[Code of Federal Regulations]
[Title 40, Volume 31]
[Revised as of July 1, 2007]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR799.9305]

[Page 343-349]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
         CHAPTER I--ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)
 
PART 799_IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE
TESTING REQUIREMENTS--Table of Contents
 
                Subpart H_Health Effects Test Guidelines
 
Sec.  799.9305  TSCA Repeated dose 28-day oral toxicity study in rodents.

    (a) Scope--(1) Applicability. This section is intended to meet 
testing requirements of the Toxic Substances Control Act (TSCA) (15 
U.S.C. 2601).
    (2) Source. The source material used in developing this TSCA test 
guideline is the Office of Prevention, Pesticides and Toxic Substances 
(OPPTS) harmonized test guideline 870.3050 (July 2000, final 
guidelines). This source is available at the address in paragraph (h) of 
this section.
    (b) Purpose. (1) In the assessment and evaluation of the toxic 
characteristics of a chemical, the determination of oral toxicity using 
repeated doses may be carried out after initial information on toxicity 
has been obtained by acute testing. This study provides information on 
the possible health hazards likely to arise from repeated exposure over 
a relatively limited period of time. The method comprises the basic

[[Page 344]]

repeated dose toxicity study that may be used for chemicals on which a 
90-day study is not warranted (e.g., when the production volume does not 
exceed certain limits) or as a preliminary to a long term study. The 
duration of exposure should normally be 28 days although a 14-day study 
may be appropriate in certain circumstances; justification for use of a 
14-day exposure period should be provided.
    (2) This section places emphasis on neurological effects as a 
specific endpoint, and the need for careful clinical observations of the 
animals, so as to obtain as much information as possible, is stressed. 
The method should identify chemicals with neurotoxic potential, which 
may warrant further in-depth investigation of this aspect. In addition, 
the method may give an indication of immunological effects and 
reproductive organ toxicity.
    (c) Definitions. The definitions in section 3 of TSCA and in 40 CFR 
Part 792--Good Laboratory Practice Standards apply to this section. The 
following definitions also apply to this section.
    Dosage is a general term comprising of dose, its frequency and the 
duration of dosing.
    Dose is the amount of test substance administered. Dose is expressed 
as weight (g, mg) or as weight of test substance per unit weight of test 
animal (e.g., mg/kg), or as constant dietary concentrations (parts per 
million (ppm)).
    No-observed-effects level (NOEL) is the maximum dose used in a study 
which produces no adverse effects. The NOEL is usually expressed in 
terms of the weight of a test substance given daily per unit weight of 
test animals (milligrams per kilograms per day).
    (d) Principle of the test. The test substance is orally administered 
daily in graduated doses to several groups of experimental animals, one 
dose level per group for a period of 28 days. During the period of 
administration the animals are observed closely, each day for signs of 
toxicity. Animals which die or are sacrificed during the test are 
necropsied and at the conclusion of the test surviving animals are 
sacrificed and necropsied.
    (e) Description of the method--(1) Selection of animal species. The 
preferred rodent species is the rat, although other rodent species may 
be used. Commonly used laboratory strains of young healthy adult animals 
should be employed. The females should be nulliparous and non-pregnant. 
Dosing should begin as soon as possible after weaning and, in any case, 
before the animals are 9 weeks old. At the commencement of the study the 
weight variation of animals used should be minimal and not exceed 20% of the mean weight of each sex. Where a repeated 
dose oral study is conducted as a preliminary to a long term study, 
preferably animals from the same strain and source should be used in 
both studies.
    (2) Housing and feeding conditions. The temperature in the 
experimental animal room should be 22 [deg]C (3 
[deg]C). Although the relative humidity should be at least 30% and 
preferably not to exceed 70% other than during room cleaning, the aim 
should be 50-60%. Lighting should be artificial, the sequence being 12 
hours light, 12 hours dark. For feeding, conventional laboratory diets 
may be used with an unlimited supply of drinking water. The choice of 
diet may be influenced by the need to ensure a suitable admixture of a 
test substance when administered by this method. Animals may be housed 
individually, or be caged in small groups of the same sex; for group 
caging, no more than five animals should be housed per cage.
    (3) Preparation of animals. Healthy young adult animals must be 
randomly assigned to the control and treatment groups. Cages should be 
arranged in such a way that possible effects due to cage placement are 
minimized. The animals are identified uniquely and kept in their cages 
for at least 5 days prior to the start of the study to allow for 
acclimatization to the laboratory conditions.
    (4) Preparation of doses. (i) The test compound must be administered 
by gavage or via the diet or drinking water. The method of oral 
administration is dependent on the purpose of the study, and the 
physical/chemical properties of the test material.
    (ii) Where necessary, the test substance is dissolved or suspended 
in a suitable vehicle. It is recommended that, wherever possible, the 
use of an

[[Page 345]]

aqueous solution/suspension be considered first, followed by 
consideration of a solution/emulsion in oil (e.g., corn oil) and then by 
possible solution in other vehicles. For vehicles other than water the 
toxic characteristics of the vehicle must be known. The stability of the 
test substance in the vehicle should be determined.
    (f) Procedure--(1)Number and sex of animals. At least 10 animals 
(five female and five male) should be used at each dose level. If 
interim sacrifices are planned, the number should be increased by the 
number of animals scheduled to be sacrificed before the completion of 
the study. Consideration should be given to an additional satellite 
group of 10 animals (five per sex) in the control and in the top dose 
group for observation of reversibility, persistence, or delayed 
occurrence of toxic effects, for at least 14 days post treatment.
    (2) Dosage. (i) Generally, at least three test groups and a control 
group should be used, but if from assessment of other data, no effects 
would be expected at a dose of 1000 mg/kg bodyweight/per day, a limit 
test may be performed. If there are no suitable data available, a range 
finding study may be performed to aid the determination of the doses to 
be used. Except for treatment with the test substance, animals in the 
control group should be handled in an identical manner to the test group 
subjects. If a vehicle is used in administering the test substance, the 
control group should receive the vehicle in the highest volume used.
    (ii) Dose levels should be selected taking into account any existing 
toxicity and (toxico-) kinetic data available for the test compound or 
related materials. The highest dose level should be chosen with the aim 
of inducing toxic effects but not death or severe suffering. Thereafter, 
a descending sequence of dose levels should be selected with a view to 
demonstrating any dosage related response and NOEL at the lowest dose 
level. Two to four fold intervals are frequently optimal for setting the 
descending dose levels and addition of a fourth test group is often 
preferable to using very large intervals (e.g., more than a factor of 
10) between dosages.
    (3) Limit test. If a test at one dose level of at least 1000 mg/kg 
body weight/day or, for dietary or drinking water administration, an 
equivalent percentage in the diet, or drinking water (based upon body 
weight determinations), using the procedures described for this study, 
produces no observable toxic effects and if toxicity would not be 
expected based upon data from structurally related compounds, then a 
full study using three dose levels may not be considered necessary. The 
limit test applies except when human exposure indicates the need for a 
higher dose level to be used.
    (4) Administration of doses. (i) The animals are dosed with the test 
substance daily 7 days each week for a period of 28 days; use of a 5-day 
per week dosing regime or a 14-day exposure period needs to be 
justified. When the test substance is administered by gavage, this 
should be done in a single dose to the animals using a stomach tube or a 
suitable intubation cannula. The maximum volume of liquid that can be 
administered at one time depends on the size of the test animal. The 
volume should not exceed 1ml/100g body weight, except in the case of 
aqueous solutions where 2ml/100g body weight may be used. Except for 
irritating or corrosive substances which will normally reveal 
exacerbated effects with higher concentrations, variability in test 
volume should be minimized by adjusting the concentration to ensure a 
constant volume at all dose levels.
    (ii) For substances administered via the diet or drinking water it 
is important to ensure that the quantities of the test substance 
involved do not interfere with normal nutrition or water balance. When 
the test substance is administered in the diet either a constant dietary 
concentration (parts per million (ppm)) or a constant dose level in 
terms of the animals' body weight may be used; the alternative used must 
be specified. For a substance administered by gavage, the dose should be 
given at similar times each day, and adjusted as necessary to maintain a 
constant dose level in terms of animal body weight. Where a repeated 
dose study is used as a preliminary to a long term study, a similar diet 
should be used in both studies.

[[Page 346]]

    (5) Observations. (i) The observation period should be 28 days, 
unless the study duration is 14 days (see paragraph (b)(1) of this 
section). Animals in a satellite group scheduled for follow-up 
observations should be kept for at least a further 14 days without 
treatment to detect delayed occurrence, or persistence of, or recovery 
from toxic effects.
    (ii) General clinical observations should be made at least once a 
day, preferably at the same time(s) each day and considering the peak 
period of anticipated effects after dosing. The health condition of the 
animals should be recorded. At least twice daily, all animals are 
observed for morbidity and mortality.
    (iii) Once before the first exposure (to allow for within-subject 
comparisons), and at least once a week thereafter, detailed clinical 
observations should be made in all animals. These observations should be 
made outside the home cage in a standard arena and preferably at the 
same time, each time. They should be carefully recorded, preferably 
using scoring systems, explicitly defined by the testing laboratory. 
Effort should be made to ensure that variations in the test conditions 
are minimal and that observations are preferably conducted by observers 
unaware of the treatment. Signs noted should include, but not be limited 
to, changes in skin, fur, eyes, mucous membranes, occurrence of 
secretions and excretions and autonomic activity (e.g., lacrimation, 
piloerection, pupil size, unusual respiratory pattern). Changes in gait, 
posture and response to handling as well as the presence of clonic or 
tonic movements, stereotypies (e.g., excessive grooming, repetitive 
circling) or bizarre behaviour (e.g., self-mutilation, walking 
backwards) should also be recorded.
    (iv) In the fourth exposure week sensory reactivity to stimuli of 
different types (see paragraph (h)(2) of this section) (e.g., auditory, 
visual and proprioceptive stimuli), assessment of grip strength and 
motor activity assessment should be conducted. Further details of the 
procedures that could be followed are given in the respective 
references. However, alternative procedures than those referenced could 
also be used. Examples of procedures for observation are described in 
the references in paragraphs (h)(1), (h)(2), (h)(3), (h)(4), and (h)(5) 
of this section.
    (v) Functional observations conducted in the fourth exposure week 
may be omitted when the study is conducted as a preliminary study to a 
subsequent subchronic (90-day) study. In that case, the functional 
observations should be included in this follow-up study. On the other 
hand, the availability of data on functional observations from the 
repeated dose study may enhance the ability to select dose levels for a 
subsequent subchronic study.
    (vi) Exceptionally, functional observations may also be omitted for 
groups that otherwise reveal signs of toxicity to an extent that would 
significantly interfere with the functional test performance.
    (6) Body weight and food/water consumption. All animals should be 
weighed at least once a week. Measurements of food consumption should be 
made at least weekly. If the test substance is administered via the 
drinking water, water consumption should also be measured at least 
weekly.
    (7) Hematology. (i) The following hematological examinations should 
be made at the end of the test period: hematocrit, hemoglobin 
concentration, erythrocyte count, total and differential leukocyte 
count, platelet count and a measure of blood clotting time/potential.
    (ii) Blood samples should be taken from a named site just prior to 
or as part of the procedure for sacrificing the animals, and stored 
under appropriate conditions.
    (8) Clinical Biochemistry. (i) Clinical biochemistry determinations 
to investigate major toxic effects in tissues and, specifically, effects 
on kidney and liver, should be performed on blood samples obtained of 
all animals just prior to or as part of the procedure for sacrificing 
the animals (apart from those found moribund and/or intercurrently 
sacrificed). Overnight fasting of the animals prior to blood sampling is

[[Page 347]]

recommended.\1\ Investigations of plasma or serum shall include sodium, 
potassium, glucose, total cholesterol, urea, creatinine, total protein 
and albumin, at least two enzymes indicative of hepatocellular effects 
(such as alanine aminotransferase, aspartate aminotransferase, alkaline 
phosphatase, gamma glutamyl transpeptidase, and sorbitol dehydrogenase). 
Measurements of additional enzymes (of hepatic or other origin) and bile 
acids may provide useful information under certain circumstances.
---------------------------------------------------------------------------

    \1\ For a number of measurements in serum and plasma, most notably 
for glucose, overnight fasting would be preferable. The major reason for 
this preference is that the increased variability which would inevitably 
result from non-fasting, would tend to mask more subtle effects and make 
interpretation difficult. On the other hand, however, overnight fasting 
may interfere with the general metabolism of the animals and, 
particularly in feeding studies, may disturb the daily exposure to the 
test substance. If overnight fasting is adopted, clinical biochemical 
determinations should be performed after the conduct of functional 
observations in week 4 of the study.
---------------------------------------------------------------------------

    (ii) Optionally, the following urinalysis determinations could be 
performed during the last week of the study using timed urine volume 
collection; appearance, volume, osmolality or specific gravity, pH, 
protein, glucose and blood and blood cells.
    (iii) In addition, studies to investigate serum markers of general 
tissue damage should be considered. Other determinations that should be 
carried out if the known properties of the test substance may, or are 
suspected to, affect related metabolic profiles include calcium, 
phosphate, fasting triglycerides, specific hormones, methemoglobin and 
cholinesterase. These must to be identified for chemicals in certain 
classes or on a case-by-case basis.
    (iv) Overall, there is a need for a flexible approach, depending on 
the species and the observed and/or expected effect with a given 
compound.
    (v) If historical baseline data are inadequate, consideration should 
be given to determination of hematological and clinical biochemistry 
variables before dosing commences.
    (9) Pathology--(i)Gross necropsy. (A) All animals in the study must 
be subjected to a full, detailed gross necropsy which includes careful 
examination of the external surface of the body, all orifices, and the 
cranial, thoracic and abdominal cavities and their contents. The liver, 
kidneys, adrenals, testes, epididymides, thymus, spleen, brain and heart 
of all animals (apart from those found moribund and/or intercurrently 
sacrificed) should be trimmed of any adherent tissue, as appropriate, 
and their wet weight taken as soon as possible after dissection to avoid 
drying.
    (B) The following tissues should be preserved in the most 
appropriate fixation medium for both the type of tissue and the intended 
subsequent histopathological examination: all gross lesions, brain 
(representative regions including cerebrum, cerebellum and pons), spinal 
cord, stomach, small and large intestines (including Peyer's patches), 
liver, kidneys, adrenals, spleen, heart, thymus, thyroid, trachea and 
lungs (preserved by inflation with fixative and then immersion), 
ovaries, uterus, testes, epididymides, accessory sex organs (e.g., 
prostate, seminal vesicles), urinary bladder, lymph nodes (preferably 
one lymph node covering the route of administration and another one 
distant from the route of administration to cover systemic effects), 
peripheral nerve (sciatic or tibial) preferably in close proximity to 
the muscle, and a section of bone marrow (or, alternatively, a fresh 
mounted bone marrow aspirate). The clinical and other findings may 
suggest the need to examine additional tissues. Also any organs 
considered likely to be target organs based on the known properties of 
the test substance should be preserved.
    (ii) Histopathology. (A) Full histopathology should be carried out 
on the preserved organs and tissues of all animals in the control and 
high dose groups. These examinations should be extended to animals of 
all other dosage groups, if treatment-related changes are observed in 
the high dose group.
    (B) All gross lesions must be examined.

[[Page 348]]

    (C) When a satellite group is used, histopathology should be 
performed on tissues and organs identified as showing effects in the 
treated groups.
    (g) Data and reporting--(1) Data. (i) Individual data should be 
provided. Additionally, all data should be summarized in tabular form 
showing for each test group the number of animals at the start of the 
test, the number of animals found dead during the test or sacrificed for 
humane reasons and the time of any death or humane sacrifice, the number 
showing signs of toxicity, a description of the signs of toxicity 
observed, including time of onset, duration, and severity of any toxic 
effects, the number of animals showing lesions, the type of lesions and 
the percentage of animals displaying each type of lesion.
    (ii) When possible, numerical results should be evaluated by an 
appropriate and generally acceptable statistical method. The statistical 
methods should be selected during the design of the study.
    (2) Test report. The test report must include the following 
information:
    (i) Test substance:
    (A) Physical nature, purity and physicochemical properties.
    (B) Identification data.
    (ii) Vehicle (if appropriate): Justification for choice of vehicle, 
if other than water.
    (iii) Test animals:
    (A) Species/strain used.
    (B) Number, age and sex of animals.
    (C) Source, housing conditions, diet, etc.
    (D) Individual weights of animals at the start of the test.
    (iv) Test conditions:
    (A) Rationale for dose level selection.
    (B) Details of test substance formulation/diet preparation, achieved 
concentration, stability and homogeneity of the preparation.
    (C) Details of the administration of the test substance.
    (D) Conversion from diet/drinking water test substance concentration 
(parts per million (ppm)) to the actual dose (mg/kg body weight/day), if 
applicable.
    (E) Details of food and water quality.
    (v) Results:
    (A) Body weight/body weight changes.
    (B) Food consumption, and water consumption, if applicable.
    (C) Toxic response data by sex and dose level, including signs of 
toxicity.
    (D) Nature, severity and duration of clinical observations (whether 
reversible or not).
    (E) Sensory activity, grip strength and motor activity assessments.
    (F) Hematological tests with relevant base-line values.
    (G) Clinical biochemistry tests with relevant base-line values.
    (H) Body weight at sacrificing and organ weight data.
    (I) Necropsy findings.
    (J) A detailed description of all histopathological findings.
    (K) Absorption data if available.
    (L) Statistical treatment of results, where appropriate.
    (vi) Discussion of results.
    (vii) Conclusions.
    (h) References. For additional background information on this test 
guideline, the following references should be consulted. These 
references are available for inspection at the TSCA Nonconfidential 
Information Center, Rm. NE-B607, Environmental Protection Agency, 401 M 
St., SW., Washington, DC, 12 noon to 4 p.m., Monday through Friday, 
except legal holidays.
    (1) Tupper, D.E., Wallace, R.B. (1980). Utility of the Neurologic 
Examination in Rats. Acta Neurobiological Exposure, 40:999-1003.
    (2) Gad, S.C. (1982). A Neuromuscular Screen for Use in Industrial 
Toxicology. Journal of Toxicology and Environmental Health, 9:691-704.
    (3) Moser, V.C., McDaniel, K.M., Phillips, P.M. (1991). Rat Strain 
and Stock Comparisons Using a Functional Observational Battery: Baseline 
Values and Effects of Amitraz. Toxicology and Applied Pharmacology, 
108:267-283.
    (4) Meyer O.A., Tilson H.A., Byrd W.C., Riley M.T. (1979). A Method 
forthe Routine Assessment of Fore- and Hindlimb Grip Strength of Rats 
and Mice. Neurobehavioral Toxicology, 1:233-236.
    (5) Crofton K.M., Howard J.L., Moser V.C., Gill M.W., Reiter L.W., 
Tilson

[[Page 349]]

H.A., MacPhail R.C. (1991). Interlaboratory Comparison of Motor Activity 
Experiments: Implication for Neurotoxicological Assessments. 
Neurotoxicology and Teratology, 13:599-609.

[65 FR 78780, Dec. 15, 2000]