | = Op(1), supt |T 1/2HT,2(t)| =

Op(1) and supt |B2(t)−B2|= op(1) we obtain the desired result.

For the second stage of the proof we show that the expansion in (15) converges in distribution

to the term provided in the Theorem. To do so recall that Assumption 4 implies αt ⇒ α(s). Also,

Assumptions 3 (a) - (d) imply T 1/2HT,2(t) ⇒ s−1V 1/2W (s). Continuity then provides the desired

results for the second contribution to the first bracketed term, for the second and third contributions

to the second bracketed term and the third bracketed term.
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The remaining two contributions (the first in each of the first two bracketed terms), are each
weighted sums of increments hT,2,t+τ . Consider the first contribution to the second bracketed term.
Since this increment satisfies Assumption 3 (d) and has an associated long-run variance V , we can
apply Theorem 4.1 of De Jong and Davidson (2000) directly to obtain the desired convergence in
distribution

−
∑T

t=T−P+1
αtδ

′B−1
2 (−JB1J

′ + B2)(T−1/2hT,2,t+τ )→d −
∫ 1

1−λP

α(s)δ′B−1
2 (−JB1J

′ + B2)V 1/2dW (s).

For the first contribution to the first bracketed term additional care is needed. Again, since the
increments satisfy Assumption 3 (d) with long-run variance V we can apply Theorem 4.1 of De Jong
and Davidson (2000) to obtain

−2
∑T

t=T−P+1
αt(T−1/2h′T,2,t+τ )(−JB1J

′ + B2)(T 1/2HT,2(t))

→ d − 2
∫ 1

1−λP

α(s)s−1W ′(s)V 1/2(−JB1J
′ + B2)V 1/2dW (s) + Λ.

Note the addition of the drift term Λ. To obtain the desired result we must show that this term

is zero. A detailed proof is provided in Lemma A6 of Clark and McCracken (2005) – albeit under

the technical conditions provided in Hansen (1992) rather than those provided here. Rather than

repeat the proof we provide an intuitive argument. Note that HT,2(t) = t−1
∑t−τ

s=1 hT,2,s+τ . In

particular note the range of summation. Since Assumption 3 (b) maintains that the increments of

the stochastic integral hT,2,t+τ form an MA(τ − 1) we find that hT,2,t+τ is uncorrelated with every

element of HT,2(t). Since Λ captures the contribution to the mean of the limiting distribution due

to covariances between the increments hT,2,t+τ and the elements of HT,2(t) we know that Λ = 0 and

the proof is complete.

Proof of Corollary 1: First note that the assumptions, and notably Assumption 3 (c), suffice

for uniform integrability of the difference in MSEs and hence the limit of the expectation converges

to the expectation of the limit. Second, note that both the second bracketed term and the first

component of the first bracketed term are zero mean and moreover, the third bracketed term is

nonstochastic. Taking expectations of the limit we then obtain

E{
∫ 1

1−λP

ξW (s)}

= {0 +
∫ 1

1−λP

(1− (1− α(s))2)s−2E[W ′(s)V 1/2(−JB1J
′ + B2)V 1/2W (s)]ds}

+{0}−
∫ 1

1−λP

α2(s)δ′B−1
2 (−JB1J

′ + B2)B−1
2 δds

=
∫ 1

1−λP

(1− (1− α(s))2)s−2tr(E[W (s)W ′(s)](−JB1J
′ + B2)V )ds

−
∫ 1

1−λP

α2(s)δ′B−1
2 (−JB1J

′ + B2)B−1
2 δds

26



=
∫ 1

1−λP

(1− (1− α(s))2)s−1tr((−JB1J
′ + B2)V )ds

−
∫ 1

1−λP

α2(s)δ′B−1
2 (−JB1J

′ + B2)B−1
2 δds.

Proof of Corollary 2: We obtain our pointwise optimal combining weight by maximizing, for
each fixed s, the argument of the integral in Corollary 1. That is we choose α(s) to maximize

(1− (1− α(s))2)s−1tr((−JB1J
′ + B2)V )− α2(s)δ′B−1

2 (−JB1J
′ + B2)B−1

2 δ (20)

Differentiating (20) with respect to α we obtain

FOC α : 2(1− α(s))s−1tr((−JB1J
′ + B2)V )− 2α(s)δ′B−1

2 (−JB1J
′ + B2)B−1

2 δ

SOC α : −2s−1tr((−JB1J
′ + B2)V )− 2δ′B−1

2 (−JB1J
′ + B2)B−1

2 δ.

Setting the FOC to zero and solving for α(s) provides the formula from the Corollary. The SOC

is negative at this solution and we obtain the desired result.
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Table 1. Monte Carlo Results from Signal = Noise Experiments: Average MSEs
(for restricted model, average MSE; for other forecasts,

ratio of average MSE to restricted model’s average MSE)
DGP 1

horizon = 1 horizon = 4
method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .773 .775 .771 .764 .818 .816 .808 .796
unrestricted 1.004 1.002 1.000 .998 1.029 1.011 1.006 .998
opt. combination: known α∗

t .995 .994 .994 .993 .995 .986 .985 .982
opt. combination: α̂∗

t .999 .998 .997 .996 1.007 .996 .993 .989
opt. combination: Stein α̂∗

t .999 .998 .998 .997 1.005 .996 .994 .991
simple average .995 .994 .994 .993 .992 .984 .983 .981

DGP 2
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .678 .678 .677 .672 .635 .632 .627 .620
unrestricted 1.009 1.003 .999 .993 1.004 1.004 .996 .983
opt. combination: known α∗

t .984 .983 .982 .980 .959 .962 .960 .956
opt. combination: α̂∗

t .992 .989 .987 .984 .972 .974 .971 .964
opt. combination: Stein α̂∗

t .993 .990 .989 .987 .975 .976 .973 .967
simple average .984 .982 .982 .980 .958 .960 .959 .956

DGP 3
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .780 .752 .747 .740 .843 .822 .817 .805
unrestricted 1.012 1.009 1.003 .994 1.058 1.050 1.037 1.020
opt. combination: known α∗

t .974 .974 .973 .970 .972 .973 .971 .967
opt. combination: α̂∗

t .983 .982 .980 .976 .993 .991 .987 .980
opt. combination: Stein α̂∗

t .985 .983 .981 .978 .987 .985 .983 .978
simple average .974 .974 .973 .970 .974 .974 .972 .967

Notes:
1. DGPs 1–3 are defined in, respectively, equations (10), (11), and (12). In all experiments, the bij coefficients
are scaled such that the null and alternative models are (in population) expected to be equally accurate in the first
forecast period. For DGP 1, b11 = .042. For DGP 2, b11 = .026, b21 = .100, b22 = .037. For DGP 3, b11 = .026, b21 =
.06, b31 = .106, b41 = .026, b51 = .053.
2. The forecasting approaches are defined as follows. The restricted forecast is obtained from OLS estimates of the
model omitting x terms (equation (13)). The unrestricted forecast is obtained from OLS estimates of the full model
(equation (14)). The opt. combination: known α∗

t forecast is computed as α∗
t × restricted + (1−α∗

t ) × unrestricted,
with α∗

t computed according to (4), using the known features of the DGP. The opt. combination: α̂∗
t forecast is α̂∗

t ×
restricted + (1 − α̂∗

t ) × unrestricted, with α̂∗
t computed according to (8), using moments estimated from the data.

The opt. combination: Stein α̂∗
t forecast is α̂∗

t × restricted + (1− α̂∗
t ) × unrestricted, with α̂∗

t computed according
to (9). Finally, the simple average forecast is .5 × restricted + .5 × unrestricted.
3. P defines the number of observations in the forecast sample. The size of the sample used to generate the first (in
time) forecast at horizon τ is 80− τ + 1 (the estimation sample expands as forecasting moves forward in time).
4. The table entries are based on averages of forecast MSEs across 10,000 Monte Carlo simulations.
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Table 2. Monte Carlo Results from Signal > Noise Experiments: Average MSEs
(for restricted model, average MSE; for other forecasts,

ratio of average MSE to restricted model’s average MSE)
DGP 1

horizon = 1 horizon = 4
method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .813 .813 .809 .802 .958 .955 .946 .932
unrestricted .955 .954 .953 .950 .898 .882 .878 .871
opt. combination: known α∗

t .952 .952 .951 .949 .889 .875 .872 .867
opt. combination: α̂∗

t .957 .955 .954 .952 .895 .881 .878 .872
opt. combination: Stein α̂∗

t .960 .958 .957 .954 .903 .888 .884 .877
simple average .959 .959 .958 .958 .896 .890 .889 .887

DGP 2
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .811 .805 .803 .798 .967 .948 .940 .929
unrestricted .845 .845 .841 .837 .723 .729 .724 .714
opt. combination: known α∗

t .839 .840 .837 .834 .716 .721 .718 .710
opt. combination: α̂∗

t .843 .843 .840 .836 .723 .725 .722 .713
opt. combination: Stein α̂∗

t .847 .845 .841 .837 .732 .732 .728 .718
simple average .865 .866 .866 .865 .765 .767 .767 .764

DGP 3
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .834 .803 .798 .790 .968 .942 .934 .921
unrestricted .947 .944 .939 .931 .971 .966 .956 .940
opt. combination: known α∗

t .924 .924 .922 .918 .919 .920 .917 .910
opt. combination: α̂∗

t .930 .928 .926 .921 .929 .928 .923 .915
opt. combination: Stein α̂∗

t .936 .932 .929 .924 .935 .932 .928 .920
simple average .928 .927 .927 .925 .918 .919 .917 .913

Notes:
1. DGPs 1–3 are defined in, respectively, equations (10), (11), and (12). For DGP 1, b11 = .042. For DGP 2,
b11 = .07, b21 = .27, b22 = .10. For DGP 3, b11 = .04, b21 = .09, b31 = .16, b41 = .04, b51 = .08.
2. See the notes to Table 1.

31



Table 3. Signal > Noise Experiments with Small Estimation Sample: Average MSEs
(for restricted model, average MSE; for other forecasts,

ratio of average MSE to restricted model’s average MSE)
DGP 1

horizon = 1 horizon = 4
method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .854 .853 .839 .823 1.061 1.023 .998 .966
unrestricted .988 .970 .964 .958 .970 .938 .918 .900
opt. combination: known α∗

t .971 .961 .957 .954 .925 .909 .897 .886
opt. combination: α̂∗

t .978 .967 .962 .958 .924 .913 .902 .891
opt. combination: Stein α̂∗

t .980 .971 .967 .962 .925 .919 .909 .898
simple average .968 .962 .961 .959 .908 .902 .897 .894

DGP 2
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .876 .852 .837 .820 1.071 1.024 .998 .970
unrestricted .908 .882 .868 .855 .851 .801 .775 .749
opt. combination: known α∗

t .882 .865 .856 .847 .807 .773 .755 .736
opt. combination: α̂∗

t .888 .870 .860 .850 .804 .775 .758 .741
opt. combination: Stein α̂∗

t .896 .878 .866 .854 .819 .791 .773 .751
simple average .886 .877 .873 .870 .807 .789 .782 .775

DGP 3
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .841 .837 .827 .812 1.022 1.009 .988 .960
unrestricted 1.064 1.019 .993 .967 1.146 1.087 1.047 1.002
opt. combination: known α∗

t .960 .950 .941 .932 .959 .952 .943 .929
opt. combination: α̂∗

t .980 .963 .951 .939 .994 .976 .961 .942
opt. combination: Stein α̂∗

t .972 .962 .953 .942 .968 .962 .953 .940
simple average .957 .947 .940 .934 .964 .951 .941 .929

Notes:
1. DGPs 1–3 are defined in, respectively, equations (10), (11), and (12). For DGP 1, b11 = .042. For DGP 2,
b11 = .07, b21 = .27, b22 = .10. For DGP 3, b11 = .04, b21 = .09, b31 = .16, b41 = .04, b51 = .08.
2. P defines the number of observations in the forecast sample. The size of the sample used to generate the first (in
time) forecast at horizon τ is 40− τ + 1 (rather than 80− τ + 1 as in the baseline experiments).
3. See the notes to Table 1.
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Table 4: Monte Carlo Probabilities of Equaling
or Beating Restricted Model’s MSE, DGPs 2 and 3

DGP 2: signal = noise
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
unrestricted .501 .472 .483 .524 .509 .495 .493 .525
opt. combination: known α∗

t .521 .574 .627 .698 .535 .576 .600 .660
opt. combination: α̂∗

t .515 .514 .547 .613 .530 .538 .554 .605
opt. combination: Stein α̂∗

t .642 .553 .554 .592 .646 .597 .579 .601
simple average .521 .581 .639 .727 .539 .593 .628 .706

DGP 2: signal > noise
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
unrestricted .557 .803 .901 .977 .589 .785 .869 .951
opt. combination: known α∗

t .567 .834 .926 .986 .600 .810 .893 .963
opt. combination: α̂∗

t .570 .843 .935 .989 .609 .836 .916 .975
opt. combination: Stein α̂∗

t .574 .849 .939 .990 .618 .844 .921 .977
simple average .598 .921 .980 .999 .635 .900 .965 .995

DGP 3: signal = noise
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
unrestricted .497 .461 .473 .519 .481 .424 .412 .417
opt. combination: known α∗

t .524 .609 .652 .736 .521 .564 .590 .642
opt. combination: α̂∗

t .517 .549 .584 .670 .505 .506 .513 .555
opt. combination: Stein α̂∗

t .608 .564 .583 .664 .614 .554 .540 .562
simple average .524 .616 .671 .770 .517 .556 .587 .653

DGP 3: signal > noise
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
unrestricted .521 .621 .684 .796 .512 .543 .571 .648
opt. combination: known α∗

t .541 .715 .794 .899 .540 .644 .696 .786
opt. combination: α̂∗

t .539 .702 .778 .890 .537 .629 .677 .773
opt. combination: Stein α̂∗

t .568 .710 .791 .900 .587 .649 .688 .787
simple average .554 .779 .867 .955 .552 .691 .758 .861

Notes:
1. The table entries are frequencies (percentages of 10,000 Monte Carlo simulations) with which each forecast approach
yields a forecast MSE less than or equal to the restricted model’s MSE.
2. See the notes to Tables 1 and 2.
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Table 5. Application Results: 1985-2006 Forecasts of Core PCE Inflation
(RMSE for restricted forecast, and MSE ratios for other forecasts)

output gap output gap & 1 factor

food-energy inflation

method/model 1Q 1Y 1Q 1Y 1Q 1Y
restricted .632 .516 .632 .516 .632 .516
unrestricted .980 1.044 1.150 1.380 .979 1.034
opt. combination: α̂∗

t .976 .990 1.073 1.081 .977 .986
opt. combination: Stein α̂∗

t .976 .984 1.060 1.020 .977 .978
simple average .973 .906 .983 .871 .977 .950
Ridge regression .978 1.018 1.032 1.135 .976 .976
BMA .995 1.006 1.085 1.155 .999 1.024

2 factors 3 factors 5 factors

method/model 1Q 1Y 1Q 1Y 1Q 1Y
restricted .632 .516 .632 .516 .632 .516
unrestricted .965 .971 .950 .879 1.136 1.001
opt. combination: α̂∗

t .954 .879 .935 .791 1.040 .834
opt. combination: Stein α̂∗

t .953 .866 .934 .781 1.021 .807
simple average .950 .854 .936 .782 .963 .794
Ridge regression .950 .891 .933 .807 .955 .815
BMA .971 .934 .954 .846 1.065 .914

Notes:
1. The forecasting models take the forms given in equations (13) and (14). In the first application, the unrestricted
model includes just one lag of the output gap, defined as the log ratio of actual GDP to the CBO’s estimate of
potential GDP. In the second application, the unrestricted model includes one lag of the output gap and two lags of
relative food and energy price inflation, calculated as overall PCE inflation less core PCE inflation. In the remaining
applications, the unrestricted model includes one lag of common business cycle factors — with the number of factors
varying from 1 to 5 across applications — estimated as in Stock and Watson (2005).
2. The first six forecast approaches are defined in the notes to Table 1. The BMA forecast is a Bayesian average of
the forecasts from the restricted and unrestricted models, implemented with the averaging approach recommended by
Fernandez, Ley, and Steel (2001), with the difference that these results are based on a g–prior coefficient setting of
1/5. The Ridge regression forecast is obtained from a generalized ridge estimator which shrinks the β22 coefficients
(but not the other coefficients) of the unrestricted model toward 0 based on conventional Minnesota prior settings
described in section 4.2.
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