

A method for improved utilization of data from experiments with fishing gear

AFS San Francisco

Sep. 4 2007

Rene Holst

DIFRES & Uni. of Southern Denmark, Denmark

Outline

Outline

- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- O Data
- O Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ Fishing gear selectivity notions and concepts
- ▲ Motivation Data
- ▲ Methods Non-technical
- ▲ Results
- **▲** Discussion

Outline

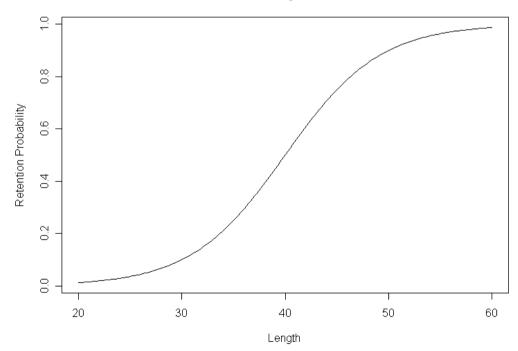
◆ Selectivity - Single Haul

- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- O Data
- O Method Conditional Model
- C Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

Selectivity: Probability of retention for a length l fish given it has entered the codend r(l)

$$r(l; \boldsymbol{\beta}) = \frac{\exp(\beta_0 + \beta_1 l)}{1 + \exp(\beta_0 + \beta_1 l)}$$

Outline


◆ Selectivity - Single Haul

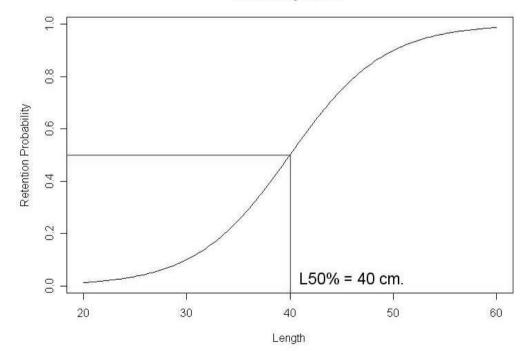
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- O Data
- O Method Conditional Model
- ▶ Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

Selectivity: Probability of retention for a length l fish given it has entered the codend r(l)

$$r(l; \boldsymbol{\beta}) = \frac{\exp(\beta_0 + \beta_1 l)}{1 + \exp(\beta_0 + \beta_1 l)}$$

Selectivity Curve

Outline


Selectivity - Single Haul

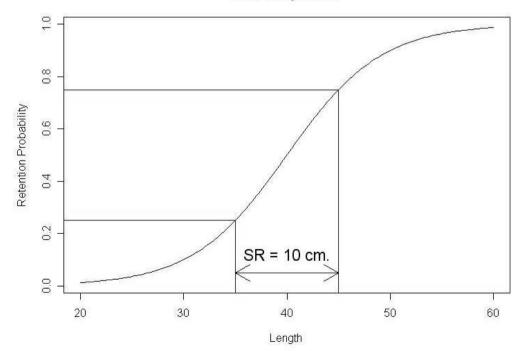
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- O Data
- O Method Conditional Model
- ▶ Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

Selectivity: Probability of retention for a length l fish given it has entered the codend r(l)

$$r(l; \boldsymbol{\beta}) = \frac{\exp(\beta_0 + \beta_1 l)}{1 + \exp(\beta_0 + \beta_1 l)}$$

Selectivity Curve

Outline


◆ Selectivity - Single Haul

- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- O Data
- O Method Conditional Model
- ▶ Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

Selectivity: Probability of retention for a length l fish given it has entered the codend r(l)

$$r(l; \boldsymbol{\beta}) = \frac{\exp(\beta_0 + \beta_1 l)}{1 + \exp(\beta_0 + \beta_1 l)}$$

Selectivity Curve

Outline

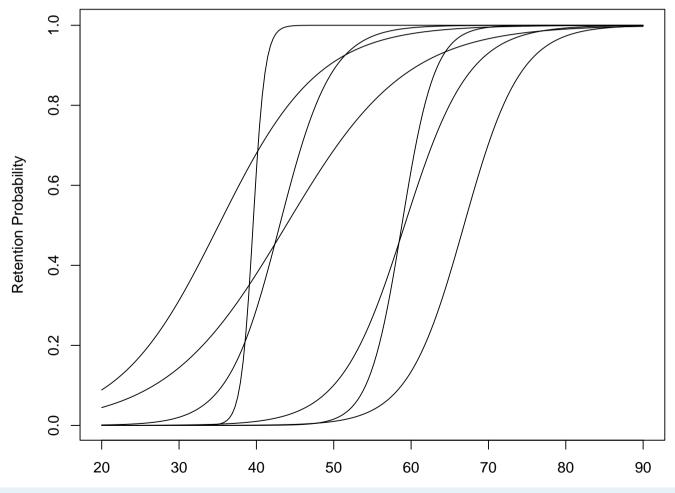
◆ Selectivity - Single Haul

- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- O Data
- O Method Conditional Model
- ▶ Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

Selectivity: Probability of retention for a length l fish given it has entered the codend r(l)

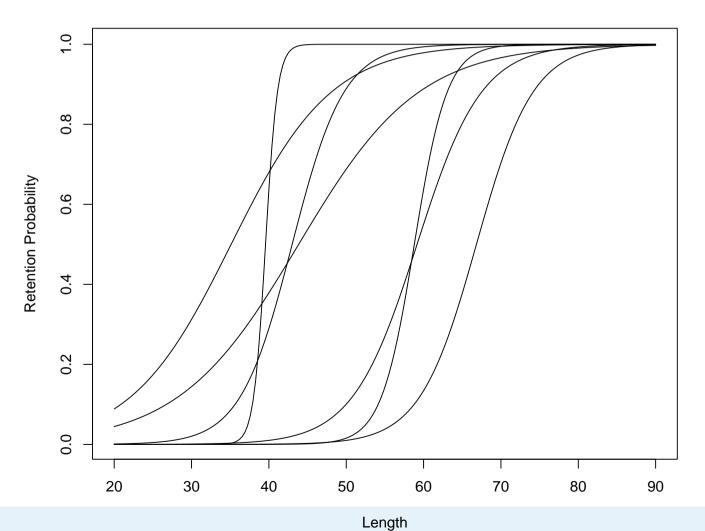
$$r(l; \boldsymbol{\beta}) = \frac{\exp(\beta_0 + \beta_1 l)}{1 + \exp(\beta_0 + \beta_1 l)}$$

$$(\beta_0, \beta_1)^{\top} \leftrightarrow (\mathsf{L}_{50}, \mathsf{SR})^{\top}$$

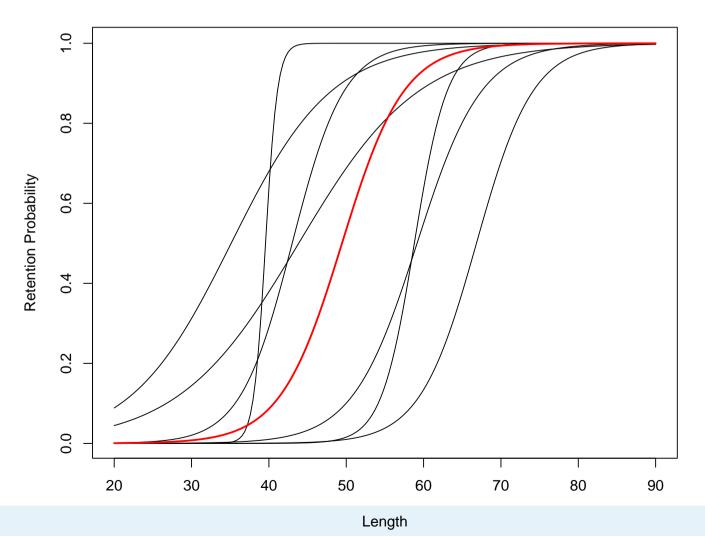


Cruise - Multiple Hauls

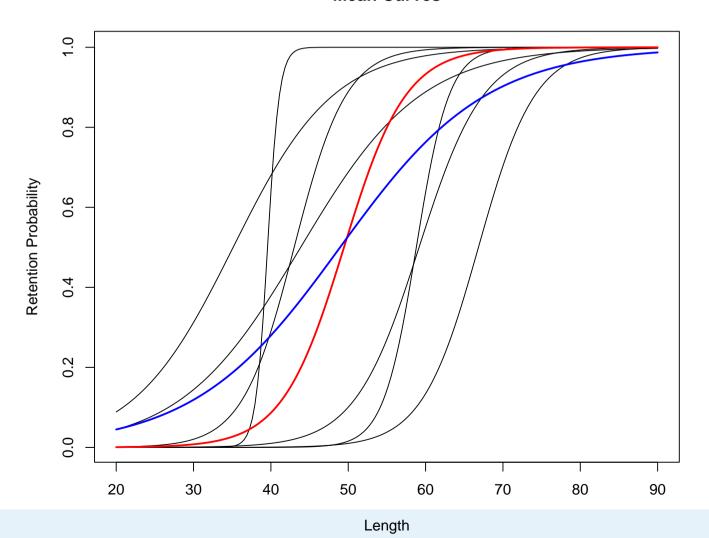
- Outline
- Selectivity Single Haul


Cruise - Multiple Hauls

- Mean Curves and Interpretations
- Multiple Cruises
- Application
- O Data
- O Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

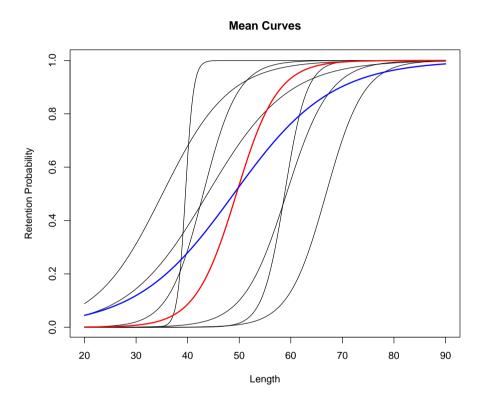


- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Application
- O Data
- O Method Conditional Model
- ▶ Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end



- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- O Data
- O Method Conditional Model
- ▶ Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- O Data
- O Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end



- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls

• Mean Curves and Interpretations

- Application
- O Data
- O Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ Conditional Mean Subject Specific GLMM
- ▲ Marginal Mean Population Average GEE

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations

C Multiple Cruises

- Application
- O Data
- O Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

▲ Meta Analysis - Combine information from several sources

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations

- Application
- O Data
- O Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ Meta Analysis Combine information from several sources
- ▲ Account for cluster structure in data

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations

- Application
- Data
- O Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ Meta Analysis Combine information from several sources
- ▲ Account for cluster structure in data
 - Heterogeneity between Hauls within Cruise

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations

- Application
- O Data
- O Method Conditional Model
- C Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ Meta Analysis Combine information from several sources
- ▲ Account for cluster structure in data
 - Heterogeneity between Hauls within Cruise
 - Heterogeneity between Cruises

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations

- Application
- O Data
- O Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ Meta Analysis Combine information from several sources
- ▲ Account for cluster structure in data
 - Heterogeneity between Hauls within Cruise
 - Heterogeneity between Cruises
- ▲ Purpose of the analysis? Conditional or Marginal

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations

- Application
- O Data
- O Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ Meta Analysis Combine information from several sources
- ▲ Account for cluster structure in data
 - Heterogeneity between Hauls within Cruise
 - Heterogeneity between Cruises
- Purpose of the analysis? Conditional or Marginal
- ▲ Non-compatible data

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations

- Application
- O Data
- O Method Conditional Model
- C Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ Meta Analysis Combine information from several sources
- ▲ Account for cluster structure in data
 - Heterogeneity between Hauls within Cruise
 - Heterogeneity between Cruises
- Purpose of the analysis? Conditional or Marginal
- Non-compatible data
- ▲ Different covariates

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations

- Application
- O Data
- O Method Conditional Model
- C Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ Meta Analysis Combine information from several sources
- ▲ Account for cluster structure in data
 - Heterogeneity between Hauls within Cruise
 - Heterogeneity between Cruises
- Purpose of the analysis? Conditional or Marginal
- Non-compatible data
- ▲ Different covariates
- ▲ PRAGMATIC APPROACH TO DATA!

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises

Application

- Data
- C Method Conditional
- Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

▲ Baltic Sea - Cod stock at critical level

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises

- Data
- O Method Conditional
- Model
- Method Marginal Model
- Results
- ▶ Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ Baltic Sea Cod stock at critical level
 - BACOMA Codend

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises

- Data
- Method Conditional
- Model

 Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ Baltic Sea Cod stock at critical level
 - BACOMA Codend
 - T90 Codend

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises

- Data
- O Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ Baltic Sea Cod stock at critical level
 - BACOMA Codend
 - T90 Codend
- ▲ Request for advice from IBSC to ICES ACFM

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises

- Data
- O Method Conditional Model
- C Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ Baltic Sea Cod stock at critical level
 - BACOMA Codend
 - T90 Codend
- ▲ Request for advice from IBSC to ICES ACFM
- ▲ Meta Analysis based on all available and relevant data

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Application

O Data

- O Method Conditional
- Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

▲ 25 Cruises

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application

O Data

- O Method Conditional Model
- ▶ Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ 25 Cruises
- ▲ 483 Hauls

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application

Data

- O Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ 25 Cruises
- ▲ 483 Hauls
- ▲ Two experimental type
 - Covered Codend
 - Twin Trawls

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application

- O Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ 25 Cruises
- ▲ 483 Hauls
- ▲ Two experimental type
 - Covered Codend
 - Twin Trawls
- ▲ Key Variables

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application

- O Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ 25 Cruises
- ▲ 483 Hauls
- ▲ Two experimental type
 - Covered Codend
 - Twin Trawls
- ▲ Key Variables
 - GEAR TYPE: BACOMA and T90

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application

- O Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ 25 Cruises
- ▲ 483 Hauls
- ▲ Two experimental type
 - Covered Codend
 - Twin Trawls
- ▲ Key Variables
 - GEAR TYPE: BACOMA and T90
 - MESH SIZE

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application

○ Data

- Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ 25 Cruises
- ▲ 483 Hauls
- ▲ Two experimental type
 - Covered Codend
 - Twin Trawls
- ▲ Key Variables
 - GEAR TYPE: BACOMA and T90
 - MESH SIZE
 - OPEN MESHES CIRCUMF.

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application

- Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ 25 Cruises
- ▲ 483 Hauls
- ▲ Two experimental type
 - Covered Codend
 - Twin Trawls
- ▲ Key Variables
 - GEAR TYPE: BACOMA and T90
 - MESH SIZE
 - OPEN MESHES CIRCUMF.
 - EXPERIMENTAL TYPE: Cov. Codend and Twin Trawl

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application

○ Data

- Method Conditional Model
- C Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ 25 Cruises
- ▲ 483 Hauls
- ▲ Two experimental type
 - Covered Codend
 - Twin Trawls
- ▲ Key Variables
 - GEAR TYPE: BACOMA and T90
 - MESH SIZE
 - OPEN MESHES CIRCUMF.
 - EXPERIMENTAL TYPE: Cov. Codend and Twin Trawl
 - VESSEL TYPE: Research and Commercial

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application

○ Data

- O Method Conditional Model
- C Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ 25 Cruises
- ▲ 483 Hauls
- ▲ Two experimental type
 - Covered Codend
 - Twin Trawls
- ▲ Key Variables
 - GEAR TYPE: BACOMA and T90
 - MESH SIZE
 - OPEN MESHES CIRCUMF.
 - EXPERIMENTAL TYPE: Cov. Codend and Twin Trawl
 - VESSEL TYPE: Research and Commercial
 - Other variables

Method - Conditional Model

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Application
- **O** Data

Method - ConditionalModel

- O Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

A proxy pragmatic approach:

▲ **SELECT Model:**Estimates of (L_{50}, SR) for each haul in each cruise

Method - Conditional Model

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- **©** Data

O Method - Conditional Model

- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

A proxy pragmatic approach:

- ▲ **SELECT Model:**Estimates of (L_{50}, SR) for each haul in each cruise
- ▲ Apply Fryers method to each cruise to obtain cruise level estimates of (L_{50}, SR)

Method - Conditional Model

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- **©** Data

O Method - Conditional Model

- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

A proxy pragmatic approach:

- ▲ **SELECT Model:**Estimates of (L_{50}, SR) for each haul in each cruise
- ▲ Apply **Fryers method** to each cruise to obtain cruise level estimates of (L_{50}, SR)
- ▲ Apply Fryers method to cruise level estimates

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- O Data
- C Method Conditional

Model

C Method - Marginal Model

- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

▲ GEE: Generalized Estimating Equations

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- O Data
- O Method Conditional Model

- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ **GEE:** Generalized Estimating Equations
- ▲ CONSs:
 - NOT a likelihood approach
 - No explicit model for random cluster variation

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- **©** Data
- O Method Conditional Model

- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ GEE: Generalized Estimating Equations
- **▲** CONSs:
 - NOT a likelihood approach
 - No explicit model for random cluster variation
- ▲ PROs
 - Implemented in many standard packages (e.g. SAS, R)
 - "Good" asymptotic behaviour of estimators
 - Robust

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- **©** Data
- O Method Conditional Model

- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ GEE: Generalized Estimating Equations
- **▲** CONSs:
 - NOT a likelihood approach
 - No explicit model for random cluster variation
- ▲ PROs
 - Implemented in many standard packages (e.g. SAS, R)
 - "Good" asymptotic behaviour of estimators
 - Robust

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- **©** Data
- O Method Conditional Model

- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

- ▲ GEE: Generalized Estimating Equations
- **▲** CONSs:
 - NOT a likelihood approach
 - No explicit model for random cluster variation
- ▲ PROs
 - Implemented in many standard packages (e.g. SAS, R)
 - "Good" asymptotic behaviour of estimators
 - Robust

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- Data
- O Method Conditional Model
- Method Marginal Model

Results

- Mean Curves varying mesh sizes
- Discussion
- In the end

- **▲ Conditional Model:**
- **▲ Marginal Model:**

Results

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- O Data
- O Method Conditional Model
- Method Marginal Model

C Results

- Mean Curves varying mesh sizes
- Discussion
- In the end

▲ Conditional Model:

- $L_{50} \sim 0.3534 * MeshSize$
- $SR \sim 0.05242 * MeshSize + 3.107 * I_{CommercialVessel}$

▲ Marginal Model:

Results

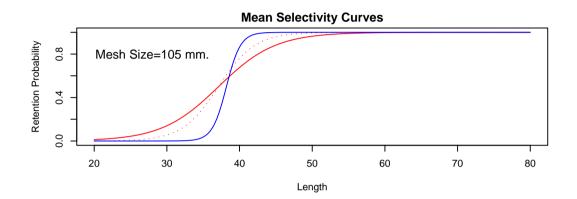
- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- O Data
- O Method Conditional Model
- O Method Marginal Model

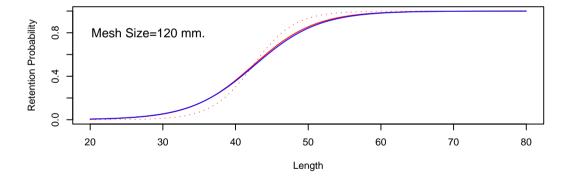
Results

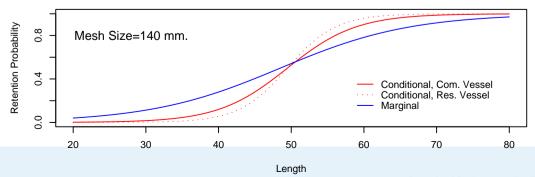
- Mean Curves varying mesh sizes
- Discussion
- In the end

▲ Conditional Model:

- $L_{50} \sim 0.3534 * MeshSize$
- $SR \sim 0.05242 * MeshSize + 3.107 * I_{CommercialVessel}$


▲ Marginal Model:


- $L_{50} \sim 7.2815 + 0.2944 * MeshSize$
- $SR \sim -50.6758 + 0.503 * MeshSize$



Mean Curves - varying mesh sizes

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- O Data
- O Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion
- In the end

Discussion

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- **O** Data
- O Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes

Discussion

In the end

- Room and need for further development
- ▲ Integrate over catch weight
- ▲ How can we improve the quality of data?
- ▲ Bayesian Approach

In the end

- Outline
- Selectivity Single Haul
- Cruise Multiple Hauls
- Mean Curves and Interpretations
- Multiple Cruises
- Application
- O Data
- O Method Conditional Model
- Method Marginal Model
- Results
- Mean Curves varying mesh sizes
- Discussion

In the end

"I was so much older then,

I'm younger than that now . . . "

Bob Dylan