W

f—
>

U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
NATIONAL WEATHER SERVICE
OFFICE OF SYSTEMS DEVELOPMENT
TECHNIQUES DEVELOPMENT LABORATORY

TDL OFFICE NOTE 94-1

AN IMPROVED ALGORITHM FOR DETERMINING
THE GROUPS IN GRIB SECOND-ORDER PACKING

Harry R. Glahn

February 1994

e
.

AN IMPROVED ALGORITHM FOR DETERMINING
THE GROUPS IN GRIB SECOND-ORDER PACKING

Harry R. Glahn

1. INTRODUCTION

The GRIdded Binary (GRIB) code contained in the Manual on Codes (WMO 1988)
is becoming the international standard for exchanging meteorological gridpoint
data and has been specified as the form of exchange of such data between the
U.S. Government and the Automated Weather Interactive Processing System
(AWIPS) contractor. As part of National Weather Service (NWS) risk reduction
activities, many gridpoint products are being transmitted from the National
Meteorological Center (NMC) for use at designated sites such as Norman,
Oklahoma. Also, in order to get the benefit of such data before AWIPS is
deployed and to ready the field for the use of such data, a limited amount of
GRIBbed data is being transmitted on the Automated Field Operations and
Services (AFOS) network; these data are offloaded at local stations to
personal computers where they are decoded and used. Only a relatively small
amount of such data can be handled by AFOS communication circuits, competition
for the limited bandwidth being keen.

The Techniques Development Laboratory (TDL) is rebuilding its MOS develop-
mental and implementation systems. The new software will include improved
data file structures and more efficient packing procedures. In order to add
to our experience in the use of GRIB and its implications, to verify our
estimates for point to multipoint data transmission for AWIPS contained in the
AWIPS Systems Requirements Specification, Appendix K, (U.S. Government 1989),
and to determine whether or not the current GRIB products on AFOS could be
slimmed down appreciably, 195 messages containing eta model (Mesinger et al.
1990) data were transferred from AFOS to the AWIPS Government Development
Platform workstations for study. Each message contained several grids. 1In

all, 917 grids from late October and early November 1993, were available for
this test.

There are several features of the GRIB code that could be improved. Those
that can be considered important relative to the efficiency (in terms of
number of bits required) of the pdcking specifications are: (1) a bit map is
used to specify the location and size of the 2nd order (complex) packing
groups (WMO 1988, p. I-Bi-20), (2) full octets are used to define the group
"widths" (WMO 1988, p. I-Bi-20), (3) the scanning modes do not include.
alternate row or column reversal (WMO 1988, p. I-Bi-12), and (4) spatial
redundancy of meteorological data is not adequately addressed. Each of these
has been discussed previously by Glahn (1993).

NMC has implemented the GRIB code for AFOS as contained in the Manual on
Codes (WMO 1988), the only difference being that wherever desirable the field
packed is not the original field, but rather 2nd order (spatial) differences
of that field. In this way, the "field" is packed according to the GRIB
specifications, but the field has first been reduced to 2nd order differences.
This does necessitate sending the first original value and the first first
order difference, which are inserted into an expanded Section 1--50 octets
rather than the mandatory 28. The grids are with respect to the AWIPS Lambert

map projection (Stackpole 1993, p. 24) but are currently 29 X 25 points at
160-km resolution--the so called thinned and trimmed grids.

This paper discusses the benefits of using an algorithm for determining
whether or not to pack 2nd order differences, the performance of a specific
algorithm for determining groups when complex packing is used, and the
desirability of alternate row reversal in scanning.! This leads to a few
recommendations, which are contained in Section 7.

2. NMC PACKING OF ETA MODEL FIELDS

Each of the 917 grids processed had been packed by NMC in one of three ways:
(1) simple packing of the original values (no second order minimum removal),
(2) complex packing of the original values, or (3) complex packing of 2nd
order differences. The fields were generally heights, temperatures, U- and
V-winds, relative humidities, and vertical velocities at several atmospheric
levels, and also precipitation amounts, precipitable water, and lifted
indices, all at several projections. In each case, the original data had been
put into integer form by use of a suitable decimal scale factor. Overall
statistics for each of these types of packing are shown in Table 1 in the
column headed "NMC." The determination at NMC of the type of packing was made
based on experience with the specific fields and packing algorithms being
used. Of the 917 fields, 177 were simple-packed, 215 had original values
complex packed, and 525 had 2nd order differences complex packed.

3. ALGORITHM FOR DETERMINING WHETHER TO USE 2ND ORDER DIFFERENCES

The 2nd order (spatial) differencing is described by Davis (1978) and Glahn
(1992, p. 2). Many times the 2nd order differences will be smaller than the
original values (even with the minima removed) and will require less bits for
packing. But not always. Highly variable fields will not benefit from this
process. One could, of course, pack both such fields and use the one requir-
ing less bytes, but this seems unnecessarily machine-intensive. A rudimentary
procedure will suffice--one that will clearly and cheaply give the correct
answer in clear-cut situations. When the choice is difficult, it matters very
little whether or not the absolutely correct choice is made.

Basically, the problem is to determine the average variation of each
procedure (use of original values and use of 2nd order differences) on groups
of size MINPK, where MINPK is the minimum group size to be used by the
grouping algorithm. The algorithm in Appendix I does this, and is the method
used in this study in making the choices as required. It also returns to the
calling program the 2nd order differences (which are needed in the computa-
tion) in case they are to be used for packing.

1GRIB allows for scanning by row (left to right or vice versa) or column

(top to bottom or vice versa). However, once started, the scanning is always
in the same direction. That is, if the bottom row is scanned left to right,
the second row is also scamned left to right. This makes for a large change
between "adjacent" gridpoints--compared to real neighbors--at the end of each
row. If one were to alternate the scanning direction on alternate rows, all
"adjacent" gridpoints would be real neighbors. Stackpole (private communica-
tion) calls this process "boustrophedonic."®

2

4. ALGORITHM FOR DETERMINING GROUPS FOR COMPLEX PACKING

Usually, the packing of a meteorological field will benefit by using the 2nd
order minimum removal method called in the GRIB documentation "complex"
packing. Even noisy fields with some "spikes" should benefit. Therefore, a
good algorithm for determining groups is a necessity--one that will determine
near-optimal groups without excessive computer time. The FORTRAN code shown
in Appendix II basically works according to the diagram in Fig. 1.

The inputs to the algorithm, other than grid size, etc., are MINPK, the
minimum size group to pack, and INC, the number of points to try adding to a
group at a time. Ideally, INC would be 1 and should probably be used as such.
MINPK should be in the range 10 to 20--and be less than half the "row" length
(assuming scanning is by row).

5. EXAMPLE OF PERFORMANCE ON AN INDIVIDUAL FIELD

Fig. 2 shows the second order differences of an eta model field--not chosen
for any particular reason, just the first one looked at (first field in
message NMCGREE4X--24-h 200-mb temperature). Because the alternate row
reversal scanning was not used, a pair of rather large 2nd order differences
is associated with the end of each grid row.

Fig. 3 shows characteristics of NMC's packing of this field. It is noted
that the minimum size of the 45 groups is 20, and 20 is consistently the group
size. The total message length (hereafter, "message" will refer to a single
packed grid) is 1022 bytes, and the number of bits required per gridpoint is

8.39 including GRIB Sections 0, 1, 2, 4, and 5, not just the gridpoints
themselves.

The algorithm shown in Fig. 1 and Appendix II used with MINPK = 20 and
INC = 1, gives the statistics shown in Fig. 4a. The number of groups 1is
relatively small--33. The algorithm tends to put few points into groups
requiring a large number of bits (7). Some of the individual spikes and pairs
of large plus and minus values are isolated. Figs. 4b-4f show statistics for
MINPK = 19, 18, 16, 14, and 12, respectively. Note the big improvement of
message length of 989 to 927 bytes when going from MINPK = 20 to 19. This is
due to the double spike (one up, one down) associated with each 39-gridpoint
row--the minimum group size needs to be less than one-half the row size.

It is apparent that the groups tend to become oriented to the rows with the
sum of two adjoining groups many times summing to the row length--39. As
MINPK is reduced, the spikes tend to become isolated. In a few cases, a group
is composed of only one value, the number of bits being listed as zero because
all values in the group are the same (the single value) and the information is
carried in the minimum itself. A message length of 906 bytes is attained with
MINPK = 12; further reduction of MINPK was counterproductive.

When alternate rows are reversed, the 2nd order differences to pack are
shown in Fig. 5. Here, the "spikes" associated with the ends of rows are
eliminated. Figs. 6a-6d show the performance of the algorithm on this field
for MINPK = 20, 18, 16, and 14, respectively. It can be noted that the groups
still have some slight inclination to be "row oriented," but the association
is with the meteorological features that persist from row to row rather than
with the ends of rows. The message size at MINPK = 14 was 869.

3

6. PERFORMANCE ON 917 ETA MODEL FIELDS

Table 1 contains the results of various experiments. As stated earlier, it
was found that of the 917 fields, 177 were simple-packed, 215 had the original
values complex-packed, and 525 had 2nd order differences complex-packed.
Results are presented in Table 1 according to this breakdown, as well as
overall. Results are presented for MINPK = 20, 19, and 14 for both the
original order of the points and for the alternate row reversal.

In all cases, it was assumed that complex packing would be better than
simple packing. This may not always be the case (primarily because a bit map
is used to define the groups), but no attempt was made to determine whether
there were fields that would be better simple-packed.

The advantage of MINPK = 19 over 20 is seen for all three original groups,
but marked improvement is evident for the 2nd order fields (1088 bytes per
message versus 1171). Also, further reduction, albeit small, is possible when
MINPK is reduced to 14. Overall, the improvement over the grids as they were
transmitted on AFOS is (1107-1036)/1107 = 6.4%.

It is noted that the algorithm in Appendix I makes more decisions in favor
of 2nd order differences when row reversal is used; the end-of-row problem is
exacerbated when 2nd order differences are used. This is evident for all
values of MINPK and for all types of original packing.

The use of alternate row reversal further reduces the average message length
by (1036-986)/1086 = 4.8%. The total advantage of using the algorithms
presented here and alternate row reversal is (1107-986)/1107 = 10.9%. This
10.9% advantage achieved on these 917 fields is about equally due to the
algorithms in Appendices I and II and the alternate row reversal. The number
of bits required per point was about 8.1.

The results above pertain to the AFOS implementation of the GRIB code.
Because the WMO standard will likely be strictly followed for use in AWIPS,
the 917 fields were again packed without 2nd order differences or row rever-
sal. With MINPK = 14, the average bits required per point was 9.28 for the
160-km grids. In the AWIPS-era, much of the gridpoint data will be at 80-km
or higher resolution. The high frequency detail that may be contained in
these higher resolution fields will probably not greatly affect the number of
bits required to represent the field in the GRIB code. In order to see how a
reduced grid spacing might affect the results, the 917 fields were bilinearly
interpolated to an 80-km (40-km) grid. The resulting average bits per point
was 7.8 (6.8). These values are probably (only) slight underestimates
(especially the 7.8) because of the interpolation.

7. CONCLUSIONS AND RECOMMENDATIONS

It is likely the basic GRIB as contained in WMO (1988) will continue to be
used for packing gridpoint fields until WMO specifies a new version. However,
the alternate row reversal can be implemented on AFOS in conjunction with the
2nd order differences--the field packed can just be defined appropriately and
be run through the GRIBber as before. Only a few (like 10) lines of code are
necessary to implement row reversal in each of the packing and unpacking

routines. It is recommended that row reversal be implemented.

The algorithm for determining groups is important, and the one contained in
Appendix II and tested here has been shown to give good results. It can be
used as a module without rewrite. It is recommended that this algorithm be
implemented.

The algorithm in Appendix I for determining whether or not to pack 2nd order
differences operates efficiently in conjunction with the grouping algorithm.
The decisions it makes are reasonably inexpensive and are adequate. Use of
such an algorithm makes it unnecessary to predefine the type of packing by
field. Because the information content per gridpoint will in the future
change with model, projection, and gridpoint spacing, a decision made on-the-
fly seems appropriate. It is recommended that an algorithm such as that in
Appendix I be used.

The estimate given here is above 9 bits per gridpoint for the strict WMO
standard GRIB packing. Of course, this is based on the degree of accuracy
retained in the data; it is assumed here that the accuracy specified and used
in the field test for the eta model data was adequate. When interpolated
80-km (40-km) grids rather than 160-km grids were packed, the average bits
required per point was 7.8 (6.8). Because the preponderance of gridpoint data
to be packed in the AWIPS-era will be at 80-, 40-, or even 20-km resolution,

it is recommended that the 8-bit per point estimate in Appendix K be retained.

REFERENCES

Davis, R. A., 1978: Universal transmission format, Version 2.1. Unpublished
manuscript, National Weather Service, NOAA, U.S. Department of Commerce,
22 pp.

Glahn, H. R., 1992: On the packing of gridpoint data for efficient
transmission. TDL Office Note 92-11, National Weather Service, NOAA,
U.S. Department of Commerce, 32 pp.

, 1993: An analysis of some features of the GRIB code. IDL Office Note
92-11, National Weather Service, NOAA, U.S. Department of Commerce,
42 pp.

Mesinger, R., T. L. Black, D. W. Plummer, and J. H. Ward, 1990: Eta model
precipitation forecasts for a period including tropical storm Allison.
Wea Forecasting, 5, 483-493, ’

Stackpole, J. D., 1993: GRIB, Edition 1, the WMO format for the storage
of weather product information and the exchange of weather product
messages in gridded binary form. National Meteorological Center

Office Note 388, National Weather Service, NOAA, U.S. Department of
Commerce, 75 pp.

U.S. Government, 1989: AWIPS-90 System Requirements Specification, Vol. I,
Appendix K.

WMO, 1988: Manual on Codes, Vol. 1, Part B--Binary Codes. WMO No. 306, World
Meteorological Organization, Geneva.

GZ8 628 628 TLL 29L 09Z V/N I19paQ pug °"OoN
26 88 88 991 6T LST V/N Teuid1aQ ‘oN
€702 0°8¢ 6°0€ G61 VKA 4 6°6¢ 6°€C dnoxp/s3utod
6°LY 8" %¢ G 1€ 0°0S 9°¢h 9°2€ L oY sdnoxp °oN
60°8 11°8 1°8 0S°8 %G'8 00°6 60°6 jutod/satg (spT1o1d L16)
986 886 266 9¢0T %01 9601 LOTT y3j3ue] o3essoy Te30],
¥4 GBS i 91§ L0OS 906 V/N a19piQ pug °'OoN
0 0 0 6 81 6T V/N TeutdT1I0 ‘ON
6°61 1°L2 G 0¢ 1761 1°1¢ 0°6¢ €°€C dnoap/sautod
6°8% 0°9¢ 0°2¢ 6°06 9y 9°¢€ 6° 1% sdnoxp ‘oN (sp1e1d 626)
9¢°8 8¢°8 €v'8 88°8 €6°8 19°6 L6 jutod/satg 1spap pug
6101 1201 8201 2801 8801 TLTT G8TI y33ue] e8essej xa1dwo)
Sl 621 62T 76 66 S6 V/N I9piQ pug °oN
06 98 98 121 911 021 V/N Teutd1IQ ‘oN
VAR ¥4 0°0¢ 0°c¢ £°0C €°6¢ 1€ L°ST dnoxp/sjutod
9°GY A %°0¢ 6°LY 9°8¢ 1°1€ 6°LE sdnoxy ‘oN (SPT191d ST12)
92°L 0€°L 0€°L (9L 6% L G9°L 16°L jutoq/satd senfep Teuidtag
688 688 068 016 €16 z€6 696 y33ue] e8essay xa1dwo)
SLT GL1 GLT 191 96T 65T V/N a19piQ pug °'oN
Z Z Z 9T 12 81 V/N Teut81I0 ‘ON
%°02 8°8¢ 6°0¢€ 9°6T. VAl X4 8°0¢ V/N dnoxp/s3jutog
6°LY 6" €€ 9°1¢ 9°6% 9°1Y% 9°1¢ V/N sdnoxy ‘oN (SPTeTd LLT)
878 678 6C°8 29°8 99°8 18°8 29°8 jutod/s3td senyep TeulldTaQ
6001 0101 0101 0S0T GS0T %L01 0S0T y38ua] a8essel arduts
#T=AdNIH 6T=MANIN 0Z=MANIK #T=MANIK 6T=MANIN 0Z=MdNINW
OWN SOT3ST3IBIS POY3IsK Buroegd OWN

1BSI2A9Y MOY 93BUAIITV

a9pap 1euid1Ig

‘payoed mumwlmwocmuwmmﬂv Ispio pug 9yl 3Byl sueswl ,I9PIQ pUZ

?y3 3eyz sueam ,TeufdAQ "ON, °I9ym ‘umoys sumopieaiq @2yl aaed I xTpuaddy uy wyizjroSTe eyg

-p1a8 Jo aequmu ofeisae ay3 st ,dnoas/sjujoq,
19A0 POJBINOTED 91B ,3UT0d/SITH.

*se34q uy ya3uey o8essawm sFexesw aya sy ,yaSue °9essoy,
SOdV [L16 @43 Jo Bupyoed jo sadf3 Teurdrao 991yl 9yl I10j umoys ‘sjuswiiadxe Suryoed snolaea 103 sOF3ISTILIS

‘ON, pue ‘pajyoed axem sanyea Teujdiio

*dnox8 xad sjutod

"G pue ‘y ‘g ‘1T ‘p suoyloes gIyo Surpniouf ‘eFessem e3aydwoo eyj
*11eI940 pue ‘spyot3

T °1qel

(GROUP A)

Determine the number of
bits (IBITA) necessary to
pack the next MINPK values

-

L.

Determine the number of
bits (IBITB) necessary to
pack the MINPK values
(GROUP B) immediately
following GROUP A

A

|

Yes

IBITB < IBITA

GROUP A will not be in-
creased in size. Put as
many points in A adjacent
to GROUP B into GROUP B as
possible without increas-
ing IBITB.

Pack (reduced) GROUP A

Z

Define the resulting
GROUP B as GROUP A with
the appropriate
characteristics

No

Will INC points immediately
following GROUP A go into
GROUP A without increasing
IBITA

Yes
Put INC points
into A
No
N

Pack Group A

Figure 1.

Algorithm for determining the groups for complex packing.

CAHAA DM AANNNAANOHSH A AL NI NN FIANNNMCOEANAO A A A
| [} | ! LI I B [| — — | | 1O | 1 i
| | [} I
N NI -ANLOVNOVANAOOHNMAEAMOIOINMAAAONINAISINHAOTM IO PO AN
! I | [| | | | i I LI I R | I oA I | I 'O 1+ 1 N
| ! |
~SOdm FOMIMPAANOANONHNHOAOHIAMOMIUN PN NN < n <N
| | | | | L} | | (I I S B | LI L | | | i n I
|

3442514@4@703121120160107143221...42372215
1 [I I I | — | |

— | | [| ! LI B B |
I
N ANV ANOHAMEANMONHMANDAMOONONTMINOMINHINAO O N
i [I | | | | — | | I | i [R | | [} [T R B |
|
HAOI NN NMANMNAITAAAAATN AL AANOMENIHOIINNIMININOOVINMMON
| | ! [} N N I | | [[| LI T I B ! | L} I
G ! .
O AAITOMAAAANM A AN HOOMAHHMANOMANOMAINSINNAHIINSNNNWOOOA
! “ < 1IN L I R I LU R O R R N Y R N Lo I |
! B |
NOMALVLOANANANNETIONNOHHMOOMMOOYrHMHEHMANOLVULDMIAHTONHANNOWMHOMA
| I = S H | O . L I I I B | [| ()
| | | |
101160807132602003552211.0313131082935262253235122
| I I ! ! [| ™ ! LI | L B IO o | L} | ! [|
| I)
A OONANFHOANONOHYMMAEAMAISTMULANNNHNAINONOTNOVUMDEHARIIANM
| [} ! LI e IO I . IO RN A B | ! I | L I I e B | ! |
! ! |
COMAAONONOHOOODHNMAA T HOHMOANSOAHHMINANNOVOVONHNHNM I I
I i L n < i ! I I | 11
| !
MOAOAdAdd >N OWMOMOHAHLOLANENMONHANOIHHOOLANOANNOMPPNHHNONM
! LI R I | oo N m | [| [|
|
LI I B] L I e R N 0. O U . A A A AN R A | [| [
I
HOHAHOAYMOHAIAN AN NOVAHAANHNMIVOMNLOHNNHMOHINNO I NN NN
| | — [| | [| — | | | | I |
|
MANMONHIOAOFOONONOVUMOAIITNMMUNNATONOOOMMIPINOOVUHNHLHMHAMN WO A
I | L I i I | [} o ™ LI I I | [| |
! !
NOAAVHVOHAAHANNHTHDMOHMMEAMOOANANOVINMNAHOFIOAMTIMANHMANNI M
! (I} I LI | I~ I i LI | | I, ™ | | | i |
| |
MANOONHAHO~TOANANILANANANANANHLOLNLVLNOHANHNYANNEHMOANT~ONEMBEMESHOOMOY <
! ! [I I S 1 1T, m L
| |
M MNAAANAOMMOAMAITANHANANOONOMMANMOANVAIIANEHMNEAMNEHMA M P
LI | (| [U] (] — | LI R I~ N 0 T IO o A O e O O O O IO |
I I
O IHNOGNNOHOMANANOHAHINOMMOMMINNHHMMEAWINOMANMO LN 0
! LI I B | [I o L I | _:ﬂ._z_
|

™ 1@0
|

The 945 2nd order differences for the field discussed in Section 5 of

Figure 2.

According to the NMC procedure, the first 2nd order difference is

the text.

repeated twice at the beginning; therefore, the first two values are the same

as the 3rd value.

A few of the "spikes" caused by always starting a row at the

th the previous row at the right side are circled.

inishing wi

left side after £

IMIN()

60 63 28 23 55 23 51 25 50 29 54 49 57 45 43
59 5 59 54 63 35 22 54 18 55 28 54 52 61 44
29 56 28 59 23 62 8 60 0 62 7 16 54 14 60

LBIT() =

4
5
6

o1 o
N b oy
v
SqSou
o
SS90
o
ESIEN N |
(§) e We)
N9 u
<Sovn
(SN,)-8
)
vmonn

NOv() =

20 20 20 20 20 20 20 20 20 20 20 27 26 20 20
20 32 25 20 20 20 20 20 20 20 20 20 31 23 20
20 20 20 20 20 20 20 32 20 22 20 20 38 20 19

COMPLEX PACKING OF 2ND ORDER DIFFERENCES

SUMMARY
VARIABLE = 11
TYPE = 100
LEVEL = 200
MSG LENGTH = 1022 BYTES
NO. POINTS = 975 VALUES ACTUALLY PACKED = 975
BITS/PT = 8.39
SCALING = 1 e
NO. GROUPS = 45
AVG PTS/GP =

21.67
Figure 3. Statistics for the GRIBbed 24-h, 200-mb temperature in the message
NMCGREE4X. The number of points is 975, the message length is 1022 bytes,
the number of groups is 45, the average number of points per group is 21.67,
and the bits required per point is 8.39. The minimum value of each group,
the number of bits required for that group, and the number of values in the
group are shown in JMIN(), LBIT(), and NOV(), respectively. The overall
minimum of these 2nd order differences is -67, which must be subtracted from
the values in Fig. 2 to get values related to the minimum values shown here.

That is, -67 subtracted from the minimum in the first 20 values gives 60.

—

JMIN() =

60 28 59 23 23 51 25 29 62 49 45 43 57 59 54
35 61 18 55 28 52 61 29 56 28 23 61 0 60 7
54 14 56 -
LBIT() =
4 7 6 6 7 6 6 6 4 5 6 5 5 4 5
7 6 7 6 6 5 4 6 6 7 6 6 7 5 7
5 7 5
NOV() = .
39 2 38 38 2 38 38 17 23 38 12 28 52 25 39
16 24 40 38 13 41 23 40 38 2 38 38 40 38 40
38 3 36
SUMMARY
VARIABLE = 11
TYPE = 100
LEVEL = 200
MAX VALUE = 119
MSG LENGTH = 989 BYTES (a) MINPK = 20
NO. POINTS = 975
BITS/PT = 8.11 X
SCALING = 1
NO. GROUPS = 33
AVG PTS/GP = 29,55
JMIN() =
60 28 59 23 62 23 58 25 63 29 62 49 57 45 59
43 64 57 62 54 56 35 63 22 60 18 60 28 61 52
61 44 59 29 58 28 60 23 61 8 60 0 60 7 61
16 54 14 56 13
LBIT() =
4 7 4 7 4 7 4 7 4 6 4 5 4 6 4
6 3 5 3 5 4 7 3 7 4 7 4 7 4 5
4 6 4 7 4 7 4 7 4 7 5 0 5 0 5
0 5) 7 5 0
NOV() =
39 2 37 17 22 16 23 17 22 17 23 12 26 12 27
17 22 17 21 -15 25 °19 20 16 23 16 23 16 22 17
23 16 23 16 23 16 23 9 30 2 37 1 38 1 38
1 38 3 35 1
SUMMARY
VARIABLE = 11
TYPE = 100
LEVEL = 200
MAX VALUE = 119
MSG LENGTH = 927 BYTES : (b) MINPK = 19
NO. POINTS = 971
BITS/PT = 7.61
SCALING = .
NO. GROUPS = 50
AVG PTS/GP = 19.50
Figure 4. Statistics for same field for which data are shown in Figs. 2
and 3. Figs. 4a through 4f show the results of the packing algorithm in

Appendix II for MINPK = 20, 19, 18, 16, 14, and 12

Fig. 3 caption for more details.

10

» respectively.

See

JMIN()

11

60 28 64 23 55 23 58 25 63 29 62 49 57 45 59
43 64 57 62 54 56 35 61 22 60 18 60 ,28 61 52
61 44 59 29 58 28 60 23 61 8 60 0 60 7 61
16 61 14 60 65
LBIT =
(4) 7 3 7 5 7 4 7 4 6 4 5 4 6 4
6 3 5 3 5 4 7 4 7+ 4 7 4 7 4 5
4 6 4 7 4 7 4 7 4 7 4 7 4 7 4
7 4 7 4 4
NOv() =
17 19 5 37 16 23 1.7 22 17 23 12 26 12 27
ig 22 17 21 15 25 16 23 16 23 16 23 16 22 17
23 16 23 16 23 16 23 9 30 2 34 6 32 8 31
9 30 11 25 7
SUMMARY
VARIABLE = 11
TYPE = 100
LEVEL = 200
MAX VALUE = 119) c —
MSG LENGTH = 922 BYTES (c) MINPK = 18
NO. POINTS = 975
BITS/PT = 7 .57
SCALING = 1
NO. GROUPS = 50
AVG PTS/GP = 19.50
JMIN() =
64 60 28 59 23 55 23 58 25 50 29 49 57 45 59
43 59 57 59 54 56 35 61 22 60 18 55 65 28 52
61 44 59 29 58 28 60 23 61 8 60 0 60 7 61
16 61 14 60 65
LBIT() =
3 4 7 4 7 5 7 4 7 5 6 5 4 6 4
6 4 5 4 S 4 7 4 7 4 7 4 6 6 5
4 6 4 7 4 7 4 7 4 7 4 7 4 7 4
7 4 7 4 4
NOv() =
17 22 2 37 2 37 16 23 2 37 2 50 26 12 27
2 37 14 25 14 25 16 23 16 23 14 18 8 13 41
23 16 23 16 23 16 23 9 30 2 34 6 32 8 31
9 30 11 23 9
SUMMARY
VARIABLE = 11
TYPE = 100
LEVEL = 200
MAX VALUE = 119
MSG LENGTH = 919 BYTES b (d) MINPK = 16
NO. POINTS = 975
BITS/PT = 7.54
SCALING = 1
NO. GROUPS = 50
AVG PTS/GP = 19.50
Figure 4. (Continued)

JMIN() =

12

64 60 28 59 23 55 23 51 25 50 29 49 57 ' 45 - 59
43 59 57 59 54 56 35 54 22 54 18 55 65 28 61
52 61 44 52 29 56 28 59 23 g1 8 60 0 60 7
61 16 61 14 60 65
LBIT() =
3 4 7 4 7 5 7 5 7 -5 6 5 4 6 4
6 4 5 4 5 4 7 5 7 5 7 4 6 6 4
5 4 0 5 7 5 7 5 7 4 7 4 7 4 7
4 7 4 7 4 4
NOv() =
17 22 2 37 2 37 2 37 2 37 2 BOLi28° 133y
2 37 14 25 14 25 2 37 14 25 14 18 BildE ‘22
17 23 1 38 2 37 2 37 9 30 2 34 B 32 8
31 9 30 11 24 8
SUMMARY
VARIABLE = 11
TYPE = 100
LEVEL = 200
MAX VALUE = 119 .
MSG LENGTH = 918 BYTES (e) MINPK = 14
NO. POINTS = 974
BITS/PT = 7.53
SCALING = 1
NO. GROUPS = 51
AVG PTS/GP = 19.12
JMIN() =
64 60 28 59 64 23 55 65 23 51 58 25 50 64 29
o4 62 49 57 45 59 43 59 64 57 59 65 54 56 63
35 54 63 22 54 60 18 55 60 102 28 61 52 61 44
52 59 29 56 58 28 59 60 23 61 8 60 0 60 7
61 64 16 62 61 14 56 60 65
LBIT() =
3 4 7 4 3 7 5 2 7 5 4 7 5 3 6
5 4 5 4 6 4 6 4 3 5 4 2 5 4 3
7 5 3 7 6 4 7 6 4 0 6 4 5 4 0
5 4 7 5 4 7 4 4 7 4 7 4 7 4 7
4 3 7 4 3 7 5 4 4
NOV() =
17 22 2 15 19 5 17 15 7 14 23 2 .20 .16 3
15 23 12 26 12 27 2 15 22 14 12 12 15 5 20
2 17 20 2 14 23 2 14 23 1 15 22 17 23 1
15 23 2 14 23 9 16 14 9 30 2 34 6 32 8
17 13 10 12 14 11 4 25 7
SUMMARY
VARIABLE = 11 .
TYPE = 100
LEVEL = 200
MAX VALUE = 119
MSG LENGTH = 906 BYTES (f) MINPK = 12
NO. POINTS = 973
BITS/PT = 7.43
SCALING = 1
NO. GROUPS = 69
AVG PTS/GP = 14.13
Figure 4. (Continued)

231902511203338221820444111946053602243321310411
! | | | .|_* [} [! i ! | i [— | [R I "o I | -
| | L}
120122472116218121830054517115242545121342040621
! ! [F I I R A B B | | [Y A R R A B o I R T Y I B o B B 3 |
| L}
701323164255336201651026140132751508263411356612
| {1 R T B A | [| [| [T O T I R = R (I e T AL K o O IR
I
3200514223—/7002211801261013432814927272593745177
I U e | | | I e e A [T TR R I B B
L} I
341135128560411022621317141810754436422421241136
| [| [} [| | [[I | [|
|
2403221454065811311303332303022825242665131001514
| [B} | ! [32] | [! | o [Y T T I I | o I
| | |
1111721223303140143121541300330414652624202652302
[[— [(| | [T I I I AL
|
0105140111562342155003611120326933745624536253861
I L) ! | (3] (o | [I i | — | e I ! | |
! | |
2001600.874062025370433541253245484217501257632232
Ll | I N [e [! [| [(]
| |
10136004715760130311200.10073115083235122221232322
! | | | N | | — ! ! ! [| I
|
110021346203011431114931284210342240735371.1442723
[| L | ot | [| | | | !
| .
0011102090220001732171113914072134122308535120041
L} | [| [[| [| L | | !
| |
| ! LI I | (] [| |
[} I | [| I ™ | |
|
1040811—/01241113200211017322002301621251505421422
I | ! (| [o N | [} | | | []
|
3211510810308222631342125213203233306911495111561
| — [| [| (I [} | [] (| | !
2048612211082117531133123213651411411733233319153
| I I | [} | [| I — | | | | | | [B | I | |
|
3222513670014220520562060123541151222557373716694
| ot — [i | I LI T B B | (| | 7_«_ | ! [|
[
3131112963201475411221120221321215714110145313334
[! I [| [[T B B o | ! I [I IS R I I I B |
[} | I
311301635023014421121.I_043318351313105403385305181
i [I ! [| | [| [| | ! [| [}
| |

The 945 2nd order differences for the field discussed in Section 5 of

the text with alternate rows reversed.

Figure 5.

13

JMIN() =

MINPK = 20, 18, 16, and 14.

44 41 44 36 48 17 42 47 31 45 26 45 42 47 40
73 40 45 40 19 38 44 42 46 28 47 33 15 0 33
40 31 42
LBIT() =
4 5 4 5 4 6 5 4 6 4 6 5 4 g 5
0 5 5 5 6 5 4 5 4 6 5 5 6 0 6
5 5 5
NOvV() = v :
85 10 47 31 46 16 39 24 16 37 2 51 26 24 27
1 52 27 24 2 53 48 30 23 2 38 39 39 1. 39
37 3 36
0SUMMARY
VARIABLE = 11
TYPE = 100
LEVEL = 200
MAX VALUE = 78
MSG LENGTH = 890 BYTES _
NO. POINTS = 973 (a) MINPK = 20
BITS/PT = 7.30
SCALING = 1 -
NO. GROUPS = 33
AVG PTS/GP = 29.55
JMIN() =
46 50 44 41 44 36 48 17 49 43 42 31 50 26 45
42 47 40 73 40 45 40 19 38 44 42 46 28 47 33
15 46 0 47 33 47 31 46 51
LBIT() = ,
4 3 4 5 4 5 4 6 4 4 5 6 3 6 5
4 5 5 0 5 5 4 6 5 4 5 4 6 5 5
6 4 7 4 6 4 6 4 4
NOV() =
44 19 22 10 47 31 46 16 12 26 39 17 22 2 51,
26 24 27 1 52 27 18 8 53 48 30 23 2 38 39
S 32 5 31 10 30 10 26 6
SUMMARY
VARIABLE = 11
TYPE = 100
LEVEL = 200
MAX VALUE = 78
MSG LENGTH = 875 BYTES (b) MINPK = 18
NO. POINTS = 974 :
BITS/PT = 1«18
SCALING = 1- d
NO. GROUPS = 39
AVG PTS/GP = 25.00
Figure 6. Statistics for same fie

1ld for which data are shown in Fig. 5 for

14

JMIN() =
50 46
26 45
45 28

LBIT() =

_ow
O i i

NOV() =
17 27
2 24
16 16

SUMMARY
VARIABLE
TYPE =
LEVEL =
MAX VALUE

MSG LENGTH
NO. POINTS

BITS/PT =
SCALING =

NO. GROUPS
AVG PTS/GP

JMIN() =
50 46
31 45
40 19
47 48

LBIT() =

ko w
W oy i i

NOv() =
17 27
12 15
18 8
14 15

0SUMMARY

VARIABLE =

TYPE =
LEVEL =

MAX VALUE
MSG LENGTH
NO. POINTS

BITS/PT =
SCALING =

NO. GROUPS
AVG PTS/GP

o W

19
30

50
50
47
33

akww

22
23
14

nn

nn

44 41 47
33 46 i5

oy U o>
= wn
o Ui

22 10 26
28 20 30

11
100
200
78
870 BYTES
974
7.14

1
44
224186

44 41 51
26 45 47
38 44 42

S Uoin
o i Ul
N R

22 10 20
2 24 26
30 48 23
30 "10 24

11
100
200
78
869 BYTES
973
713
1

- 52

18.75

49
73
46

B ow

17
32

[-6 -1

28
16

36
40

Suwm

35
27

36
49
46

B wo;m

31
20
14

48
46
47

(= =N =N

49
40
28

o\ i

17
33

O\ OV O

16
10

50
47
47

&b W

14
30

49
47

> Ul

12
25
30

40
33

(o) X=N0E)]

[8]
(Yol ol

43 42 31
31 46 51

o\ O\ i
B U
[e)

26 39 2
10 23 9

(c)

17 43 42
46 15 48

6 4 5
5 4 0
4 6 4
13 26 2
27 23 1
34 8 22
(d) MINPK =

MINPK =

45
42

37
23

16

45
45

S0

27
14

Figure 6. (Continued)

15

B
»
¥
=
"
E3
"
’e
! -
! v
»
+
»
-
w
N
v
i}
=
O
)

™
e
o
I
&
= ¥
o
-
T

APPENDIX I

Algorithm to Determine Whether to Pack 2nd Order Differences

This appendix contains a listing of the FORTRAN code for an algorithm to

determine whether or not to pack the original values or 2nd order differences.
It is very nearly like the subroutine with the same name in Glahn (1993, pp.
21-23), but agrees with NMC's practice of using the first two values in the
2nd order difference field as duplicates of the third point.

OOOQOOOQOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOOO

1

SUBROUTINE GRIBPR(KFIL10,KFIL12,IC,IA,IB,IDIM,NXY,MINPK,

IMIN,IFIRST,IFOD,SECOND)

JANUARY 1994 GLAHN TDL HP

PURPOSE
USED TO DETERMINE WHETHER TO USE SECOND ORDER
DIFFERENCES OR ORIGINAL VALUES TO PACK. ORIGINAL VALUES
ARE INDICATED WHEN THE AVERAGE RANGE OF CONSECUTIVE GROUPS
OF SIZE MINPK OF THE SECOND ORDER DIFFERENCES IS
LARGER THAN THE AVERAGE RANGE OF CONSECUTIVE GROUPS OF
SIZE MINPK OF THE ORIGINAL VALUES. VALUES AT THE END OF
THE ARRAY ARE NOT USED IN THE COMPUTATIONS UNLESS THEY ARE
IN A FULL-SIZE GROUP.

DATA SET USE

KFIL10 - UNIT NUMBER FOR CURRENT CONSOLE. (OUTPUT)
KFIL12 - UNIT NUMBER FOR OUTPUT (PRINT) FILE. (OUTPUT)

VARIABLES
KFIL10 = UNIT NUMBER FOR CURRENT CONSOLE. (INPUT)
KFIL12 = UNIT NUMBER FOR OUTPUT (PRINT) FILE. (INPUT)
IC(K) = HOLDS THE NXY ORIGINAL VALUES ON INPUT (K=1,IDIM).
HOLDS THE NXY SECOND ORDER DIFFERENCES ON
OUTPUT WHEN SECOND ORDER DIFFERENCES ARE TO BE
USED. 1IN THAT CASE, SECOND IS .TRUE. AND THE
FIRST 2 VALUES ARE DUMMY. (INPUT-OUTPUT)
IA(K) = WORK ARRAY (K=1,IDIM). (INTERNAL)
IB(K) = WORK ARRAY (K=1,IDIM). (INTERNAL)
IDIM = DIMENSION OF IC(), IB(), AND IA(). (INPUT)
'NXY = NUMBER OF VALUES IN IC() ON INPUT. ON RETURN,
NXY WILL ALSO BE THE NUMBER OF VALUES IN IC().
(INPUT)
MINPK = INCREMENT IN WHICH RANGES WILL BE COMPUTED. (INPUT)
IMIN = WHEN SECOND ORDER DIFFERENCES ARE USED, IMIN
IS THE MINIMUM OF THEM. (OUTPUT)
IFIRST = WHEN SECOND ORDER DIFFERENCES ARE USED, IFIRST
IS THE FIRST ORIGINAL VALUE. (OUTPUT)
IFOD = WHEN SECOND ORDER DIFFERENCES ARE USED, IFOD
IS THE FIRST FIRST ORDER DIFFERENCE. (OUPUT)
SECOND = TRUE (FALSE) WHEN SECOND ORDER DIFFERENCES

ARE (ARE NOT) USED. (OUTPUT)

NON SYSTEM SUBROUTINES CALLED

NONE

16

LOGICAL SECOND

C
DIMENSION IC(IDIM),IA(IDIM),IB(IDIM)
C
C COMUTE FIRST ORDER DIFFERENCES.
C
IFIRST=IC(1)
IFOD=IC(2)-IC(1)
c

DO 120 K=1,NXY-1
IA(K)=IC(K+1)-IC(K)
120 CONTINUE

COMPUTE SECOND ORDER DIFFERENCES

(ol oNe]

IMIN=999999

DO 130 K=1,NXY-2

IB(K)=IA(K+1)-IA(K)

IF(IB(K).LT.IMIN)IMIN=IB(K)
130 CONTINUE

C
C COMPUTE AVERAGE RANGE OF NXY ORIGINAL VALUES IN INCREMENTS OF
c MINPK.
c
SUMR=0
KOUNT=0
c
DO 140 K=1,NXY,MINPK
JMIN=999999
JMAX=-999999
IF(K+MINPK-1.GT.NXY)GO TO 140
C THE LAST GROUP MAY BE VERY SMALL AND NOT BE REPRESENTATIVE OF
c THE RANGE.
C

DO 135 J=K,K+MINPK-1

IF(IC(J).GT.JMAX)JIMAX=IC(J)

IF(IC(J).LT.JMIN)JMIN=IC(J)
135 CONTINUE

C
KOUNT=KOUNT+1
IRANGE=JMAX-JMIN
SUMR=SUMR+IRANGE
140 CONTINUE
c
AVGR=99999.

IF(KOUNT.NE.O0)AVGR=SUMR/KOUNT

17

COMPUTE AVERAGE RANGE OF NXY-2 2ND ORDER VALUES IN INCREMENTS OF
MINPK.

aaoaon

SUMR=0
KOUNT=0

DO 150 K=1,NXY-2,MINPK

JMIN=999999

JMAX=-999999

IF(K+MINPK-1.GT.NXY-2)GO TO 150
(¢ THE LAST GROUP MAY BE VERY SMALL AND NOT BE REPRESENTATIVE OF
c THE RANGE.

DO 145 J=K,K+MINPK-1

IF(IB(J).GT.JMAX)JIMAX=IB(J)

IF(IB(J).LT.JMIN)JMIN=IB(J)
145 CONTINUE

C
KOUNT=KOUNT+1
IRANGE=JMAX -JMIN
SUMR=SUMR+IRANGE

150 CONTINUE

C
AVGR2=99999.
IF(KOUNT.NE.O0)AVGR2=SUMR/KOUNT

c

SECOND=.FALSE.
WRITE(KFIL12,155)AVGR,AVGR2, IMIN
155 FORMAT('OAVERAGE RANGE OF ORIGINAL SCALED VALUES = ‘F10.2/
' AVERAGE RANGE OF SECOND ORDER DIFFERENCES ='F10.2/
' MINIMUM OF SECOND ORDER DIFFERENCES = '110)
IF(AVGR2.GE.AVGR)GO TO 300
SECOND ORDER DIFFERENCES WILL BE PACKED. IN AGREEMENT WITH NMC
PROCEDURES, NXY (RATHER THAN NXY-2) VALUES WILL BE PACKED;
THE FIRST TWO VALUES WILL BE DUMMY.

[EC N o

WRITE(KFIL12,160)
160 FORMAT('OSECOND ORDER DIFFERENCES WILL BE PACKED')

aouoooaoan

IC(1)=IB(1)
IC(2)=IB(1)

DO 200 K=1,NXY-2
IC(K+2)=IB(K)
200 CONTINUE

SECOND=.TRUE.
300 CONTINUE

RETURN

END

18

o

"
B §
. B T
. u - - beemy
|
- -]
o N
%

g PETEES
o u"f:b Py

K o

bl O o L S

"W
P A R T X

R s '3

*

e

B

APPENDIX II
Algorithm for Determining Groups in GRIB Complex Packing

This appendix contains a listing of the FORTRAN code for the algorithm to
determine the groups for complex packing. This subroutine, BGVRBL, is much
like the routine with the same name contained in Glahn (1993, pp. 24-27).
However it has been improved to contain a "backward look" feature. It is
noted this algorithm will isolate long strings of a constant value, but
strings of < MINPK will not be isolated. As a worst case, 2*MINPK-2 values of
a constant value could exist without being isolated. This is generally of
concern only for precipitation fields in which long strings of zeros can
exist. The extra computation required to search for shorter strings of a
constant value is probably not cost effective.

SUBROUTINE BGVRBL(KFIL10,KFIL12,IGC,NDP,MINPK, INC,
1 JMIN,JMAX,IBIT,LBIT,NOV,NDQ, LX)

JANUARY 1994 GLAHN TDL HP

PURPOSE
TO DETERMINE GROUPS OF VARIABLE SIZE, BUT AT LEAST OF
SIZE MINPK, AND THE ASSOCIATED MAX AND MIN OF EACH GROUP,
THE NUMBER OF BITS NECESSARY TO PACK EACH GROUP, AND THE
NUMBER OF VALUES IN EACH GROUP. THE ROUTINE IS DESIGNED
TO DETERMINE THE GROUPS SUCH THAT A SMALL NUMBER OF BITS
IS NECESSARY TO PACK THE DATA WITHOUT EXCESSIVE
COMPUTATIONS. 1IF ALL VALUES IN THE GROUP ARE ZERO, THE
NUMBER OF BITS TO USE IN PACKING IS DEFINED AS ZERO.
ALL VARIABLES ARE INTEGER. EVEN THOUGH THE GROUPS ARE
INITIALLY OF SIZE MINPK OR LARGER, AN ADJUSTMENT BETWEEN
TWO GROUPS (THE LOOKBACK PROCEDURE) MAY MAKE A GROUP
SMALLER THAN MINPK. THE CONTROL ON GROUP SIZE IS THAT
THE SUM OF THE SIZES OF THE TWO CONSECUTIVE GROUPS, EACH OF
SIZE MINPK OR LARGER, REMAINS THE SAME.

DATA SET USE
KFIL10 - UNIT NUMBER FOR CURRENT CONSOLE. (OUTPUT)
KFIL12 - UNIT NUMBER FOR OUTPUT (PRINT) FILE. (OUTPUT)

VARIABLES IN CALL SEQUENCE
KFIL10 = UNIT NUMBER FOR CURRENT CONSOLE. (INPUT)
KFIL12 = UNIT NUMBER FOR OUTPUT (PRINT) FILE. (INPUT)
IC() = ARRAY TO HOLD DATA FOR PACKING. THE VALUES
DO NOT HAVE TO BE POSITIVE AT THIS POINT, BUT
MUST BE IN THE RANGE -9999999 TO +9999999.
THESE INTEGER VALUES WILL BE RETAINED EXACTLY
THROUGH PACKING AND UNPACKING. (INPUT)
NDP = NUMBER OF VALUES IN IC(). ALSO TREATED
AS ITS DIMENSION. (INPUT)
MINPK = THE MINIMUM SIZE OF EACH GROUP, EXCEPT POSSIBLY
THE LAST ONE. (INPUT)
INC = THE NUMBER OF VALUES TO ADD TO AN ALREADY
EXISTING GROUP IN DETERMINING WHETHER OR NOT
TO START A NEW GROUP. IDEALLY, THIS WOULD BE

RN Reo oo oo e RoReReReo R RoRoRo Re R e e e e e e e e o N2 e oo o o e e e Q]

19

[sNoNsNoNoNsRs R R RN s Ro RN Neo o RoNoNoNoNosRoNoNoNoNoNoNeoNoNoNoNoNoNeoNoNo e NeoNoNoNoNoNeoNe Ne!

JMIN(J)
JMAX(J)
IBIT

LBIT(J)

NOV(J)
NDQ

IX

1, BUT EACH TIME INC VALUES ARE ATTEMPTED, THE
MAX AND MIN OF THE NEXT MINPK VALUES MUST BE
FOUND. THIS IS "A LOOP WITHIN A LOOP," AND
A SLIGHTLY LARGER VALUE MAY GIVE ABOUT AS GOOD
RESULTS WITH SLIGHTLY LESS COMPUTATIONAL TIME.
IF INC IS LE O, 1 IS USED, AND A DIAGNOSTIC IS

OUTPUT. (INPUT)
THE MINIMUM OF EACH GROUP (J=1,1LX). (OUTPUT)
THE MAXIMUM OF EACH GROUP (J=1,1X). (OUTPUT)

THE NUMBER OF BITS NECESSARY TO PACK JMIN(J)
VALUES, J=1,LX. (OUTPUT)

THE NUMBER OF BITS NECESSARY TO PACK EACH GROUP
(J=1,1X). IT IS ASSUMED THE MINIMUM OF EACH
GROUP WILL BE REMOVED BEFORE PACKING, AND THE
VALUES TO PACK WILL, THEREFORE, ALL BE POSITIVE.
HOWEVER, IC() DOES NOT NECESSARILY CONTAIN
ALL POSITIVE VALUES. IF THE OVERALL MINIMUM
HAS BEEN REMOVED, THEN IC() WILL CONTAIN
ONLY POSITIVE VALUES. (OUTPUT)

THE NUMBER OF VALUES IN EACH GROUP (J=1,1X).
THE DIMENSION OF JMIN(), JMAX(), LBIT(), AND
NOV(). (INPUT)

THE NUMBER OF GROUPS DETERMINED. (OUTPUT)

INTERNAL VARIABLES

KINC
ISKIPA

MINA
MAXA
NENDA
KSTART
IBITA
MINB
MAXB
NENDB
IBITB
MINC
MAXC
KTOTAL
NOUNT

WORKING COPY OF INC. MAY BE MODIFIED.

0 UNLESS GROUP B BECOMES GROUP A. THEN, ISKIPA
IS SET TO 1 TO SKIP A PORTION OF CODE.

MINIMUM VALUE IN GROUP A.
MAXIMUM VALUE IN GROUP A.
THE PLACE IN IC() WHERE
THE PLACE IN IC() WHERE
NUMBER OF BITS NEEDED TO
MINUMUM VALUE IN GROUP B.
MAXIMUM VALUE IN GROUP B.
THE PLACE IN IC() WHERE
NUMBER OF BITS NEEDED TO
MINUMUM VALUE IN GROUP C.
MAXIMUM VALUE IN GROUP C.
COUNT OF NUMBER OF VALUES IN IC() PROCESSED.
NUMBER OF VALUES ADDED TO GROUP A.

GROUP A ENDS.
GROUP A STARTS.
HOLD VALUES IN GROUP A.

GROUP B ENDS.
HOLD VALUES IN GROUP B.

NON SYSTEM SUBROUTINES CALLED

NONE

(OUTPUT)

DIMENSION IC(NDP)
DIMENSION JMIN(NDQ),JMAX(NDQ),LBIT(NDQ),NOV(NDQ)

IF(INC.LE.O)WRITE(KFIL12,100)INC
FORMAT('OINC ='I8,’ NOT CORRECT.
KINC=MAX(INC,1)

KSTART=1

KTOTAL~O

1X=0

ISKIPA=0

100 1 IS USED.’)

20

oo

aooaoaooaq

aoaa

B R R R T T T R e

THIS SECTION COMPUTES STATISTICS FOR GROUP A. GROUP A IS
A GROUP OF SIZE MINPK IMMEDIATELY FOLLOWING THE GROUP JUST
PACKED.

ek rk R bk s sk s s s s b b sk e e ek

110 KOUNTA=0
IBITA=0
MINA=9999999
MAXA=-9999999

FIND THE MIN AND MAX OF GROUP A. THIS WILL INITIALLY BE OF
SIZE MINPK (IF THERE ARE STILL MINPK VALUES IN Ic()), BUT
WILL INCREASE IN SIZE IN INCREMENTS OF INC UNTIL A NEW
GROUP IS STARTED.

NENDA=MIN(KSTART+MINPK-1,NDP)

IF(NDP-NENDA.LE.MINPK/2)NENDA=NDP
ABOVE STATEMENT GUARANTEES THE LAST GROUP IS GT MINPK/2 BY
MAKING THE ACTUAL GROUP LARGER. IF A PROVISION LIKE THIS IS NOT
INCLUDED, THERE WILL MANY TIMES BE A VERY SMALL GROUP AT THE END.

DO 120 K=KSTART,NENDA
MINA=MIN(MINA,IC(K))
MAXA=MAX (MAXA,IC(K))
KOUNTA=KOUNTA+1

120 CONTINUE

INCREMENT KTOTAL AND FIND THE BITS NEEDED TO PACK THE A GROUP.
KTOTAL=KTOTAL+KOUNTA
125 IF(MAXA-MINA.LT.2**IBITA)GO TO 130
IBITA=IBITA+1
GO TO 125
130 CONTINUE

133 IF(KTOTAL.GE.NDP)GO TO 200

21

Fesbrbdesb ot sk b s bbb sk s sk sk s s sk st sk sk sk sk sk sk sk ok sk

THIS SECTION COMPUTES STATISTICS FOR GROUP B. GROUP B IS A
GROUP OF SIZE MINPK IMMEDIATELY FOLLOWING GROUP A.

Fok ke sk ke Rk sk sk sk b kb sk s sk sk

[cNoNoNoNoNoNe!

140 MINB=9999999
MAXB=-9999999
IBITB=0
JOUNT=0
NENDB=MIN (KTOTAL+MINPK,NDP)

DO 160 K=KTOTAL+1,NENDB
MINB=MIN(MINB,IC(K))
MAXB=MAX (MAXB, IC (K))
JOUNT=JOUNT+1

160 CONTINUE

KOUNTB=NENDB-KTOTAL

165 IF(MAXB-MINB.LT.2**IBITB)GO TO 170
IBITB=IBITB+1
GO TO 165

DETERMINE WHETHER THE NEXT MINPK VALUES CAN BE PACKED IN
LESS BITS THAN GROUP A. IF SO, PACK GROUP A AND START
ANOTHER GROUP.

aaooaoaan

170 CONTINUE

(o]

IF(IBITB.GE.IBITA)GO TO 180

22

aooaoaooaoaoaaQ (®) Qo aoaoooooooaoaan

sleoNosNoNeoNeo NS

173

174

175

176

177

FAk Rk Rk kbbb kbbb b b kb bbbk

GROUP B REQUIRES LESS BITS THAN GROUP A. PUT AS MANY OF A'S
POINTS INTO B AS POSSIBLE WITHOUT EXCEEDING THE NUMBER OF
BITS NECESSARY TO PACK GROUP B.

R e S e e R S Tk

KOUNTS=KOUNTA
KOUNTA REFERS TO THE PRESENT GROUP A.

DO 173 K=KTOTAL,KSTART, -1
START WITH THE END OF THE GROUP AND WORK BACKWARDS.
MINTST=MIN(MINB,IC(K))
MAXTST=MAX (MAXB, IC(K))
IF(MAXTST-MINTST.GE.2**IBITB)GO TO 174
MINB=MINTST
MAXB=MAXTST
KOUNTA=KOUNTA-1
THERE IS ONE LESS POINT NOW IN A.
CONTINUE

AT THIS POINT, KOUNTA CONTAINS THE NUMBER OF POINTS TO CLOSE
OUT GROUP A WITH. GROUP B NOW STARTS WITH KSTART+KOUNTA AND
ENDS WITH NENDB. MINB AND MAXB HAVE BEEN ADJUSTED AS
NECESSARY TO REFLECT GROUP B (EVEN THOUGH THE NUMBER OF BITS
NEEDED TO PACK GROUP B HAVE NOT INCREASED, THE END POINTS

OF THE RANGE MAY HAVE). (Q: CAN GROUP A BE EMPTY???)

IF(KOUNTA.EQ.KOUNTS)GO TO 200
ON TRANSFER, GROUP A WAS NOT CHANGED. CLOSE IT OUT.

ONE OR MORE POINTS WERE TAKEN OUT OF A. RANGE AND IBITA

MUST BE RECOMPUTED; IBITA COULD BE LESS THAN ORIGINALLY COMPUTED.
IN FACT, GROUP A CAN NOW CONTAIN ONLY ONE POINT AND BE

PACKED WITH ZERO BITS.

KTOTAL=KTOTAL- (KOUNTS -KOUNTA)
KOUNTB=KOUNTB+ (KOUNTS -KOUNTA)
IBITA=0

MINA=9999999

MAXA=-9999999

DO 175 K=KSTART,NENDA- (KOUNTS-KOUNTA)
MINA=MIN(MINA,IC(K))

MAXA=MAX (MAXA,IC(K))

CONTINUE

IF(MAXA-MINA.LT.2**IBITA)GO TO 177
IBITA=IBITA+1
GO TO 176

ISKIPA=1
GO TO 200

23

eNoNoNoNoNoNeoNe!

180

aooaoan

190

aoa

aoaooaa

K e S R S S L e

AT THIS POINT, GROUP B REQUIRES AS MANY BITS TO PACK AS GROUPA.
THEREFORE, TRY TO ADD INC POINTS TO GROUP A WITHOUT INCREASING
IBITA. THIS AUGMENTED GROUP IS CALLED GROUP C.

KR e e S T e L

MINC=MINA

MAXC=MAXA

NOUNT=0

IF(NDP- (KTOTAL+INC) . LE.MINPK/2)KINC=NDP-KTOTAL
ABOVE STATEMENT CONSTRAINS THE LAST GROUP TO BE NOT LESS THAN
MINPK/2 IN SIZE. IF A PROVISION LIKE THIS IS NOT INCLUDED,
THERE WILL MANY TIMES BE A VERY SMALL GROUP AT THE END.

DO 190 K=KTOTAL+1,MIN(KTOTAL+KINC,NDP)
MINC=MIN (MINGC,IC(K))

MAXC=MAX (MAXC, IC(K))

NOUNT=NOUNT+1

CONTINUE

IF THE NUMBER OF BITS NEEDED FOR GROUP C IS GT IBITA,
THEN THIS GROUP A IS A GROUP TO PACK.
IF(MAXC-MINC.GE.2**IBITA) GO TO 200

THE BITS NECESSARY FOR GROUP C HAS NOT INCREASED FROM THE
BITS NECESSARY FOR GROUP A. ADD THIS POINT TO GROUP A.
COMPUTE THE NEXT GROUP B, ETC., UNLESS ALL POINTS HAVE BEEN
USED.

KTOTAL=-KTOTAL+NOUNT

KOUNTA=KOUNTA+NOUNT

MINA=MINC

MAXA=MAXC
KOUNTA IS THE NUMBER OF VALUES IN GROUP A. THIS GROUP WILL
NEVER BE SPLIT.

IF(KTOTAL.LT.NDP)GO TO 140

24

R R e e e e e e e s e

GROUP A IS TO BE PACKED. STORE VALUES IN JMIN(), JMAX(),
LBIT(), AND NOV(). -

R T S R R ek R R

aoaoooaoaoaan

200 LX=LX+1
IF(LX.LE.NDQ)GO TO 205
WRITE(KFIL12,201)
201 FORMAT('OLX NOT LARGE ENOUGH. STOP IN VRBLPK AT 201')
STOP 201
c
205 JMIN(LX)=MINA
JMAX (LX) =MAXA
LBIT(LX)=IBITA
NOV (LX) =KOUNTA
KSTART=KTOTAL+1
IF(KTOTAL.GE.NDP)GO TO 209
IF(ISKIPA.EQ.0)GO TO 110
WITH THE ABOVE TRANSFER, A NEW GROUP A OF SIZE MINPK WILL
BE DEFINED.

THE NEW GROUP A WILL BE THE EXPANDED GROUP B. SET LIMITS, ETC.

aaoaooaaon

IBITA=IBITB
MINA=MINB

MAXA=MAXB
NENDA=NENDB
KOUNTA=KOUNTB
KTOTAL=KTOTAL+KOUNTA
ISKIPA=0

‘GO TO 133

KR et e e e e e e

CALCULATE IBIT, THE NUMBER OF BITS NEEDED TO HOLD THE GROUP
MINIMUM VALUES.

KR e e

aooooaooaooaa

209 IBIT=1

(@

210 DO 220 L=-1,IX
IF(JMIN(L).LT.2%*IBIT)GO TO 220

IBIT=IBIT+1
GO TO 210
C
220 CONTINUE
c
RETURN
END

25

e

