[Code of Federal Regulations]
[Title 40, Volume 31]
[Revised as of July 1, 2007]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR799.9346]

[Page 360-366]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
         CHAPTER I--ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)
 
PART 799_IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE
TESTING REQUIREMENTS--Table of Contents
 
                Subpart H_Health Effects Test Guidelines
 
Sec.  799.9346  TSCA 90-day inhalation toxicity.

    (a) Scope. This section is intended to meet the testing requirements 
under section 4 of TSCA. In the assessment and evaluation of the toxic 
characteristics of a gas, volatile substance, or aerosol/particulate, 
determination of subchronic inhalation toxicity may be carried out after 
initial information on toxicity has been obtained by acute testing. The 
subchronic inhalation study has been designed to permit the 
determination of the no-observed-effect-level (NOEL) and toxic effects 
associated with continuous or repeated exposure to a test substance for 
a period of 90 days. This study is not capable of determining those 
effects that have a long latency period for development (e.g., 
carcinogenicity and life shortening). Extrapolation from the results of 
this study to humans is valid only to a limited degree. It can, however, 
provide useful information on health hazards likely to arise from 
repeated exposures by the inhalation route over a limited period of 
time. It will provide information on target organs and the possibilities 
of accumulation, and can be of use in selecting concentration levels for 
chronic studies and establishing safety criteria for human exposure. 
Hazards of inhaled substances are influenced by the inherent toxicity 
and by physical factors such as volatility and particle size.
    (b) Source. The source material used in developing this TSCA test 
guideline is the OPPTS harmonized test guideline 870.3465 (June 1996 
Public Draft). This source is available at the address in paragraph (h) 
of this section.
    (c) Definitions. The following definitions apply to this section.
    Aerodynamic equivalent diameter is defined as the diameter of a unit 
density sphere having the same terminal settling velocity as the 
particle in question, whatever its size, shape, and density. It is used 
to predict where in the respiratory tract such particles may be 
deposited.
    Concentration in a subchronic inhalation study is the amount of test 
substance administered via inhalation for a period of 90-days. 
Concentration is expressed as weight of the test substance per unit 
volume of air (milligrams per liter or parts per million).
    Cumulative toxicity is the adverse effects of repeated exposures 
occurring as a result of prolonged action on, or increased concentration 
of the administered test substance or its metabolites in susceptible 
tissues.
    Inhalable diameter refers to that aerodynamic diameter of a particle 
which is considered to be inhalable for the organism. It is used to 
refer to particles which are capable of being inhaled and may be 
deposited anywhere within the respiratory tract
    Mass median aerodynamic diameter (MMAD) is the median aerodynamic 
diameter and along with the geometric standard deviation (GSD) is used 
to describe the particle size distribution of any aerosol statistically 
based on the weight and size of the particles. Fifty percent of the 
particles by weight will be smaller than the median diameter and 50% of 
the particles will be larger.
    No-observed-effect-level (NOEL) is the maximum concentration used in 
a study which produces no adverse effects.
    Subchronic inhalation toxicity is the adverse effects occurring as a 
result of the repeated daily exposure of experimental animals to a 
chemical by inhalation for part (approximately 10%) of a life span.
    (d) Limit test. If exposure at a concentration of 1 mg/L (expected 
human exposure may indicate the need for a higher concentration), or 
where this is not possible due to physical or chemical properties of the 
test substance, the maximum attainable concentration produces no 
observable toxic effects, then a full study using three concentrations 
might not be necessary.
    (e) Test procedures--(1) Animal selection--(i) Species and strain. A 
mammalian species shall be used for testing. A variety of rodent species 
may be used,

[[Page 361]]

although the rat is the preferred species. Commonly used laboratory 
strains should be employed. If another mammalian species is used, the 
tester shall provide justification/reasoning for its selection.
    (ii) Age/weight. Testing should be started with young healthy 
animals as soon as possible after weaning and acclimatization.
    (B) Dosing of rodents should generally begin no later than 8 weeks 
of age.
    (C) At the commencement of the study the weight variation of animals 
used shall not exceed  20% of the mean weight for 
each sex.
    (iii) Sex. (A) Equal numbers of animals of each sex shall be used at 
each concentration.
    (B) Females shall be nulliparous and nonpregnant.
    (iv) Numbers. (A) At least 20 animals (10 females and 10 males) 
should be used for each test group.
    (B) If interim sacrifices are planned, the number of animals shall 
be increased by the number of animals scheduled to be sacrificed before 
the completion of the study.
    (C) To avoid bias, the use of adequate randomization procedures for 
the proper allocation of animals to test and control groups is required.
    (D) Each animal shall be assigned a unique identification number. 
Dead animals, their preserved organs and tissues, and microscopic slides 
shall be identified by reference to the animal's unique number.
    (v) Husbandry. (A) Animals may be group-caged by sex, but the number 
of animals per cage must not interfere with clear observation of each 
animal. The biological properties of the test substance or toxic effects 
(e.g., morbidity, excitability) may indicate a need for individual 
caging. Animals must be housed individually in inhalation chambers 
during exposure to aerosols.
    (B) The temperature of the experimental animal rooms should be at 22 
3 [deg]C.
    (C) The relative humidity of the experimental animal rooms should be 
30-70%.
    (D) Where lighting is artificial, the sequence should be 12 h light/
12 h dark.
    (E) Control and test animals should be fed from the same batch and 
lot. The feed should be analyzed to assure adequacy of nutritional 
requirements of the species tested and for impurities that might 
influence the outcome of the rest. For feeding, conventional laboratory 
diets may be used with an unlimited supply of drinking water.
    (F) The study should not be initiated until animals have been 
allowed a period of acclimatization/quarantine to environmental 
conditions, nor should animals from outside sources be placed on test 
without an adequate period of quarantine. An acclimatization period of 
at least 5 days is recommended.
    (2) Control and test substances. (i) Whenever it is necessary to 
formulate the test substance with a vehicle for aerosol generation, the 
vehicle ideally should not elicit toxic effects or substantially alter 
the chemical or toxicological properties of the test substance.
    (ii) One lot of the test substance should be used, if possible 
throughout the duration of the study, and the research sample should be 
stored under conditions that maintain its purity and stability. Prior to 
the initiation of the study, there should be a characterization of the 
test substance, including the purity of the test substance and, if 
technically feasible, the name and quantities of unknown contaminants 
and impurities.
    (3) Control groups. A concurrent control group is required. This 
group shall be an untreated or sham-treated control group. Except for 
treatment with the test substance, animals in the control group shall be 
handled in a manner identical to the test group animals. Where a vehicle 
other than water is used to generate a substance, a vehicle control 
group should be used. If the toxic properties of the vehicle are not 
known or cannot be made available, both untreated and vehicle control 
groups are required.
    (4) Satellite group. A satellite group of 20 animals (10 animals per 
sex) may be treated with the high concentration level for 90 days and 
observed for reversibility, persistence, or delayed occurrence of toxic 
effects for a post-treatment period of appropriate length,

[[Page 362]]

normally not less than 28 days. In addition, a control group of 20 
animals (10 animals of each sex) should be added to the satellite study.
    (5) Concentration levels and concentration selection. (i) In 
subchronic toxicity tests, it is desirable to have a concentration-
response relationship as well as a NOEL. Therefore, at least three 
concentration levels plus a control and, where appropriate, a vehicle 
control (corresponding to the concentration of vehicle at the highest 
exposure level) shall be used. Concentrations should be spaced 
appropriately to produce test groups with a range of toxic effects. The 
data should be sufficient to produce a concentration-response curve.
    (ii) The highest concentration should result in toxic effects but 
not produce an incidence of fatalities which would prevent a meaningful 
evaluation.
    (iii) The intermediate concentrations should be spaced to produce a 
gradation of toxic effects.
    (iv) The lowest concentration should produce no evidence of 
toxicity.
    (v) In the case of potentially explosive test substances, care 
should be taken to avoid generating explosive concentrations.
    (6) Administration of the test substance. Animals should be exposed 
to the test substance for 6 h per day on a 7-day per week basis for a 
period of at least 90 days. Based primarily on practical considerations, 
exposure for 6 h per day on a 5-day per week basis is acceptable.
    (7) Observation period. The animals should be observed for a period 
of 90 days. Animals in the satellite group (if used) scheduled for 
follow-up observations should be kept for at least 28 days further 
without treatment to assess reversibility.
    (8) Exposure specifications. (i) The animals shall be tested in 
dynamic inhalation equipment designed to sustain a minimum airflow of 10 
air changes per hr, an adequate oxygen content of at least 19%, and 
uniform conditions throughout the exposure chamber. Maintenance of 
slight negative pressure inside the chamber will prevent leakage of the 
test substance into the surrounding areas. It is not normally necessary 
to measure chamber oxygen concentration if airflow is adequate.
    (ii) The selection of a dynamic inhalation chamber should be 
appropriate for the test substance and test system. Where a whole body 
chamber is used to expose animals to an aerosol, individual housing must 
be used to minimize crowding of the test animals and maximize their 
exposure to the test substance. To ensure stability of a chamber 
atmosphere, the total volume occupied by the test animals shall not 
exceed 5% of the volume of the test chamber. It is recommended, but not 
required, that nose-only or head-only exposure be used for aerosol 
studies in order to minimize oral exposures due to animals licking 
compound off their fur. Heat stress should be minimized.
    (iii) The temperature at which the test is performed should be 
maintained at 22  2 [deg]C. The relative humidity 
should be maintained between 40 and 60%, but in certain instances (e.g., 
use of water vehicle) this may not be practicable.
    (9) Physical measurements. Measurements or monitoring shall be made 
of the following:
    (i) The rate of airflow shall be monitored continuously but recorded 
at least three times during the exposure.
    (ii) The actual concentrations of the test substance shall be 
measured in the animal's breathing zone. During the exposure period, the 
actual concentrations of the test substance shall be held as constant as 
practicable and monitored continuously or intermittently depending on 
the method of analysis. Chamber concentration may be measured using 
gravimetric or analytical methods as appropriate. If trial run 
measurements are reasonably consistent  10% for 
liquid, aerosol, gas, or vapor;  20% for dry 
aerosol), then two measurements should be sufficient. If measurements 
are not consistent, three to four measurements should be taken. Whenever 
the test substance is a formulation, or it is necessary to formulate the 
test substance with a vehicle for aerosol generation, the analytical 
concentration must be reported for the total formulation, and not just 
for the active ingredient (AI). If, for example, a formulation contains 
10% AI and 90% inerts, a chamber analytical limit concentration of 2 mg/
L would consist

[[Page 363]]

of 0.2 mg/L of the AI. It is not necessary to analyze inert ingredients 
provided the mixture at the animal's breathing zone is analogous to the 
formulation; the grounds for this conclusion must be provided in the 
study report. If there is some difficulty in measuring chamber 
analytical concentration due to precipitation, nonhomogeneous mixtures, 
volatile components, or other factors, additional analyses of inert 
components may be necessary.
    (iii) During the development of the generating system, particle size 
analysis shall be performed to establish the stability of aerosol 
concentrations with respect to particle size. The MMAD particle size 
range should be between 1-3 [micro]m. The particle size of hygroscopic 
materials should be small enough when dry to assure that the size of the 
swollen particle will still be within the 1-3 [micro]m range. 
Measurements of aerodynamic particle size in the animal's breathing zone 
should be measured during a trial run. If MMAD valves for each exposure 
level are within 10% of each other, then two measurements during the 
exposures should be sufficient. If pretest measurements are not within 
10% of each other, three to four measurements should be taken.
    (iv) Temperature and humidity shall be monitored continuously and 
recorded at least three times during an exposure.
    (10) Feed and water during exposure period. Feed shall be withheld 
during exposure. Water may also be withheld during exposure.
    (11) Observation of animals. (i) During and following exposure, 
observations are made and recorded systematically; individual records 
should be maintained for each animal. It is not always possible to 
observe animals during exposure in a whole-body chamber.
    (ii) Observations shall be made at least once each day for morbidity 
and mortality. Appropriate actions should be taken to minimize loss of 
animals to the study (e.g., Necropsy or refrigeration of those animals 
found dead and isolation or sacrifice of weak or moribund animals).
    (iii) A careful clinical examination shall be made at least once 
weekly. Observations should be detailed and carefully recorded, 
preferably using explicitly defined scales. Observations should include, 
but not be limited to, evaluation of skin and fur, eyes and mucous 
membranes, respiratory and circulatory effects, autonomic effects such 
as salivation, central nervous system effects, including tremors and 
convulsions, changes in the level of activity, gait and posture, 
reactivity to handling or sensory stimuli, altered strength, and 
stereotypes or bizarre behavior (e.g., self-mutilation, walking 
backwards).
    (iv) Signs of toxicity should be recorded as they are observed 
including the time of onset, degree and duration.
    (v) Individual weights of animals shall be determined shortly before 
the test substance is administered, and weekly thereafter.
    (vi) Food consumption shall also be determined weekly if abnormal 
body weight changes are observed.
    (vii) Moribund animals should be removed and sacrificed when noticed 
and the time of death should be recorded as precisely as possible.
    (viii) At termination, all survivors in the treatment groups shall 
be sacrificed.
    (12) Clinical pathology. Hematology and clinical chemistry 
examinations shall be made on all animals, including controls, of each 
sex in each group. The hematology and clinical chemistry parameters 
should be examined at terminal sacrifice at the end of the study. 
Overnight fasting of the animals prior to blood sampling is recommended. 
Overall, there is a need for a flexible approach in the measures 
examined, depending on the observed or expected effects from a chemical, 
and in the frequency of measures, depending on the duration of potential 
chemical exposures.
    (i) Hematology. The recommended parameters are red blood cell count, 
hemoglobin concentration, hematocrit, mean corpuscular volume, mean 
corpuscular hemoglobin, and mean corpuscular hemoglobin concentration, 
white blood cell count, differential leukocyte count, platelet count, 
and a measure of clotting potential, such as prothrombin time or 
activated partial thromboplastin time.

[[Page 364]]

    (ii) Clinical chemistry. (A) Parameters which are considered 
appropriate to all studies are electrolyte balance, carbohydrate 
metabolism, and liver and kidney function. The selection of specific 
tests will be influenced by observations on the mode of action of the 
substance and signs of clinical toxicity.
    (B) The recommended clinical chemistry determinations are potassium, 
sodium, glucose, total cholesterol, urea nitrogen, creatinine, total 
protein and albumin. More than 2 hepatic enzymes, (such as alanine 
aminotransferase, aspartate aminotransferase, alkaline phosphatase, 
sorbitol dehydrogenase, or gamma glutamyl transpeptidase) should also be 
measured. Measurements of addtional enzymes (of hepatic or other origin) 
and bile acids, may also be useful.
    (C) If a test chemical has an effect on the hematopoietic system, 
reticulocyte counts and bone marrow cytology may be indicated.
    (D) Other determinations that should be carried out if the test 
chemical is known or suspected of affecting related measures include 
calcium, phosphorus, fasting triglycerides, hormones, methemoglobin, and 
cholinesterases.
    (iii) Optionally, the following urinalysis determinations could be 
performed during the last week of the study using timed urine volume 
collection: appearance, volume, osmolality or specific gravity, pH, 
protein, glucose, and blood/blood cells.
    (13) Ophthalmological examination. Ophthalmological examinations 
shall be made on all animals prior to the administration of the test 
substance and on all high concentration and control groups at 
termination. If changes in the eyes are detected, all animals in the 
other concentration groups shall be examined.
    (14) Gross pathology. (i) All animals shall be subjected to a full 
gross necropsy which includes examination of the external surface of the 
body, all orifices and the cranial, thoracic, and abdominal cavities and 
their contents.
    (ii) At least the liver, kidneys, brain, and gonads shall be trimmed 
and weighed wet, as soon as possible after dissection to avoid drying.
    (iii) The following organs and tissues, or representative samples 
thereof, shall be preserved in a suitable medium for possible future 
histopathological examination:
    (A) Digestive system.
    (1) Salivary glands.
    (2) Esophagus.
    (3) Stomach.
    (4) Duodenum.
    (5) Jejunum.
    (6) Ileum.
    (7) Cecum.
    (8) Colon.
    (9) Rectum.
    (10) Liver.
    (11) Pancreas.
    (12) Gallbladder (dogs).
    (B) Nervous system.
    (1) Brain (multiple sections).
    (2) Pituitary.
    (3) Peripheral nerve(s).
    (4) Spinal cord (three levels).
    (5) Eyes (retina, optic nerve).
    (C) Glandular system.
    (1) Adrenals.
    (2) Parathyroids.
    (3) Thyroids.
    (D) Respiratory system.
    (1) Trachea.
    (2) Lung.
    (3) Pharynx.
    (4) Larynx.
    (5) Nose.
    (E) Cardiovascular/hematopoietic system.
    (1) Aorta (thoracic).
    (2) Heart.
    (3) Bone marrow.
    (4) Lymph nodes.
    (5) Spleen.
    (6) Thymus.
    (F) Urogenital system.
    (1) Kidneys.
    (2) Urinary bladder.
    (3) Prostate.
    (4) Testes.
    (5) Epididymides.
    (6) Seminal vesicle(s).
    (7) Uterus.
    (8) Ovaries.
    (G) Other.
    (1) Lacrimal gland.
    (2) Mammary gland.
    (3) Skin.
    (4) Skeletal muscle.
    (5) All gross lesions and masses.
    (6) Sternum and/or femur.
    (15) Histopathology. (i) The following histopathology shall be 
performed:

[[Page 365]]

    (A) Full histopathology on the respiratory tract and other organs 
and tissues, listed under paragraph (e)(15)(iii) of this section, of all 
animals in the control and high exposure groups and all animals that 
died or were killed during the study.
    (B) All gross lesions in all animals.
    (C) Target organs in all animals.
    (D) Lungs of all animals. Special attention to examination of the 
respiratory tract should be made for evidence of infection as this 
provides a convenient assessment of the state of health of the animals.
    (E) When a satellite group is used, histopathology shall be 
performed on tissues and organs identified as showing effects in the 
treated groups.
    (ii) If excessive early deaths or other problems occur in the high 
exposure group compromising the significance of the data, the next 
concentration should be examined for complete histopathology.
    (iii) An attempt should be made to correlate gross observations with 
microscopic findings.
    (iv) Tissues and organs designated for microscopic examination 
should be fixed in 10% buffered formalin or a recognized suitable 
fixative as soon as necropsy is performed and no less than 48 hrs prior 
to trimming. Tissues should be trimmed to a maximum thickness of 0.4 cm 
for processing.
    (f) Data and reporting--(1) Treatment of results. (i) Data shall be 
summarized in tabular form, showing for each test group the number of 
animals at the start of the test, the number of animals showing lesions, 
the types of lesions, and the percentage of animals displaying each type 
of lesion.
    (ii) All observed results (quantitative and qualitative) should be 
evaluated by an appropriate statistical method. Any generally accepted 
statistical method may be used; the statistical methods including 
significance criteria should be selected during the design of the study.
    (2) Evaluation of study results. The findings of the subchronic 
inhalation toxicity study should be evaluated in conjunction with the 
findings of preceding studies and considered in terms of the observed 
toxic effects and the necropsy and histopathological findings. The 
evaluation will include the relationship between the concentration of 
the test substance and duration of exposure, and the presence or 
absence, the incidence and severity, of abnormalities, including 
behavioral and clinical abnormalities, gross lesions, identified target 
organs, body weight changes, effects on mortality and any other general 
or specific toxic effects. A properly conducted subchronic test should 
provide a satisfactory estimation of a no-effect level. It also can 
indicate the need for an additional longer-term study and provide 
information on the selection of concentrations.
    (3) Test report. In addition to reporting requirements specified 
under 40 CFR part 792, subpart J, the following specific information 
shall be reported. Both individual and summary data should be presented.
    (i) Test substance characterization shall include:
    (A) Chemical identification.
    (B) Lot or batch number.
    (C) Physical properties.
    (D) Purity/impurities.
    (E) Identification and composition of any vehicle used.
    (ii) Test system information shall include:
    (A) Species and strain of animals used and rationale for selection 
if other than that recommended.
    (B) Age, sex, and body weight.
    (C) Test environment including cage conditions, ambient temperature, 
humidity, and light/dark periods.
    (D) Identification of animal diet.
    (E) Acclimation period.
    (iii) Test procedure information shall include:
    (A) Method of randomization used.
    (B) Full description of experimental design and procedure.
    (C) Exposure regimen including concentration levels, methods, and 
volume.
    (D) Description of test conditions; the following exposure 
conditions shall be reported:
    (1) Description of exposure apparatus including design, type, 
volume, source of air, system for generating aerosols, method of 
conditioning air, treatment of exhaust air and the method of housing the 
animals in a test chamber.

[[Page 366]]

    (2) The equipment for measuring temperature, humidity, and 
particulate aerosol concentrations and size should be described.
    (E) Exposure data shall be tabulated and presented with mean values 
and a measure of variability (e.g., standard deviation) and include:
    (1) Airflow rates through the inhalation equipment.
    (2) Temperature and humidity of air.
    (3) Actual (analytical or gravimetric) concentration in the 
breathing zone.
    (4) Nominal concentration (total amount of test substance fed into 
the inhalation equipment divided by volume of air).
    (5) Particle size distribution, calculated mass median aerodynamic 
diameter (MMAD) and geometric standard deviation (GSD).
    (6) Explanation as to why the desired chamber concentration and/or 
particle size could not be achieved (if applicable) and the efforts 
taken to comply with this aspect of the section.
    (iv) Test results information shall include:
    (A) Group animal data. Tabulation of toxic response data by species, 
strain, sex and exposure level for:
    (1) Number of animals exposed.
    (2) Number of animals showing signs of toxicity.
    (3) Number of animals dying.
    (B) Individual animal data. Data should be presented as summary 
(group mean) as well as for individual animals.
    (1) Time of death during the study or whether animals survived to 
termination.
    (2) Time of observation of each abnormal sign and its subsequent 
course.
    (3) Body weight data.
    (4) Feed consumption data, when collected.
    (5) Results of ophthalmological examination, when performed.
    (6) Results of hematological tests performed. .
    (7) Results of clinical chemistry tests performed.
    (8) Results of urinalysis tests performed.
    (9) Necropsy findings, including absolute and relative organ weight 
data.
    (10) Detailed description of all histopathological findings.
    (11) Statistical treatment of results, where appropriate.
    (g) Quality control. A system shall be developed and maintained to 
assure and document adequate performance of laboratory staff and 
equipment. The study shall be conducted in compliance with 40 CFR part 
792--Good Laboratory Practice Standards.
    (h) References. For additional background information on this test 
guideline, the following references should be consulted. These 
references are available for inspection at the TSCA Nonconfidential 
Information Center, Rm. NE-B607, Environmental Protection Agency, 401 M 
St., SW., Washington, DC, 12 noon to 4 p.m., Monday through Friday, 
except legal holidays.
    (1) Cage, J.C. Ed. Paget, G.E. Experimental Inhalation Toxicology, 
Methods in Toxicology. (F.A. Davis Co., Philadelphia, PA, 1970) pp. 258-
277.
    (2) Casarett, L.J. and Doull. Chapter 9. Toxicology: The Basic 
Science of Poisons (New York: Macmillan Publishing Co., Inc., 1975).
    (3) U.S. Environmental Protection Agency, Office of Pesticide 
Programs, Health Effects Division. Interim policy for particle size and 
limit concentration issues in inhalation toxicity studies (February 1, 
1994).
    (4) MacFarland, H.N. Ed. Hayes, W.J. Vol. 7. Respiratory Toxicology, 
Essays in Toxicology. (Academic Press, New York, NY, 1976) pp. 121-154.
    (5) Organisation for Economic Co-operation and Development. 
Guidelines for testing of chemicals, section 4-health effects, part 413. 
Subchronic Inhalation Toxicity Studies (Paris, 1981).

[62 FR 43824, Aug. 15, 1997, as amended at 64 FR 35077, June 30, 1999]