§ 63.1452

- (3) Submitted a notification of compliance status according to the requirements in §63.1454(e).
- (g) Other control devices. For each control device other than a baghouse or venturi wet scrubber subject to operating limits in §63.1444(h) or §63.1446(e), you have demonstrated initial compliance if you meet all of the conditions in paragraphs (g)(1) through (4) of this section.
- (1) Selected one or more operating parameters, as appropriate for the control device design, that can be used as representative and reliable indicators of the control device operation.
- (2) Established site-specific operating limits for each of the selected operating parameters based on values measured during the performance test you conduct to demonstrate initial compliance with paragraph (a) of this section and have prepared written documentation according to the requirements in §63.1450(a)(5)(iv).
- (3) Included in your notification of compliance status a copy of the written documentation you have prepared to demonstrate compliance with paragraph (g)(2) of this section and have certified in your notification of compliance status that you will operate the control device within the established operating limits.
- (4) Submitted a notification of compliance status according to the requirements in §63.1454(e).
- (h) Fugitive dust sources. For all fugitive dust sources subject to work practice standards in §63.1445, you have demonstrated initial compliance if you meet all of the conditions in paragraphs (i)(1) through (3) of this section.
- (1) Prepared a written fugitive dust control plan according to the requirements in §63.1454 and it has been approved by the designated authority.
- (2) Certified in your notification of compliance status that you will control emissions from the fugitive dust sources according to the procedures in the approved plan.
- (3) Submitted the notification of compliance status according to the requirements in §63.1454(e).
- (i) Operation and maintenance requirements. You have demonstrated initial compliance with the operation and maintenance requirements that apply

- to you if you meet all of the conditions in paragraphs (i)(1) through (3) of this section.
- (1) Prepared an operation and maintenance plan according to the requirements in §63.1454(b).
- (2) Certified in your notification of compliance status that you will operate each capture system and control device according to the procedures in the plan.
- (3) Submitted the notification of compliance status according to the requirements in §63.1454(e).

CONTINUOUS COMPLIANCE REQUIREMENTS

§ 63.1452 What are my monitoring requirements?

- (a) Copper converter department capture systems. For each operating limit established under your capture system operation and maintenance plan, you must install, operate, and maintain an appropriate monitoring device according the requirements in paragraphs (a)(1) though (6) of this section to measure and record the operating limit value or setting at all times the copper converter department capture system is operating during batch copper converter blowing. Dampers that are manually set and remain in the same position at all times the capture system is operating are exempted from the requirements of this paragraph (a).
- (1) Install the monitoring device, associated sensor(s), and recording equipment according to the manufacturers' specifications. Locate the sensor(s) used for monitoring in or as close to a position that provides a representative measurement of the parameter being monitored.
- (2) If a flow measurement device is used to monitor the operating limit parameter, you must meet the requirements in paragraph (a)(2)(i) through (iv) of this section.
- (i) Locate the flow sensor and other necessary equipment such as straightening vanes in a position that provides a representative flow.
- (ii) Use a flow sensor with a minimum tolerance of 2 percent of the flow rate.
- (iii) Reduce swirling flow or abnormal velocity distributions due to upstream and downstream disturbances.

Environmental Protection Agency

- (iv) Conduct a flow sensor calibration check at least semiannually.
- (3) If a pressure measurement device is used to monitor the operating limit parameter, you must meet the requirements in paragraph (a)(3)(i) through (v) of this section.
- (i) Locate the pressure sensor(s) in or as close to a position that provides a representative measurement of the pressure.
- (ii) Minimize or eliminate pulsating pressure, vibration, and internal and external corrosion.
- (iii) Use a gauge with a minimum tolerance of 0.5 inch of water or a transducer with a minimum tolerance of 1 percent of the pressure range.
- (iv) Check pressure tap pluggage daily.
- (v) Using a manometer, check gauge calibration quarterly and transducer calibration monthly.
- (4) Conduct calibration and validation checks any time the sensor exceeds the manufacturer's specifications or you install a new sensor.
- (5) At least monthly, inspect all components for integrity, all electrical connections for continuity, and all mechanical connections for leakage.
- (6) Record the results of each inspection, calibration, and validation check.
- (b) Baghouses. For each baghouse subject to the operating limit in §63.1444(f) or §63.1446(c) for the bag leak detection system alarm, you must at all times monitor the relative change in particulate matter loadings using a bag leak detection system according to the requirements in paragraph (b)(1) of this section and conduct regular inspections according to the requirements in paragraph (b)(2) of this section.
- (1) You must install, operate, and maintain each bag leak detection system according to the requirements in paragraphs (b)(1)(i) through (vii) of this section.
- (i) The system must be certified by the manufacturer to be capable of detecting emissions of particulate matter at concentrations of 10 milligrams per actual cubic meter (0.0044 grains per actual cubic foot) or less.
- (ii) The system must provide output of relative changes in particulate matter loadings.

- (iii) The system must be equipped with an alarm that will sound when an increase in relative particulate loadings is detected over a preset level. The alarm must be located such that it can be heard by the appropriate plant personnel.
- (iv) Each system that works based on the triboelectric effect must be installed, operated, and maintained in a manner consistent with the guidance document, "Fabric Filter Bag Leak Detection Guidance," EPA-454/R-98-015, September 1997. You may obtain a copy of this guidance document by contacting the National Technical Information Service (NTIS) at 800-553-6847. You may install, operate, and maintain other types of bag leak detection systems in a manner consistent with the manufacturer's written specifications and recommendations.
- (v) To make the initial adjustment of the system, establish the baseline output by adjusting the sensitivity (range) and the averaging period of the device. Then, establish the alarm set points and the alarm delay time.
- (vi) Following the initial adjustment, do not adjust the sensitivity or range, averaging period, alarm set points, or alarm delay time, except as detailed in your operation and maintenance plan. Do not increase the sensitivity by more than 100 percent or decrease the sensitivity by more than 50 percent over a 365-day period unless a responsible official certifies, in writing, that the baghouse has been inspected and found to be in good operating condition.
- (vii) Where multiple detectors are required, the system's instrumentation and alarm may be shared among detectors.
- (2) You must conduct baghouse inspections at their specified frequencies according to the requirements in paragraphs (b)(2)(i) through (viii) of this section.
- (i) Monitor the pressure drop across each baghouse cell each day to ensure pressure drop is within the normal operating range identified in the manual.
- (ii) Confirm that dust is being removed from hoppers through weekly visual inspections or other means of ensuring the proper functioning of removal mechanisms.

§ 63.1452

- (iii) Check the compressed air supply for pulse-jet baghouses each day.
- (iv) Monitor cleaning cycles to ensure proper operation using an appropriate methodology.
- (v) Check bag cleaning mechanisms for proper functioning through monthly visual inspection or equivalent means.
- (vi) Make monthly visual checks of bag tension on reverse air and shaker-type baghouses to ensure that bags are not kinked (kneed or bent) or laying on their sides. You do not have to make this check for shaker-type baghouses using self-tensioning (spring-loaded) devices.
- (vii) Confirm the physical integrity of the baghouse through quarterly visual inspections of the baghouse interior for air leaks.
- (viii) Inspect fans for wear, material buildup, and corrosion through quarterly visual inspections, vibration detectors, or equivalent means.
- (c) Venturi wet scrubbers. For each venturi wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in §63.1444(g) or §63.1446(d), you must at all times monitor the hourly average pressure drop and water flow rate using a CPMS. You must install, operate, and maintain each CPMS according to the requirements in paragraphs (c)(1) and (2) of this section.
- (1) For the pressure drop CPMS, you must meet the requirements in paragraphs (c)(1)(i) through (vi) of this section.
- (i) Locate the pressure sensor(s) in or as close to a position that provides a representative measurement of the pressure and that minimizes or eliminates pulsating pressure, vibration, and internal and external corrosion.
- (ii) Use a gauge with a minimum measurement sensitivity of 0.5 inch of water or a transducer with a minimum measurement sensitivity of 1 percent of the pressure range.
- (iii) Check the pressure tap for pluggage daily.
- (iv) Using a manometer, check gauge calibration quarterly and transducer calibration monthly.
- (v) Conduct calibration checks any time the sensor exceeds the manufacturer's specified maximum operating

pressure range, or install a new pressure sensor.

- (vi) At least monthly, inspect all components for integrity, all electrical connections for continuity, and all mechanical connections for leakage.
- (2) For the scrubber water flow rate CPMS, you must meet the requirements in paragraphs (c)(2)(i) through (iv) of this section.
- (i) Locate the flow sensor and other necessary equipment in a position that provides a representative flow and that reduces swirling flow or abnormal velocity distributions due to upstream and downstream disturbances.
- (ii) Use a flow sensor with a minimum measurement sensitivity of 2 percent of the flow rate.
- (iii) Conduct a flow sensor calibration check at least semiannually according to the manufacturer's instructions.
- (iv) At least monthly, inspect all components for integrity, all electrical connections for continuity, and all mechanical connections for leakage.
- (d) Other control devices. For each control device other than a baghouse or venturi wet scrubber subject to the operating limits for appropriate parameters in §§63.1444(h) or 63.1446(e), you must at all times monitor each of your selected parameters using an appropriate CPMS. You must install, operate, and maintain each CPMS according to the equipment manufacturer's specifications and the requirements in paragraphs (d)(1) though (5) of this section.
- (1) Locate the sensor(s) used for monitoring in or as close to a position that provides a representative measurement of the parameter being monitored.
- (2) Determine the hourly average of all recorded readings.
- (3) Conduct calibration and validation checks any time the sensor exceeds the manufacturer's specifications or you install a new sensor.
- (4) At least monthly, inspect all components for integrity, all electrical connections for continuity, and all mechanical connections for leakage.
- (5) Record the results of each inspection, calibration, and validation check.
- (e) Except for monitoring malfunctions, associated repairs, and required quality assurance or control activities

Environmental Protection Agency

(including as applicable, calibration checks and required zero and span adjustments), you must monitor continuously (or collect data at all required intervals) at all times an affected source is operating.

- (f) You may not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities in data averages and calculations used to report emission or operating levels or to fulfill a minimum data availability requirement, if applicable. You must use all the data collected during all other periods in assessing compliance.
- (g) A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitor to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

[67 FR 40491, June 12, 2002, as amended at 70 FR 40673, July 14, 2005]

- §63.1453 How do I demonstrate continuous compliance with the emission limitations, work practice standards, and operation and maintenance requirements that apply to me?
- (a) Particulate matter emission limits. For each affected source subject to a particulate matter emission limit §63.1444 or §63.1446 as applies to you, you must demonstrate continuous compliance according to the requirements in paragraphs (a)(1) and (2) of this section.
- (1) For each copper concentrate dryer, smelting furnace, slag cleaning vessel, and copper converter department subject to a total particulate matter emission limit in §63.1444 or §63.1446 as applies to you, you must demonstrate continuous compliance by meeting the conditions in paragraphs (a)(1)(i) and (ii) of this section.
- (i) Maintain the average concentration of total particulate matter in the gases discharged from the affected source at or below the applicable emission limit.
- (ii) Conduct subsequent performance tests following your initial performance test no less frequently than once per year according to the performance test procedures in §63.1450(a).

- (2) For each smelting furnace, slag cleaning vessel, and copper converter department subject to the nonsulfuric acid particulate matter emission limit in §63.1444 as applies to you, you must demonstrate continuous compliance by meeting the conditions in paragraphs (a)(2)(i) and (ii) of this section.
- (i) Maintain the average concentration of nonsulfuric acid particulate matter in the process off-gas discharged from the affected source at or below 6.2 mg/dscm.
- (ii) Conduct subsequent performance tests following your initial performance test no less frequently than once per year according to the performance test procedures in §63.1450(b).
- (b) Copper converter department capture systems. You must demonstrate continuous compliance of the copper converter department capture system by meeting the requirements in paragraphs (b)(1) through (4) of this section.
- (1) Operate the copper converter department capture system at all times during blowing at or above the lowest values or settings established for the operating limits and demonstrated to achieve the opacity limit according to the applicable requirements of this subpart;
- (2) Inspect and maintain the copper converter department capture system according to the applicable requirements in §63.1447 and recording all information needed to document conformance with these requirements;
- (3) Monitor the copper converter department capture system according to the requirements in §63.1452(a) and collecting, reducing, and recording the monitoring data for each of the operating limit parameters according to the applicable requirements of this subpart: and
- (4) Conduct subsequent performance tests according to the requirements of §63.1450(c) following your initial performance test no less frequently than once per year to demonstrate that the opacity of any visible emissions exiting the roof monitors or roof exhaust fans on the building housing the copper converter department does not exceed 4 percent opacity.
- (c) Baghouses. For each baghouse subject to the operating limit for the bag leak detection system alarm in