recovery systems for which you conduct liquid-liquid material balances according to \$63.4561(j), you must conduct a performance test of each capture system and add-on control device according to the procedures in \$\$63.4564, 63.4565, and 63.4566 and establish the operating limits required by \$63.4492 no later than the compliance date specified in \$63.4483. For a solvent recovery system for which you conduct liquid-liquid material balances according to \$63.4561(j), you must initiate the first material balance no later than the compliance date specified in \$63.4483.

(2) You must develop and begin implementing the work practice plan required by §63.4493 no later than the compliance date specified in §63.4483.

(3) You must complete the initial compliance demonstration for the initial compliance period according to the requirements of §63.4561. The initial compliance period begins on the applicable compliance date specified in §63.4483 and ends on the last day of the 12th month following the compliance date. If the compliance date occurs on any day other than the first day of a month, then the initial compliance period extends through the end of that month plus the next 12 months. You must determine the mass of organic HAP emissions and mass of coatings solids used each month and then calculate an organic HAP emission rate at the end of the initial compliance period. The initial compliance demonstration includes the results of emission capture system and add-on control device performance tests conducted according to §§ 63.4564, 63.4565, and 63.4566; results of liquid-liquid material balconducted ances according to §63.4561(j); calculations according to §63.4561 and supporting documentation showing that during the initial compliance period the organic HAP emission rate was equal to or less than the applicable emission limit in §63.4490; the operating limits established during the performance tests and the results of the continuous parameter monitoring required by §63.4568; and documentation of whether you developed and implemented the work practice plan required by §63.4493.

(c) You are not required to conduct an initial performance test to determine capture efficiency or destruction efficiency of a capture system or control device if you receive approval to use the results of a performance test that has been previously conducted on that capture system or control device. Any such previous tests must meet the conditions described in paragraphs (c)(1) through (3) of this section.

(1) The previous test must have been conducted using the methods and conditions specified in this subpart.

(2) Either no process or equipment changes must have been made since the previous test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

(3) Either the required operating parameters were established in the previous test or sufficient data were collected in the previous test to establish the required operating parameters.

§63.4561 How do I demonstrate initial compliance?

(a) You may use the emission rate with add-on controls option for any coating operation, for any group of coating operations in the affected source, or for all of the coating operations in the affected source. You may include both controlled and uncontrolled coating operations in a group for which you use this option. You must use either the compliant material option or the emission rate without add-on controls option for any coating operation in the affected source for which you do not use the emission rate with add-on controls option. To demonstrate initial compliance, the coating operation(s) for which you use the emission rate with add-on controls option must meet the applicable emission limitations in §§63.4490, 63.4492, and 63.4493. You must conduct a separate initial compliance demonstration for each general use, TPO, automotive lamp, and assembled on-road vehicle coating operation, unless you are demonstrating compliance with a predominant activity or facility-specific emission limit as provided in §63.4490(c). If you are demonstrating compliance

with a predominant activity or facility-specific emission limit as provided in §63.4490(c), you must demonstrate that all coating operations included in the predominant activity determination or calculation of the facility-specific emission limit comply with that limit. You must meet all the requirements of this section. When calculating the organic HAP emission rate according to this section, do not include any coatings, thinners and/or other additives, or cleaning materials used on coating operations for which you use the compliant material option or the emission rate without add-on controls option. You do not need to redetermine the mass of organic HAP in coatings, thinners and/or other additives, or cleaning materials that have been reclaimed onsite (or reclaimed off-site if you have documentation showing that you received back the exact same materials that were sent off-site) and reused in the coatings operation(s) for which you use the emission rate with add-on controls option. If you use coatings, thinners and/or other additives, or cleaning materials that have been reclaimed on-site, the amount of each used in a month may be reduced by the amount of each that is reclaimed. That is, the amount used may be calculated as the amount consumed to account for materials that are reclaimed.

(b) *Compliance with operating limits.* Except as provided in §63.4560(a)(4), and except for solvent recovery systems for which you conduct liquid-liquid material balances according to the requirements of paragraph (j) of this section, you must establish and demonstrate continuous compliance during the initial compliance period with the operating limits required by §63.4492, using the procedures specified in §§63.4567 and 63.4568.

(c) *Compliance with work practice requirements.* You must develop, implement, and document your implementation of the work practice plan required by §63.4493 during the initial compliance period, as specified in §63.4530.

(d) *Compliance with emission limits.* You must follow the procedures in paragraphs (e) through (n) of this section to demonstrate compliance with the applicable emission limit in 40 CFR Ch. I (7–1–07 Edition)

§63.4490 for each affected source in each subcategory.

(e) Determine the mass fraction of organic HAP, density, volume used, and mass fraction of coating solids. Follow the procedures specified in §63.4551(a) through (d) to determine the mass fraction of organic HAP, density, and volume of each coating, thinner and/or other additive, and cleaning material used during each month; and the mass fraction of coating solids for each coating used during each month.

(f) Calculate the total mass of organic HAP emissions before add-on controls. Using Equation 1 of §63.4551, calculate the total mass of organic HAP emissions before add-on controls from all coatings, thinners and/or other additives, and cleaning materials used during each month in the coating operation or group of coating operations for which you use the emission rate with add-on controls option.

(g) Calculate the organic HAP emission reduction for each controlled coating operation. Determine the mass of organic HAP emissions reduced for each controlled coating operation during each month. The emission reduction determination quantifies the total organic HAP emissions that pass through the emission capture system and are destroyed or removed by the add-on control device. Use the procedures in paragraph (h) of this section to calculate the mass of organic HAP emission reduction for each controlled coating operation using an emission capture system and add-on control device other than a solvent recovery system for which you conduct liquid-liquid material balances. For each controlled coating operation using a solvent recovery system for which you conduct a liquidliquid material balance, use the procedures in paragraph (j) of this section to calculate the organic HAP emission reduction.

(h) Calculate the organic HAP emission reduction for each controlled coating operation not using liquid-liquid material balance. Use Equation 1 of this section to calculate the organic HAP emission reduction for each controlled coating operation using an emission capture system and add-on control device other than a solvent recovery system for

which you conduct liquid-liquid material balances. The calculation applies the emission capture system efficiency to the mass of organic HAP contained in the coatings, thinners and/or other additives, and cleaning materials that are used in the coating operation served by the emission capture system and addon control device during each month. You must assume zero efficiency for the emission capture system and addon control device for any period of time a deviation specified in §63.4563(c) or (d) occurs in the controlled coating operation, including a deviation during a period of startup, shutdown, or malfunction, unless you have other data indicating the actual efficiency of the emission capture system and add-on control device and the use of these data is approved by the Administrator. Equation 1 of this section treats the materials used during such a deviation as if they were used on an uncontrolled coating operation for the time period of the deviation.

$$H_{C} = (A_{C} + B_{C} + C_{C} - R_{W} - H_{UNC}) \left(\frac{CE}{100} \times \frac{DRE}{100}\right)$$
 (Eq. 1)

Where:

- $H_{\rm C}$ = Mass of organic HAP emission reduction for the controlled coating operation during the month, kg.
- $A_{\rm C}$ = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, kg, as calculated in Equation 1A of this section.
- $B_{\rm C}$ = Total mass of organic HAP in the thinners and/or other additives used in the controlled coating operation during the month, kg, as calculated in Equation 1B of this section.
- $C_{\rm C}$ = Total mass of organic HAP in the cleaning materials used in the controlled coating operation during the month, kg, as calculated in Equation 1C of this section.
- R_w = Total mass of organic HAP in waste materials sent or designated for shipment to a hazardous waste TSDF for treatment or disposal during the compliance period, kg, determined according to §63.4951(e)(4). (You may assign a value of zero to R_w if you do not wish to use this allowance.)
- $\rm H^{-}_{UNC}$ = Total mass of organic HAP in the coatings, thinners and/or other additives, and cleaning materials used during all deviations specified in §63.4563(c) and (d) that occurred during the month in the controlled coating operation, kg, as calculated in Equation ID of this section.
- CE = Capture efficiency of the emission capture system vented to the add-on controldevice, percent. Use the test methods andprocedures specified in §§ 63.4564 and 63.4565to measure and record capture efficiency.
- DRE = Organic HAP destruction or removal efficiency of the add-on control device, percent. Use the test methods and procedures in §§63.4564 and 63.4566 to measure and record the organic HAP destruction or removal efficiency.

(1) Calculate the mass of organic HAP in the coatings used in the controlled coating operation, kg (lb), using Equation 1A of this section:

$$A_{C} = \sum_{i=1}^{m} (Vol_{c,i}) (D_{c,i}) (W_{c,i})$$
 (Eq. 1A)

Where:

- A_C = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, kg.
- $Vol_{c,i}$ = Total volume of coating, i, used during the month, liters.

 $D_{c,i}$ = Density of coating, i, kg per liter.

 $W_{c,i}$ = Mass fraction of organic HAP in coating, i, kg per kg. For reactive adhesives as defined in §63.4581, use the mass fraction of organic HAP that is emitted as determined using the method in appendix A to this subpart.

m = Number of different coatings used.

(2) Calculate the mass of organic HAP in the thinners and/or other additives used in the controlled coating operation, kg (lb), using Equation 1B of this section:

$$B_{C} = \sum_{j=1}^{n} \left(Vol_{t,j} \right) \left(D_{t,j} \right) \left(W_{t,j} \right)$$
(Eq. 1B)

Where:

- $B_{\rm C}$ = Total mass of organic HAP in the thinners and/or other additives used in the controlled coating operation during the month, kg.
- $Vol_{t,j}$ = Total volume of thinner and/or other additive, j, used during the month, liters.

§63.4561

 $D_{t,j}$ = Density of thinner and/or other additive, j, kg per liter.

- $W_{t,j}= \dot{M}ass$ fraction of organic HAP in thinner and/or other additive, j, kg per kg. For reactive adhesives as defined in §63.4581, use the mass fraction of organic HAP that is emitted as determined using the method in appendix A to this subpart.
- n = Number of different thinners and/or other additives used.

(3) Calculate the mass of organic HAP in the cleaning materials used in the controlled coating operation during the month, kg (lb), using Equation 1C of this section:

$$C_{C} = \sum_{k=1}^{p} \left(Vol_{s,k} \right) \left(D_{s,k} \right) \left(W_{s,k} \right) \quad (Eq. \ 1C)$$

Where:

 $C_{\rm C}$ = Total mass of organic HAP in the cleaning materials used in the controlled coat-

ing operation during the month, kg. $Vol_{s,k}$ = Total volume of cleaning material, k, used during the month, liters.

 $D_{s,k}$ = Density of cleaning material, k, kg per liter.

 $W_{s,k}$ = Mass fraction of organic HAP in cleaning material, k, kg per kg.

ing material, k, kg per kg. p = Number of different cleaning materials used.

(4) Calculate the mass of organic HAP in the coatings, thinners and/or other additives, and cleaning materials used in the controlled coating operation during deviations specified in $\S63.4563(c)$ and (d), using Equation 1D of this section:

$$H_{UNC} = \sum_{h=1}^{q} (Vol_h) (D_h) (W_h)$$
 (Eq. 1D)

Where:

- H_{UNC} = Total mass of organic HAP in the coatings, thinners and/or other additives, and cleaning materials used during all deviations specified in 63.4563(c) and (d) that occurred during the month in the controlled coating operation, kg.
- $Vol_h = Total volume of coating, thinner and/$ or other additive, or cleaning material, h,used in the controlled coating operationduring deviations, liters.
- D_h = Density of coating, thinner and/or other additives, or cleaning material, h, kg per liter.
- W_h = Mass fraction of organic HAP in coating, thinner and/or other additives, or cleaning material, h, kg organic HAP per kg coating. For reactive adhesives as defined in §63.4581, use the mass fraction of organic HAP that is emitted as determined

40 CFR Ch. I (7–1–07 Edition)

using the method in appendix A to this subpart.

q = Number of different coatings, thinners and/or other additives, and cleaning materials used.

(i) [Reserved]

(j) Calculate the organic HAP emission reduction for each controlled coating operation using liquid-liquid material balances. For each controlled coating operation using a solvent recovery system for which you conduct liquid-liquid material balances, calculate the organic HAP emission reduction by applying the volatile organic matter collection and recovery efficiency to the mass of organic HAP contained in the coatings, thinners and/or other additives, and cleaning materials that are used in the coating operation controlled by the solvent recovery system during each month. Perform a liquidliquid material balance for each month as specified in paragraphs (j)(1) through (6) of this section. Calculate the mass of organic HAP emission reduction by the solvent recovery system as specified in paragraph (j)(7) of this section.

(1) For each solvent recovery system, install, calibrate, maintain, and operate according to the manufacturer's specifications, a device that indicates the cumulative amount of volatile organic matter recovered by the solvent recovery system each month. The device must be initially certified by the manufacturer to be accurate to within ± 2.0 percent of the mass of volatile organic matter recovered.

(2) For each solvent recovery system, determine the mass of volatile organic matter recovered for the month, based on measurement with the device required in paragraph (j)(1) of this section.

(3) Determine the mass fraction of volatile organic matter for each coating, thinner and/or other additive, and cleaning material used in the coating operation controlled by the solvent recovery system during the month, kg volatile organic matter per kg coating. You may determine the volatile organic matter mass fraction using Method 24 of 40 CFR part 60, appendix A, or an EPA approved alternative method, or you may use information provided by the manufacturer or supplier of the coating. In the event of any

inconsistency between information provided by the manufacturer or supplier and the results of Method 24 of 40 CFR part 60, appendix A, or an approved alternative method, the test method results will take precedence unless, after consultation you demonstrate to the satisfaction of the enforcement agency that the formulation data are correct.

(4) Determine the density of each coating, thinner and/or other additive, and cleaning material used in the coating operation controlled by the solvent recovery system during the month, kg per liter, according to §63.4551(c).

(5) Measure the volume of each coating, thinner and/or other additive, and cleaning material used in the coating operation controlled by the solvent recovery system during the month, liters.

(6) Each month, calculate the solvent recovery system's volatile organic matter collection and recovery efficiency, using Equation 2 of this section:

$$R_{V} = 100 \frac{M_{VR}}{\sum_{i=1}^{m} Vol_{i}D_{i}WV_{c,i} + \sum_{j=1}^{n} Vol_{j}D_{j}WV_{t,j} + \sum_{k=1}^{p} Vol_{k}D_{k}WV_{s,k}}$$
(Eq. 2)

Where:

- R_V = Volatile organic matter collection and recovery efficiency of the solvent recovery system during the month, percent.
- M_{VR} = Mass of volatile organic matter recovered by the solvent recovery system during the month, kg.
- Vol_i = Volume of coating, i, used in the coating operation controlled by the solvent recovery system during the month, liters.

 D_i = Density of coating, i, kg per liter.

- $WV_{c,i}$ = Mass fraction of volatile organic matter for coating, i, kg volatile organic matter per kg coating. For reactive adhesives as defined in §63.4581, use the mass fraction of organic HAP that is emitted as determined using the method in appendix A to this subpart.
- Vol_j = Volume of thinner and/or other additive, j, used in the coating operation controlled by the solvent recovery system during the month, liters.
- D_{j} = Density of thinner and/or other additive, $j,\,kg$ per liter.
- $WV_{t,j}$ = Mass fraction of volatile organic matter for thinner and/or other additive, j, kg volatile organic matter per kg thinner and/ or other additive. For reactive adhesives as defined in §63.4581, use the mass fraction of organic HAP that is emitted as determined

using the method in appendix A to this subpart.

- Vol_k = Volume of cleaning material, k, used in the coating operation controlled by the solvent recovery system during the month, liters.
- D_k = Density of cleaning material, k, kg per liter.
- $WV_{s,k}$ = Mass fraction of volatile organic matter for cleaning material, k, kg volatile organic matter per kg cleaning material.
- m = Number of different coatings used in the coating operation controlled by the solvent recovery system during the month.
- n = Number of different thinners and/or other additives used in the coating operation controlled by the solvent recovery system during the month.
- p = Number of different cleaning materials used in the coating operation controlled by the solvent recovery system during the month.

(7) Calculate the mass of organic HAP emission reduction for the coating operation controlled by the solvent recovery system during the month, using Equation 3 of this section and according to paragraphs (j)(7)(i) through (iii) of this section:

$$H_{CSR} = \left(A_{CSR} + B_{CSR} + C_{CSR}\right) \left(\frac{R_v}{100}\right) \quad (Eq. 3)$$

§63.4561

Where:

- H_{CSR} = Mass of organic HAP emission reduction for the coating operation controlled by the solvent recovery system using a liquid-liquid material balance during the month, kg.
- A_{CSR} = Total mass of organic HAP in the coatings used in the coating operation controlled by the solvent recovery system, kg, calculated using Equation 3A of this section.
- $B_{\rm CSR}$ = Total mass of organic HAP in the thinners and/or other additives used in the coating operation controlled by the solvent recovery system, kg, calculated using Equation 3B of this section.
- $C_{\rm CSR}$ = Total mass of organic HAP in the cleaning materials used in the coating operation controlled by the solvent recovery system, kg, calculated using Equation 3C of this section.
- $R_{\rm V}$ = Volatile organic matter collection and recovery efficiency of the solvent recovery system, percent, from Equation 2 of this section.

(i) Calculate the mass of organic HAP in the coatings used in the coating operation controlled by the solvent re-

40 CFR Ch. I (7-1-07 Edition)

covery system, kg, using Equation 3A of this section.

$$A_{CSR} = \sum_{i=1}^{m} (Vol_{c,i}) (D_{c,i}) (W_{c,i}) \quad (Eq. 3A)$$

Where:

- A_{CSR} = Total mass of organic HAP in the coatings used in the coating operation controlled by the solvent recovery system during the month, kg.
- $Vol_{c,i}$ = Total volume of coating, i, used during the month in the coating operation controlled by the solvent recovery system, liters.
- $D_{c,i}$ = Density of coating, i, kg per liter.
- $W_{c,i}$ = Mass fraction of organic HAP in coating, i, kg organic HAP per kg coating. For reactive adhesives as defined in §63.4581, use the mass fraction of organic HAP that is emitted as determined using the method in appendix A to this subpart.
- m = Number of different coatings used.

(ii) Calculate the mass of organic HAP in the thinners and/or other additives used in the coating operation controlled by the solvent recovery system, kg, using Equation 3B of this section:

$$B_{CSR} = \sum_{i=1}^{n} \left(Vol_{t,i} \right) \left(D_{t,j} \right) \left(W_{t,j} \right) \quad (Eq. 3B)$$

Where:

- $B_{\rm CSR}$ = Total mass of organic HAP in the thinners and/or other additives used in the coating operation controlled by the solvent recovery system during the month, kg.
- $Vol_{t,j}$ = Total volume of thinner and/or other additive, j, used during the month in the coating operation controlled by the solvent recovery system, liters.
- $D_{t,j} \ = \ Density \ of \ thinner \ and/or \ other \ additive, \ j, \ kg \ per \ liter.$
- $$\begin{split} W_{t,j} &= Mass \ fraction \ of \ organic \ HAP \ in \ thinner \ and/or \ other \ additive, \ j, \ kg \ organic \ HAP \ per \ kg \ thinner \ and/or \ other \ additive. For \ reactive \ adhesives \ as \ defined \ in \ \$ 63.4581, \ use \ the \ mass \ fraction \ of \ organic \ HAP \ that \ is \ emitted \ as \ determined \ using \ the \ method \ in \ appendix \ A \ to \ this \ subpart. n \ = \ Number \ of \ different \ thinners \ and/or \ and/or \ add \ the \ add \ add \ the \ thinners \ and/or \ the \ add \ the \ thinner \ add \ the \ the$$

(iii) Calculate the mass of organic HAP in the cleaning materials used in the coating operation controlled by the solvent recovery system during the

other additives used.

month, kg, using Equation 3C of this section:

$$C_{CSR} = \sum_{k=1}^{p} (Vol_{s,k}) (D_{s,k}) (W_{s,k})$$
 (Eq. 3C)

Where:

- C_{CSR} = Total mass of organic HAP in the cleaning materials used in the coating operation controlled by the solvent recovery system during the month, kg.
- $Vol_{s,k}$ = Total volume of cleaning material, k, used during the month in the coating operation controlled by the solvent recovery system, liters.
- $D_{s,k}$ = Density of cleaning material, k, kg per liter.
- $W_{s,k}$ = Mass fraction of organic HAP in cleaning material, k, kg organic HAP per kg cleaning material.
- p = Number of different cleaning materials used.

(k) Calculate the total mass of coating solids used. Determine the total mass of coating solids used, kg, which is the

combined mass of coating solids for all the coatings used during each month in the coating operation or group of coating operations for which you use the emission rate with add-on controls option, using Equation 2 of §63.4551. (l) Calculate the mass of organic HAP emissions for each month. Determine the mass of organic HAP emissions, kg, during each month, using Equation 4 of this section:

$$H_{HAP} = H_e - \sum_{i=1}^{q} (H_{C,i}) - \sum_{i=1}^{r} (H_{CSR,j})$$
 (Eq. 4)

Where:

- H_{HAP} = Total mass of organic HAP emissions for the month, kg.
- $H_{\rm e}$ = Total mass of organic HAP emissions before add-on controls from all the coatings, thinners and/or other additives, and cleaning materials used during the month, kg, determined according to paragraph (f) of this section.
- $H_{\rm C,i}$ = Total mass of organic HAP emission reduction for controlled coating operation, i, not using a liquid-liquid material balance, during the month, kg, from Equation 1 of this section.
- $H_{CSR,j}$ = Total mass of organic HAP emission reduction for coating operation, j, controlled by a solvent recovery system using a liquid-liquid material balance, during the month, kg, from Equation 3 of this section.
- q = Number of controlled coating operations not controlled by a solvent recovery system using a liquid-liquid material balance.
- r = Number of coating operations controlled by a solvent recovery system using a liquid-liquid material balance.

(m) Calculate the organic HAP emission rate for the compliance period. Determine the organic HAP emission rate for the compliance period, kg (lb) of organic HAP emitted per kg (lb) coating solids used, using Equation 5 of this section:

$$H_{annual} = \frac{\sum_{y=1}^{n} H_{HAP,y}}{\sum_{y=1}^{n} M_{st,y}}$$
(Eq. 5)

Where:

- H_{annual} = Organic HAP emission rate for the compliance period, kg organic HAP emitted per kg coating solids used.
- $H_{\rm HAP,y}=$ Organic HAP emissions for month, y, kg, determined according to Equation 4 of this section.

- $M_{st,y}$ = Total mass of coating solids used during month, y, kg, from Equation 2 of §63.4551.
- y = Identifier for months.
- n = Number of full or partial months in the compliance period (for the initial compliance period, n equals 12 if the compliance date falls on the first day of a month; otherwise n equals 13; for all following compliance periods, n equals 12).

(n) Compliance demonstration. The organic HAP emission rate for the initial compliance period, calculated using Equation 5 of this section, must be less than or equal to the applicable emission limit for each subcategory in §63.4490 or the predominant activity or facility-specific emission limit allowed in §63.4490(c). You must keep all records as required by §§63.4530 and 63.4531. As part of the notification of compliance status required by §63.4510, you must identify the coating operation(s) for which you used the emission rate with add-on controls option and submit a statement that the coating operation(s) was (were) in compliance with the emission limitations during the initial compliance period because the organic HAP emission rate was less than or equal to the applicable emission limit in §63.4490, and you achieved the operating limits required by §63.4492 and the work practice standards required by §63.4493.

§63.4562 [Reserved]

§63.4563 How do I demonstrate continuous compliance with the emission limitations?

(a) To demonstrate continuous compliance with the applicable emission limit in §63.4490, the organic HAP

§63.4563