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Abstract

In perturbation analysis of nonlinear dynamic systems, the presence of a
bifurcation implies that the first-order behavior of the economy cannot be
characterized solely in terms of the first-order derivatives of the model equa-
tions. In this paper, we use two simple examples to illustrate how to detect
the existence of a bifurcation. Following the general approach of Judd (1998),
we then show how to apply l’Hospital’s rule to characterize the solution of each
model in terms of its higher-order derivatives. We also show that in some cases
the bifurcation can be eliminated through renormalization of model variables;
furthermore, renormalization may yield a more accurate first-order solution
than applying l’Hospital’s rule to the original formulation.
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1 Introduction

In recent analysis of nonlinear dynamic macroeconomic models, the characteriza-

tion of their first-order dynamics has been an important step for understanding
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theoretical implications and evaluating empirical success. However, the presence of

a bifurcation in perturbation analysis of nonlinear dynamic systems implies that the

first-order behavior of the economy cannot be characterized solely in terms of the

first-order derivatives of the model equations.

In this paper, we use two simple macroeconomic models to address several issues

regarding bifurcations. In particular, the bifurcation problem would emerge in

conjunction with the price dispersion generated by staggered price setting in the part

of firms. We then show how to apply l’Hospital’s rule to characterize the solution

of each model in terms of its higher-order derivatives. We also show that in some

cases the bifurcation can be eliminated through renormalization of model variables;

furthermore, renormalization may yield a more accurate first-order solution than

applying l’Hospital’s rule to the original formulation.

Before presenting our results, it is noteworthy that our definition of bifurcation

is distinct from the one analyzed in Benhabib and Nishimura (1979). In particular,

their analysis on bifurcation is associated with time evolution of dynamic systems.

However, our concern with bifurcation arises in the process of approximating non-

linear equations, as discussed in Judd (1998).

We proceed as follows. Section 2 describes the two examples and illustrates

how to detect the existence of a bifurcation problem. Section 3 follows the general

approach of Judd (1998) and applies l’Hospital’s rule to characterize the first-order

behavior of each model. Section 4 shows how the bifurcation can be eliminated

through renormalization of model variables. Section 5 concludes.

2 Diagnosis of Bifurcations

This section discusses how we can detect the existence of bifurcation in two simple

economies. In both models, Calvo-style price setting behavior of firms can be

summarized by the following law of motion for the relative price distortion:

∆t = (1− α)

(
1− αΠε−1

t

1− α

) ε
ε−1

+ α∆t−1Π
ε
t, (2.1)

where the distortion index is defined as

∆t =

∫ 1

0

(
Pt(z)

Pt

)−ε

dz.

The parameters α and ε represent the percentage of firms that cannot change their

price in each period and the elasticity of substitution across goods z ∈ (0, 1), re-
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spectively. The variable Πt (= Pt/Pt−1) is the gross inflation rate of the price index

aggregated over firms.

2.1 A Single-Equation Setting

To discuss the issue of bifurcation, we have to close the model with another equation.

In the first example, we simply assume that inflation follows an exogenous stochastic

process,

Πt = Ut,

where the logarithm of Ut follows a mean zero process. We can rationalize this

process in terms of monetary policy by a version of strict inflation targeting around

the exogenous process or a version of strict output-gap targeting in a model with

cost-push shocks.

By combining the two equations, we now have a single-equation model:

∆t = (1− α)

(
1− αU ε−1

t

1− α

) ε
ε−1

+ α∆t−1U
ε
t . (2.2)

Since this equation is backward looking, this exact nonlinear form can be used for

any dynamic analysis. However, we suppose that we have to rely on approximation

methods to analyze this model as would be the case when there are forward-looking

equations.

Woodford (2003) and Benigno and Woodford (2005) pointed out that, when

deviations of the (net) inflation rate from its zero steady state are of first order

in terms of exogenous variations, deviations of the distortion index from one is of

second order. Based on this observation, one can naturally approximate the system

with respect to the square root of the logarithm of the relative price distortion index.

Note that this distortion index is unity at the steady state with zero inflation rate.

We follow the convention of using lower cases for log deviations,

ut = log Ut,

δt = log ∆t,

γt =
√

log ∆t.

Specifically, γt corresponds to the approximation in Woodford (2003) and Benigno

and Woodford (2005). It will be also shown in Section 4 that δt can be used as the

basis of an alternative approximation.
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Under the choice of γt as the approximation variable, (2.2) can be rewritten as

follows:

f (γt; γt−1, ut) ≡ exp
(
γ2

t

)−(1− α)

[
1− α (exp ut)

ε−1

1− α

] ε
ε−1

−α exp
(
γ2

t−1

)
(exp ut)

ε = 0.

(2.3)

Now let’s see what happens if we try a Taylor approximation of this system with

respect to γt and ut. It is easy to see that the derivative with respect to the

endogenous variable (∂f/∂γt) would be zero at the steady state. Based on this

zero derivative, we can diagnose the bifurcation problem in this case. Put in an

alternative way, the implicit function theorem cannot be applied when the derivative

with respect to the endogenous variable is zero.

It is noteworthy to find out what would happen if we feed this case into

computer codes commonly available for dynamic macroeconomic analysis. The

Dynare package (version 3.05) produces an message saying ‘Warning: Matrix is

singular to working precision’, and AIM (developed by Gary Anderson and

George Moore, and widely used at the Federal Reserve Board) returns a code indicat-

ing ‘Aim: too many exact shiftrights’. The routine developed by Christopher

Sims (gensys.m) ends without any output or error message.

2.2 A Multi-Dimensional Setting

The second example is a case with multiple equations. Our example is a prototypical

Calvo-style sticky-price model, and the optimal policy problem is to maximize the

household welfare subject to the following four constraints: the law of motion for rel-

ative price distortions, the social resource constraint, the firms’ profit maximization

condition, and the present-value budget constraint of the household. However, it is

shown in Yun (2005) that the optimal policy problem can be reduced to minimizing

the index for relative price distortion (2.1). At the optimum, we have the following

relationship:

Πt =
∆t

∆t−1

. (2.4)

Therefore, the solution to the optimal policy problem can be represented with the

following bivariate nonlinear system:

[
∆t − (1− α)

(
1−αΠε−1

t

1−α

) ε
ε−1 − α∆t−1Π

ε
t

∆t −∆t−1Πt

]
=

[
0
0

]
. (2.5)
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As in the single-equation case, we start with a normalization according to which

γt and πt are endogenous variables and γt−1 is exogenous:

[
exp (γ2

t )− (1− α)
[

1−α(exp πt)
ε−1

1−α

] ε
ε−1 − α exp

(
γ2

t−1

)
(exp πt)

ε

exp (γ2
t )− exp

(
γ2

t−1

)
(exp πt)

]
=

[
0
0

]
,

where πt (= log Πt) is the net inflation rate. When there are multiple equations

in the system, the assumption of the implicit function theorem involves the non-

singularity of the Jacobian. Computing the determinant for the Jacobian, we have

∣∣J(γt,πt;γt−1)

∣∣ =

∣∣∣∣
0 0
0 −1

∣∣∣∣ = 0.

Since the Jacobian is singular, the implicit function theorem cannot be applied and

the regular perturbation method does not work. We need to rely on the bifurcation

method.

3 Resolution of Bifurcations

As explained in Judd (1998) and Judd and Guu (2001), the bifurcation problem can

be resolved by using l’Hospital’s rule.

3.1 A Single-Equation Setting

To understand the approximated behavior of γt in the singe-equation example, we

need to compute ∂γt (γt−1, ut) /∂γt−1 and ∂γt (γt−1, ut) /∂ut where γt (γt−1, ut) is de-

fined as an implicit function as follows:

f (γt (γt−1, ut) ; γt−1, ut) = 0.

In cases for which regular perturbation analysis could be applied, the first-order

approximation of γt (γt−1, ut) would come from the implicit function theorem as

follows:

γ
(1)
t (γt−1, ut) = −∂f/∂γt−1

∂f/∂γt

γt−1 − ∂f/∂ut

∂f/∂γt

ut.

The number in the parenthesis indicates the order of approximation. However,

the assumption of the implicit function theorem does not hold in our case since

∂f/∂γt = 0. We need to adopt an advanced asymptotic method—the bifurcation

method in this case.
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Noting that the derivatives in the numerators are also zero at the steady state, we

apply l’Hospital’s rule to the two ratios in the form of 0/0 and obtain the following

first-order approximation:1

γ
(1)
t (γt−1, ut) =

√
αγt−1 +

√
αε

2 (1− α)
ut. (3.6)

This is an example of the transcritical bifurcation.2

In this single-equation model, it is easy to avoid the bifurcation problem when

we consider the following equation that is equivalent to (2.3),

f̃ (γt; γt−1, ut) ≡ γt−

√√√√√log



(1− α)

[
1− α (exp ut)

ε−1

1− α

] ε
ε−1

+ α exp
(
γ2

t−1

)
(exp ut)

ε



 = 0.

The derivative ∂f̃/∂γt becomes nonzero, so the assumption of the implicit function

theorem is satisfied. However, we still have to use l’Hospital’s rule in computing

the derivative with respect to the exogenous variables: ∂f̃/∂γt−1 and ∂f̃/∂ut.

3.2 A Multi-Dimensional Setting

To illustrate how we can invoke the bifurcation method in the multi-dimensional

example, we substitute the second equation in (2.5) into the first to obtain:

0 = F (γt; γt−1)

≡ exp
(
γ2

t

)− (1− α)




1− α

(
exp(γ2

t )
exp(γ2

t−1)

)ε−1

1− α




ε
ε−1

− α exp
(
γ2

t−1

)
(

exp (γ2
t )

exp
(
γ2

t−1

)
)ε

.

Were the assumptions of the bifurcation theorem to hold, then differentiation of the

implicit expression F (γt (γt−1) ; γt−1) = 0 with respect to γt−1 would produce the

equation
∂γt (γt−1)

∂γt−1

= −
(

∂F

∂γt

)−1
∂F

∂γt−1

.

However, since both derivatives on the right-hand side are zero at the steady

state, we need to apply l’Hospital’s rule to compute ∂γt/∂γt−1. The first-order

solution for γt is

γ
(1)
t (γt−1) =

√
αγt−1,

1A detailed derivation of this first-order approximation is available upon request.
2See Judd (1998, Ch. 15) and Judd and Guu (2001) for details on the bifurcation method.
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and the second-order accurate expression for inflation is

π
(2)
t (γt−1) = − (1− α) γ2

t−1. (3.7)

Note that the dependence of πt on γt−1 is purely quadratic (i.e. the zero coefficient

for the linear term) around the steady state with zero inflation rate.

4 Renormalization of Model Variables

The presence of bifurcations is not only related to the economic model in hand,

but also to the choice of the variable with respect to which the Taylor approxima-

tion is applied. This section shows that the bifurcation can be eliminated through

renormalization of model variables; furthermore, renormalization may yield a more

accurate first-order solution than applying l’Hospital’s rule to the original formula-

tion.

4.1 A Single-Equation Setting

In the single-equation setting, if we can approximate the model with respect to δt

and δt−1 instead of γt and γt−1, then the bifurcation problem would not emerge.3

To see this, rewrite (2.2) as follows:

g (δt; δt−1, ut) ≡ exp δt − (1− α)

[
1− α (exp ut)

ε−1

1− α

] ε
ε−1

− α (exp δt−1) (exp ut)
ε = 0.

With this renormalization, the second-order Taylor approximation of δt yields the

second-order solution for the endogenous variable:

δ
(2)
t (δt−1, ut) = αδt−1 +

α

2
δ2
t−1 + αεδt−1ut +

αε

2 (1− α)
u2

t .

This choice of expansion variable implies that, when the initial relative price distor-

tion is of first—rather than purely second—order, the current relative price distortion

is also of first order. That is, the relative price distortion is of the same order of

magnitude as the shocks. This equation differs from what we would obtain by

squaring both sides of (3.6) because the renormalization leads to the presence of the(
αδ2

t−1/2 + αεδt−1ut

)
term.

3Examples include Schmitt-Grohe and Uribe (2006) and Levin et al. (2006).
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Under this renormalization, the expression for the relative price distortion is

richer—and more accurate—than (3.6) derived using l’Hospital’s rule. Another

renormalization that produces a solution similar to (3.6) is to approximate with

respect to γt−1 (instead of δt−1). This alternative way is based on the interpretation

that the initial relative price distortion is of second order. Specifically, we rewrite

the model as

h (δt; γt−1, ut) ≡ exp δt − (1− α)

[
1− α (exp ut)

ε−1

1− α

] ε
ε−1

− α
(
exp γ2

t−1

)
(exp ut)

ε = 0,

and the second-order behavior of the endogenous variable becomes purely quadratic,

δ
(2)
t (γt−1, ut) = αγ2

t−1 +
αε

2 (1− α)
u2

t .

Since this expression is purely second order, it is consistent with the results under

the timeless perspective—a la Woodford (2003) and Benigno and Woodford (2005)—

that the relative price distortions are zero when we focus solely on the first-order

approximation.4

4.2 A Multi-Dimensional Setting

In the multi-dimensional case, the two ways of renormalization would correspond to
[

exp δt − (1− α)
[

1−α(exp πt)
ε−1

1−α

] ε
ε−1 − α (exp δt−1) (exp πt)

ε

exp δt − (exp δt−1) (exp πt)

]
=

[
0
0

]

and
[

exp δt − (1− α)
[

1−α(exp πt)
ε−1

1−α

] ε
ε−1 − α

(
exp γ2

t−1

)
(exp πt)

ε

exp δt −
(
exp γ2

t−1

)
(exp πt)

]
=

[
0
0

]
.

Either way, the determinant of the Jacobian is nonzero,

∣∣J(δt,πt)

∣∣ =

∣∣∣∣
1 0
1 −1

∣∣∣∣ = −1,

and the implicit function theorem can be applied. The computer codes written for

the regular perturbation methods would work.

4In perturbation analysis, the timeless perspective has implications for the choice of normal-
ization variables. This point can be equivalently addressed in a linear-quadratic analysis. The
timeless perspective is also different from the Ramsey optimal policy in terms of how to deal with
the lagged Lagrange multiplier for the behavior of models and their welfare implications.
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According to the first renormalization, the second-order approximation of (2.1)

is

δ
(2)
t = αδt−1 +

α

2
δ2
t−1 + αεδt−1πt +

αε

2 (1− α)
π2

t , (4.8)

and the logarithmic transformation of (2.4) is

πt = δt − δt−1.

Therefore, the second-order solution of this problem would be

δ
(2)
t (δt−1) = αδt−1 +

α (1− ε + αε)

2
δ2
t−1,

π
(2)
t (δt−1) = − (1− α) δt−1 +

α (1− ε + αε)

2
δ2
t−1.

It is noteworthy to point out that, according to this renormalization, the first-order

relationship between inflation and relative price distortions (π
(1)
t (δt−1) = δ

(1)
t (δt−1)−

δt−1) replicates the exact nonlinear relationship (2.4).

The alternative renormalization consistent with the timeless perspective is to

adopt γt−1 (instead of δt−1) as an exogenous variable. Based on this choice of an

expansion parameter, Woodford (2003) concluded that the optimal inflation rate is

zero to the first order in the absence of cost-push shocks. Under this normalization,

the two model equations are approximated as follows:

δ
(2)
t = αγ2

t−1 +
αε

2 (1− α)
π2

t ,

πt = δt − γ2
t−1.

The second-order solution to this system of equations would be purely quadratic5

δ
(2)
t (γt−1) = αγ2

t−1,

π
(2)
t (γt−1) = − (1− α) γ2

t−1.

The first-order approximation of this solution is consistent with the optimality of zero

inflation, as derived in the linear-quadratic approximation by Woodford (2003), Be-

nigno and Woodford (2005), and Levine, Pearlman and Pierse (2006). Furthermore,

the second-order solution for inflation is equivalent to the one via the bifurcation

method, (3.7).

5To use this solution recursively, we have to make the set of equations complete in the dynamic
context by adding an equation (δt − γ2

t = 0) that relates the contemporaneous value of δt and γt.
There are two ways to express the solution of this complete system. One way is to replace γ2

t−1

with δt−1. Alternatively, we can derive the linear dynamics of γt as γ
(1)
t (γt−1) =

√
αγt−1.
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Figure 1: Renormalizations and Optimal Inflation Rates
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4.3 Accuracy Comparison

After presenting two different renormalizations, it is natural to compare approxima-

tion errors for these two methods.6 For this purpose, we use as a reference point

the closed-form solution to the optimal policy problem (2.5). Specifically, as shown

in Yun (2005), the exact nonlinear solution for the optimal inflation rate is

Πt (∆t−1) =
[
α + (1− α) ∆ε−1

t−1

] −1
ε−1 . (4.9)

It is noteworthy that this closed-form solution is feasible only when the relative price

distortion is the only distortion—due to the assumption that there is an optimal

subsidy and there are no cost-push shocks. The optimal rate of inflation is less than

zero (Πt < 1) as long as there are initial price distortions (∆t−1 > 1).

The difference between the two methods is that the expansion parameter of the

first renormalization is δt−1, while that of the second is γt−1. Figure 1 compares

6Benigno and Woodford (2005) also comment on the difference between the two methods in
Footnotes 30 and 52.
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the accuracy of the two normalizations based on the first-order solution under each

normalization.7 The black solid line represents the exact closed-form solution for

annualized inflation (400 × πt) in terms of initial relative distortion (δt−1). The

blue line with crosses is the linear approximation of this nonlinear solution. This

corresponds to the first-order approximation of πt when the expansion parameter

is δt−1—that is, π
(1)
t (δt−1). It is evident that this approximation is more accurate

than π
(1)
t (γt−1): the first-order approximation with γt−1 as the expansion parameter,

depicted by the red circles.

We can provide an intuitive understanding about the improved accuracy of the

approximation with respect to δt−1 as follows. Since δt−1 is the square of γt−1,

the first-order approximation with respect to δt−1 is equivalent to the second-order

approximation with respect to γt−1:

π
(1)
t (δt−1) = π

(2)
t (γt−1) .

Note that the equality holds because no linear terms are included in π
(2)
t (γt−1) with

zero steady-state inflation rate.

5 Conclusion

We have illustrated how to detect the existence of a bifurcation and demonstrated

how to apply l’Hospital’s rule to characterize the solution. We have also shown

that the bifurcation can be eliminated through renormalization of model variables;

furthermore, renormalization may yield a more accurate first-order solution than

applying l’Hospital’s rule to the original formulation. This paper has focused on

the consequences of renormalization on the treatment of bifurcations. However, the

renormalization is also associated with the welfare evaluation of different policies as

in Benigno and Woodford (2005).

7Other ways to measure accuracy include checking Euler equation errors and calculating welfare
costs caused by approximation errors.
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