[Code of Federal Regulations]
[Title 40, Volume 31]
[Revised as of July 1, 2007]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR795.120]

[Page 59-63]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
         CHAPTER I--ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)
 
PART 795_PROVISIONAL TEST GUIDELINES--Table of Contents
 
         Subpart C_Provisional Environmental Effects Guidelines
 
Sec.  795.120  Gammarid acute toxicity test.


    (a) Purpose. This guideline is intended for use in developing data 
on the acute toxicity of chemical substances and mixtures subject to 
environmental effects test regulations under the Toxic Substances 
Control Act (TSCA) (Pub. L. 94-469, 90 Stat. 2003 (15 U.S.C. 2601 et 
seq.)). This guideline describes a test to develop data on the acute 
toxicity of chemicals to gammarids. The United States Environmental 
Protection Agency (EPA) will use data from this test in assessing the 
hazard of a chemical to aquatic organisms.
    (b) Definitions. The definitions in section 3 of TSCA and in part 
792 of this chapter, Good Laboratory Practice Standards, apply to this 
test guideline. The following definitions also apply to this guideline:
    Death means the lack of reaction of a test organism to gentle 
prodding.
    Flow-through means a continuous or an intermittent passage of test 
solution or dilution water through a test chamber or a holding or 
acclimation tank, with no recycling.
    LC50 means the median lethal concentration, i.e., that concentration 
of a chemical in air or water killing 50 percent of the test batch of 
organisms within a particular period of exposure (which shall be 
stated).
    Loading means the ratio of the biomass of gammarids (grams, wet 
weight) to the volume (liters) of test solution in either a test chamber 
or passing through it in a 24-hour period.
    Solvent means a substance (e.g., acetone) which is combined with the 
test substance to facilitate introduction of the test substance into the 
dilution water.
    Static system means a test chamber in which the test solution is not 
renewed during the period of the test.
    (c) Test procedures--(1) Summary of the test. In preparation for the 
test, test chambers are filled with appropriate volumes of dilution 
water. If a flow-through test is performed, the flow of dilution water 
through each chamber is adjusted to the rate desired. In a static test, 
the test substance is introduced into each test chamber. In a flow-
through test, the rate in which the test substance is added is adjusted 
to establish and maintain the desired concentration of test substance in 
each test chamber. The test is started by randomly introducing 
gammarids, which have been acclimated to the test conditions, into the 
test chambers. Gammarids in the test chambers are observed periodically 
during the test; the dead gammarids are removed and the findings 
recorded. Dissolved oxygen concentration, pH, temperature, and the 
concentration of test substance in test chambers are measured at 
specified intervals. Data collected during the test are used to develop 
concentration--response curves and LC50 values for the test substance.
    (2) [Reserved]
    (3) Range-finding test. (i) A range-finding test should be conducted 
to establish test substance concentrations to be used for the definitive 
test.
    (ii) The gammarids shall be exposed to a wide-range of 
concentrations of the test substance (e.g., 1, 10, 100 mg/1, etc.), 
usually under static conditions.
    (iii) A minimum of five gammarids should be exposed to each 
concentration of test substance for a period of 96 hours. The exposure 
period may be shortened if data suitable for determining concentrations 
in the definitive test can be obtained in less time. Nominal 
concentrations of the test substance may be acceptable.
    (4) Definitive test. (i) The purpose of the definitive test is to 
determine the 24, 48, 72, and 96--hour LC50 values and the 
concentration-response curves.
    (ii) A minimum of 20 gammarids per concentration shall be exposed to 
five or more concentrations of the test substance chosen in a geometric 
series in which the ratio is between 1.5 and 2.0 (e.g., 2, 4, 8, 16, 32, 
64 mg/L). The range

[[Page 60]]

and number of concentrations to which the organisms are exposed shall be 
such that in 96 hours there is at least one concentration resulting in 
mortality greater than 50 and less than 100 percent, and one 
concentration causing greater than zero and less than 50 percent 
mortality. An equal number of gammarids may be placed in two or more 
replicate test chambers. Solvents should be avoided, if possible. If 
solvents have to be used, a solvent control, as well as a dilution 
control, shall be tested at the highest solvent concentration employed 
in the treatments. The solvent should not be toxic or have an effect on 
the toxicity of the test substance. The concentration of solvent should 
not exceed 0.1 ml/L.
    (iii) Every test shall include a concurrent control using gammarids 
from the same population or culture container. The control group shall 
be exposed to the same dilution water, conditions and procedures, except 
that none of the test substance shall be is added to the chamber.
    (iv) The dissolved oxygen concentration, temperature and pH of the 
test solution shall be measured at the beginning of the test and at 24, 
48, 72 and 96 hours in at least one replicate each of the control, and 
the highest, lowest and middle test concentrations.
    (v) The test duration is 96 hours. The test is unacceptable if more 
than 10 percent of the control organisms die during the test.
    (vi) In addition to death, any abnormal behavior or appearance shall 
also be reported.
    (vii) Gammarids shall be randomly assigned to the test chambers. 
Test chambers shall be positioned within the testing area in a random 
manner or in a way in which appropriate statistical analyses can be used 
to determine whether there is any variation due to placement.
    (viii) Gammarids shall be introduced into the test chambers after 
the test substance has been added.
    (ix) Observations on compound solubility shall be recorded. The 
investigator should record the appearance of surface slicks, 
precipitates, or material adhering to the sides of the test chambers.
    (5) [Reserved]
    (6) Analytical measurements--(i) Water quality analysis. The 
hardness, acidity, alkalinity, pH, conductivity, TOC or COD, and 
particulate matter of the dilution water shall be measured at the 
beginning of each definitive test.
    (ii) Collection of samples for measurement of test substance. Each 
sample to be analyzed for the test substance concentrations shall be 
taken at a location midway between the top, bottom, and sides of the 
test chamber. Samples should not include any surface scum or material 
dislodged from the bottom or sides. Samples shall be analyzed 
immediately or handled and stored in a manner which minimizes loss of 
test substance through microbial degradation, photogradation, chemical 
reaction, volatilization, or sorption.
    (iii) Measurement of test substance. (A) For static tests, the 
concentration of dissolved test substance (that which passes through a 
0.45 micron filter) shall be measured in each test chamber at least at 
the beginning (zero-hour, before gammarids are added) and at the end of 
the test. During flow-through tests, the concentration of dissolved test 
substance shall be measured in each test chamber at least at 0 and 96-
hours and in at least one chamber whenever a malfunction of the test 
substance delivery system is observed.
    (B) The analytical methods used to measure the amount of test 
substance in a sample shall be validated before beginning the test. This 
involves adding a known amount of the test substance to each of three 
water samples taken from a chamber containing dilution water and the 
same number of gammarids as are placed in each test chamber. The nominal 
concentrations of the test substance in these samples should span the 
concentration range to be used in the test. Validation of the analytical 
method should be performed on at least two separate days prior to 
starting the test.
    (C) An analytical method is not acceptable if likely degradation 
products of the test substance give positive or negative interferences, 
unless it is shown that such degradation products are not present in the 
test chambers during the test.
    (D) Among replicate test chambers, the measured concentrations shall 
not

[[Page 61]]

vary more than 20 percent. The measured concentration of the test 
substance in any chamber during the test shall not vary more than plus 
or minus 30 percent from the measured concentration in that chamber at 
zero time.
    (E) The mean measured concentration of dissolved test substance 
shall be used to calculate all LC50's and to plot all concentration-
response curves.
    (d) Test conditions for definitive test--(1) Test species--(i) 
Selection. (A) The amphipods, Gammarus fasciatus, G. pseudolimnaeus, and 
G. lacustris are specified for this test.
    (B) Gammarids can be cultured in the laboratory or collected from 
natural sources. If collected, they must be held in the laboratory for 
at least 14 days prior to testing.
    (C) Gammarids used in a particular test shall be of similar age and/
or size and from the same source or culture population.
    (ii) Acclimation. If the holding water is from the same source as 
the dilution water, acclimation to the dilution water shall be done 
gradually over a 48-hour period. The gammarids then shall be held at 
least 7 days in the dilution water prior to testing. Any changes in 
water temperature should not exceed 2 [deg]C per day. Gammarids should 
be held for a minimum of 7 days at the test temperature prior to 
testing.
    (iii) Care and handling. Gammarids shall be cultured in dilution 
water under similar environmental conditions to those used in the test. 
Organisms shall be handled as little as possible. When handling is 
necessary it should be done as gently, carefully and quickly as 
possible. During culturing and acclimation, gammarids shall be observed 
carefully for signs of stress and mortality. Dead and abnormal 
individuals shall be discarded.
    (iv) Feeding. The organisms shall not be fed during testing. During 
culturing, holding, and acclimation, a sufficient quantity of deciduous 
leaves, such as maple, aspen, or birch, should be placed in the culture 
and holding containers to cover the bottom with several layers. These 
leaves should be aged for at least 30 days in a flow-through system 
before putting them in aquaria. As these leaves are eaten, more aged 
leaves should be added. Pelleted fish food may also be added.
    (2) Facilities--(i) Apparatus--(A) Facilities needed to perform this 
test include:
    (1) Containers for culturing, acclimating and testing gammarids;
    (2) Containers for aging leaves under flow-through conditions;
    (3) A mechanism for controlling and maintaining the water 
temperature during the culturing, acclimation and test periods;
    (4) Apparatus for straining particulate matter, removing gas 
bubbles, or aerating the dilution water, as necessary; and
    (5) An apparatus for providing a 16-hour light and 8-hour dark 
photoperiod with a 15- to 30-minute transition period.
    (B) Facilities should be well ventilated and free of fumes and 
disturbances that may affect the test organism.
    (C) Test chambers shall be covered loosely to reduce the loss of 
test solution or dilution water due to evaporation and to minimize the 
entry of dust or other particulates into the solutions.
    (ii) Construction materials. Construction materials and equipment 
that may contact the stock solution, test solution or dilution water 
should not contain substances that can be leached or dissolved into 
aqueous solutions in quantities that can alter the test results. 
Materials and equipment that contact stock or test solutions should be 
chosen to minimize sorption of test substances. Glass, stainless steel, 
and perfluorocarbon plastic should be used wherever possible. Concrete, 
fiberglass, or plastic (e.g., PVC) may be used for holding tanks, 
acclimation tanks, and water supply systems, but they should be aged 
prior to use. Rubber, coopper, brass, galvanized metal, and lead should 
not come in contact with the dilution water, stock solution, or test 
solution.
    (iii) Test substance delivery system. In flow-through tests, 
diluters, metering pump systems or other suitable devices shall be used 
to deliver the test substance to the test chambers. The system used 
shall be calibrated before each test. The general operation of the

[[Page 62]]

test substance delivery system shall be checked twice daily during a 
test. The 24-hour flow shall be equal to at least five times the volume 
of the test chamber. During a test, the flow rates should not vary more 
than 10 percent from one test chamber to another.
    (iv) Test chambers. Test chambers shall contain at least one liter 
of test solution. Test chambers made of stainless steel should be 
welded, not soldered. Test chambers made of glass should be glued using 
clear silicone adhesive. As little adhesive as possible should be left 
exposed in the interior of the chamber. A substrate, such as a bent 
piece of stainless steel screen, should be placed on the bottom of each 
test chamber to provide cover for the gammarids.
    (v) Cleaning of test system. Test substance delivery systems and 
test chambers should be cleaned before each test. They should be washed 
with detergent and then rinsed sequentially with clean water, pesticide-
free acetone, clean water, and 5-percent nitric acid, followed by two or 
more changes of dilution water.
    (vi) Dilution water. (A) Clean surface or ground water, 
reconstituted water, or dechlorinated tap water is acceptable as 
dilution water if gammarids will survive in it for the duration of the 
culturing, acclimating, and testing periods without showing signs of 
strees. The quality of the dilution water should be constant enough that 
the month-to-month variation in hardness, acidity, alkalinity, 
conductivity, TOC or COD, and particulate matter is not more than 10 
percent. The pH should be constant within 0.4 unit. In addition, the 
dilution water should meet the following specifications measured at 
least twice a year:

------------------------------------------------------------------------
                 Substance                      Maximum concentration
------------------------------------------------------------------------
Particulate matter.........................  20 mg/L
Total organic carbon (TOC) or..............  2 mg/L
  chemical oxygen demand (COD).............  5 mg/L
Boron, fluoride............................  100 ug/L
Un-ionized ammonia.........................  1 ug/L
Aluminum, arsenic, chromium, cobalt,         1 ug/L
 copper, iron, lead, nickel, zinc.
Residual chlorine..........................  3 ug/L
Cadmium, mercury, silver...................  100 ng/L
Total organophosphorus pesticides..........  50 ng/L
Total organochlorine pesticides plus:
  polychlorinated biphenyls (PCBs) or......  50 ng/L
  organic chlorine.........................  25 ng/L
------------------------------------------------------------------------

    (B) If the dilution water is from a ground or surface water source, 
conductivity and total organic carbon (TOC) or chemical oxygen demand 
(COD) shall be measured. Reconstituted water can be made by adding 
specific amounts of reagent-grade chemicals to deionized or distilled 
water. Glass-distilled or carbon-filtered deionized water with a 
conductivity less than 1 micromho/cm is acceptable as the diluent for 
making reconstituted water.
    (C) The concentration of dissolved oxygen in the dilution water 
shall be between 90 and 100 percent saturation. If necessary, the 
dilution water can be aerated before the addition of the test substance. 
All reconstituted water should be aerated before use.
    (3) Test parameters. Environmental parameters during the test shall 
be maintained as specified below:
    (i) Water temperature of 18 1 [deg]C.
    (ii) Dissolved oxygen concentration between 60 and 105 percent 
saturation.
    (iii) The number of gammarids placed in a test chamber shall not be 
so great as to affect the results of the test. Ten gammarids per liter 
is the recommended level of loading for the static test. Loading 
requirements for the flow-through test will vary depending on the flow 
rate of dilution water. The loading should not cause the dissolved 
oxygen concentration to fall below the recommended levels.
    (iv) Photoperiod of 16 hours light and 8 hours darkness.
    (e) Reporting. The sponsor shall submit to the EPA all data 
developed by the test that are suggestive or predictive of toxicity. In 
addition, the test report shall include, but not necessarily be limited 
to, the following information:
    (1) Name and address of the facility performing the study and the 
dates on which the study was initiated and completed.
    (2) Objectives and procedures stated in the approved protocol, 
including any changes in the original protocol.
    (3) Statistical methods employed for analyzing the data.
    (4) The test substance identified by name, Chemical Abstracts (CAS) 
number or code number, source, lot or batch number, strength, purity, 
and

[[Page 63]]

composition, or other appropriate characteristics.
    (5) Stability of the test substance under the conditions of the 
test.
    (6) A description of the methods used, including:
    (i) The source of the dilution water, its chemical characteristics 
(e.g., hardness, pH, etc.) and a description of any pretreatment.
    (ii) A description of the test substance delivery system, test 
chambers, the depth and volume of solution in the chamber, the way the 
test was begun (e.g., test substance addition), the loading, the 
lighting, and the flow rate.
    (iii) Frequency and methods of measurements and observations.
    (7) The scientific name, weight, length, source, and history of the 
organisms used, and the acclimation procedures and food used.
    (8) The concentrations tested, the number of gammarids and 
replicates per test concentration. The reported results should include:
    (i) The results of dissolved oxygen, pH and temperature 
measurements.
    (ii) If solvents are used, the name and source of the solvent, the 
nominal concentration of the test substance in the stock solution, the 
highest solvent concentration in the test solution and a description of 
the solubility determination in water and solvents.
    (iii) The measured concentration of the test substance in each test 
chamber just before the start of the test and at all subsequent sampling 
periods.
    (iv) In each test chamber at each observation period, the number of 
dead and live test organisms, the percentage of organisms that died, and 
the number of test organisms that showed any abnormal effects in each 
test chamber at each observation period.
    (v) The 48, 72 and 96-hour LC50's and their 95 percent confidence 
limits. When sufficient data have been generated, the 24-hour LC50 value 
also. These calculations should be made using the mean measured test 
substance concentrations.
    (vi) The observed no-effect concentration (the highest concentration 
tested at which there were no mortalities or abnormal behavioral or 
physiological effects), if any.
    (vii) Methods and data for all chemical analyses of water quality 
and test substance concentrations, including method validations and 
reagent blanks.
    (9) A description of all circumstances that may have affected the 
quality or integrity of the data.
    (10) The names of the sponsor, study director, principal 
investigator, names of other scientists or professionals, and the names 
of all supervisory personnel involved in the study.
    (11) A description of the transformations, calculations, or 
operations performed on the data, a summary and analysis of the data, 
and a statement of the conclusions drawn from the analysis. Results of 
the analysis of data should include the calculated LC50 value, 95 
percent confidence limits, slope of the transformed concentration-
response line, and the results of a goodness-of-fit test (e.g., chi-
square test).
    (12) The signed and dated reports prepared by any individual 
scientist or other professional involved in the study, including each 
person who, at the request or direction of the testing facility or 
sponsor, conducted an analysis or evaluation of data or specimens from 
the study after data generation was completed.
    (13) The locations where all specimens, raw data, and the final 
report are stored.
    (14) The statement prepared and signed by the quality assurance 
unit.

[52 FR 24462, July 1, 1987]