the temperature value, whichever is larger.

- (4) Shield the temperature sensor system from electromagnetic interference and chemical contaminants.
- (5) If a chart recorder is used, it must have a sensitivity in the minor division of at least 20 degrees Fahrenheit.
- (6) Perform an electronic calibration at least semiannually according to the procedures in the manufacturer's owners manual. Following the electronic calibration, you must conduct a temperature sensor validation check in which a second or redundant temperature sensor placed near the process temperature sensor must yield a reading within 16.7 degrees centigrade of the process temperature sensor's reading.
- (7) Conduct calibration and validation checks any time the sensor exceeds the manufacturer's specified maximum operating temperature range or install a new temperature sensor.
- (8) At least monthly, inspect all components for integrity and all electrical connections for continuity, oxidation, and galvanic corrosion.
- (c) For each integrating regeneration stream flow monitoring device associated with a carbon adsorber, you must meet the requirements in paragraphs (a) and (c)(1) and (2) of this section.
- (1) Use a device that has an accuracy of ± 10 percent or better.
- (2) Use a device that is capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle.
- (d) For any other control device, or for other capture systems, ensure that the CPMS is operated according to a monitoring plan submitted to the Administrator with the compliance status report required by §63.9(h). The monitoring plan must meet the requirements in paragraphs (a) and (d)(1) through (3) of this section. Conduct monitoring in accordance with the plan submitted to the Administrator unless comments received from the Administrator require an alternate monitoring scheme.
- (1) Identify the operating parameter to be monitored to ensure that the control or capture efficiency measured during the initial compliance test is maintained.

- (2) Discuss why this parameter is appropriate for demonstrating ongoing compliance.
- (3) Identify the specific monitoring procedures.
- (e) For each pressure differential monitoring device, you must meet the requirements in paragraphs (a) and (e) (1) and (2) of this section.
- (1) Conduct a quarterly EPA Method 2 procedure (found in 40 CFR part 60, appendix A) on the applicable NDOs and use the results to calibrate the pressure monitor if the difference in results are greater than 10 percent.
- (2) Inspect the NDO monthly to ensure that their size has not changed, that there are no new NDO, and that no HAP sources have been moved closer to the NDO than when the last performance test was conducted.

§ 63.5996 How do I demonstrate initial compliance with the emission limits for tire production affected sources?

- (a) You must demonstrate initial compliance with each emission limit that applies to you according to Table 6 to this subpart.
- (b) You must submit the Notification of Compliance Status containing the results of the initial compliance demonstration according to the requirements in §63.6009(e).

TESTING AND INITIAL COMPLIANCE RE-QUIREMENTS FOR TIRE CORD PRODUC-TION AFFECTED SOURCES

§ 63.5997 How do I conduct tests and procedures for tire cord production affected sources?

(a) Methods to determine the mass percent of each HAP in coatings. (1) To determine the HAP content in the coating used at your tire cord production affected source, use EPA Method 311 of appendix A of this part, an approved alternative method, or any other reasonable means for determining the HAP content of your coatings. Other reasonable means include, but are not limited to: an MSDS, provided it contains appropriate information; a CPDS; or a manufacturer's HAP data sheet. You are not required to test the materials that you use, but the Administrator may require a test using EPA Method 311 (or an approved alternative method)