[Code of Federal Regulations]
[Title 40, Volume 31]
[Revised as of July 1, 2007]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR799.9420]

[Page 400-407]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
         CHAPTER I--ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)
 
PART 799_IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE
TESTING REQUIREMENTS--Table of Contents
 
                Subpart H_Health Effects Test Guidelines
 
Sec.  799.9420  TSCA carcinogenicity.

    (a) Scope. This section is intended to meet the testing requirements 
under section 4 of TSCA. The objective of a long-term carcinogenicity 
study is to observe test animals for a major portion of their life span 
for development of neoplastic lesions during or after exposure to 
various doses of a test substance by an appropriate route of 
administration.
    (b) Source. The source material used in developing this TSCA test 
guideline is the OPPTS harmonized test guideline 870.4200 (June 1996 
Public Draft). This source is available at the address in paragraph (g) 
of this section.
    (c) Definitions. The following definitions apply to this section.
    Carcinogenicity is the development of neoplastic lesions as a result 
of the repeated daily exposure of experimental animals to a chemical by 
the oral, dermal, or inhalation routes of exposure.
    Cumulative toxicity is the adverse effects of repeated dose 
occurring as a result of prolonged action on, or increased concentration 
of, the administered test substance or its metabolites in susceptible 
tissues.
    Dose in a carcinogenicity study is the amount of test substance 
administered via the oral, dermal or inhalation routes for a period of 
up to 24 months. Dose is expressed as weight of the test substance 
(grams, milligrams) per unit body weight of test animal (milligram per 
kilogram), or as weight of the test substance in parts per million (ppm) 
in food or drinking water. When exposed via inhalation, dose is 
expressed as weight of the test substance per unit volume of air 
(milligrams per liter) or as parts per million.
    Target organ is any organ of a test animal showing evidence of an 
effect induced by a test substance.
    (d) Test procedures--(1) Animal selection--(i) Species and strain. 
Testing shall be performed on two mammalian species. Rats and mice are 
the species of choice because of their relatively short life spans, 
limited cost of maintenance, widespread use in pharmacological and 
toxicological studies, susceptibility to tumor induction, and the 
availability of inbred or sufficiently characterized strains. Commonly 
used laboratory strains shall be used. If other mammalian species are 
used, the tester shall provide justification/reasoning for their 
selection.
    (ii) Age/weight. (A) Testing shall be started with young healthy 
animals as soon as possible after weaning and acclimatization.
    (B) Dosing should generally begin no later than 8 weeks of age.
    (C) At commencement of the study, the weight variation of animals 
used shall not exceed  20% of the mean weight for 
each sex.
    (D) Studies using prenatal or neonatal animals may be recommended 
under special conditions.
    (iii) Sex. (A) Equal numbers of animals of each sex shall be used at 
each dose level.
    (B) Females shall be nulliparous and nonpregnant.
    (iv) Numbers. (A) At least 100 rodents (50 males and 50 females) 
shall be used at each dose level and concurrent control group.
    (B) If interim sacrifices are planned, the number shall be increased 
by the number of animals scheduled to be sacrificed during the course of 
the study.
    (C) For a meaningful and valid statistical evaluation of long term 
exposure and for a valid interpretation of negative results, the number 
of animals in any group should not fall below 50% at 15 months in mice 
and 18 months in rats. Survival in any group should not fall below 25% 
at 18 months in mice and 24 months in rats.
    (D) The use of adequate randomization procedures for the proper 
allocation of animals to test and control groups is required to avoid 
bias.
    (E) Each animal shall be assigned a unique identification number. 
Dead

[[Page 401]]

animals, their preserved organs and tissues, and microscopic slides 
shall be identified by reference to the unique numbers assigned.
    (v) Husbandry. (A) Animals may be group-caged by sex, but the number 
of animals per cage must not interfere with clear observation of each 
animal. The biological properties of the test substance or toxic effects 
(e.g., morbidity, excitability) may indicate a need for individual 
caging. Animals should be housed individually in dermal studies and 
during exposure in inhalation studies.
    (B) The temperature of the experimental animal rooms should be at 22 
 3 [deg]C.
    (C) The relative humidity of the experimental animal rooms should be 
30 to 70%.
    (D) Where lighting is artificial, the sequence should be 12 h light/
12 h dark.
    (E) Control and test animals should be fed from the same batch and 
lot. The feed should be analyzed to assure uniform distribution and 
adequacy of nutritional requirements of the species tested and for 
impurities that might influence the outcome of the test. Animals should 
be fed and watered ad libitum with food replaced at least weekly.
    (F) The study should not be initiated until animals have been 
allowed a period of acclimatization/quarantine to environmental 
conditions, nor should animals from outside sources be placed on test 
without an adequate period of quarantine.
    (2) Control and test substances. (i) Where necessary, the test 
substance is dissolved or suspended in a suitable vehicle. If a vehicle 
or diluent is needed, it should not elicit toxic effects itself. It is 
recommended that wherever possible the use of an aqueous solution be 
considered first, followed by consideration of solution in oil, and 
finally solution in other vehicles.
    (ii) One lot of the test substance should be used, if possible, 
throughout the duration of the study, and the research sample should be 
stored under conditions that maintain its purity and stability. Prior to 
the initiation of the study, there should be a characterization of the 
test substance, including the purity of the test compound, and, if 
possible, the name and quantities of contaminants and impurities.
    (iii) If the test or control substance is to be incorporated into 
feed or another vehicle, the period during which the test substance is 
stable in such a mixture should be determined prior to the initiation of 
the study. Its homogeneity and concentration should be determined prior 
to the initiation of the study and periodically during the study. 
Statistically randomized samples of the mixture should be analyzed to 
ensure that proper mixing, formulation, and storage procedures are being 
followed, and that the appropriate concentration of the test or control 
substance is contained in the mixture.
    (3) Control groups. A concurrent control group (50 males and 50 
females) is required. This group shall be untreated or if a vehicle is 
used in administering the test substance, a vehicle control group. If 
the toxic properties of the vehicle are not known, both untreated and 
vehicle control groups are required.
    (4) Dose levels and dose selection. (i) For risk assessment 
purposes, at least three dose levels shall be used, in addition to the 
concurrent control group. Dose levels should be spaced to produce a 
gradation of effects. A rationale for the doses selected must be 
provided.
    (ii) The highest dose level should elicit signs of toxicity without 
substantially altering the normal life span due to effects other than 
tumors. The highest dose should be determined based on the findings from 
a 90-day study to ensure that the dose used is adequate to asses the 
carcinogenic potential of the test substance. Thus, the selection of the 
highest dose to be tested is dependent upon changes observed in several 
toxicological parameters in subchronic studies. The highest dose tested 
need not exceed 1,000 mg/kg/day.
    (iii) The intermediate-dose level should be spaced to produce a 
gradation of toxic effects.
    (iv) The lowest dose level should produce no evidence of toxicity.

[[Page 402]]

    (v) For skin carcinogenicity studies, when toxicity to the skin is a 
determining factor, the highest dose selected should not destroy the 
functional integrity of the skin, the intermediate dose should be a 
minimally irritating dose, and the low dose should be the highest 
nonirritating dose.
    (vi) The criteria for selecting the dose levels for skin 
carcinogenicity studies, based on gross and histopathologic dermal 
lesions, are as follows:
    (A) Gross criteria for reaching the high dose:
    (1) Erythema (moderate).
    (2) Scaling.
    (3) Edema (mild).
    (4) Alopecia.
    (5) Thickening.
    (B) Histologic criteria for reaching the high dose:
    (1) Epidermal hyperplasia.
    (2) Epidermal hyperkeratosis.
    (3) Epidermal parakeratosis.
    (4) Adnexal atrophy/hyperplasia.
    (5) Fibrosis.
    (6) Spongiosis (minimal-mild).
    (7) Epidermal edema (minimal-mild).
    (8) Dermal edema (minimal-moderate).
    (9) Inflammation (moderate).
    (C) Gross criteria for exceeding the high dose:
    (1) Ulcers, fissures.
    (2) Exudate/crust (eschar).
    (3) nonviable (dead) tissues.
    (4) Anything leading to destruction of the functional integrity of 
the epidermis (e.g., caking, fissuring, open sores, eschar).
    (D) Histologic criteria for exceeding the high dose:
    (1) Crust (interfollicular and follicular).
    (2) Microulcer.
    (3) Degeneration/necrosis (mild to moderate).
    (4) Epidermal edema (moderate to marked).
    (5) Dermal edema (marked).
    (6) Inflammation (marked).
    (5) Administration of the test substance. The three main routes of 
administration are oral, dermal, and inhalation. The choice of the route 
of administration depends upon the physical and chemical characteristics 
of the test substance and the form typifying exposure in humans.
    (i) Oral studies. If the test substance is administered by gavage, 
the animals are dosed with the test substance on a 7-day per week basis 
for a period of at least 18 months for mice and hamsters and 24 months 
for rats. However, based primarily on practical considerations, dosing 
by gavage or via a capsule on a 5-day per week basis is acceptable. If 
the test substance is administered in the drinking water or mixed in the 
diet, then exposure should be on a 7-day per week basis.
    (ii) Dermal studies. (A) The animals should be treated with the test 
substance for at least 6 h/day on a 7-day per week basis for a period of 
at least 18 months for mice and hamsters and 24 months for rats. 
However, based primarily on practical considerations, application on a 
5-day per week basis is acceptable. Dosing should be conducted at 
approximately the same time each day.
    (B) Fur should be clipped weekly from the dorsal area of the trunk 
of the test animals. Care should be taken to avoid abrading the skin 
which could alter its permeability. A minimum of 24 hrs should be 
allowed for the skin to recover before the next dosing of the animal.
    (C) Preparation of test substance. Liquid test substances are 
generally used undiluted, except as indicated in paragraph (e)(4)(vi) of 
this section. Solids should be pulverized when possible. The substance 
should be moistened sufficiently with water or, when necessary, with a 
suitable vehicle to ensure good contact with the skin. When a vehicle is 
used, the influence of the vehicle on toxicity of, and penetration of 
the skin by, the test substance should be taken into account. The volume 
of application should be kept constant, e.g. less than 100 uL for the 
mouse and less than 300 uL for the rat. Different concentrations of test 
solution should be prepared for different dose levels.
    (D) The test substance shall be applied uniformly over a shaved area 
which is approximately 10 percent of the total body surface area. In 
order to dose approximately 10 percent of the body surface, the area 
starting at the

[[Page 403]]

scapulae (shoulders) to the wing of the ileum (hipbone) and half way 
down the flank on each side of the animal should be shaved. With highly 
toxic substances, the surface area covered may be less, but as much of 
the area as possible should be covered with as thin and uniform a film 
as practical.
    (iii) Inhalation studies. (A) The animals should be exposed to the 
test substance for 6 h/day on a 7-day per week basis, for a period of at 
least 18 months in mice and 24 months in rats. However, based primarily 
on practical considerations, exposure for 6 h/day on a 5-day per week 
basis is acceptable.
    (B) The animals shall be tested in dynamic inhalation equipment 
designed to sustain a minimum air flow of 10 air changes per hr, an 
adequate oxygen content of at least 19%, and uniform conditions 
throughout the exposure chamber. Maintenance of slight negative pressure 
inside the chamber will prevent leakage of the test substance into 
surrounding areas.
    (C) The selection of a dynamic inhalation chamber should be 
appropriate for the test substance and test system. Where a whole body 
chamber is used to expose animals to an aerosol, individual housing must 
be used to minimize crowding of the test animals and maximize their 
exposure to the test substance. To ensure stability of a chamber 
atmosphere, the total volume occupied by the test animals shall not 
exceed 5% of the volume of the test chamber. It is recommended, but not 
required, that nose-only or head-only exposure be used for aerosol 
studies in order to minimize oral exposures due to animals licking 
compound off their fur. Heat stress to the animals should be minimized.
    (D) The temperature at which the test is performed should be 
maintained at 22  2 [deg]C. The relative humidity 
should be maintained between 40 to 60%, but in certain instances (e.g., 
tests of aerosols, use of water vehicle) this may not be practicable.
    (E) The rate of air flow shall be monitored continuously but 
recorded at least three times during exposure.
    (F) Temperature and humidity shall be monitored continuously but 
should be recorded at least every 30 minutes.
    (G) The actual concentration of the test substance shall be measured 
in the breathing zone. During the exposure period, the actual 
concentrations of the test substance should be held as constant as 
practicable, monitored continuously or intermittently depending on the 
method of analysis. Chamber concentrations may be measured using 
gravimetric or analytical methods as appropriate. If trial run 
measurements are reasonably consistent (plus or minus 10 percent for 
liquid aerosol, gas, or vapor; plus or minus 20 percent for dry 
aerosol), the two measurements should be sufficient. If measurements are 
not consistent, then three to four measurements should be taken.
    (H) During the development of the generating system, particle size 
analysis shall be performed to establish the stability of aerosol 
concentrations with respect to particle size. Measurement of aerodynamic 
particle size in the animals's breathing zone should be measured during 
a trial run. If median aerodynamic diameter (MMAD) values for each 
exposure level are within 10% of each other, then two measurements 
during the exposures should be sufficient. If pretest measurements are 
not within 10% of each other, three to four measurements should be 
taken. The MMAD particle size range should be between 1-3 [micro]m. The 
particle size of hygroscopic materials should be small enough to allow 
pulmonary deposition once the particles swell in the moist environment 
of the respiratory tract.
    (I) Feed shall be withheld during exposure. Water may also be 
withheld during exposure.
    (6) Observation period. It is necessary that the duration of the 
carcinogenicity study comprise the majority of the normal life span of 
the strain of animals used. This time period shall not be less than 24 
months for rats and 18 months for mice, and ordinarily not longer than 
30 months for rats and 24 months for mice. For longer time periods, and 
where any other species are used, consultation with the Agency in regard 
to the duration of the study is advised.
    (7) Observation of animals. (i) Observations shall be made at least 
once each

[[Page 404]]

day for morbidity and mortality. Appropriate actions should be taken to 
minimize loss of animals from the study (e.g., necropsy or refrigeration 
of those animals found dead and isolation or sacrifice of weak or 
moribund animals).
    (ii) A careful clinical examination shall be made at least once 
weekly. Observations should be detailed and carefully recorded, 
preferably using explicitly defined scales. Observations should include, 
but not be limited to, evaluation of skin and fur, eyes and mucous 
membranes, respiratory and circulatory effects, autonomic effects such 
as salivation, central nervous system effects, including tremors and 
convulsions, changes in the level of activity, gait and posture, 
reactivity to handling or sensory stimuli, altered strength and 
stereotypes or bizarre behavior (e.g., self-mutilation, walking 
backwards).
    (iii) Body weights shall be recorded individually for all animals; 
once a week during the first 13 weeks of the study and at least once 
every 4 weeks, thereafter, unless signs of clinical toxicity suggest 
more frequent weighing to facilitate monitoring of health status.
    (iv) Measurements of feed consumption should be determined weekly 
during the first 13 weeks of the study and at approximately monthly 
intervals thereafter unless health status or body weight changes dictate 
otherwise. Measurement of water consumption should be determined at the 
same intervals if the test substance is administered in the drinking 
water.
    (v) Moribund animals shall be removed and sacrificed when noticed 
and the time of death should be recorded as precisely as possible. At 
the end of the study period, all survivors shall be sacrificed.
    (8) Clinical pathology. At 12 months, 18 months, and at terminal 
sacrifice, a blood smear shall be obtained from all animals. A 
differential blood count should be performed on blood smears from those 
animals in the highest dosage group and the controls from the terminal 
sacrifice. If these data, or data from the pathological examination 
indicate a need, then the 12- and 18-month blood smears should also be 
examined. Differential blood counts should be performed for the next 
lower groups if there is a major discrepancy between the highest group 
and the controls. If clinical observations suggest a deterioration in 
health of the animals during the study, a differential blood count of 
the affected animals shall be performed.
    (9) Gross necropsy. (i) A complete gross examination shall be 
performed on all animals, including those that died during the 
experiment or were killed in a moribund condition.
    (ii) At least the liver, kidneys, adrenals, testes, epididymides, 
ovaries, uterus, spleen, brain, and heart should be weighed wet as soon 
as possible after dissection to avoid drying. The lungs should be 
weighed if the test substance is administered by the inhalation route. 
The organs should be weighed from interim sacrifice animals as well as 
from at least 10 animals per sex per group at terminal sacrifice.
    (iii) The following organs and tissues, or representative samples 
thereof, shall be preserved in a suitable medium for possible future 
histopathological examination.
    (A) Digestive system.
    (1) Salivary glands.
    (2) Esophagus.
    (3) Stomach.
    (4) Duodenum.
    (5) Jejunum.
    (6) Ileum.
    (7) Cecum.
    (8) Colon.
    (9) Rectum.
    (10) Liver.
    (11) Pancreas.
    (12) Gallbladder (mice).
    (B) Nervous system.
    (1) Brain (multiple sections).
    (2) Pituitary.
    (3) Peripheral nerves.
    (4) Spinal cord (three levels).
    (5) Eyes (retina, optic nerve).
    (C) Glandular system.
    (1) Adrenals.
    (2) Parathyroids.
    (3) Thyroids.
    (D) Respiratory system.
    (1) Trachea.
    (2) Lung.
    (3) Pharynx.
    (4) Larynx.
    (5) Nose.

[[Page 405]]

    (E) Cardiovascular/hematopoietic system.
    (1) Aorta (thoracic).
    (2) Heart.
    (3) Bone marrow.
    (4) Lymph nodes.
    (5) Spleen.
    (F) Urogenital system.
    (1) Kidneys.
    (2) Urinary bladder.
    (3) Prostate.
    (4) Testes/epididymides.
    (5) Seminal vesicles.
    (6) Uterus.
    (7) Ovaries.
    (8) Female mammary gland.
    (G) Other.
    (1) Skin.
    (2) All gross lesions and masses.
    (iv) In inhalation studies, the entire respiratory tract, including 
nose, pharynx, larynx, and paranasal sinuses should be examined and 
preserved. In dermal studies, skin from treated and adjacent control 
skin sites should be examined and preserved.
    (v) Inflation of lungs and urinary bladder with a fixative is the 
optimal method for preservation of these tissues. The proper inflation 
and fixation of the lungs in inhalation studies is essential for 
appropriate and valid histopathological examination.
    (vi) Information from clinical pathology, and other in-life data 
should be considered before microscopic examination, since they may 
provide significant guidance to the pathologist.
    (10) Histopathology. (i) The following histopathology shall be 
performed:
    (A) Full histopathology on the organs and tissues under paragraph 
(d)(9) (iii) of this section of all animals in the control and high dose 
groups and all animals that died or were killed during the study.
    (B) All gross lesions in all animals.
    (C) Target organs in all animals.
    (ii) If the results show substantial alteration of the animal's 
normal life span, the induction of effects that might affect a 
neoplastic response, or other effects that might compromise the 
significance of the data, the next lower dose levels shall be examined 
as described in paragraph (d)(10)(i) of this section.
    (iii) An attempt should be made to correlate gross observations with 
microscopic findings.
    (iv) Tissues and organs designated for microscopic examination 
should be fixed in 10 percent buffered formalin or a recognized suitable 
fixative as soon as necropsy is performed and no less than 48 hours 
prior to trimming.
    (e) Data and reporting--(1) Treatment of results. (i) Data shall be 
summarized in tabular form, showing for each test group the number of 
animals at the start of the test, the number of animals showing lesions, 
the types of lesions, and the percentage of animals displaying each type 
of lesion.
    (ii) All observed results (quantitative and qualitative) shall be 
evaluated by an appropriate statistical method. Any generally accepted 
statistical methods may be used; the statistical methods including 
significance criteria shall be selected during the design of the study.
    (2) Evaluation of study results. (i) The findings of a 
carcinogenicity study should be evaluated in conjunction with the 
findings of previous studies and considered in terms of the toxic 
effects, the necropsy and histopathological findings. The evaluation 
shall include the relationship between the dose of the test substance 
and the presence, incidence, and severity of abnormalities (including 
behavioral and clinical abnormalities), gross lesions, identified target 
organs, body weight changes, effects on mortality, and any other general 
or specific toxic effects.
    (ii) In any study which demonstrates an absence of toxic effects, 
further investigation to establish absorption and bioavailablity of the 
test substance should be considered.
    (iii) In order for a negative test to be acceptable, it must meet 
the following criteria: No more than 10% of any group is lost due to 
autolysis, cannibalism, or management problems; and survival in each 
group is no less than 50% at 15 months for mice and 18 months for rats. 
Survival should not fall below 25% at 18 months for mice and 24 months 
for rats.
    (iv) The use of historical control data from an appropriate time 
period from the same testing laboratory (i.e., the incidence of tumors 
and other suspect

[[Page 406]]

lesions normally occurring under the same laboratory conditions and in 
the same strain of animals employed in the test) is helpful for 
assessing the significance of changes observed in the current study.
    (3) Test report. (i) In addition to the reporting requirements as 
specified under 40 CFR part 792, subpart J, the following specific 
information shall be reported. Both individual and summary data should 
be presented.
    (A) Test substance characterization should include:
    (1) Chemical identification.
    (2) Lot or batch number.
    (3) Physical properties.
    (4) Purity/impurities.
    (5) Identification and composition of any vehicle used.
    (B) Test system should contain data on:
    (1) Species and strain of animals used and rationale for selection 
if other than that recommended.
    (2) Age including body weight data and sex.
    (3) Test environment including cage conditions, ambient temperature, 
humidity, and light/dark periods.
    (4) Identification of animal diet.
    (5) Acclimation period.
    (C) Test procedure should include the following data:
    (1) Method of randomization used.
    (2) Full description of experimental design and procedure.
    (3) Dose regimen including levels, methods, and volume.
    (4) Test results--(i) Group animal data. Tabulation of toxic 
response data by species, strain, sex, and exposure level for:
    (A) Number of animals exposed.
    (B) Number of animals showing signs of toxicity.
    (C) Number of animals dying.
    (ii) Individual animal data. Data should be presented as summary 
(group mean) as well as for individual animals.
    (A) Time of death during the study or whether animals survived to 
termination.
    (B) Time of observation of each abnormal sign and its subsequent 
course.
    (C) Body weight data.
    (D) Feed and water consumption data, when collected.
    (E) Results of clinical pathology and immunotoxicity screen when 
performed.
    (F) Necropsy findings including absolute/relative organ weight data.
    (G) Detailed description of all histopathological findings.
    (H) Statistical treatment of results where appropriate.
    (I) Historical control data.
    (J) Achieved dose (mg/kg/day) as a time-weighted average if the test 
substance is administered in the diet or drinking water.
    (iii) Inhalation studies. In addition, for inhalation studies the 
following shall be reported:
    (A) Test conditions. The following exposure conditions shall be 
reported.
    (1) Description of exposure apparatus including design, type, 
dimensions, source of air, system for generating particulate and 
aerosols, method of conditioning air, treatment of exhaust air and the 
method of housing the animals in a test chamber.
    (2) The equipment for measuring temperature, humidity, and 
particulate aerosol concentrations and size should be described.
    (B) Exposure data. These shall be tabulated and presented with mean 
values and a measure of variability (e.g. standard deviation) and should 
include:
    (1) Airflow rates through the inhalation equipment.
    (2) Temperature and humidity of air.
    (3) Actual (analytical or gravimetric) concentration in the 
breathing zone.
    (4) Nominal concentration (total amount of test substance fed into 
the inhalation equipment divided by volume of air).
    (5) Particle size distribution, calculated MMAD and geometric 
standard deviation (GSD).
    (6) Explanation as to why the desired chamber concentration and/or 
particle size could not be achieved (if applicable) and the efforts 
taken to comply with this aspect of the sections.
    (f) Quality assurance. A system shall be developed and maintained to 
assure and document adequate performance of laboratory staff and 
equipment. The study shall be conducted in compliance with 40 CFR part 
792--Good Laboratory Practice Standards.

[[Page 407]]

    (g) References. For additional background information on this test 
guideline, the following references should be consulted. These 
references are available for inspection at the TSCA Nonconfidential 
Information Center, Rm. NE-B607, Environmental Protection Agency, 401 M 
St., SW., Washington, DC, 12 noon to 4 p.m., Monday through Friday, 
except legal holidays.
    (1) Benitz, K.F. Ed. Paget, G.E. Measurement of Chronic Toxicity. 
Methods of Toxicology (Blackwell, Oxford, 1970) pp. 82-131.
    (2) Fitzhugh, O.G. Chronic Oral Toxicity, Appraisal of the Safety of 
Chemicals in Foods, Drugs and Cosmetics. The Association of Food and 
Drug Officials of the United States. pp. 36-45 (1959, 3rd Printing 
1975).
    (3) Goldenthal, E.I. and D'Aguanno, W. Evaluation of Drugs, 
Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics. The 
Association of Food and Drug Officials of the United States. pp. 60-67 
(1959, 3rd Printing 1975).
    (4) Organisation for Economic Co-operation and Development. 
Guidelines for Testing of Chemicals, Section 4-Health Effects, Part 451 
Carcinogenicity Studies (Paris, 1981).
    (5) Page, N.P. Chronic Toxicity and Carcinogenicity Guidelines. 
Journal of Environmental Pathology and Toxicology. 11:161-182 (1977).
    (6) Page, N.P. Eds. Kraybill and Mehlman. Concepts of a Bioassay 
Program in Environmental Carcinogenesis. Vol.3. Advances in Modern 
Toxicology (Hemisphere, Washington, DC., 1977) pp. 87-171.
    (7) Sontag, J.M. et al. Guidelines for Carcinogen Bioassay in Small 
Rodents. NCI-CS-TR-1 United States Cancer Institute, Division of Cancer 
Control and Prevention, Carcinogenesis Bioassay Program (Bethesda, MD).

[62 FR 43824, Aug. 15, 1997, as amended at 64 FR 35078, June 30, 1999]