

GE 159 Plastics Avenue Pittsfield, MA 01201 USA

Transmitted Via Overnight Courier

February 13, 2009

Mr. Richard Fisher
U.S. Environmental Protection Agency
EPA New England
One Congress Street, Suite 1100
Boston, Massachusetts 02114-2023

Re: GE-Pittsfield/Housatonic River Site Groundwater Management Area 5 (GECD350) Long-Term Monitoring Program Monitoring Event Evaluation Report for Fall 2008

Dear Mr. Fisher:

Enclosed is the *Groundwater Management Area 5 Long-Term Monitoring Program Monitoring Event Evaluation Report for Fall 2008* (GMA 5 Spring 2008 Monitoring Event Evaluation Report). This report was prepared in accordance with Section 2.7 of the Statement of Work for Removal Actions Outside the River (SOW) (Appendix E to the CD), with further details presented in Section 7.0 of Attachment H to the SOW (Groundwater/NAPL Monitoring, Assessment, and Response Programs).

The GMA 5 Fall 2008 Monitoring Event Evaluation Report is the third report to be submitted as part of the long-term monitoring program for this GMA. It summarizes activities performed at GMA 5 (also known as the Former Oxbow Areas A and C GMA) during Fall 2008, presents the results of the latest round of sampling and analysis of groundwater performed as part of the groundwater quality monitoring program at this GMA.

Please call me if you have any questions regarding this report.

Sincerely

Richard W. Gates

Remediation Project Manager

Enclosure

G:\GE\GE_Pittsfield_CD_GMA_5\Reports and Presentations\GW Qual Rpt Fall 2008\056911324CvrLtr.doc

cc: Dean Tagliaferro, EPA

Rose Howell, EPA (CD-ROM)

Tim Conway, EPA*

Holly Inglis, EPA (CD-ROM)

K.C. Mitkevicius, USACE (CD-ROM)

Linda Palmieri, Weston (two hard copies and CD-ROM)

Eva Tor, MDEP*

Jane Rothchild, MDEP*

Michael Gorski, MDEP (two copies)

Thomas Angus, MDEP*

Mayor James Ruberto, City of Pittsfield

Pittsfield Economic Development Authority

Jeffery Bernstein, BCK Law

Teresa Bowers, Gradient

Nancy E. Harper, MA AG

Dale Young, MA EOEA

Michael Carroll, GE*

Rod McLaren, GE*

James Nuss, ARCADIS

James Bieke, Goodwin Procter

John Ciampa, SPECTRA

Property Owner - Parcel 18-23-6/19-5-1

Property Owner - Parcel 18-23-9

Property Owner - Parcel I8-23-10

Public Information Repositories

GE Internal Repositories

^{*}cover letter only

General Electric Company Pittsfield, Massachusetts

Groundwater Management Area 5 Long-Term Monitoring Program Monitoring Event Evaluation Report for Fall 2008

February 2009

Groundwater Management Area 5 Long-Term Monitoring Program Monitoring Event Evaluation Report for Fall 2008

(GMA 5 Fall 2008 Monitoring Event Evaluation Report)

Prepared for:

General Electric Company Pittsfield, Massachusetts

Prepared by: ARCADIS 6723 Towpath Road P.O. Box 66 Syracuse New York 13214-0066 Tel 315.446.9120 Fax 315.449.0017

Our Ref.: B0030131

Date:

February 13, 2009

Table of Contents

ARCADIS

1.	Introduction				
	1.1	General			
	1.2	Background Information		2	
		1.2.1	Description of GMA 5	2	
		1.2.2	Overview of Hydrogeologic Conditions at the Site	3	
		1.2.3	Overview of the Nature and Extent of Substances in Groundwater at the Site	5	
		1.2.4	Overview of Groundwater Investigation Activities at GMA 5	6	
	1.3	Forma	t of Document	9	
2.	Fall 20	08 Field	and Analytical Procedures	10	
	2.1	Genera	al	10	
	2.2	Ground	dwater Elevation Monitoring	10	
	2.3	Ground	dwater Sampling and Analysis	10	
3.	Fall 20	08 Grou	undwater Analytical Results	13	
	3.1	1 General			
	3.2	3.2 Groundwater Quality Performance Standards3.3 Fall 2008 Groundwater Quality Results			
	3.3				
		3.3.1	VOC Results	16	
		3.3.2	Inorganic Constituent Results	16	
	3.4	Evaluation of Groundwater Quality – Fall 2008		16	
		3.4.1	Fall 2008 Groundwater Results Relative to GW-2 Performance Standards	17	
		3.4.2	Fall 2008 Groundwater Results Relative GW-3 Performance Standards	17	
		3.4.3	Comparison of Fall 2008 Groundwater Results to Upper Concentration Limits	18	
	3.5	Adjacent MCP Site Monitoring Results			
	3.6	NAPL Evaluation		20	

Table of Contents

ARCADIS

4.	Assessment of Groundwater Quality				
	4.1	General Evaluation of Variations in Groundwater Quality		22	
	4.2			22	
		4.2.1	Comparison of Fall 2008 Analytical Results to Baseline Data	22	
		4.2.2	Comparison of Fall 2008 Analytical Results to Previous Sampling Round	23	
		4.2.3	Evaluation of Seasonal Variability in Data	24	
	4.3 Statistical Assessment of Data		ical Assessment of Data	24	
	4.4	Overal	ll Assessment of Groundwater Quality Data	26	
		4.4.1	VOCs	26	
		4.4.2	Cadmium	27	
	4.5		ation of the Need for Follow-up Investigations, Assessments, or a Response Actions	28	
5.	Sched	uture Activities	29		
	5.1 Field Activities Schedule		Activities Schedule	29	
	5.2	Reporting Schedule			
Tal	oles				
	1	Fa	all 2008 Groundwater Monitoring Program		
	2	Мо	onitoring Well Construction		
	3	Gr	oundwater Elevation Data – Fall 2008		
	4	Fie	eld Parameter Measurements – Fall 2008		
	5	Comparison of Groundwater Analytical Results to MCP Method 1 GW-2 Stand			
	6	Comparison of Groundwater Analytical Results to MCP Method 1 GW-3 Standard			
	7	Comparison of Groundwater Analytical Results to MCP UCLs for Groundwater			
	8	Proposed Long-Term Groundwater Monitoring Program Activities—Spring 2009			

Table of Contents

ARCADIS

Figures

- 1 Groundwater Management Areas
- 2 Monitoring Well Locations
- Water Table Contour Map Fall 2008
- 4 Proposed Spring 2009 Groundwater Monitoring Program

Appendices

- A Field Sampling Data
- B Validated Groundwater Analytical Results Fall 2008
- C Data Validation Report Fall 2008
- D Historical Groundwater Data
- E Monitoring Results for Adjacent MCP Disposal Site
- F Statistical Summary of Groundwater Analytical Data

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

1. Introduction

1.1 General

On October 27, 2000, a Consent Decree (CD) executed in 1999 by the General Electric Company (GE), the United States Environmental Protection Agency (EPA), the Massachusetts Department of Environmental Protection (MDEP) and several other government agencies was entered by the United States District Court for the District of Massachusetts. The CD governs (among other things) the performance of response actions to address polychlorinated biphenyls (PCBs) and other hazardous constituents in soil, sediment, and groundwater in several Removal Action Areas (RAAs) located in or near Pittsfield, Massachusetts, that collectively comprise the GE Pittsfield/Housatonic River Site (the Site). For groundwater and non-aqueous-phase liquid (NAPL), the RAAs at and near the GE Pittsfield facility have been divided into five separate Groundwater Management Areas (GMAs), which are illustrated on Figure 1. These GMAs are described, together with the Performance Standards established for the response actions at and related to them, in Section 2.7 of the Statement of Work, for Removal Actions Outside the River (SOW) (Appendix E to the CD), with further details presented in Attachment H to the SOW (Groundwater/NAPL Monitoring, Assessment, and Response Programs). This report relates to the Former Oxbows A and C Groundwater Management Area, also known as and referred to herein as GMA 5.

The Consent Decree and Attachment H to the SOW specify a series of steps to be taken at each of the GMAs to investigate and, as appropriate, respond to groundwater conditions. These documents provide initially for the design and implementation of a baseline monitoring program at each of the GMAs. Pursuant to Section 1.1.1 of Attachment H, the objective of the baseline monitoring program was to establish existing conditions in order to assess whether the existing response actions are protecting surface water, groundwater and sediment quality, and human health in occupied buildings. Additionally, the baseline monitoring program provides the basis for evaluating the effectiveness of future response actions, including the identification of any additional response actions that may be necessary to attain the Performance Standards. The baseline data are also to be used for comparison with data collected under the long-term monitoring program.

The baseline monitoring program consists of semi-annual groundwater quality sampling and quarterly elevation monitoring and generally lasts for a minimum two-year period. Section 6.1.3 of Attachment H to the SOW allows for the modification and/or continuation of the baseline monitoring program if the two-year baseline period ends prior to the completion of soil-related response actions at all the RAAs in a GMA. As the removal action for Former Oxbow Areas A and C comprising GMA 5 had not been completed at the end of the two-year period, GE proposed, and EPA approved, an extension of the baseline monitoring

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

program referred to as the interim groundwater monitoring program. At GMA 5, baseline monitoring (including the subsequent interim monitoring) was conducted from spring 2002 until fall 2006, just prior to the completion of the removal action for Former Oxbow Areas A and C comprising GMA 5. In April 2007, GE submitted a Baseline Assessment Final Report and Long-Term Monitoring Program Proposal for GMA 5 (GMA 5 Long-Term Monitoring Proposal). That report proposed a long-term groundwater monitoring program for GMA 5. Following conditional approval of that report by EPA in a letter dated August 21, 2007, GE prepared an Addendum to the Baseline Assessment Final Report and Long-Term Monitoring Program Proposal for Groundwater Management Area 5 (GMA 5 Long-Term Monitoring Proposal Addendum) to address the requirements contained in EPA's conditional approval letter. The GMA 5 Long-Term Monitoring Proposal Addendum was submitted to EPA on September 19, 2007 and conditionally approved by EPA in a letter dated October 24, 2007. This report constitutes the third monitoring event evaluation report submitted pursuant to the long-term groundwater quality monitoring program at GMA 5.

1.2 Background Information

1.2.1 Description of GMA 5

GMA 5 encompasses the Former Oxbow Areas A and C RAA, comprising approximately 7 acres adjacent to the Housatonic River and located approximately 250 feet downstream of the Lyman Street Bridge (Figures 1 and 2). The GMA contains a combination of non-GE-owned commercial and recreational areas. As shown on Figures 1 and 2, the Housatonic River flows along the north boundary of this GMA. Certain portions of this GMA originally consisted of land associated with oxbows or low-lying areas of the Housatonic River. Rechannelization and straightening of the Housatonic River in the early 1940s by the City of Pittsfield and the United States Army Corps of Engineers (USACOE) separated several of these oxbows and low-lying areas from the active course of the river. These oxbows and low-lying areas were subsequently filled with various materials from a variety of sources, resulting in the current surface elevations and topography. At their closest proximity, Former Oxbow Area A is located approximately 225 feet southwest of Former Oxbow Area C (Figure 2).

Former Oxbow Area A encompasses approximately 5 acres. This area consists of a large open field on the south side of the river, north of Elm Street and Newell Street. The majority of this generally flat area is undeveloped and covered with grass and low brush. Commercial businesses occupy a portion of an area along Elm Street to the south of the former oxbow. Specifically, a former gas station, laundromat and car wash are located at the southwestern portion of this former oxbow area.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

Former Oxbow Area C encompasses an undeveloped area of approximately 2 acres on the south side of the Housatonic River, near the northwest end of Day Street. This generally flat area is undeveloped and covered with grass and low brush. The southeastern side of the area is bordered by residential properties along Day Street and Ashley Street.

Removal Actions performed by GE at the Former Oxbow Areas A and C RAA were implemented between July and November 2006, and generally included site preparation, soil removal/replacement, and property restoration. Most excavations were to a depth of one foot, with limited spot removals to approximately 2 feet. The final limits of soil removal were completed to the general limits shown on the EPA-approved technical drawings included in the Final Removal Design/Removal Action Work Plan for Former Oxbow Areas A and C (July 2005), as modified in the Second Addendum to Final Removal Design/Removal Action Work Plan for Former Oxbow Areas A and C (April 2006) and Revision to Second Addendum to Final Removal Design/Removal Action Work Plan (letter to EPA dated June 13, 2006). In addition to these soil removals, three soil piles located on the recreational portion of Parcel I8-23-6 were removed during the course of the remediation. Overall, approximately 6,290 cubic yards of soil were removed from Former Oxbow Areas A and C and placed within the appropriate On-Plant Consolidation Area or off-site disposal facility. The Final Completion Report for Former Oxbow Areas A and C Removal was submitted to EPA on May 12, 2008, and EPA issued a Certificate of Completion for this RAA on June 3, 2008.

A separate disposal site, as designated under the Massachusetts Contingency Plan (MCP), is located on adjacent property near the southwestern corner of GMA 5. This disposal site is the Former Elm Street Mobil Station site (MDEP Site No. 1-0539, Tier 1B Permit No. 78741), and this site is currently being addressed by Exxon Mobil Corporation (ExxonMobil) pursuant to the MCP under an Administrative Consent Order (ACO) with the MDEP. As discussed below in Section 3.5, available documentation indicates that light NAPL (LNAPL) and soluble-phase contaminants related to releases from the Mobil Station may have migrated to the southwestern portion of GMA 5.

1.2.2 Overview of Hydrogeologic Conditions at the Site

In general, two unconsolidated hydrogeologic units are present within GMA 5. These units are briefly described below:

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

Surficial Deposits - This unit generally consists of heterogeneous fill materials and alluvial sands and gravels. These sands and sandy gravels are well-sorted and were deposited as glacial outwash and/or in association with recent depositional processes within the Housatonic River. Isolated peat deposits are also present, typically at depths corresponding to the bottom elevations of the river and the former oxbows. At certain locations within GMA 5, non-native fill materials are present above the alluvial deposits. These fill materials typically consist of sand, gravel, cinders, brick, and wood.

The alluvial unit extends from ground surface to depths of at least 25 feet. Fill materials, where present, have been observed to depths of 7 to 17 feet. From a hydrogeologic perspective, the fill and the sand/gravel deposits act as a single unit. All of the existing monitoring wells within GMA 5 are screened within this unit, as it is the upper and primary water-bearing unit within the GMA. Groundwater is encountered under unconfined conditions within this unit at depths between 8 and 19 feet below ground surface.

Glacial Till - Based on boring results at nearby locations within the Lyman Street Area and Newell Street Area II (within GMA 1), glacial till underlies the alluvial deposits and typically consists of dense silt containing varying amounts of clay, sand, and gravel. Discontinuous sandy lenses also have been identified in the till within the central portion of the Lyman Street Area RAA to the north of GMA 5. Till is generally encountered at depths beginning at approximately 20 to 25 feet beneath the Lyman Street Area to the north and at approximately 40 feet at Newell Street Area II to the east. No wells or borings have been installed to till beneath GMA 5.

The unconsolidated units at GMA 5 overlie bedrock. Based on information obtained from nearby areas, bedrock occurs at depths up to approximately 50 to 60 feet near the Housatonic River. The bedrock consists of white coarse-grained marble associated with the Stockbridge Formation.

Groundwater at GMA 5 generally flows toward the Housatonic River and is primarily influenced by the area's location (adjacent to the river). Figure 3 illustrates typical water table conditions, using groundwater data obtained during the fall 2008 groundwater monitoring event. The average depth to groundwater ranges from approximately 8 feet (downgradient) to just under 19 feet (upgradient in the western portion of the GMA). This variation in depth to groundwater is attributed to an increase in ground surface elevations across the western portion of the GMA, as little change in groundwater elevations are observed at monitoring wells located at similar distances from the river. As such, it appears that the localized changes in surface topography have little influence on groundwater flow characteristics.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

Hydraulic conductivity data (as previously presented on Table 3 and Appendix C of the Groundwater Quality Monitoring Report for Spring 2002) indicate a wide range in conductivities, varying from 1.99 feet/day (at GMA5-7, located along the Housatonic River in the northwestern portion of the GMA) to 260.13 feet day (at GMA5-6, located along the Housatonic River in the northeastern portion of the GMA). The geometric mean of the calculated hydraulic conductivity values for GMA 5 is 17.76 feet/day. Calculated groundwater velocities using the above-referenced hydraulic conductivities, as well as representative horizontal gradients and porosities, range from a minimum of 0.05 feet per day to a maximum of 35.12 feet day, with a geometric mean of 1.18 feet per day.

A drainage ditch extends northeast from Former Oxbow Area A into Former Oxbow Area C. The ditch then turns toward the northwest and discharges into the Housatonic River, bisecting Former Oxbow Area C. The presence of this drainage ditch, which serves as a City of Pittsfield stormwater discharge point, may locally influence groundwater flow in its immediate vicinity, but the overall flow direction is still toward the Housatonic River.

Monitoring for the presence of NAPL is performed as part of the routine groundwater elevation monitoring activities at GMA 5. Although the presence of NAPL has been documented at the adjacent Elm Street Mobil Station Site, no NAPL has been observed within any of the GE monitoring wells monitored to date at GMA 5.

1.2.3 Overview of the Nature and Extent of Substances in Groundwater at the Site

Based on current information, the principal constituent sources that may have affected or could affect groundwater quality within GMA 5 appear to include the former oxbows and existing or historical commercial businesses located within or upgradient of this GMA. These potential sources are described below.

Former Oxbows - As a result of the straightening of the Housatonic River channel in the late 1930s and early 1940s, Former Oxbows A and C were isolated from the newly formed channel of the river. These oxbows were subsequently filled with materials originating from the GE facility as well as other sources. There are no available records that provide information regarding the specific type or origin of the fill materials, or parties involved in the filling activities. The former oxbow areas are labeled as "disposal areas" on rechannelization drawings developed by the City of Pittsfield in 1940. These areas were publicly accessible and it is likely that a variety of industries and/or individuals contributed fill material. A review of historical photographs indicates that the former river channel in Oxbow Area A and other portions of this area were filled prior to 1969. Filling of this area allegedly continued until into the 1980s. Review of these photographs also indicates that large portions of Former Oxbow Area C were filled prior to 1956, while other portions were not filled until the 1970s.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

Other Sources - Commercial businesses present within or upgradient of GMA 5 include an existing laundromat and car wash, as well as a former gasoline station. These operations, which are located adjacent to Former Oxbow Area A in the southwest corner of the GMA, may be contributing sources of groundwater constituents to GMA 5. On August 15, 2007, MDEP issued Notice of Responsibility (NOR) to the owner of the property containing a dry cleaning facility in this area in regard to the presence of tetrachloroethene (PCE) in groundwater in the area at a concentration greater than the MCP GW-2 Standard and assigned Release Tracking Number 1-16724. To GE's knowledge, no further action has been taken in relation to the issuance of that NOR.

Very few constituents were consistently detected during the baseline period at GMA 5. The observed detections were sporadic and spread throughout most of the GMA 5 wells, resulting in an apparent scattered distribution of occasionally-detected constituents. Low levels of VOCs, PCBs and inorganics were detected in several wells across the GMA. In general, however, higher constituent concentrations and more frequent detections were observed in or near Oxbow Area A in the western portion of the GMA. In particular, chlorinated VOCs and PAHs are primarily, but not exclusively, found at the monitoring wells installed in or around the western oxbow.

1.2.4 Overview of Groundwater Investigation Activities at GMA 5

In December 2000, GE submitted a *Baseline Monitoring Program Proposal for Former Oxbows A and C Groundwater Management Area* (GMA 5 Baseline Monitoring Proposal). The GMA 5 Baseline Monitoring Proposal summarized the hydrogeologic information available at that time for GMA 5 and proposed groundwater monitoring activities for the baseline monitoring period at this GMA. EPA provided conditional approval of the GMA 5 Baseline Monitoring Proposal by letter of September 25, 2001. Thereafter, certain modifications were made to the GMA 5 baseline monitoring program as a result of EPA approval conditions and/or findings during field reconnaissance of the selected monitoring locations and, subsequently, during implementation of the baseline monitoring program.

The baseline monitoring program, which was initiated in spring 2002, consisted of four semi-annual groundwater quality sampling events (with intervening quarterly groundwater elevation monitoring) followed by preparation and submittal of semi-annual reports summarizing the groundwater monitoring results, comparing the groundwater results with applicable Performance Standards, and, as appropriate, proposing modifications to the monitoring program. The fourth baseline monitoring report for GMA 5 entitled *Groundwater Management Area 5 Baseline Groundwater Quality Interim Report for Fall 2003* (Fall 2003 GMA 5 Groundwater Quality Report), was submitted to EPA on January 30, 2004.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

As noted above, Section 6.1.3 of Attachment H to the SOW provides that if the two-year baseline monitoring period ends prior to the completion of soil-related response actions at all the RAAs in a GMA, GE may make a proposal to EPA to modify and/or extend the Baseline Monitoring Program based on the results of the initial assessment and the estimated timing of future response actions at the RAAs in the GMA. The approved GMA 5 Baseline Monitoring Proposal also allows GE to propose a modification and/or extension of the baseline monitoring program based on the results of the initial assessment and the estimated timing of future response actions. Therefore, as the soil-related Removal Actions at the RAA within GMA 5 were not yet complete, the Fall 2003 GMA 5 Groundwater Quality Report included a proposal to modify and extend baseline groundwater quality monitoring activities at GMA 5 (under a program referred to as the interim monitoring program) until such time as the soil-related Removal Actions at the GMA 5 RAA were completed and the needs for a long-term groundwater quality monitoring program were fully delineated.

EPA conditionally approved the Fall 2003 GMA 5 Groundwater Quality Report in a letter dated May 5, 2004. Under the approved interim monitoring program, annual water quality sampling (alternating between the spring and fall seasons) and semi-annual water level monitoring at selected GMA 5 wells was initiated in spring 2004.

The results of the initial interim sampling event were provided in GE's July 2004 Groundwater Management Area 5 Groundwater Quality Interim Report for Spring 2004 (Spring 2004 GMA 5 Groundwater Quality Report), which was conditionally approved by EPA in a letter dated November 10, 2004. However, in that letter, EPA stated that the presence of EPA's temporary dam across the Housatonic River adjacent to GMA 5 (which was utilized as part of EPA's remediation along the 1 ½-Mile Reach of the Housatonic River) may influence groundwater flow at the GMA and that future groundwater quality monitoring there should be postponed until it is demonstrated that groundwater flow is not being artificially influenced by the dam. In addition, EPA required that groundwater elevation monitoring should continue to be performed on a semi-annual basis.

The EPA temporary dam was removed during January and February of 2006, and a round of water level monitoring was conducted on March 30, 2006. GE discussed the results with EPA during an April 10, 2006 technical call and received EPA approval to resume interim groundwater sampling in spring 2006. The results of the groundwater elevation monitoring and sampling activities conducted in spring 2006 were provided in GE's July 2006 Groundwater Management Area 5 Groundwater Quality Monitoring Interim Report for Spring 2006 (Spring 2006 GMA 5 Groundwater Quality Report).

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

Pursuant to GE's July 2006 Groundwater Management Area 5 Groundwater Quality Interim Report for Spring 2006 (Spring 2006 GMA 5 Groundwater Quality Report), and EPA's conditional approval letter dated November 16, 2006, GE submitted a final baseline assessment report and proposal for long-term groundwater quality monitoring at GMA 5 to the EPA on April 26, 2007. The GMA 5 Long-Term Monitoring Proposal provided a summary of the fall 2006 sampling activities conducted at GMA 5, evaluated the overall groundwater quality at the GMA pursuant to the requirements of Attachment H of the SOW and contained a proposal for long-term groundwater quality monitoring activities. Locations were considered for inclusion in the long-term program if:

- Exceedances of applicable MCP GW-2 or GW-3 standards were reported during the baseline monitoring program.
- The well is located downgradient of a location where exceedances of applicable MCP GW-2 or GW-3 standards were reported during the baseline monitoring program.
- A review of the available data indicates the potential presence of an increasing trend in the concentrations of certain constituents at levels approaching the applicable MCP GW-2 or GW-3 standards

In that report, as a result of the evaluations, GE proposed to conduct long-term groundwater quality monitoring at two wells in GMA 5 (i.e., wells GMA 5-4, and GMA5-7). In EPA's August 21, 2007 approval letter, EPA directed GE to collect an additional round of samples from well GMA5-5 for the full suite of analyses to re-evaluate the possible inclusion of the well in the long-term groundwater quality monitoring program, required GE to submit a proposal to establish the source of VOCs detected in well GMA5-7, and specified that wells GT-7 and GT-101 should be included in the semi-annual groundwater elevation monitoring events. In GE's September 19, 2007 GMA 5 Long-Term Monitoring Proposal Addendum, GE proposed to install and sample wells GMA5-9 and GMA5-10 to assess the source of the VOCs upgradient from well GMA5-7 and modified the long-term monitoring program to incorporate the other EPA requirements.

Following EPA approval of the GMA 5 Long-Term Monitoring Proposal Addendum, GE conducted the initial round of the required groundwater elevation monitoring and sampling activities in fall 2007, including the installation and sampling of the two new wells (GMA5-9 and GMA5-10). The results of those activities, along with proposals to modify the long-term monitoring program, were discussed in GE's *Groundwater Management Area 5 Long-Term Monitoring Event Evaluation Report for Fall 2007* (GMA 5 Fall 2007 Monitoring Event Evaluation Report), submitted to EPA on March 20, 2008.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

The GMA 5 Fall 2007 Monitoring Event Evaluation Report was conditionally approved by the EPA in a letter dated April 22, 2008. GE conducted the spring 2008 groundwater elevation monitoring and sampling activities between April 28, 2008 and May 16, 2008. The results of those activities, along with any proposed modifications to the long-term monitoring program, were discussed in the *Groundwater Management Area 5 Long-Term Monitoring Program Monitoring Event Evaluation Report for Spring 2008* (GMA 5 Spring 2008 Monitoring Event Evaluation Report), submitted to EPA on August 22, 2008.

EPA conditionally approved the GMA 5 Spring 2008 Monitoring Event Evaluation Report in a letter dated October 23, 2008. GE conducted the fall 2008 groundwater elevation monitoring and sampling activities on October 30, 2008 and November 3, 2008. A description of those activities, the results obtained, and GE's assessments of those results, including any proposed modifications to the long-term monitoring program at GMA 5, are contained in this *Groundwater Management Area 5 Long-Term Monitoring Program Monitoring Event Evaluation Report for Fall 2008* (GMA 5 *Fall 2008* Monitoring Event Evaluation Report).

1.3 Format of Document

The remainder of this report is presented in four sections. Section 2 describes the groundwater-related activities performed at GMA 5 in fall 2008. Section 3 presents the analytical results obtained during the fall 2008 sampling event, including a summary of the applicable groundwater quality Performance Standards identified in the CD and SOW, and a comparison of the fall 2008 results to those Performance Standards. Section 4 provides an overall assessment of groundwater quality at GMA 5 since initiation of baseline monitoring activities in fall 2002, including an evaluation of the analytical dataset for the wells that were sampled as part of the fall 2008 sampling event, and an assessment of the need for follow-up investigations or response actions. Finally, Section 5 presents the schedule for future field and reporting activities related to groundwater quality at GMA 5.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

2. Fall 2008 Field and Analytical Procedures

2.1 General

The activities conducted as part of the long-term groundwater monitoring program in fall 2008, and summarized herein, involved the measurement of groundwater levels, and the collection and analysis of groundwater samples at select monitoring wells within GMA 5, as summarized in Table 1. A summary of construction details for the GMA 5 wells that were monitored and/or sampled during fall 2008 is provided in Table 2. The field sampling data for the fall 2008 sampling event are presented in Appendix A. This section discusses the field procedures used to perform the activities listed above, as well as the methods used to analyze the groundwater samples. All activities were performed in accordance with GE's approved *Field Sampling Plan/Quality Assurance Project Plan* (FSP/QAPP).

2.2 Groundwater Elevation Monitoring

Groundwater elevations were collected from the eight wells listed in Table 3 during the fall 2008 groundwater elevation monitoring event performed on October 30, 2008. One of these wells (GT-7) is associated with the former Elm St. Mobil Station. Groundwater elevations in fall 2008 were, on average, approximately 1.77 feet] higher than the elevations measured during fall 2007 (the most recent fall monitoring event). The fall 2008 groundwater elevation data presented in Table 3 were used to prepare a groundwater elevation contour map for fall 2008 (Figure 3). As shown on this figure and consistent with prior monitoring data, the groundwater flow direction is generally north to northwest toward the Housatonic River. The hydraulic gradient is relatively flat in the central and eastern part of GMA 5, but increases slightly on the west side of the GMA and in the riverbank areas. A summary of all groundwater elevation data collected in fall 2008 as well as the Coltsville flow rate since the spring 2008 monitoring event are found in Appendix D.

In addition, monitoring for the potential presence of NAPL was performed as part of these well gauging events. No NAPL was observed during these monitoring events or any of the previous monitoring events conducted by GE at GMA 5. However, as discussed in Section 3.5 and Appendix E, NAPL related to the former Elm Street Mobil Site (which is being addressed by ExxonMobil) is present on the southwest portion of the GMA.

2.3 Groundwater Sampling and Analysis

Groundwater samples were collected from existing wells GMA5-4, GMA5-7, GMA 5-9 and GMA5-10, on October 30 and November 3, 2008. Samples were collected for analysis for the constituents shown in Table 1.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

Low-flow sampling techniques using a bladder pump or peristaltic pump were utilized for purging the wells and collection of groundwater samples during this sampling event. Each monitoring well was purged utilizing low-flow sampling techniques until field parameters (including temperature, pH, specific conductivity, oxidation-reduction potential, dissolved oxygen, and turbidity) stabilized. Field parameters were measured in combination with the sampling activities at the monitoring wells. The field parameter measurements are presented in Table 4 and the field sampling records are provided in Appendix A. A general summary of the field measurement results during the fall 2008 monitoring event is provided below:

Parameter	Units	Range of Stabilized Readings
Turbidity	Nephelometric turbidity units (NTU)	3.0 to 17.0
рН	pH units	6.39 to 6.89
Specific Conductivity	Millisiemens per centimeter	0.619 to 1.624
Oxidation-Reduction Potential	Millivolts	- 108.60 to 68.50
Dissolved Oxygen	Milligrams per liter	0.29 to 6.12
Temperature	Degrees Celsius	11.15 to 15.00

As shown above, for this sampling event, none of the groundwater extracted from the monitoring wells had turbidity levels greater than 17 NTU. These results indicate that the sampling and measurement procedures utilized during this sampling event were effective in obtaining groundwater samples with low turbidity.

The collected groundwater samples were submitted to SGS Environmental Services, Inc. (SGS) in Wilmington, North Carolina for laboratory analysis. Filtered samples from well GMA5-4 were analyzed for cadmium (using EPA Method 6010B), and samples from well GMA5-7, GMA5-9 and GMA5-10 were analyzed for VOCs (using EPA Method 8260B).

Following receipt of the analytical data on the GE samples from the laboratory, the preliminary results were reviewed for completeness and compared to the Massachusetts Contingency Plan (MCP) Method 1 GW-2 (where applicable) and GW-3 standards, and to the MCP Upper Concentration Limits (UCLs) for groundwater. The preliminary analytical results were presented in the next monthly report on overall activities at the GE-Pittsfield/Housatonic River Site, along with the identification, when applicable, of sample results above the applicable MCP Method 1 standards and/or UCLs.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

Finally, the data were validated in accordance with the FSP/QAPP and the validated results were utilized in the preparation of this report. As discussed in the validation report provided as Appendix C, 99.9% of all of the fall 2008 groundwater quality data are considered to be useable, which is greater than the minimum required usability of 90% as specified in the FSP/QAPP. The cadmium sample results were found to be 100% usable. VOC sample results were found to be 99.7% usable. The only rejected data were the VOC results for 2-Chloroethylvinylether from one groundwater sample (GMA5-7), which was rejected due to MS/MSD recovery deviations.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

3. Fall 2008 Groundwater Analytical Results

3.1 General

A description of the fall 2008 groundwater analytical results is presented in this section. Tables 5 and 6 provide a comparison of the concentrations of all detected constituents with the currently applicable groundwater quality Performance Standards established in the CD and SOW, while Table 7 presents a comparison of the concentrations of detected constituents with the UCLs for groundwater. These Performance Standards are described in Section 3.2 below and an assessment of the fall 2008 results relative to those groundwater quality Performance Standards and the UCLs is provided in Section 3.4.

3.2 Groundwater Quality Performance Standards

The Performance Standards applicable to response actions for groundwater at GMA 5 are set forth in Section 2.7 and Attachment H (Section 4.1) of the SOW. In general, the Performance Standards for groundwater quality are based on the groundwater classification categories designated in the MCP. The MCP identifies three potential groundwater categories that may be applicable to a given site. One of these, GW-1 groundwater, applies to groundwater that is a current or potential source of potable drinking water. None of the groundwater at any of the GMAs at the Site is classified as GW-1; however, the remaining MCP groundwater categories are applicable to GMA 5 and are described below:

- GW-2 groundwater is defined as groundwater that is a potential source of vapors to the
 indoor air of buildings. Groundwater is classified as GW-2 if it is located within 30 feet
 of an existing occupied building and has an average annual depth below ground
 surface (bgs) of 15 feet or less. Under the MCP, volatile constituents present within
 GW-2 groundwater represent a potential source of organic vapors to the indoor air of
 the overlying and nearby occupied structures.
- GW-3 groundwater is defined as groundwater that discharges to surface water. By MCP definition, all groundwater at a site is classified as GW-3 since it is considered to ultimately discharge to surface water. In accordance with the CD and SOW, all groundwater at GMA 5 is considered as GW-3.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

The CD and the SOW allow for the establishment of standards for GW-2 and GW-3 groundwater at the GMAs through use of one of three methods, as generally described in the MCP. The first, known as Method 1, consists of the application of pre-established numerical "Method 1" standards set forth in the MCP for both GW-2 and GW-3 groundwater (310 CMR 40.0974). These "default" standards have been developed to be conservative and will serve as the initial basis for evaluating groundwater at GMA 5. The current MCP Method 1 GW-2 and GW-3 standards for the constituents detected in the fall 2008 sampling event are listed in Tables 5 and 6, respectively.

For constituents for which Method 1 standards do not exist, the MCP provides procedures, known as Method 2, for developing such standards (Method 2 standards) for both GW-2 (310 CMR 40.0983(2)) and GW-3 (310 CMR 40.0983(4)) groundwater. For such constituents that are detected in groundwater during the baseline monitoring program, Attachment H to the SOW states that in the Baseline Monitoring Program Final Report, GE must propose to develop Method 2 standards using the MCP procedures or alternate procedures approved by EPA, or provide a rationale for why such standards need not be developed.

For constituents whose concentrations exceed the applicable Method 1 (or Method 2) standards, GE may develop and propose to EPA alternative GW-2 and/or GW-3 standards based on a site-specific risk assessment. This procedure is known as Method 3 in the MCP. Upon EPA approval, these alternative risk-based GW-2 and/or GW-3 standards may be used in lieu of the Method 1 (or Method 2) standards. Of course, whichever method is used to establish such groundwater standards, GW-2 standards will be applied to GW-2 groundwater and GW-3 standards will be applied to GW-3 groundwater.

On February 14, 2008 MDEP implemented revised Method 1 numerical standards for a number of constituents in groundwater, and those standards were used in the preparation of this report. In addition, in its July 30, 2008 conditional approval letter related to the *Groundwater Management Area 2 Long-Term Monitoring Program Addendum to Monitoring Event Evaluation Report for Fall 2007*, EPA specified that the low-range guidance values developed in that report for cobalt and copper should represent the Method 2 GW-3 standards for these metals at all of the GE Pittsfield GMAs. GE has previously utilized those Method 2 standards in its evaluation of whether there is any need for additional monitoring for those constituents and concluded that the baseline monitoring data was sufficient to verify attainment of the Performance Standards for cobalt and copper at GMA 5. As such, as approved by EPA, no analysis for either metal was performed on any of the samples collected during this sampling event.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

Based on consideration of the above points, the specific groundwater quality Performance Standards for GMA 5 consist of the following:

- At monitoring wells designated as compliance points to assess GW-2 groundwater (i.e., groundwater located at an average depth of 15 feet or less from the ground surface and within 30 feet of an existing occupied building), groundwater quality shall achieve any of the following:
 - a) the Method 1 GW-2 groundwater standards set forth in the MCP (or, for constituents for which no such standards exist, Method 2 GW-2 standards once developed, unless GE provides and EPA approves a rationale for not developing such Method 2 standards);
 - alternative risk-based GW-2 standards developed by GE and approved by EPA as
 protective against unacceptable risks due to volatilization and transport of volatile
 chemicals from groundwater to the indoor air of nearby occupied buildings; or
 - c) a condition, based on a demonstration approved by EPA, in which constituents in the groundwater do not pose an unacceptable risk to occupants of nearby occupied buildings via volatilization and transport to the indoor air of such buildings.
- 2. Groundwater quality shall ultimately achieve the following standards at the perimeter monitoring wells designated as compliance points for GW-3 standards:
 - a) the Method 1 GW-3 groundwater standards set forth in the MCP (or, for constituents for which no such standards exist, Method 2 GW-3 standards once developed, unless GE provides and EPA approves a rationale for not developing such Method 2 standards); or
 - alternative risk-based GW-3 standards proposed by GE and approved by EPA as protective against unacceptable risks in surface water due to potential migration of constituents in groundwater.

These Performance Standards are to be applied to the results of the individual monitoring wells included in the monitoring program. Several monitoring wells have been designated as the compliance points for attainment of the Performance Standards identified above. Those compliance wells that are sampled under the long-term monitoring program are identified in Table 1. Compliance with the applicable Performance Standards at several other wells has been verified during performance of the baseline monitoring program at GMA 5.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

In addition to the Performance Standards described above, analytical results from all groundwater monitoring wells sampled during the fall 2008 sampling event were compared to the MCP UCLs for groundwater.

3.3 Fall 2008 Groundwater Quality Results

The following subsections provide an overview of the fall 2008 analytical results from the GMA 5 monitoring wells for each constituent group that was analyzed.

3.3.1 VOC Results

Groundwater samples collected from three groundwater quality monitoring wells were analyzed for VOCs during the fall 2008 sampling event. The VOC analytical results are summarized in Table 7 (for detected constituents compared to MCP UCLs for groundwater) and Table B-1 of Appendix B (for all constituents analyzed). No VOCs were detected at well GMA5-10 during the fall 2008 sampling event, while a total of four VOCs were detected at the other two monitoring wells. Total detected VOC concentrations ranged from an estimated concentration of 0.026 parts per million (ppm) at well GMA5-9 to an estimated concentration of 0.036 ppm at well GMA5-7. The only VOC detected at more than one sampling location was tetrachloroethene (PCE). Specifically, wells GMA5-7 and GMA5-9 contained PCE at concentrations of 0.034 ppm and 0.026 ppm, respectively. As shown in Tables 5 and 6 and discussed below, no VOCs were detected at levels exceeding the applicable Method 1 GW-2 or Method 1 GW-3 standards during the fall 2008 sampling round.

3.3.2 Inorganic Constituent Results

Filtered groundwater samples were obtained from monitoring well GMA5-4 was analyzed for cadmium. The analytical results for this sample are summarized in Tables 7 and B-1 within Appendix B. Cadmium was not detected in the filtered sample analyzed from well GMA5-4.

3.4 Evaluation of Groundwater Quality - Fall 2008

For the purpose of assessing current groundwater conditions, the analytical results from the fall 2008 groundwater sampling event were compared to the applicable groundwater Performance Standards for GMA 5. These Performance Standards are described in Section 3.2 above and are currently based on the MCP Method 1 GW-2 and/or GW-3 standards. The following subsections discuss the fall 2008 groundwater analytical results in relation to these Performance Standards, as well as in relation to the MCP UCLs for groundwater. In support of those discussions, Tables 5 and 6 provide a comparison of the

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

concentrations of detected constituents with the currently applicable GW-2 and GW-3 standards, respectively, while Table 7 presents a comparison of the concentrations of detected constituents with the groundwater UCLs.

Additionally, as discussed in Section 3.5 below, concentrations of certain petroleum hydrocarbon compounds in wells installed and sampled by ExxonMobil at their Elm Street Mobil Site have exceeded Method 1 GW-2 and/or GW-3 standards during ExxonMobil's most recent groundwater sampling event, conducted in fall 2008. These wells were installed at the southwest corner of GMA 5, as part of ongoing remedial investigations and monitoring activities being conducted at that site. Groundwater quality data at specified locations obtained during those investigations is provided in Appendix E. Matters concerning water quality in relation to that site are being addressed by ExxonMobil.

3.4.1 Fall 2008 Groundwater Results Relative to GW-2 Performance Standards

During the fall 2008 groundwater quality monitoring event at GMA 5, groundwater samples were collected from three wells designated as GW-2 monitoring locations (i.e., wells GMA5-7, GMA5-9, and GMA5-10). The fall 2008 groundwater analytical results for all detected constituents subject to MCP Method 1 GW-2 standards are presented in Table 5, along with a comparison of those results to the applicable GW-2 standards. All four constituents detected in well GMA5-7 (benzene, chlorobenzene, PCE, and trichloroethene (TCE)) were found at levels below the respective Method 1 GW-2 standards. The only constituent detected at well GMA5-9 (PCE) was also at a concentration below the respective MCP GW-2 standard. No VOCs were detected in well GMA5-10 during the fall 2008 groundwater quality monitoring event. Thus, no constituent was detected in GMA 5 at a concentration above its GW-2 standard. This result is consistent with the results from spring 2008

None of the three GW-2 wells exhibited total VOC concentrations above 5 ppm (the level specified in the SOW as a notification level for GW-2 wells located within 30 feet of a school or occupied residential structure and as a trigger level for the proposal of interim response actions).

3.4.2 Fall 2008 Groundwater Results Relative GW-3 Performance Standards

Groundwater samples were collected from two wells designated as GW-3 monitoring points during the fall 2008 sampling event (i.e., wells GMA5-4 and GMA5-7). The fall 2008 groundwater analytical results for all constituents detected in these wells and a comparison of those results with MCP Method 1 GW-3 standards are presented in Table 6 (although Method 2 GW-3 standards have been developed and implemented for cobalt and copper, no samples were analyzed for these metals in fall 2008). There were no exceedances of

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

the GW-3 standards for any substances in the designated GW-3 wells within GMA 5 in fall 2008, consistent with the results for spring 2008.

At well GMA5-4, no cadmium was detected in fall 2008, consistent with the fall 2007 and spring 2008 sampling events. Although cadmium was detected in this well during the fall 2006 sampling round at an estimated concentration of 0.00411 ppm, representing a slight exceedance of the GW-3 standard for cadmium (0.004 ppm), this result represents the only detection of cadmium in this well in the nine sampling events performed since April 2002.

3.4.3 Comparison of Fall 2008 Groundwater Results to Upper Concentration Limits

In addition to comparing the fall 2008 groundwater analytical results with applicable MCP Method 1 GW-2 and GW-3 standards, the analytical results from all wells that were sampled were compared with the UCLs for groundwater specified in the MCP (310 CMR 40.09996(7)). These comparisons, presented in Table 7, show that none of the detected constituents exceeded its respective UCL.

3.5 Adjacent MCP Site Monitoring Results

As discussed above in Section 1.2, the Former Elm Street Mobil Site (MDEP Site No. 1-0539, Tier 1B Permit No. 78741) is located on adjacent, upgradient property near the southwestern corner of GMA 5. This separate disposal site (as designated under the MCP) is currently being addressed by ExxonMobil pursuant to the MCP under an Administrative Consent Order with MDEP.

The Long-Term Monitoring Proposal provides that GE will include available monitoring results from response actions performed by ExxonMobil in the monitoring event evaluation reports for GMA 5. The most recent review of the MDEP file for the Elm Street Mobil Site was conducted on January 7, 2009. Two documents pertaining to groundwater investigations and response actions have been issued for that site since the previous file review performed during preparation of the GMA 5 Spring 2008 Monitoring Event Evaluation Report. The documents are:

- Phase V Inspection & Monitoring Report, Former Mobil Service Station No. 01-ECQ83-89 Elm Street Pittsfield, Massachusetts, Release Tracking Number 1-0539 (CDM, December 2008).
- Immediate Response Action Plan and Completion Report, Former Mobil Service Station No. 01-ECQ, 83-89 Elm Street, Pittsfield, Massachusetts, Release Tracking Number 1-0539, (CDM, September 2008).

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

A site map and pertinent monitoring results from the most recent monitoring report reviewed for the Former Elm Street Mobil Site (i.e., the December 2008 Phase V Inspection and Monitoring Report) are provided in Appendix E.

The following information summary was compiled from the CDM December 2008 Phase V Inspection and Monitoring Report:

- CDM monitored seven wells in June 2008 and eight wells in July, August, September, October and November 2008 for the presence of NAPL. During each event, wells that had a measurable amount of NAPL were generally bailed, although in some cases wells were not bailed. Any NAPL removed from wells was stored in a double-walled 55-gallon drum located on the Mobil station property. A summary of the monitoring results for each well from the December 2008 Phase V Inspection and Monitoring Report is provided in Appendix E.
- During the most recent ground water sampling event conducted on October 16 and 17, 2008, CDM collected groundwater samples from 26 monitoring wells at the site.
 - ➤ No VPH compounds were detected above the laboratory detection limit in samples collected from ten of those monitoring wells.
 - Of the 16 samples that contained concentrations of VPH compounds above the laboratory detection limit, there were no MCP Method 1 GW-2 or GW-3 Groundwater Standards exceeded in samples collected from 14 monitoring wells.
 - ➤ GW-2 standard exceedances were observed in samples collected from two monitoring wells (GES-208 and EXP-11R). These wells were conservatively designated as GW-2 wells due to their close proximity to the former Mobil station, which is currently unoccupied, and fluctuating depth to water near 15 feet bgs. Samples collected from these two wells contained concentrations of C5-C8 aliphatic hydrocarbons in excess of the GW-2 standard. The sample collected from GES-208 also contained concentrations of total xylenes, C9-C12 aliphatic hydrocarbons and C9-C10 aromatic hydrocarbons in excess of the respective GW-2 standards. Concentrations of all four constituents were also detected above GW-2 standards in the duplicate sample collected from GES-208.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

GW-3 standard exceedances were observed in the sample collected from one monitoring well located on the former Mobil station property (GES-208). Total xylenes were detected in this sample at a concentration of 19,930 μg/L. The concentration of total xylenes detected in the duplicate sample collected at this well was 11,596 μg/L. No other constituents in this sample, or any other sample, were detected above their applicable GW-3 standards.

As noted above, all matters concerning groundwater and NAPL related to the ExxonMobil site are being addressed by ExxonMobil under the MCP.

3.6 NAPL Evaluation

Consistent with prior monitoring results, no NAPL was observed in any of the GMA 5 monitoring wells during the groundwater elevation and sampling activities conducted in fall 2008.

If NAPL is encountered at portions of GMA 5 outside of the Former Elm Street Mobil Site and adjacent areas being addressed by ExxonMobil pursuant to the MCP under a separate Administrative Consent Order with MDEP, the long-term trend evaluations will also include a review of the current NAPL recovery efforts to the extent that data are available from ExxonMobil.

During the Long-Term Monitoring Program, if NAPL is observed to be discharging to any surface water or creating a sheen on the water in a location in which such NAPL discharge was not previously observed or measures are not in place to effectively contain the sheen, GE will notify EPA and MDEP within two hours of obtaining knowledge of such observation. This will be followed by written notice to EPA within seven (7) days. The written notification will include a proposal to EPA for interim response actions to contain such discharge. Upon EPA approval, GE will conduct the approved interim response actions to contain the NAPL discharge.

Also under the approved GMA 5 Long-Term Monitoring Proposal, if NAPL is observed to be discharging to any surface water or creating a sheen on the water in a location in which such NAPL discharge was previously observed and measures are in place to contain the sheen, GE will notify EPA of the continued presence of such NAPL in the next monthly progress report for overall work at the Site.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

For groundwater, if a NAPL thickness of greater than or equal to 1/2-inch is observed in any monitoring well, GE will notify EPA and MDEP within seventy-two hours of obtaining knowledge of such a condition, unless such conditions are consistent with the types, nature, and quantities of NAPL which were previously observed and reported to the Agencies. This notification will be followed by written notice to the EPA within 60 days. The written notification will include a proposal to EPA for interim response actions to be conducted which may include NAPL sampling, additional assessment/monitoring, or NAPL removal activities. Upon EPA approval, GE will conduct the approved interim response actions. If a NAPL thickness of greater than or equal to 1/8-inch, but less than 1/2-inch is observed in a monitoring well, GE will notify EPA and MDEP in the next monthly progress report, unless the results are consistent with the types, nature, and quantities of NAPL which have previously been observed and reported to the Agencies.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

4. Assessment of Groundwater Quality

4.1 General

This report constitutes the third monitoring event evaluation report submitted since commencement of the GMA 5 long-term groundwater quality program. The information presented herein is based on the laboratory results obtained during the course of the GMA 5 baseline and long-term groundwater monitoring programs.

For the purpose of assessing overall groundwater conditions at GMA 5, the analytical results from the fall 2008 groundwater sampling event were compared to the applicable groundwater Performance Standards for GMA 5, as described in Section 3.4 above. In addition, GE has compared the fall 2008 results to prior data to evaluate variations and/or potential trends in constituent concentrations in GMA 5 groundwater.

The following sections present the results of those overall assessments of groundwater quality, including an evaluation of the need for follow-up investigations, assessments, interim response actions, or other modifications to the long-term monitoring program.

4.2 Evaluation of Variations in Groundwater Quality

For the purpose of assessing current groundwater conditions, the analytical results from the fall 2008 groundwater sampling event were compared to data obtained during prior baseline sampling events, and in particular, the most recent round of sampling data. In addition, the variability of the data was evaluated. The results of these comparisons are described below.

4.2.1 Comparison of Fall 2008 Analytical Results to Baseline Data

Graphs illustrating historical VOC and filtered cadmium concentrations for all wells sampled and analyzed for those constituent during fall 2008 at GMA 5 are presented in Appendix D. In addition, Appendix D contains graphs of historical concentrations of individual constituents that exceeded the applicable MCP Method 1 GW-2 or GW-3 standards during any of the prior sampling events (i.e., PCE and vinyl chloride at well GMA5-7).

At well GMA5-7, the fall 2008 total VOC concentrations (0.036 ppm) is slightly higher than the arithmetic average concentration observed at this well (0.0348 ppm). However, the fall 2008 results are less than the maximum total VOC concentrations observed during the baseline program in spring and fall 2006. Wells GMA5-9 and GMA5-10 did not exist during the baseline program. Both wells were sampled for the third time in fall 2008; therefore the prior data available for comparison is limited to the past two results. Total VOC

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

concentrations at well GMA5-9 were found to be 0.026 ppm, slightly above the arithmetic average of 0.023 ppm, but still at relatively low levels in comparison to the Performance Standards for the detected constituents. No VOCs were detected at well GMA5-10, compared to trace amounts (0.00016J, [0.00035J]) observed in fall 2007.

Since PCE is the primary constituent found at wells GMA5-7 and GMA5-9, the graphs of historical PCE concentrations contained in Appendix D are very similar to the total VOC results discussed above --- e.g., the fall 2008 PCE concentration at GMA5-7 (0.034 ppm) was slightly above the historical arithmetic average of 0.0304 ppm. However, this concentration is less than the maximum levels observed in spring and fall 2006. All PCE concentrations, with the exception of that spring 2006 result, have been below the GW-2 standard of 0.05 ppm.

The historical graph for vinyl chloride concentrations shows non-detect for vinyl chloride in fall 2008 at well GMA5-7. Vinyl chloride has been detected during only three of the ten times it has been analyzed for at this well and has not shown an exceedance of the GW-2 standard since fall 2003 (0.0029 ppm). The fall 2003 event was the only round that exceeded the GW-2 standard for vinyl chloride.

As shown in the graph in Appendix D, cadmium was not detected in well GMA5-4 during fall 2008. This is consistent with all other prior sampling rounds at this well, with the exception of a single detection during the fall 2006 monitoring event.

4.2.2 Comparison of Fall 2008 Analytical Results to Previous Sampling Round

Table D-3 in Appendix D presents a comparison of the fall 2008 analytical results to historical sampling data collected from each of the wells for each constituent analyzed (i.e., VOCs at wells GMA5-7, GMA5-9 and GMA5-10, and cadmium at well GMA5-4).

At well GMA 5-7, the total VOC concentration detected in fall 2008 (estimated at 0.036 ppm) was slightly below the estimated concentration of 0.041 ppm observed in spring 2008. PCE was the primary constituent observed during each sampling round in 2008, at concentrations of 0.037 ppm in spring 2008 compared to 0.034 ppm in the fall. TCE was the only other VOC detected during each of the 2008 sampling events, and was found at concentrations an order of magnitude below the applicable GW-2 Standard of 0.03 ppm in both spring 2008 (0.0028 ppm) and fall 2008 (0.0014 ppm). Trace concentrations of five other VOCs were either detected in spring 2008, but not in fall 2008 (ethylbenzene, trans-1,2-dichloroethene, and vinyl chloride) or observed in the fall but not the spring (benzene and chlorobenzene).

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

PCE was the only VOC detected in fall 2008 at well GMA5-9. Along with PCE, a trace concentration of chlorobenzene was also detected at this well in spring 2008. Total VOC concentrations at this well (which are almost entirely attributable to PCE) were relatively consistent at this well, ranging from 0.021 ppm in spring 2008 to 0.026 ppm in fall 2008.

As in spring 2008, no VOCs were detected at well GMA5-10 in fall 2008.

No cadmium was detected in the filtered sample from well GMA5-4 in fall 2008, which was consistent with the results from spring 2008. The fall 2006 result of 0.00411 ppm appears to be anomalous, given that cadmium was not detected during any of the seven other sampling rounds performed at this well. Nonetheless, pursuant to EPA's April 22, 2008 conditional approval letter, GE will continue analyzing this well for cadmium until four consecutive sampling rounds show cadmium levels at or below the Performance Standards.

4.2.3 Evaluation of Seasonal Variability in Data

To evaluate the potential presence of seasonal trends in the groundwater quality data at GMA 5, GE has reviewed the analytical data from the wells included in the long-term monitoring program at GMA 5. Inspection of the historical concentration graphs contained in Appendix D indicates that, for both PCE and total VOCs, the ranges of data collected in the spring vs. fall seasons are within the same order of magnitude at wells GMA5-7, GMA5-9, and GMA5-10, although the data show more variation and there are significantly more historical data at well GMA5-7 than at wells GMA5-9 and GMA5-10. Cadmium was only detected at well GMA5-4 during the fall 2006 monitoring event, but not during four other fall monitoring rounds (or three spring sampling events). Based on these preliminary evaluations, it does not appear that seasonal variability is significantly affecting the sampling results throughout GMA 5.

4.3 Statistical Assessment of Data

To assess potential trends in groundwater constituent concentrations over time (i.e., long-term increasing or decreasing concentrations) as well as seasonal cycles, various statistical methods can be utilized depending on the extent of the overall sampling period and the frequency of sampling events within the sampling period. Graphical representations such as a simple plot of concentration data versus time may reveal long-term cyclical patterns as well as pulses, both of which may explain temporal trends. As described in the GMA 5 Long-Term Monitoring Proposal, three statistical techniques may be utilized to evaluate temporal trends in GMA 5 groundwater and to determine the statistical significance of any potential trends that are identified: (1) Mann-Kendall Test; (2) Sen's slope estimator; and (3) Seasonal Kendall Tau estimator. The need for such statistical evaluations will be

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

assessed as the long-term monitoring program progresses and will be summarized in the Long-Term Trend Evaluation Reports for GMA 5 as appropriate.

In addition to the concentration versus time graphs discussed above, GE has prepared a general summary of the analytical results for all wells/constituents included in the long-term monitoring program. The summary statistics of the analytical data for the GMA 5 wells where long-term monitoring is being conducted (i.e., wells GMA5-4, GMA5-7, GMA5-9 and GMA5-10) are contained in Appendix F and are discussed below.

As shown in Table F-1 in Appendix F, cadmium was only detected at well GMA5-4 during one of 8 sampling events (fall 2006). Although the estimated concentration during that event was slightly above the GW-3 standard of 0.004 ppm, the average concentration at this well is below the applicable standard and that single detection appears to be anomalous. Similar to the four sampling rounds conducted prior to fall 2006, and the first two sampling rounds of the long-term monitoring program (fall 2007 and spring 2008), no cadmium was detected in the filtered sample from well GMA5-4 analyzed in fall 2008.

A statistical breakdown of the historical VOC data for well GMA5-7 is contained in Table F-2 in Appendix F. As seen on that table, nine individual VOCs have been detected in this well during at least one of the ten sampling events that have been conducted. Four of these constituents were detected at trace levels during fall 2008. PCE and TCE were each detected during at least two sampling events, including fall 2008. The primary VOCs observed at well GMA5-7 are PCE (detected during all 10 sampling events) and TCE (detected during 6 of 10 sampling events). Benzene and chlorobenzene have been found for the first time at this location during the fall 2008 round.

A statistical breakdown of the historical VOC data for well GMA5-9 is provided in Table F-3 in Appendix F. As seen on that table, PCE was detected during all sampling events that have been conducted at this well, including fall 2008. The only VOC observed at well GMA5-9 in fall 2008 was PCE. The fall 2008 concentration of PCE (0.026ppm) was just above the arithmetic average (0.0230 ppm).

A statistical breakdown of the historical VOC data for well GMA5-10 is contained in Table F-4 in Appendix F. As seen on that table, only one individual VOC has been detected in this well during the three sampling events that have been conducted. No constituents were detected during fall 2008. Toluene was detected during only one sampling event, in fall 2007.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

4.4 Overall Assessment of Groundwater Quality Data

Very few constituents have been consistently detected in groundwater at GMA 5. Most of the observed detections have been sporadic and spread across the GMA, resulting in an apparent scattered distribution of occasionally-detected constituents. Low levels of VOCs and inorganics have been detected in certain wells included in the long-term monitoring program at the GMA.

The following subsections provide an overview of the groundwater quality data at GMA 5, focused on the constituents and locations that are included in the long-term monitoring program and/or were sampled in fall 2008.

4.4.1 VOCs

Three wells were included in the fall 2008 long-term sampling event for VOC analysis. However, only one well (GMA5-7) is currently part of the long-term monitoring program. Wells GMA5-9 and GMA5-10 were installed and sampled to assess the VOCs found to be present in well GMA5-7, particularly to help determine if the presence of PCE in well GMA5-7 could be related to a dry cleaning facility located upgradient of that well.

Total VOC concentrations at well GMA5-7 are closely related to the concentrations of PCE, which constitutes the primary constituent detected in this well. PCE has been detected in well GMA5-7 during each sampling round, as shown in the graph in Appendix D. During the spring 2006 sampling event, the concentration of PCE detected in this well (0.062 ppm) exceeded the GW-2 standard of 0.05 ppm. However, in the fall 2008 sampling round, the PCE concentration detected in this well (0.034 ppm) was below the GW-2 standard, consistent with the result from the fall 2006, spring 2007, fall 2007 and spring 2008 sampling rounds. The spring 2006 event was the only occasion on which the GW-2 standard for PCE was exceeded at this well. Since that time, four sampling rounds have been conducted, with the PCE results below the applicable standard.

Although the last four consecutive sampling events showed results below the applicable standards (as required to demonstrate that the groundwater Performance Standards have been achieved) and the PCE and total VOC concentrations at this well have been essentially stable near their historical average concentrations for the past several years (including fall 2008), GE plans to continue to sample this well under the long-term monitoring program until potential trends in the analytical results are more thoroughly examined in the initial Long-Term Trend Evaluation Report, which is currently scheduled to be submitted in fall 2009.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

The GW-2 standard for vinyl chloride (0.002 ppm) was exceeded in well GMA5-7 during the fall 2003 sampling round, when the detected concentration was 0.0029 ppm. As shown in the historical vinyl chloride concentration graph for this well in Appendix D, vinyl chloride was not detected in this well during four out of six subsequent sampling events and was only detected at trace levels below the PQL in fall 2007 and spring 2008. Thus, the fall 2008 represents the sixth consecutive sampling event in which the vinyl chloride concentration was below the applicable GW-2 standard, indicating that the Performance Standard for vinyl chloride has been achieved at well GMA5-7. However, since well GMA5-7 will continue to be analyzed for VOCs to further assess PCE concentrations at that location, GE will continue to evaluate the presence of vinyl chloride at this well.

PCE was detected at a concentration above the GW-2 standard in well GMA 5-7 only once out of the last ten sampling rounds. As noted above, given the location of well GMA5-7 downgradient from operating dry cleaning and laundry facilities and the general absence of PCE elsewhere in the GMA, GE believes it is apparent that the PCE in this well is not related to former GE operations at the site. Consistent with this understanding, MDEP issued a Notice of Responsibility letter for a PCE release to the owner of the upgradient property where the dry cleaning operation is located after the GW-2 exceedance at well GMA5-7 was reported. Nonetheless, to perform a further evaluation of the possible source of PCE, GE agreed to install wells GMA5-9 and GMA5-10 upgradient of well GMA5-7. At well GMA5-9, which is closest to the dry cleaning facility, the PCE concentration in fall 2008 was 0.026 ppm (see Table 5), which is comparable to the concentration in well GMA5-7 (0.034 ppm). The fall 2008 PCE concentration in well GMA5-9 was similar to the concentrations observed during the initial monitoring rounds at this well in fall 2007 (0.022 ppm) and spring 2008 (0.021 ppm), and all of these concentrations were well below the GW-2 standard. No PCE has ever been detected in well GMA5-10. Although no exceedances of any applicable Performance Standards have been recorded at wells GMA5-9 or GMA5-10, and although the only locations in this GMA where PCE has been detected are in the vicinity of or downgradient from the operating dry cleaning and laundry facilities, GE proposes to conduct one additional monitoring round for VOC analyses in spring 2009 in order to obtain a fourth set of analytical data, allowing GE to evaluate the need for long-term monitoring at these locations utilizing the same sample size utilized at the other GMA 5 wells during the baseline monitoring program.

4.4.2 Cadmium

Well GMA5-4 was added to the long-term monitoring program based on an estimated cadmium concentration of 0.00411 ppm detected in fall 2006, which is slightly above the GW-3 standard of 0.004 ppm. Cadmium was not detected in the filtered sample from well GMA5-4 in fall 2008. Overall, samples from well GMA5-4 have been analyzed for cadmium during seven sampling events conducted since initiation of the baseline monitoring program

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

and the fall 2006 event was the only time that the constituent was detected. Fall 2008 was the third sampling event conducted since the GW-3 exceedance observed in fall 2006, and the historical data from this well indicate that the fall 2006 data point is anomalous. Nevertheless, as required by EPA in its April 22, 2008 conditional approval letter, GE will continue long-term monitoring for cadmium at well GMA5-4 for one more round, until four consecutive sample results below the GW-3 standard are obtained.

4.5 Evaluation of the Need for Follow-up Investigations, Assessments, or Interim Response Actions

As stated in the GMA 5 Long-Term Monitoring Proposal and Addendum, the analytical data obtained during the baseline monitoring programs did not reveal any data gaps concerning groundwater quality that would suggest the need for any further investigations or assessments, other than the additional investigations being conducted to identify the source of PCE found in well GMA5-7. Likewise, a review of the fall 2008 long-term monitoring data does not indicate the need for additional actions beyond the approved long-term monitoring activities.

In fall 2008, the detected VOC concentrations were very low in relation to any applicable GW-2 or GW-3 standards and cadmium was not detected at all. Based on the results during the fall 2008 sampling round, there have been no wells at which any detected concentration suggests the need for an interim response action apart from continued long-term monitoring at certain of these locations. If any exceedances of the groundwater-related Performance Standards are observed at GMA 5, GE will evaluate the need for appropriate response actions and will propose any necessary actions for EPA approval.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

5. Schedule of Future Activities

5.1 Field Activities Schedule

A summary of the long-term groundwater sampling program activities proposed to be conducted in spring 2009 is provided in Table 8. The monitoring well subject to sampling in spring 2009 is illustrated on Figure 4. GE will continue to monitor groundwater elevations at the GMA 5 wells listed in Table 8 on a semi-annual basis, in conjunction with future long-term sampling events.

Since GE has proposed no modifications to the long-term monitoring program requiring EPA approval prior to the next scheduled sampling event, GE will conduct the Spring 2009 long-term groundwater quality sampling event in April/May 2009. A round of groundwater elevation monitoring at the GMA 5 wells where such monitoring is required will also be performed at that time.

Prior to performance of these field activities, GE will provide EPA with 7 days advance notice to allow the assignment of oversight personnel. The schedule discussed above was developed under the assumption that GE will be able to obtain permission from the owners of the properties that comprise GMA 5 to conduct the monitoring and sampling activities in advance of their estimated performance dates. If that is not the case, GE will notify EPA of potential schedule impacts due to delays in obtaining such access to the properties.

5.2 Reporting Schedule

GE will continue to provide the results of preliminary groundwater analytical data in its monthly reports on overall activities at the GE-Pittsfield/Housatonic River Site. Those reports will also document the schedules for submittal of the Monitoring Event Evaluation Reports and Long-Term Trend Evaluation Reports, which are contingent upon receipt of the final analytical data packages from the groundwater sampling events, as discussed below.

In accordance with the previously-approved reporting schedule for this GMA, GE proposes to submit the Spring 2009 Monitoring Event Evaluation Report for GMA 5 within 60 days following receipt of the final analytical data packages from the event. That report will present the final, validated spring 2009 sampling results and a brief discussion of the results, including the evaluations of the data and any proposals to further modify the long-term monitoring program, if necessary. GE will also include an updated summary of available groundwater monitoring results and analytical data collected at the adjacent Elm Street Mobil Site, to the extent that such information is available to GE.

GMA 5 Fall 2008 Monitoring Event Evaluation Report

General Electric Company Pittsfield, Massachusetts

Subsequent semi-annual Monitoring Event Evaluation Reports for GMA 5 will be submitted within 60 days following receipt of the final analytical data packages from each event.

In addition, as previously approved by EPA, a Long-Term Trend Evaluation Report is scheduled to be submitted in place of a Monitoring Event Evaluation Report at the completion of the fall 2009 sampling round. Subsequent Long-Term Trend Evaluation Reports for GMA 5 will be prepared at two-year intervals over the duration of the long-term monitoring program at GMA 5. Each such report will be submitted within 75 days following receipt of the final analytical data packages from the latest monitoring event included in the two-year evaluation cycle. However, the spring 2009 sampling event will represent the fourth such event conducted under the long-term monitoring program and, if the analytical results from that sampling round are consistent with recent data, may be the fourth consecutive sampling event where all groundwater quality Performance Standards at GMA 5 are met. Therefore, if it appears that long-term monitoring may no longer be necessary at GMA 5 after reviewing the spring 2009 analytical results, GE may propose to submit the initial Long-Term Trend Evaluation Report in lieu of the Spring 2009 Monitoring Event Evaluation Report for GMA 5.

Tables

Table 1 Fall 2008 Groundwater Monitoring Program

W- II N I	Manager and Mall Harana	Sampling Sche	dule & Analyses	2
Well Number	Monitoring Well Usage	Sampling Schedule	Analyses Completed	Comments
GMA5-1	Groundwater Elevation	None	None	
GMA5-3	Groundwater Elevation	None	None	
GMA5-4	GW-3 Perimeter (GW-3 Compliance Well)	Semi-Annual	Cadmium	Long-term monitoring conducted to verify attainment of GW-3 Performance Standards for cadmium.
GMA5-7	GW-2 Sentinel/GW-3 Perimeter (GW-2/GW-3 Compliance Well)	Semi-Annual	VOC	Long-term monitoring conducted to verify attainment of GW-2 Performance Standards for vinyl chloride and PCE.
GMA5-8	Groundwater Elevation	None	None	
GMA5-9	GW-2 Sentinel (Supplemental)	Fall 2008	VOC	Sampled as part of PCE assessment.
GMA5-10	GW-2 Sentinel (Supplemental)	Fall 2008	voc	Sampled as part of PCE assessment.
GT-7	Groundwater Elevation - Elm Street Mobil	None	None	
GT-101	Groundwater Elevation - Elm Street Mobil	None	None	

NOTE:

1. Wells GMA5-4, GMA5-7, GMA5-9, GMA5-10 were sampled for the listed parameters during the long-term groundwater quality sampling event conducted in Fall 2008.

Table 2
Monitoring Well Construction

Well ID	Survey Co	pordinates	Well Diameter	Ground Surface Elevation	Measuring Point Elevatin	Depth to Top of Screen	Screen Length	Top of Screen Elevation	Base of Screen Elevation	Average Depth to Groundwater	Average Groundwater Elevation
	Northing	Easting	(inches)	(ft AMSL)	(ft AMSL)	(ft bgs)	(ft)	(ft AMSL)	(ft AMSL)	(ft bgs)	(ft AMSL)
GMA5-1	531464.50	130012.30	2.00	984.40	984.82	5.11	10.00	979.29	969.29	9.63	975.38
GMA5-3	531419.00	139738.70	2.00	989.57	989.14	10.00	15.00	979.57	964.57	17.75	971.82
GMA5-4	531811.30	129982.60	2.00	979.29	979.10	8.09	10.00	971.20	961.20	8.08	971.21
GMA5-7	531507.50	129845.00	2.00	987.21	986.75	8.00	20.00	979.21	959.21	15.60	971.61
GMA5-8	531711.70	130216.90	2.00	984.95	984.69	8.00	10.00	976.95	966.95	12.56	972.39
GMA5-9	531276.20	129834.80	2.00	989.88	989.42	12.00	10.00	977.9	967.88	15.78	974.11
GMA5-10	531407.90	129894.40	2.00	987.57	987.11	9.00	10.00	978.6	968.57	13.94	973.64
GT-7	531331.70	129602.82	4.00	990.11	989.76	10.00	15.00	980.11	965.11	16.77	973.34
GT-101		-		989.92	989.68			-		18.84	971.08

Notes:

- 1. feet AMSL = feet above mean sea level.
- 2. feet BGS = feet below ground surface.
- 3. -- = not available.
- 4. Complete monitoring well construction information for Former Mobil Service Station wells GT-101, GT-102, and RW-2 is not available. Ground surface elevatins are inferred based on flush mount well construction
- 5. Well GMA5-1 was modified during construction activities in the area. The screen elevations listed above are based on an initial ground elevation of 985.11 feet AMSL and depth to top of screen of 5.72 feet. This well was re-surveyed on January 8, 2008 and the corrected ground surface and measuring point elevations, as well as a revised depth to top of screen based on new grade are listed above

Table 3
Groundwater Elevation Data - Fall 2008

Well Number	Remedial Action Area	Fall 2008 Groundwater Elevation (Feet AMSL)
GMA 5-1	Oxbow Areas A and C	975.37
GMA 5-3	Oxbow Areas A and C	972.23
GMA 5-4	Oxbow Areas A and C	970.90
GMA 5-7	Oxbow Areas A and C	973.97
GMA 5-8	Oxbow Areas A and C	973.49
GMA 5-9	Oxbow Areas A and C	975.21
GMA 5-10	Oxbow Areas A and C	974.04
GT-7	Elm Street Mobil	973.73
GT-101	Elm Street Mobil	972.61

Notes:

- 1. Groundwater elevation measurements were collected on October 30, 2008.
- 2. Coltsville mean flow for the 10/30/08 Fall 2008 Monitoring round was 324 cubic feet per second (cfs).
- 2. The surface water elevation of the Housatonic River, measured at (BM-2A) the Lyman Street Bridge on October 30, 2008 was 971.37 feet AMSL.

Table 4
Field Parameter Measurements - Fall 2008

Well Number	Turbidity (NTU)	Temperature (degrees Celsius)	pH (Standard Units)	Specific Conductivity (mS/cm)	Oxidation-Reduction Potential (mV)	Dissolved Oxygen (mg/L)
GMA5-4	9	11.15	6.89	1.063	-108.60	3.20
GMA5-7	7	11.47	6.81	0.619	68.50	6.12
GMA5-9	17	13.10	6.77	1.624	-108.50	2.99
GMA5-10	3	15.00	6.39	1.477	-57.70	0.29

Notes:

- 1. Measurements collected during Fall 2008 groundwater sampling event performed on October 30 and November 3, 2008.
- 2. Well parameters were monitored continuously during purging by low-flow techniques. Final stabilized parameter readings are presented.
- 3. NTU Nephelometric Turbidity Units
- 4. mS/cm Millisiemens per centimeter
- 5. mV Millivolts
- 6. mg/L Milligrams per liter (ppm)

Table 5 Comparison of Groundwater Analytical Results to MCP Method 1 GW-2 Standards

Baseline Groundwater Quality and Interim Report for Fall 2008 Groundwater Management Area 5 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:	Method 1 GW-2 Standards	GMA5-7 10/30/08	GMA5-9 10/30/08	GMA5-10 11/03/08
Volatile Orga	anics				
Benzene		2	0.00010 J [0.000090 J]	ND(0.0010)	ND(0.0010)
Chlorobenzer	ne	0.2	0.00071 J [0.00071 J]	ND(0.0010)	ND(0.0010)
Tetrachloroet	thene	0.05	0.034 [0.034]	0.026	ND(0.0010)
Trichloroethe	ene	0.03	0.0014 [0.0014]	ND(0.0010)	ND(0.0010)
Total VOCs		5	0.036 J [0.036 J]	0.026	ND(0.10)

Notes:

- Samples were collected by ARCADIS and submitted to SGS Environmental Services, Inc. for analysis of volatiles and cadmium (filtered).
- Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP), General Electric Company, Pittsfield, Massachusetts, ARCADIS (approved March 15, 2007 and re-submitted March 30, 2007).
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. Only detected volatiles are summarized.
- Total VOCs are being compared to the notification level in the SOW of 5 ppm, as there is no GW-2 standard for Total VOCs.
- 6. Field duplicate sample results are presented in brackets.

Data Qualifiers:

Organics (volatiles)

- J Indicates that the associated numerical value is an estimated concentration.
- R Data was rejected due to a deficiency in the data generation process.

Table 6 Comparison of Groundwater Analytical Results to MCP Method 1 GW-3 Standards

Baseline Groundwater Quality and Interim Report for Fall 2008 Groundwater Management Area 5 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

	Sample ID:	Method 1 GW-3	GMA5-4	GMA5-7
Parameter	Date Collected:	Standards	10/30/08	10/30/08
Volatile Organ	nics			
Benzene		10	NA	0.00010 J [0.000090 J]
Chlorobenzene)	1	NA	0.00071 J [0.00071 J]
Tetrachloroethe	ene	30	NA	0.034 [0.034]
Trichloroethene	Э	5	NA	0.0014 [0.0014]
Inorganics-Fil	tered			
Cadmium		0.004	ND(0.0100) J [ND(0.0100) J]	NA

Notes:

- 1. Samples were collected by ARCADIS and submitted to SGS Environmental Services, Inc. for analysis of volatiles and cadmium (filtered).
- Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP), General Electric Company, Pittsfield, Massachusetts, ARCADIS (approved March 15, 2007 and re-submitted March 30, 2007).
- 3. NA Not Analyzed.
- 4. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 5. Field duplicate sample results are presented in brackets.
- 6. With the exception of cadmium only those constituents detected in one or more samples are summarized.

Data Qualifiers:

Organics (volatiles)

- J Indicates that the associated numerical value is an estimated concentration.
- R Data was rejected due to a deficiency in the data generation process.

Inorganics

J - Indicates that the associated numerical value is an estimated concentration.

Table 7 Comparison of Groundwater Analytical Results to MCP UCLs for Groundwater

Baseline Groundwater Quality and Interim Report for Fall 2008 Groundwater Management Area 5 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

Sample ID:	MCP UCL	GMA5-4	GMA5-7	GMA5-9	GMA5-10
Parameter Date Collected:	for GroundWater	10/30/08	10/30/08	10/30/08	11/03/08
Volatile Organics					
Benzene	100	NA	0.00010 J [0.000090 J]	ND(0.0010)	ND(0.0010)
Chlorobenzene	10	NA	0.00071 J [0.00071 J]	ND(0.0010)	ND(0.0010)
Tetrachloroethene	100	NA	0.034 [0.034]	0.026	ND(0.0010)
Trichloroethene	50	NA	0.0014 [0.0014]	ND(0.0010)	ND(0.0010)
Inorganics-Filtered					
Cadmium	0.05	ND(0.0100) J [ND(0.0100) J	NA	NA	NA

Notes:

- 1. Samples were collected by ARCADIS and submitted to SGS Environmental Services, Inc. for analysis of volatiles and cadmium
- Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP), General Electric Company, Pittsfield, Massachusetts, ARCADIS (approved March 15, 2007 and re-submitted March 30, 2007).
- 3. NA Not Analyzed.
- 4. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 5. Field duplicate sample results are presented in brackets.
- 6. With the exception of cadmium only those constituents detected in one or more samples are summarized.

Data Qualifiers:

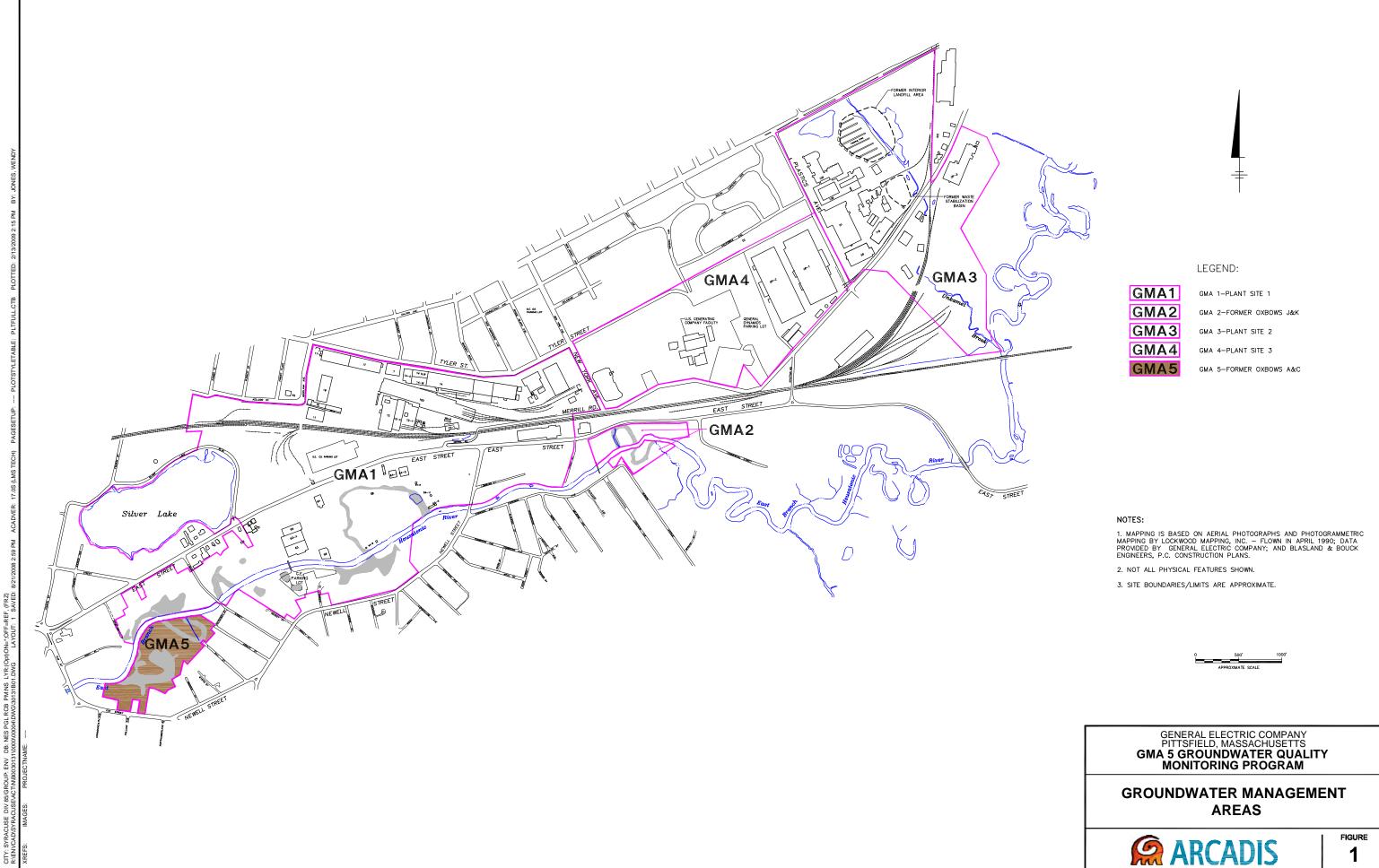
Organics (volatiles)

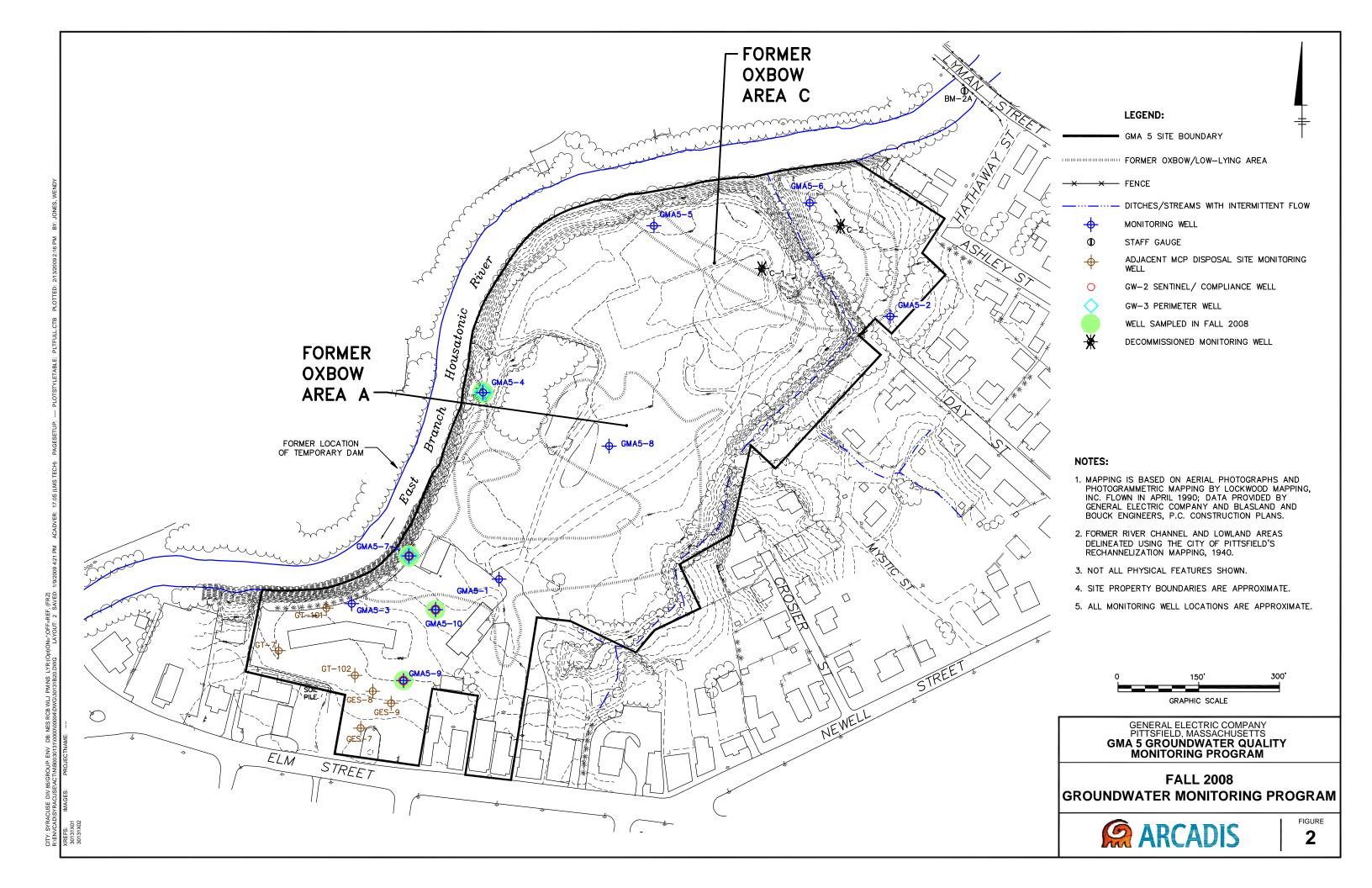
- J Indicates that the associated numerical value is an estimated concentration.
- R Data was rejected due to a deficiency in the data generation process.

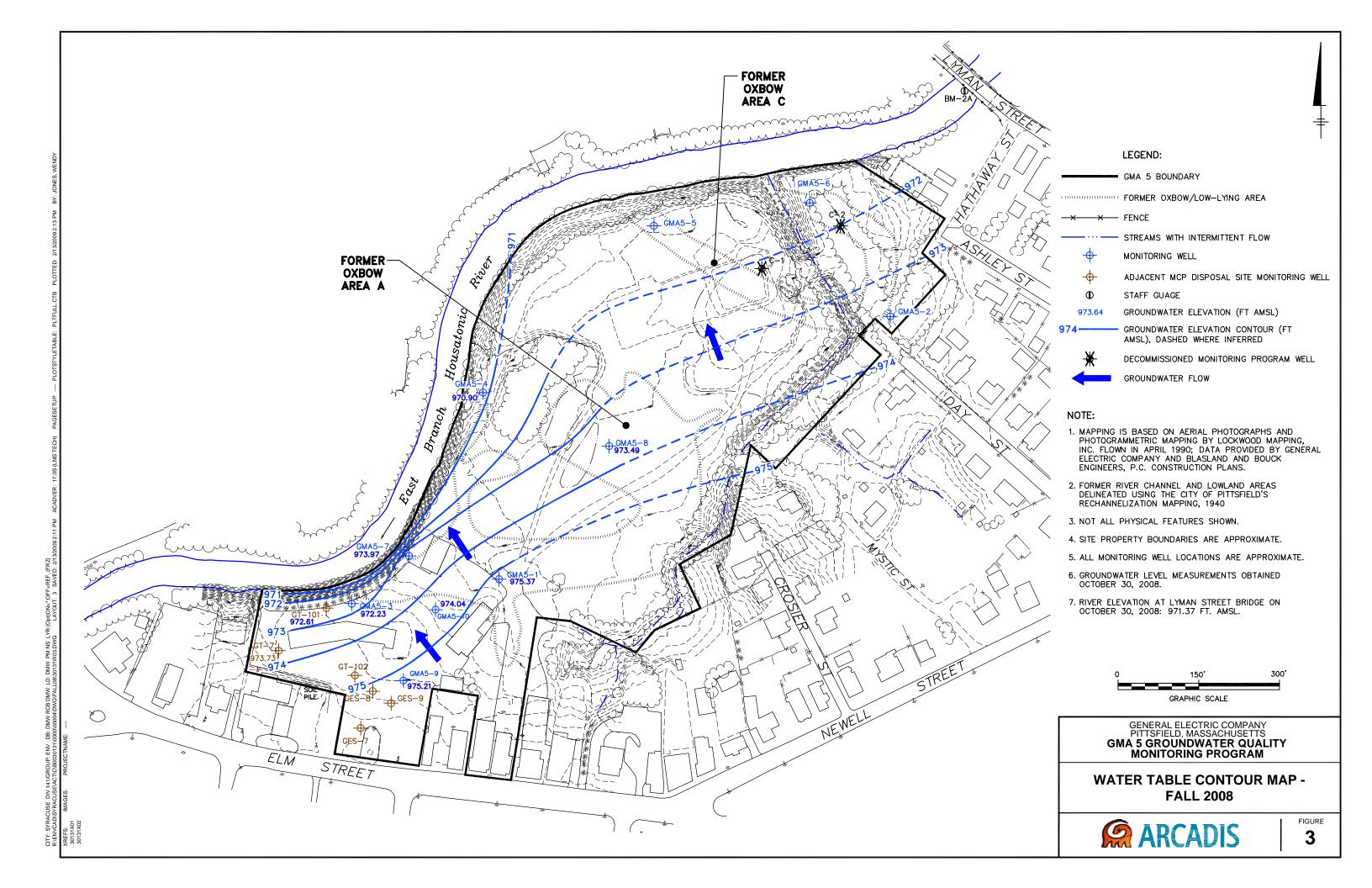
Inorganics

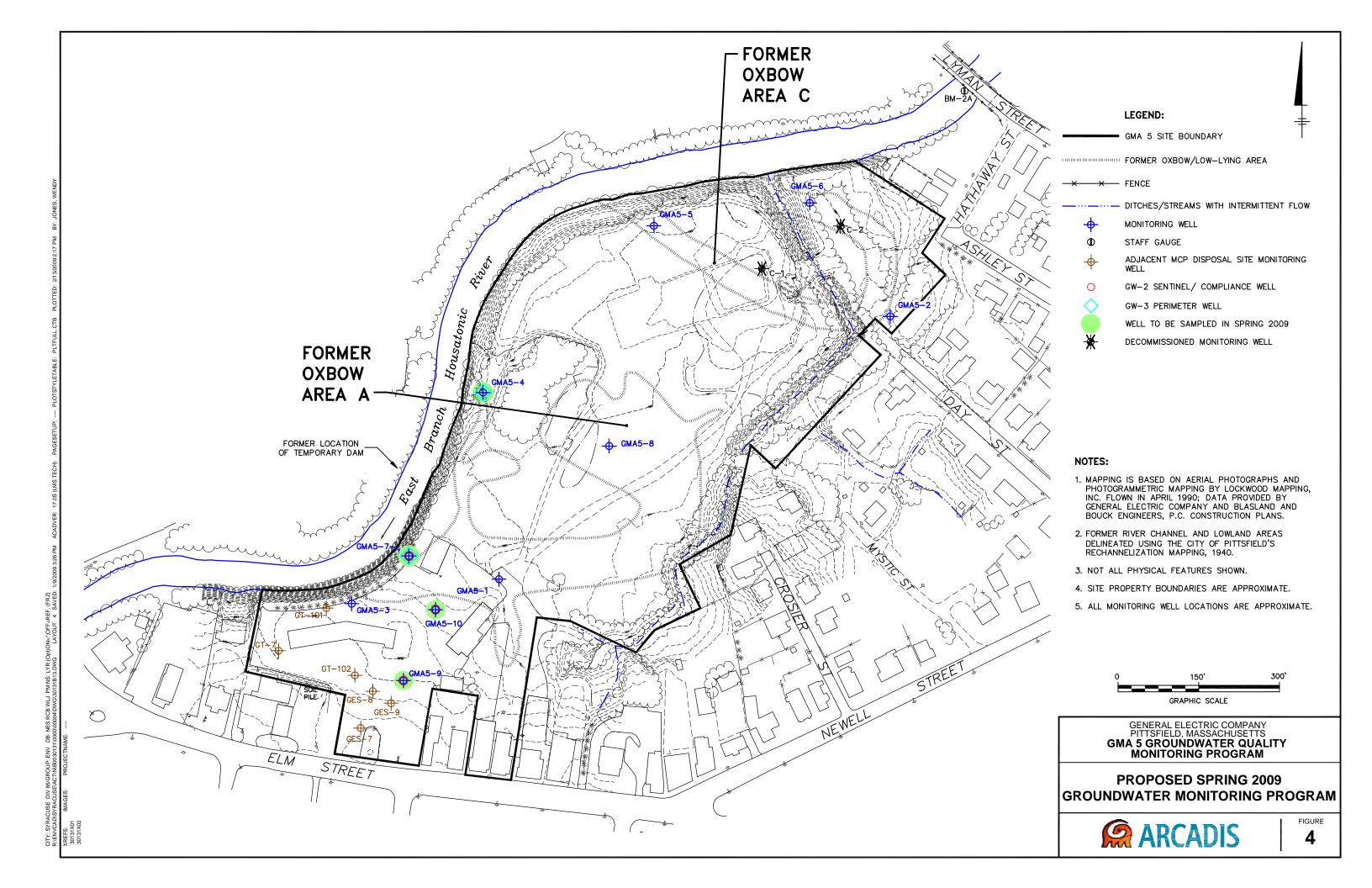
J - Indicates that the associated numerical value is an estimated concentration.

Table 8
Proposed Long Term Groundwater Monitoring Program Activities - Spring 2009


	Maritania Wall Davianatian	O	Proposed Sam and An	_	0
Well Number	Monitoring Well Designation	Current Monitoring Well Usage	Sampling Schedule	Proposed Analyses	Comments
GMA5-1	GW-2 Sentinel/ GW-3 Perimeter	Groundwater Elevation	None	None	Groundwater elevation monitoring location only
GMA5-3	GW-2 Sentinel/GW-3 Perimeter (GW-2/GW-3 Compliance Well)	Groundwater Elevation	None	None	Groundwater elevation monitoring location only
GMA5-4	GW-3 Perimeter (GW-3 Compliance Well)	Groundwater Elevation/ GW-3 Perimeter Monitoring	Semi-Annual	Cadmium	Long-term sampling to be continued to verify attainment of GW-3 Performance Standards for cadmium (have been met for three consecutive sampling events).
GMA5-7	GW-2 Sentinel/GW-3 Perimeter (GW-2/GW-3 Compliance Well)	Groundwater Elevation/ GW-2 Sentinel/GW-3 Perimeter Monitoring	Semi-Annual	VOC	GW-2 Performance Standards for vinyl chloride and PCE have been met for four consecutive sampling events. Additional sampling needs to be assessed following review of spring 2009 results and potential trends in historical data.
GMA5-8	GW-3 General/Source Area Sentinel	Groundwater Elevation	None	None	Groundwater elevation monitoring location only
GMA5-9	GW-2 Sentinel (Supplemental)	Groundwater Elevation/ GW-2 Sentinel (Supplemental)	Spring 2009	VOC	Additional sampling proposed as part of PCE assessment. Additional sampling needs to be assessed following review of spring 2009 results.
GMA5-10	GW-2 Sentinel (Supplemental)	Groundwater Elevation/ GW-2 Sentinel (Supplemental)	Spring 2009	VOC	Additional sampling proposed as part of PCE assessment. Additional sampling needs to be assessed following review of spring 2009 results.
GT-7	Groundwater Elevation - Elm Street Mobil	Groundwater Elevation - Elm Street Mobil	None	None	Groundwater elevation monitoring location only
GT-101	Groundwater Elevation - Elm Street Mobil	Groundwater Elevation - Elm Street Mobil	None	None	Groundwater elevation monitoring location only


NOTE:


^{1.} The wells proposed for long-term groundwater quality sampling under a semi-annual schedule will be sampled for the listed parameters during the spring and fall seasons, generally during the months of April and October.


^{2.} All wells currently listed for groundwater elevation monitoring above will continue to be utilized for groundwater elevation monitoring on a semi-annual basis.

Figures

Appendices

Appendix A

Field Sampling Data

Table A-1 Summary Of Groundwater Sampling Methods

					Sar	npling Meth	nod				
Well ID	Spring 2002	Fall 2002	Spring 2003	Fall 2003	Spring 2004	Fall 2005	Spring 2006	Fall 2006	Fall 2007	Spring 2008	Fall 2008
	PP/BA	PP	PP	PP	NS	NS	NS	PP	PP	PP	PP
GMA5-4	Spring 2003: Water in outer cover of flush-mount protective casing. Fall 2002: Flush-mount protective casing filled with water, pumped water out to open well. Spring 2002: VOCs collected with a disposable teflon bailer.										
GMA5-7	BP	PP	BP	BP	BP	NS	BP	BP	BP	BP	BP
GIVIAS-7	Fall 2005: Sa	ampling postp	oned due to c	peration of te	mporary dam	across Hous	atonic River.				
GMA5-9	NS	NS	NS	NS	NS	NS	NS	NS	BP	BP	BP
GIVIA5-9	Fall 2007: Well installed and added to monitoring program.										
CMAE 40	NS	NS	NS	NS	NS	NS	NS	NS	BP	BP	BP
GMA5-10	Fall 2007: W	Fall 2007: Well installed and added to monitoring program.									

Notes:

1. Sampling method abbreviations:

BP - Bladder Pump.

PP - Peristaltic Pump.

PP/BA - Peristaltic Pump with Bailer used for VOC sample collection.

NS - Not Sampled.

- 2. Baseline monitoring program conducted from spring 2002 to fall 2003, and fall 2006.
- 3. Interim/baseline sampling conducted at select wells from spring 2004 to spring 2006.
- 4. Long-term monitoring program initiated in fall 2007.

GROUNDWATER SAMPLING LOG

	No. GM	5-4			SNe/GMA Nas	no CAUA	15 GE	PittsRe	\sim	
Key		·····	Same and	Sa	mpling Personn	m KIC	DIV	LITISHE		
	Background (p		~		Da		30/08			_
NeW	Headepace (p	pm)			Weath		1 12	١٤ ,		
WELL INFO	PRIMATION						Sample Tin	142	~	***
Refere	once Point Mark	od? (Y) N				r	. •		-11	
Height	of Reference P		Meas, Fro	m_TIC			Sample !	<u> </u>	-9	-
	_Well Diam				-		Ouplicate i		- 100 1	70.15
Sca	roon Interval De	opth 8.09-18	O Gleas, From	m B65	Š,		MS/MS	Company of the second	<u> 4 PIS/</u>	1000
,	Water Table De	19th <u>8,3</u> 2	Mons. From				Sp# Sample i	U	· · · · · · · · · · · · · · · · · · ·	
	Well De	pth 19,0	O Meas, From	m ILC		Required	Annivitio	al Parameters:	Collected	
Lenga	n of Water Colu	mn 10.66	3			()		s (Std. fint)	()	
voiun Intrin Cas	th of Pump/Tub	Vol. 1. 749	Parking a	TIC		()	, Aoc	8 (Exp. list)	()	
шини стор	ul or rumpylub	ing /5	Meas, From	n	•	()	:	SVOCs	()	
Reference P	oint Identificatio					()	PC	Ba (Total)	()	
	Inner (PVC) Car					()	PCBs	(Dissolved)	()	
	Outer (Protecti					()	Metals/in	organica (Total)	()	
	Ground Surfac					()		anics (Dissolved)	()	
						()		ride (Dissolved)	()	
Redevelop?	Y N	•				()		ride (Dissolved)	()	
						()		Ds/PCDFs	()	
						()		bs/Herbicides	()	
			•					Attenuation (Specify)	()	
	N INFORMATIC					(X)	_	mium	(+)	
	Pump Start Tim						(01)	Gilered	A 1	
	Pump Stop Tim	7	Ž.	.	Evacuation Me	ethod: Bailer	() Bladder	Pump ()	J.	
	utes of Pumpin	·	nin.		Peristaltic Pun	***	ubmersible Pump	+ ()	ecify ()	
	Water Remove		Monz		Pump Type:	్ డ్రాం	Pump Z	,	y ()	
u	Hid Well Go Dry	? Y / N ~								
	• :					cted by same m	ethod as evacuatio	n? Y N (spec	• •	
			Serial Numbers:	<u> YS1-5</u>		cted by same m	ethod as evacuatio		• •	te-
-	Water Quality	Meter Type(s) / S	Serial Numbers:	<u> </u>		cted by same m	ethod as evacuatio	n? (Y) N (spec	bidine:	ter
Time	Water Quality Pump Rate	Meter Type(s) / S Total Gallone		1	56 M	cted by same m	ethod as evacuation	n? (Y) N (spec	Gidine:	ter
12=	Pump Rate (L/min.)	Meter Type(s) / S	Water Level (ft TIC)	Temp.	56 M	cted by same in	Turbidity (NTU)	n? (Y) N (spec	bidine:	ter
133 5	Pump Rate (L/min.)	Meter Type(s) / S Total Gallone Removed 0.33	Water Level	Temp. (Celsius)	3 6 M	Sp. Cond.	Turbidity (NTU)	n? (Y) N (spec	ORP (mV)	ter
1335	Pump Rate (L/min.) 250 250	Meter Type(s) / 5 Total Gallone Removed 0.33 0.66	Water Level (ft TIC) 8. 40 8. 45	Temp. (Celsius) [3%]"	pH (0.1 units)	Sp. Cond. (mS/cm) (3%)	Turbidity (NTU) [10% or 1 NTU]	n? (Y) N (spec	ORP (mV) [10 mV]*	ter
1335 1340 1345	Pump Rate (L/min.) 250 250 250	Meter Type(s)/S Total Gallons Removed 0.33 0.66 0.99	Water Level (ft TIC) 8. 40 8. 45	Temp. (Celsius) [3%]"	pH (0.1 units)	Sp. Cond. (mS/cm) (3%)	Turbidity (NTU) [10% or 1 NTU]	n? (Y) N (spec	ORP (mv) [10 mv]*	ter 7
1335 1340 1345 1350	Pump Rate (L/min.) 250 250 250 250	Meter Type(s)/5 Total Gallone Removed 0.33 0.66 0.99	Water Level (ft TIC) 8. 44 8. 45 8.44	Temp. (Celsius) [3%]"	3 6 M	Sp. Cond. (mS/cm) (3%)	Turbidity (NTU) (10% or 1 NTU)	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*	ter T
1335 1340 1345 1350	Pump Rate (L/min.) 250 250 250 250	Meter Type(s)/S Total Gallons Removed 0.33 0.66 0.99	8.45 8.44 8.44 8.44	Temp. (Celeius) [3%]* / //	pH i0.1 units;	Sp. Cond. (ms/cm) (3%)	Turbidity (NTU) (10% or 1 NTU)	DO (mg/l) [10% or 0.1 mg/l]*	ORP (rav) [10 myr /05, - 107,	ter T
1335 1340 1345 1350	Pump Rate (L/min.) 250 250 250 250 250 250	Meter Type(s)/5 Total Gallone Removed 0.33 0.66 0.99	8.45 8.44 8.44 8.44	Temp. (Cotaius) [3%]* / /D. /o 6 /O. 72	pH i0.1 units r - 6.85	Sp. Cond. (Inskem) (3%)*	Turbidity (NTU) [10% or 1 NTU] 32 (4	DO (mg/f) [10% or 0.1 mg/f] 8. 1.3 6. / 5 4/, 23	ORP (mv) [10 mv] 105, 107.8	ter T
1335 1340 1345 1350	Pump Rate (L/min.) 250 250 250 250 250 250	Meter Type(s) / 5 Total Gallone Removed 0.33 0.66 0.99 1.37	8.45 8.44 8.44 8.44	Temp. (Celeius) [3%]* / //	pH i0.1 units r 	Sp. Cond. (ms/cm) (3%)"	Turbidity (NTU) [10% or 1 NTU] 32 (4	DO (mg/l) [10% or 0.1 mg/l]* 8. 1.3 6./5 2/,23 3.38	ORP (mV) [10 mV] 105, 107 109.8 10,4	ter T
1335 1340 1345 1350 1355 1400 1405 1410	Pump Rate (L/min.) 250 250 250 250 250 250 250 250 250	Meter Type(s)/5 Total Gallone Removed 0.33 0.66 0.99 /.37 /.65 /.98 2.3/ Z.64	8.45 8.44 8.44 8.44 8.45 8.44 8.45 8.45	Temp. (Cetaius) [3%]* / - /0. /60 /0. 72 /0. 8/ 10. 8 9 10. 79	pH i0.1 units r 	Sp. Cond. (ms/cm) (3%)" 1.228 1.170 1.125 1.084 1.068	Turbidity (NTU) [10% or 1 NTUP 326 4/ 21 15 12	10% or 0.1 mg/ff 8. 13 6./5 2/, 23 3.240	ORP (mv) [10 mv] 105, - 107 108.8	ter T
1335 1340 1345 1350 1355 1400 1405 1410	Pump Rate (L/min.) 250 250 250 250 250 250 250 250 250 250	Meter Type(s)/5 Total Gallone Removed 0.33 0.66 0.99 1.32 1.65 1.98 2.31 2.64 ch field paramete	######################################	Temp. (Cetaius) [3%]* / - /0. /60 /0. 72 /0. 8/ 10. 8 9 10. 79	pH i0.1 units r 	Sp. Cond. (ms/cm) (3%)" 1.228 1.170 1.125 1.084 1.068	Turbidity (NTU) [10% or 1 NTUP 326 4/ 21 15 12	10% or 0.1 mg/ff 8. 13 6./5 2/, 23 3.240	ORP (mV) [10 mV] 105, 107 109.8 10,4	ter T
1335 1340 1345 1350 1355 1400 1405 1410 The stabilization	Pump Rate (L/min.) 250 250 250 250 250 250 250 250 250 250	Meter Type(s)/S Total Gallone Removed 0.33 0.66 0.99 1.32 1.65 1.98 2.31 2.64 ch field paramete	8.45 8.44 8.45 8.44 8.45 8.44 8.45	Temp. (Cessius) [3%]" / - /0. /6 0 /0. 72 /0. 8/ 10, 8 9 10, 92 tive resultings of Intigal	pH i0.1 units r 	Sp. Cond. (ms/cm) (3%)"	Turbidity (NTU) [10% or 1 NTU] 3 a Le 4/ A 1 15 13 12	10% or 0.1 mg/ff 8. 13 6./5 2/, 23 3.240	ORP (mV) [10 mV] 105,107109.8108.8	ter T
1335 1340 1345 1350 1355 1400 1405 1410 The stabilization	Pump Rate (L/min.) 250 250 250 250 250 250 250 250 250 350 350 350 350	Meter Type(s)/S Total Gallone Removed 0.33 0.66 0.99 1.32 1.65 1.98 2.31 2.64 ch field paramete	Water Level (RTC) 8.45 8.45 8.44 8.45 8:44 8.45 r (three consecutions	Temp. (Cessius) [3%]" / - /0. /6 0 /0. 72 /0. 8/ 10, 8 9 10, 92 tive resultings of Intigal	pH i0.1 units r 	Sp. Cond. (ms/cm) (3%)"	Turbidity (NTU) [10% or 1 NTUP 3 2 Le 4 / 1 1 5 1 3 1 2 1 8 is insted in each	17 (Y) N (spector)	ORP (mV) [10 mV] 105,107109.8108.8	7-
1335 1340 1345 1350 1355 1400 1405 1410 The stabilization	Pump Rate (L/min.) 250 250 250 250 250 250 250 250 250 350 350 350 350	Meter Type(s)/S Total Gallone Removed 0.33 0.66 0.99 1.32 1.65 1.98 2.31 2.64 ch field paramete	Water Level (RTC) 8.45 8.45 8.44 8.45 8:44 8.45 r (three consecutions	Temp. (Cessius) [3%]" / - /0. /6 0 /0. 72 /0. 8/ 10, 8 9 10, 92 tive resultings of Intigal	pH i0.1 units r 	Sp. Cond. (ms/cm) (3%)"	Turbidity (NTU) [10% or 1 NTUP 3 2 Le 4 / 1 1 5 1 3 1 2 1 8 is insted in each	17 (Y) N (spector)	ORP (mV) [10 mV] 105,107109.8108.8	7-
1335 1340 1345 1350 1355 1400 1405 1410 The stabilization 1340 ~	Pump Rate (L/min.) 250 250 250 250 250 250 250 250 250 350 350 350 350 350 350 350 350 350	Meter Type(s)/S Total Gallone Removed 0.33 0.66 0.99 1.32 1.65 1.98 2.31 2.64 ch field paramete	Water Level (RTC) 8.45 8.45 8.44 8.45 8:44 8.45 r (three consecutions	Temp. (Cessius) [3%]" / - /0. /6 0 /0. 72 /0. 8/ 10, 8 9 10, 92 tive resultings of Intigal	pH i0.1 units r 	Sp. Cond. (ms/cm) (3%)"	Turbidity (NTU) [10% or 1 NTUP 3 2 Le 4 / 1 1 5 1 3 1 2 1 8 is insted in each	17 (Y) N (spector)	ORP (mV) [10 mV] 105,107109.8108.8	7-
1335 1340 1345 1350 1355 1400 1405 1410 The stabilization BSERVATION 1340	Pump Rate (L/min.) 250 250 250 250 250 250 250 250 250 ABD acriteria for each S/SAMPLING, I	Meter Type(s)/S Total Gallone Removed 0.33 0.66 0.99 1.32 1.65 1.98 2.31 2.64 ch field paramete	Water Level (RTC) 8.45 8.45 8.44 8.45 8:44 8.45 r (three consecutions	Temp. (Cessius) [3%]" / - /0. /6 0 /0. 72 /0. 8/ 10, 8 9 10, 92 tive resultings of Intigal	pH i0.1 units r 	Sp. Cond. (ms/cm) (3%)"	Turbidity (NTU) [10% or 1 NTUP 3 2 Le 4 / 1 1 5 1 3 1 2 1 8 is insted in each	17 (Y) N (spector)	ORP (mV) [10 mV] 105,107109.8108.8	7-
1335 1340 1345 1350 1355 1400 1405 1410 The stabilization 1340 ~	Pump Rate (L/min.) 250 250 250 250 250 250 250 250 250 Matteria for each system of the collection of t	Meter Type(s)/S Total Gallone Removed 0.33 0.66 0.99 1.32 1.65 1.98 2.31 2.64 ch field paramete	Water Level (RTC) 8.45 8.45 8.44 8.45 8:44 8.45 r (three consecutions	Temp. (Cessius) [3%]" / - /0. /6 0 /0. 72 /0. 8/ 10, 8 9 10, 92 tive resultings of Intigal	pH i0.1 units r 	Sp. Cond. (ms/cm) (3%)"	Turbidity (NTU) [10% or 1 NTUP 3 2 Le 4 / 1 1 5 1 3 1 2 1 8 is insted in each	17 (Y) N (spector)	ORP (mV) [10 mV] 105,107109.8108.8	7-
1335 1340 1345 1350 1355 1400 1405 1410 The stabilization BSERVATION 1340 ~	Pump Rate (L/min.) 250 250 250 250 250 250 250 250 ADD ASD ration for one S/SAMPLING, HOOKE	Meter Type(s)/S Total Gallone Removed 0.33 0.66 0.99 1.32 1.65 1.98 2.31 2.64 ch field paramete	Water Level (RTC) 8.45 8.45 8.44 8.45 8:44 8.45 r (three consecutions	Temp. (Cessius) [3%]* / - / - / - / - / - / - / - /	pH i0.1 units r 	Sp. Cond. (ms/cm) (3%)" 1.70 1.125 1.084 1.076 1.068 1.0	Turbidity (NTU) [10% or 1 NTUP 3 2 Le 4 / 1 1 5 1 3 1 2 1 8 is insted in each	17 (Y) N (spector)	ORP (mV) [10 mV] 105,107109.8108.8	7-

GROUNDWATER SAMPLING LOG

Well No. GMAS-U

Site/GMA Name
Sampling Personnel
Date
Weather

Sun Huj 40's

WELL INFORMATION - See Page 1

· · · · · · · · · · · · · · · · · · ·	Pump	Total	Water	Temp.	pH	Sp. Cond.	Turbidity	DO	ORP
Time	Rate	Gallons	Level	(Celsius)		(mS/cm)	(NTU)	(mg/l)	(mV)
1 1 1	(L/min.)	Removed	(ft TIC)	[3%]*	[0.1 units]*	[3%]*		[10% or 0.1 mg/l]*	[10 mV]*
1415	250	2.97	8.46	11.01	6.86	1.065	9	3.27	-109.3
1400	250	3.30	8,46	11.15	6.89	1.063	9	3,20	d. 801-
1425	ठऽठ	<u> </u>							
							, in the second		
				\sim	am	Der			
					ann	Per			
						-			
						6	1 -		
						(192	6	
									
								4	
							1		
							1		
								$\overline{}$	
								$\overline{}$	
									
-									

* The stabilization criteria for each field parameter (three consecutive readings collected at 3- to 5-minute intervals) is listed in each column heading.
OBSERVATIONS/SAMPLING METHOD DEVIATIONS

			y y	· .	mpling Persons		MA5		
Key	No	9MA5-	T		MANAGER I PRINCE	ned i	RATEI	nc	
	Background (p				-	to 10	130 /08	<u>"''</u>	
Wed	Hendepace (p	isus)			Maryan		1 10/00		
		`							
	. Carlos agential agen	projug			· Veeti)	- Sur	INV 35°F		
WELL INCO	DD484 Table								
	PRIMATION	~~~					Sample Tin	1415	Ð
	once Point Mark	1.7.4					Sample	D GMAS-	
Height	of Reference P		Meas, Fro	om <u>Gravi</u>	u 2			D GMAS. O	
_	Well Diam						MS/MS		11. 010
	roen Interval De		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	m FE	GROWING	>	Spilt Sample (
	Water Table De		7_ Meas. Fro				,		
lanet	Well De th of Water Colu		Meas. Fro	m Tic		Required	Analytic	al Parameters:	Collected
	ne of Water in V		1			(×)	VOC	Cs (Std. fist)	(×)
	th of Pump/Tub		ア	F 6		()	, Aoc	a (Exp. list)	()
	ar or a singar i uu	- LO.3	Moss, From	m Fic		()	:	SVOCs	()
ferance P	oint Identificatio	m·				()	PC	Bs (Total)	()
	inner (PVC) Car					175	9 PCBs	(Dissolved)	ا میں اور
	f Outer (Protecti					()	Metals/in	organics (Total)	()
	Ground Surfac					()	_	panics (Dissolved)	()
		•				()	•	nide (Dissolved)	()
develop?	Y (N)					()	-	nide (Dissolved)	()
						()		Ds/PCDFs	()
						()		es/Herbicides	()
						()		Attenuation	()
ACUATIO	N INFORMATIO					()	Cine:	r (Specify)	()
1	Pump Start Time	0 /3:49							
	Pump Start Time Pump Stop Time			•	Evacuation M	othod: Dailer			
Min	Pump S lop Time lutes of Pumpin	510		•	Evacuation Me			Pump (>>	
Min	Pump Stop Time	510		•	Peristattic Pun	mp () qu	brnersible Pump	() Other/Sp	ecity ()
Min Volume of	Pump S lop Time lutes of Pumpin	5:10 35 30 cm		,	Peristattic Pun Pump Type:	Mars	bmersible Pump	Liten On	
Min Volume of	Pump Stop Time tutes of Pumpine Water Removed Did Well Go Dry	15:10 35 30 cm	_	•	Peristattic Pun Pump Type: Samples collec	np () Su May 3 cted by same me	brnersible Pump	ustem Oh	
Min Volume of	Pump Stop Time tutes of Pumpine Water Removed Did Well Go Dry	15:10 35 30 cm	_	YSE	Peristattic Pun Pump Type: Samples collect	np () Su May 3 cted by same me	bmersible Pump chalk -5	Liten On	
Min Valume of	Pump Stop Time nutes of Pumpine Water Removed Did Well Go Dry Water Quality	5:10 5:35 7 N Meter Type(3)/5	Serial Numbers:	YST MACH	Peristattic Pun Pump Type: Samples collect	May 3 cted by same me	bmersible Pump chalk -5	Liten On	
Min Watume of	Pump Stop Time tutes of Pumping Water Remove Did Well Go Dry Water Quality Pump	5:10 5:3 5:3 7 N Meter Type(3)/5	Serial Numbers: Water	Temp.	Peristattic Pun Pump Type: Samples collect	May 3 cted by same me	briesbie Pump Surik -5 Whodas evacuation	Liten On	
Min olume of	Pump Stop Time tutes of Pumping Water Removed Did Well Go Dry Water Quality Pump Rate	Meter Type(s) / S Total Gallons	Serial Numbers: Water Level	Temp. (Celeius)	Peristattic Pun Pump Type: Samples coller 550 M	May 30 cted by same med 15 # U	bmersible Pump chalk - S withod as evacuation	Other/spi	(y)
Min falume of E	Pump Stop Time tutes of Pumping Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.)	5:10 5:3 5:3 7 N Meter Type(3)/5	Serial Numbers: Water Level (ft TIC)	Temp.	Peristattic Pun Pump Type: Samples coller 550 M	May 5 cted by same me	bmersible Pump Louis - S who as evacuate Coul Turbidity (NTU)	Other/sp ketem One in? (F) N (speci	(fy)
Min	Pump Stop Time nutes of Pumpine Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.)	Meter Type(s) / S Total Gallons	Serial Numbers: Water Level	Temp. (Celeius)	Peristatic Pun Pump Type: Samples coller \$1000	May 5: Cited by same me ST 4 Sp. Cond. (mS/cm)	bmersible Pump Louis - S who as evacuate Coul Turbidity (NTU)	Other/sp with On n? (A) N (speci DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
Min	Pump Stop Time nutes of Pumpine Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.)	Meter Type(s) / S Total Gellone Removed	Serial Numbers: Water Level (RTIC) 13. 20	Temp. (Celeius) [3%]*	Peristatic Pun Pump Type: Samples coller SSC, M, 31000 pH [0.1 units]*	May 5: Cited by same me ST 4 Sp. Cond. (mS/cm)	bmersible Pump by Golk - S whod as evacuate CC Turbidity (NTU) [10% or 1 NTU]	Other/sp witem On a on? (A) N (special DO (mg/i)	ORP
Min /ohame of	Pump Stop Time tutes of Pumping Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.) 50 75	Meter Type(s)/S Total Gallone Removed	Serial Numbers: Water Level (R TIC) 13.20 13.96	Temp. (Colstus) [3%]*	Peristatic Pun Pump Type: Samples coller SSC, M, 31000	May 5: Cited by same me ST 4 Sp. Cond. (mS/cm)	bmersible Pump Lolk -S whod as evacuate Turbidity (NTU) [10% or 1 NTU]*	Other/sp with Oh, n? (A) N (speci DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
Mindowne of Control of	Pump Stop Time nutes of Pumpine Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.)	Meter Type(s) / S Total Gellone Removed	Serial Numbers: Water Level (R TIC) 13.20 13.96	Temp. (Celeius) [3%]*	Peristatic Pun Pump Type: Samples coller SSC, M, 31000 pH [0.1 units]*	May 3 Coted by same med 15 The Company of the Compa	bmersible Pump Lolk -S whod as evacuate Turbidity (NTU) [10% or 1 NTU]*	Other/sp with Oh, n? (A) N (speci DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV)*
Minor	Pump Stop Time tutes of Pumping Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.) 50 75	Meter Type(s) / S Total Gelfone Removed O-10 O-20	Serial Numbers: Water Level (ft TIC) 3.20 13.96 14.15	(1ACR) Temp. (Colsius) [3%]*	Peristatic Pun Pump Type: Samples coller SSC, M, 31000 pH [0.1 units]*	May 3 Ctod by same me IS # L Sp. Cond. (mS/cm) [3%]*	thouse evacuation turns of the second of the	Other/sp with Oh, n? (A) N (speci DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV)*
Min	Pump Stop Time nutes of Pumpine Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.) 50 75	5:10 35 35 35 35 35 35 35 3	Serial Numbers: Water Level (RTIC) 13.20 13.96 14.15	Temp. (Colstus) [3%]*	Peristatic Pun Pump Type: Samples coller SSC, M, 31000 pH [0.1 units]*	May 3 Coted by same med 15 The Company of the Compa	three sible Pump Lolk - S who as evacuate Turbidity (NTU) [10% or 1 NTU) 32 30	Other/sp with Oh, n? (A) N (speci DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV)*
Min	Pump Stop Time nutes of Pumpine Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.) 50 75	Meter Type(s) / S Total Gelfone Removed O-10 O-20	Serial Numbers: Water Level (RTIC) 13.20 13.96 14.15	(1ACR) Temp. (Colsius) [3%]*	Peristatic Pun Pump Type: Samples coller SSC, M, 31000 pH [0.1 units]*	May 3 Coted by same med 15 The Company of the Compa	three sible Pump Lolk - S who as evacuate Turbidity (NTU) [10% or 1 NTU) 32 30	DO (mg/l) [10% or 0.1 mg/l]	ORP (mV) [10 mV)*
Min	Pump Stop Time nutes of Pumpine Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.) 50 75	5.10 35 35 35 35 35 35 35 3	Serial Numbers: Water Level (R TIC) 13.20 13.96 14.15 14.32	Temp. (Colstine) [3%]*	Peristatic Pun Pump Type: Samples coile \$1000 pH [0.1 units]*	May 3: Cited by same me IS THE CHOCK - Sp. Cond. (mS/cm) [3%]*	though the state of the state o	DO (mg/l) [10% or 0.1 mg/l]	ORP (mV) [10 mV)*
Min	Pump Stop Time nutes of Pumpine Water Removed Did Well Go Dry Water Quality Pump Rate (Unsin.) 50 75	5.10 35 35 35 35 35 35 35 3	Water Level (RTIG) 13.20 13.96 14.15 14.32 14.61 15.03	Tomp. (Coistus) [3%]*	Peristatic Pun Pump Type: Samples coile \$1000 pH [0.1 units]*	May 3: Cited by same me IS THE CHOCK - Sp. Cond. (mS/cm) [3%]*	three sible Pump Lolk - S who as evacuate Turbidity (NTU) [10% or 1 NTU) 32 30	DO (mg/l) [10% or 0.1 mg/l]	ORP (mV) [10 mV)*
Min	Pump Stop Time nutes of Pumpine Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.) 50 75 75 (1) (5)	5.10 35 35 35 35 35 35 35 3	Serial Numbers: Water Level (R TIC) 13.20 13.96 14.15 14.32	Temp. (Colstine) [3%]*	Peristatic Pun Pump Type: Samples coller SSC M 3.1000 pH [0.1 units]*	Sunday Su	though the second of the secon	DO (mg/l) [10% or 0.1 mg/l]	ORP (mV) [10 mV]*
Min	Pump Stop Time nutes of Pumpine Water Removed Did Well Go Dry Water Quality Pump Rate (Unsin.) 50 75	5:10 35 35 35 35 35 35 35 3	Serial Numbers: Water Level (RTIC) 13.20 13.96 14.15 14.32 14.61 15.03	(1ACR) Temp. (Colsius) [3%]*	Peristatic Pun Pump Type: Samples coile SSC M 31000 pH i0.1 units*	May 3 cond. (mS/cm) [3%]*	ibmersible Pump by Golk - S whod as evacuate Turbidity (NTU) [10% or 1 NTU)* 32 30 36 35	DO (mg/l) [10% or 0.1 mg/l]	ORP (mV) [10 mV)*
Min Volume of E	Pump Stop Time nutes of Pumpine Water Removed Did Well Go Dry Water Quality Pump Rate (Unsin.) 50 75 75 (1) (5)	5:10 35 35 35 35 35 35 35 3	Serial Numbers: Water Level (RTIC) 13.20 13.96 14.15 14.32 14.61 15.03 15.15 15.05	(1ACH Temp. (Coistus) [3%]* - - - ([.41	Peristatic Pun Pump Type: Samples coile SSC M 31000 pH i0.1 units	Inp () Su May 3: Cited by same me IS # U 46800 - Sp. Cond. (ImStem) [3%]*	ibmersible Pump by Golk -S whod as evacuate Turbidity (NTU) (10% or 1 NTU) 32 30 36 35	DO (mg/l) [10% or 0.1 mg/l]	ORP (mV) [10 mV]*
Min Volume of E	Pump Stop Time nutes of Pumping Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.) 50 75 75 71 135	5:10 35 35 35 35 35 35 35 3	Water Level (RTIC) 13.20 13.96 14.15 14.32 14.61 15.03 15.15 15.05 or (three consecutive)	(1ACR) Temp. (Colsius) [3%]*	Peristatic Pun Pump Type: Samples collect SSC M 3.1000 pH j0.1 units*	Inp () Su May 3: Cted by same me IS # L CGSD - Sp. Cond. (ImSicm) [3%]* C. Cel 4 O. Cel 2	ibmersible Pump Lolk -S whod as evacuation Turbidity (NTU) [10% or 1 NTU] 3 2 30 36 35 - 17 (1) is listed in each	DO (mg/l) [10% or 0.1 mg/l]	ORP (mV) [10 mV)*
Min Volume of E	Pump Stop Time nutes of Pumping Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.) 50 75 75 71 135	5:10 35 35 35 35 35 35 35 3	Water Level (RTIC) 13.20 13.96 14.15 14.32 14.61 15.03 15.15 15.05 or (three consecutive)	(1ACH Temp. (Coistus) [3%]* - - - ([.41	Peristatic Pun Pump Type: Samples collect SSC M 3.1000 pH j0.1 units*	Sun May 3: Cited by same me IS # LI CHOSED - Sp. Cond. (ImS/cm) [3%]*	ibmersible Pump Lolk -S whod as evacuation Turbidity (NTU) [10% or 1 NTU] 32 30 36 25 17 (1) is listed in each	DO (mg/l) [10% or 0.1 mg/l] [2.7] [2.7] [2.39 cotylini heading.	ORP (mV) [10 mV]*
Min Volume of	Pump Stop Time nutes of Pumping Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.) 50 75 75 71 135	5:10 35 35 35 35 35 35 35 3	Water Level (RTIC) 13.20 13.96 14.15 14.32 14.61 15.03 15.15 15.05 ar (three consecutions	(1ACR) Temp. (Colsius) [3%]*	Peristatic Pun Pump Type: Samples collect SSC M 3.1000 pH j0.1 units*	Inp () Su May 3: Cted by same me IS # L CGSD - Sp. Cond. (ImSicm) [3%]* C. Cel 4 O. Cel 2	ibmersible Pump Lolk -S whod as evacuation Turbidity (NTU) [10% or 1 NTU] 32 30 36 25 17 (1) is listed in each	DO (mg/l) [10% or 0.1 mg/l] [2.7] [2.7] [2.39 cotylini heading.	ORP (mV) [10 mV)*
Min Volume of	Pump Stop Time nutes of Pumping Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.) 50 75 75 71 135	5:10 35 35 35 35 35 35 35 3	Water Level (RTIC) 13.20 13.96 14.15 14.32 14.61 15.03 15.15 15.05 or (three consecutive)	(1ACR) Temp. (Colsius) [3%]*	Peristatic Pun Pump Type: Samples collect SSC M 3.1000 pH j0.1 units*	Inp () Su May 3: Cted by same me IS # L CGSD - Sp. Cond. (ImSicm) [3%]* C. Cel 4 O. Cel 2	ibmersible Pump Lolk -S whod as evacuation Turbidity (NTU) [10% or 1 NTU] 32 30 36 25 17 (1) is listed in each	DO (mg/l) [10% or 0.1 mg/l] [2.7] [2.7] [2.39 cotylini heading.	ORP (mV) [10 mV]*
Min Volume of E	Pump Stop Time nutes of Pumping Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.) 50 75 75 71 135	5:10 35 35 35 35 35 35 35 3	Water Level (RTIC) 13.20 13.96 14.15 14.32 14.61 15.03 15.15 15.05 ar (three consecutions	(1ACR) Temp. (Colsius) [3%]*	Peristatic Pun Pump Type: Samples collect SSC M 3.1000 pH j0.1 units*	Inp () Su May 3: Cted by same me IS # L CGSD - Sp. Cond. (ImSicm) [3%]* C. Cel 4 O. Cel 2	ibmersible Pump Lolk -S whod as evacuation Turbidity (NTU) [10% or 1 NTU] 32 30 36 25 17 (1) is listed in each	DO (mg/l) [10% or 0.1 mg/l] [2.7] [2.7] [2.39 cotylini heading.	ORP (mV) [10 mV]*
Min Volume of	Pump Stop Time nutes of Pumping Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.) 50 75 75 71 135	5:10 35 35 35 35 35 35 35 3	Water Level (RTIC) 13.20 13.96 14.15 14.32 14.61 15.03 15.15 15.05 ar (three consecutions	(1ACR) Temp. (Colsius) [3%]*	Peristatic Pun Pump Type: Samples collect SSC M 3.1000 pH j0.1 units*	Inp () Su May 3: Cted by same me IS # L CGSD - Sp. Cond. (ImSicm) [3%]* C. Cel 4 O. Cel 2	ibmersible Pump Lolk -S whod as evacuation Turbidity (NTU) [10% or 1 NTU] 32 30 36 25 17 (1) is listed in each	DO (mg/l) [10% or 0.1 mg/l] [2.7] [2.7] [2.39 cotylini heading.	ORP (mV) [10 mV]*
Min Volume of E	Pump Stop Time nutes of Pumping Water Removed Did Well Go Dry Water Quality Pump Rate (Unsin.) 50 75 75 (1) (5) (1) (5) (1) (5) (1) (5) (1) (5) (2) (5) (5) (6) (6) (7) (7) (7) (7) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8	5:10 35 35 35 35 35 35 35 3	Water Level (RTIC) 13.20 13.96 14.15 14.32 14.61 15.03 15.15 15.05 ar (three consecutions	(1ACR) Temp. (Colsius) [3%]*	Peristatic Pun Pump Type: Samples collect SSC M 3.1000 pH j0.1 units*	Inp () Su May 3: Cted by same me IS # L CGSD - Sp. Cond. (ImSicm) [3%]* C. Cel 4 O. Cel 2	ibmersible Pump Lolk -S whod as evacuation Turbidity (NTU) [10% or 1 NTU] 32 30 36 25 17 (1) is listed in each	DO (mg/l) [10% or 0.1 mg/l] [2.7] [2.7] [2.39 cotylini heading.	ORP (mV) [10 mV]*
Mind of the control o	Pump Stop Time nutes of Pumping Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.) 50 75 75 75 71 135 71 135 71 135 71 135 11 135 11 135 11 135 11 135 11 135 11 135 11 135 11 135 11 135 11 135 11 135 11 135 11 135 11 135 11 135 11 135 11 135 11 135 135	5:10 35 35 35 35 35 35 35 3	Water Level (RTIC) 13.20 13.96 14.15 14.32 14.61 15.03 15.15 15.05 ar (three consecutions	(1ACR) Temp. (Colsius) [3%]*	Peristatic Pun Pump Type: Samples collect SSC M 3.1000 pH j0.1 units*	Inp () Su May 3: Cted by same me IS # L CGSD - Sp. Cond. (ImSicm) [3%]* C. Cel 4 O. Cel 2	ibmersible Pump Lolk -S whod as evacuation Turbidity (NTU) [10% or 1 NTU] 32 30 36 25 17 (1) is listed in each	DO (mg/l) [10% or 0.1 mg/l] [2.7] [2.7] [2.39 cotylini heading.	ORP (mV) [10 mV]*
Min/olume of Columns o	Pump Stop Time nutes of Pumping Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.) 50 75 75 75 71 135 71 135 71 150 75 75 75 76 77 76 77 76 77 77 77 77 77 77 77 77	5:10 35 35 35 35 35 35 35 3	Water Level (RTIC) 13.20 13.96 14.15 14.32 14.61 15.03 15.15 15.05 ar (three consecutions	(1ACR) Temp. (Colsius) [3%]*	Peristatic Pun Pump Type: Samples collect SSC M 3.1000 pH j0.1 units*	Inp () Su May 3: Cted by same me IS # L CGSD - Sp. Cond. (ImSicm) [3%]* C. Cel 4 O. Cel 2	ibmersible Pump Lolk -S whod as evacuation Turbidity (NTU) [10% or 1 NTU] 32 30 36 25 17 (1) is listed in each	DO (mg/l) [10% or 0.1 mg/l] [2.7] [2.7] [2.39 cotylini heading.	ORP (mV) [10 mV]*
Mind of the state	Pump Stop Time nutes of Pumping Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.) 50 75 75 71 135 71 ISS INTERIOR INTERIOR	5:10 35 35 35 35 35 35 35 3	Water Level (RTIC) 13.20 13.96 14.15 14.32 14.61 15.03 15.15 15.05 ar (three consecutions	(1ACR) Temp. (Colsius) [3%]*	Peristatic Pun Pump Type: Samples coile SSC M 3.1000 pH i0.1 units co.93 Co.90 Illected at 3- to 5 INE CIFA	C. Colf	ibmersible Pump Lolk -S whod as evacuation Turbidity (NTU) [10% or 1 NTU] 32 30 36 25 17 (1) is listed in each	DO (mg/l) [10% or 0.1 mg/l] [2.7] [2.7] [2.39 cotylini heading.	ORP (mV) [10 mV]*
Min/olume of Columns o	Pump Stop Time nutes of Pumping Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.) 50 75 (1) (5) (1) (5) (1) (5) (1) (1) (1) (2) (2) (3) (4) (5) (5) (7) (6) (7) (7) (7) (7) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8	5:10 35 35 35 35 35 35 35 3	Water Level (RTIC) 13.20 13.96 14.15 14.32 14.61 15.03 15.15 15.05 ar (three consecutions	(1ACR) Temp. (Colsius) [3%]*	Peristatic Pun Pump Type: Samples collect SSC M 3.1000 pH j0.1 units*	C. Colf	ibmersible Pump Lolk -S whod as evacuation Turbidity (NTU) [10% or 1 NTU] 32 30 36 25 17 (1) is listed in each	DO (mg/l) [10% or 0.1 mg/l] [2.7] [2.7] [2.39 cotylini heading.	ORP (mV) [10 mV]*
Min	Pump Stop Time nutes of Pumping Water Removed Did Well Go Dry Water Quality Pump Rate (Limin.) 50 75 (1) (5) (1) (5) (1) (5) (1) (1) (1) (2) (2) (3) (4) (5) (5) (7) (6) (7) (7) (7) (7) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8	5:10 35 35 35 35 35 35 35 3	Water Level (RTIC) 13.20 13.96 14.15 14.32 14.61 15.03 15.15 15.05 ar (three consecutions	(1ACR) Temp. (Colsius) [3%]*	Peristatic Pun Pump Type: Samples coile SSC M 3.1000 pH i0.1 units co.93 Co.90 Illected at 3- to 5 INE CIFA	C. Colf	ibmersible Pump Lolk -S whod as evacuation Turbidity (NTU) [10% or 1 NTU] 32 30 36 25 17 (1) is listed in each	DO (mg/l) [10% or 0.1 mg/l] [2.7] [2.7] [2.39 cotylini heading.	ORP (mV) [10 mV]*

C:SWORHOGE:Greenwheeter1954199AttacheeustD-3

GROUNDWATER SAMPLING LOG

Well No. SMAS-7	Site/GMA Name	GMAS	
	Sampling Personnel	ewe/or	
	Date	10/30/08	
	Weather	ple yo	_

WELL INFORMATION - See Page 1

Time	Pump Rate (L/min.)	Total ' Gallons Removed	Water Level (ft TIC)	Temp. (Celsius) [3%]*	pH [0.1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
14:45	150	1-22	15.03	11.90	6.85	0.630	70	6.18	653
1430	4	1-42	15.03	11.948	6.50	0.631	9	6.33	66.4
14:35	11	1.62	15.63	1180	6.35	0.64	7	6.14	65.7
14:40	ll	1-8z	17.60	1148	6.82	0.64	7	6.15	68.0
14:45	11	2.02	14,30	11:47	6.31	0.69	7	6.12	63.5
									>
***************************************				***************************************					
	T-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1								
									<u> </u>
		 							
		/							
	_/								
						<u> </u>			
								 	
						<u> </u>	<u> </u>		

* The stabilization criteria for each field parameter (three consecutive readings collected at 3- to 5-minute intervals) is listed in each column heading.
OBSERVATIONS/SAMPLING METHOD DEVIATIONS

GROUNDWATER SAMPLING LOG

Well	Na. GMA	5-9			SMn/GMA Nan	no GMAS	5 66 Pi	HSRED		
Key		w. ~	_	Sar	mpling Personn		N/K	10,10.0		
	Background (pp		-		Da	10/3	0/08		**	
Well	Headepace (pp) (mx			Weath	- Sonr				
WELL INC.	ORMATION						,			•
	once Point Merk	od? (Ŷ) N					Sample Tin	• GMAS-9	9) la	100
	t of Reference P	_		- T.		i	Sample I	0 12:00	<u>u</u>	
	Well Dimme	~11	IMERIE. I-TO	m TIC			Duplicate i	Attack		
Sc	reen interval De		Meas, Fro	m Pros			MSAMS	- L-/L-1/-1/-1	MS/MS	<u> </u>
	Water Table De	pen 14.21	Moss. Fro				Sp#t Sample !	D <u> </u>	-	
	Well De	pth 31,35	Moss. From	m IIC		Required	Anabetic	al Parameters;	Collected	
	th of Water Colu	-	4.			(X)		Cs (Std. Set)	(X)	
	ne of Water in V		allon			(3		a (Exp. list)	() .	
intaka Dep	oth of Pump/Tub	$\log N B''$	Mess, From	m_TIC		()		SVOCs	()	
Reference C	oint Identification					()	PC	Bs (Total)	()	
	Inner (PVC) Car					()	PCBs	(Dissolved)	()	
	Outer (Protective					()		organics (Total)	()	
	Ground Surface					()		panics (Dissolved)	()	
						()		nide (Dissolved)	()	
Redevelop?	YN					()		nide (Dissolved) Ds/PCDFs	()	
						()		es/Herbicides	()	
						()		Attenuation	()	
						()		r (Specify)	()	
	N INFORMATIO	in •)C75					, , , , , , , , , , , , , , , , , , , ,	` '	
	Pump Stop Time		20							
	rump stop 1276 nutes of Pumpin		īn.	•	Evacuation M			Pump (🗡		
	Water Remove				· Peristaltic Pun	np() Se	ubmersible Pump	() Denoviso	ecify ()	
									y ()	
1			VI(DN 1		Pump Type:	Murs	-halk -s	estem o.	<u> </u>	_
1	Did Well Go Dry	Y (N)		L.	Samples colle	cted by same m	chalk - 5)	in? (T) N (spec	ハヒ ify)	_
	Did Well Go Dry	Y (N)	Serial Numbers:	Y51-5	Samples colle	cted by same m	chalk - 5)	estem o.	ハヒ ify)	-
	Did Well Go Dry	Meter Type(s) / :		<i>Y51-5</i> Temp.	Samples colle	cted by same m	chalk - 5)	in? (T) N (spec	ne iiv) iidimute	- ~ 1
Time	Water Quality Pump Rate	Meter Type(s) / : Total Gallone	Serial Numbers: Water Level	Temp. (Celeius)	Samples colle	S Ho	- 6 N/k - 5 othod as evacuation - ch 7/0 t	DO (mg/l)	ハヒ ify)	- ~
Time	Water Quality Pump Rate (Unsire.)	Meter Type(s) / : Total Gallone Removed	Serial Numbers: Water Level (ft TIC)	Temp.	Samples colle	Sp. Cond.	- 6 N/k - 5 othod as evacuation - ch 7/0 t	DO DO	ne ily) i'dimete	- ~
Time	Water Quality Pump Rate (L/min.)	Meter Type(s) /: Total Gallone Removed	Serial Numbers: Water Level	Temp. (Celeius)	Samples colle	Sp. Cond.	- 6 N/k - 5 othod as evacuation - ch 7/0 t	DO (mg/l)	ore c'elimete ORP (mV)	
Time	Water Quality Pump Rate (Unsin.)	Meter Type(s) / S Total Gallone Removed O20 O.47	Serial Numbers: Water Level (ft TIC)	Temp. (Celeius) [3%]"	Samples colle 5 6 MP pH (0.1 units)*	Sp. Cond. (mS/cm)	ethod as evacuation with the transfer of the t	DO (mg/l)	ore c'elimete ORP (mV)	_
Time	Water Quality Pump Rate (L/min.)	Meter Type(s) /: Total Gallone Removed	Serial Numbers: Water Level (ft TIC) 14, 43	Temp. (Celeius) [3%]"	Samples coile 5 6 M P pH (0.1 units)*	Sp. Cond. (mS/cm)	Turbidity (NTU) [10% or 1 NTU] 334	DO (mg/i) [10% or 0.1 mg/i]*	ore c'elimete ORP (mV)	
Time 1055 100	Water Quality Pump Rate (Unsin.) 150 250 250	Meter Type(s) / S Total Gallone Removed O20 O.47	Water Level (ft TIC) 14, 43	Temp. (Celeius) [3%]"	Samples colle 5 6 M P pH i0.1 units†*	Sp. Cond. (mS/cm)	Turbidity (NTU) [10% or 1 NTU] 334 /2/ 87	DO (mg/i) [10% or 0.1 mg/i]*	ore c'elimete ORP (mV)	
1055 100	Pump Rate (Linsin.) /50 /50	Meter Type(s)/: Total Gallone Removed 0.20 0.40	Water Lavel (ft TIC) 14, 43 14,53	Temp. (Celeius) [3%]"	Samples colle 5 6 M P pH i0.1 units†*	Sp. Cond. (mS/cm) (3%)*	Turbidity (NTU) [10% or 1 NTUP 334 [72] 87	DO (mg/l) [10% or 0.1 mg/l]	ore ore ore or	
1055 100 105	Water Quality Pump Rate (Unsin.) 150 250 250	Meter Type(s)/: Total Gailone Removed 0.20 0.40 0.73 /-06	Water Lavel (RTIC) 14,43 14,53 14,71	Temp. (Celeius) [3%]"	pH i0.1 units; current collections of the collect	Sp. Cond. (mS/cm) (3%)	Turbidity (NTU) [10% or 1 NTUP 334 [72] 87 75:0	DO (mg/i) [10% or 0.1 mg/i]*	0RP (mv) [10 mv] — — — — — — — — — — — — — — — — — — —	
Time 1055 100 105 1110 1115	Pump Rate (Unsin.) 150 150 250 250 250	Meter Type(s)/: Total Gailone Removed 0.20 0.40 0.73 /-06 /-39	Water Lavel (RTIC) 14,43 14,53 14,71 15,04 15,54	Temp. (Cotates) [3%]* 13.19 15.48	pH io.1 unitst* Le. 55 Le. 61	Sp. Cond. (ms/cm) (3%) 1,555 1,552	Turbidity (NTU) [10% or 1 NTU] 334 [72] 87 [75] [166 [166	DO (mg/l) [10% or 0.1 mg/l]	ore ore ore or	
Time 1055 100 105 1110 1115	Pump Rate (Union.) 150 250 250 250 200	Meter Type(s)/: Total Gallone Removed 0.20 0.40 0.73 /-06 /-39	Water Level (RTIC) 14,43 14,53 14,71 15,04 15,54	Temp. (Cotates) [3%]* - - - 13. 19 13. 48	pH i0.1 units	Sp. Cond. (mS/cm) (3%)	Turbidity (NTU) [10% or 1 NTUP 334 [72] 87 75:0	DO (mg/l) [10% or 0.1 mg/l]	ore (my) [10 my] — — — — — — — — — — — — — — — — — — —	
Time 1055 100 105 1110 1115 1120	Water Quality Pump Rate (Unite.) 150 250 250 250 250 250 150 150	Meter Type(s)/: Total Gallone Removed 0.20 0.40 0.73 /-06 /-85 2.05	Water Level (RTIG) 14.43 14.53 14.71 15.04 15.54 15.34 15.34 15.34	Temp. (Cotation) [3%]" — ———————————————————————————————————	Samples colle 56 MP pH i0.1 units r	Sp. Cond. (mS/cm) (3%F)	Turbidity (NTU) [10% or 1 NTUP 334 /21 87 75,0 16 14 /3	DO (mg/l) [10% or 0.1 mg/l]	0RP (mv) [10 mv] — — — — — — — — — — — — — — — — — — —	
Time 1055 100 105 1110 1115 1120 1130 The stabilization	Water Quality Pump Rate (Union.) /50 /50 250 250 250 150 /50 /50 /50 /50 /50 /50 /	Meter Type(s)/: Total Gailone Removed 0.20 0.40 0.73 /-06 /-65 /-85 2.05 ch field paramete	Water Lavel (ft TIC) 14, 43 14, 53 14, 71 15, 04 15, 54 15, 54 15, 54 15, 54 16, 08 er (three consect	Temp. (Colsites) [3%]* 13.19 13.48 13.10 13.19 thive readings or	pH i0.1 units† cultural collection of the cultural cultural collection of the cultural cultural collection of the cultural cult	Sp. Cond. (mS/cm) (3%) 1.555 1.555 1.557 6-minute interval	Turbidity (NTU) [10% or 1 NTU] 334 721 87 75, 0 160 144 133 Is is issted in each	10% or 0.1 mg/ff	ore (my) [10 my] — — — — — — — — — — — — — — — — — — —	
Time 1055 100 105 110 1115 1120 1130 The stabilization	Water Quality Pump Rate (Union.) /50 /50 250 250 250 250 750 750 750 7	Meter Type(s)/: Total Gailone Removed 0.20 0.40 0.73 /-06 /-85 /-85	Water Level (RTIC) 14,43 14,53 14,71 15,04 15,54 15,54 15,54 15,54 16,08 er (three consecutions	Temp. (Colsius) [3%]* - 13.19 13.10 13.10 13.10 13.10	pH i0.1 units p	Sp. Cond. (ms/cm) (3%) 1.555 1.552 1.554 1.559 6-minuto interval	tholk - S, ethod as evacuation when the thole of the thol	DO (mg/l) [10% or 0.1 mg/l]	ore (my) [10 my] [10 m	
Time 1055 100 105 110 1115 1120 1130 The stabilization	Water Quality Pump Rate (Union.) /50 /50 250 250 250 250 750 750 750 7	Meter Type(s)/: Total Gailone Removed 0.20 0.40 0.73 /-06 /-85 /-85	Water Lavel (ft TIC) 14, 43 14, 53 14, 71 15, 04 15, 54 15, 54 15, 54 15, 54 16, 08 er (three consect	Temp. (Colsius) [3%]* - 13.19 13.10 13.10 13.10 13.10	pH i0.1 units p	Sp. Cond. (mS/cm) (3%) 1.555 1.555 1.557 6-minute interval	tholk - S, ethod as evacuation when the thole of the thol	10% or 0.1 mg/ff	ore (my) [10 my] [10 m	
Time 1055 100 105 110 1115 1120 1130 The stabilization	Water Quality Pump Rate (Union.) /50 /50 250 250 250 250 750 750 750 7	Meter Type(s)/: Total Gailone Removed 0.20 0.40 0.73 /-06 /-85 /-85	Water Level (RTIC) 14,43 14,53 14,71 15,04 15,54 15,54 15,54 15,54 16,08 er (three consecutions	Temp. (Colsius) [3%]* - 13.19 13.10 13.10 13.10 13.10	pH i0.1 units p	Sp. Cond. (ms/cm) (3%) 1.555 1.552 1.554 1.559 6-minuto interval	tholk - S, ethod as evacuation when the thole of the thol	DO (mg/l) [10% or 0.1 mg/l]	ore (my) [10 my] [10 my] [10 my] [10 my] [10 my] [116 .6] [116 .6] [117 .8]	
Time 1055 100 105 110 1115 1120 1130 The stabilization	Water Quality Pump Rate (Union.) /50 /50 250 250 250 250 750 750 750 7	Meter Type(s)/: Total Gailone Removed 0.20 0.40 0.73 /-06 /-85 /-85	Water Level (RTIC) 14,43 14,53 14,71 15,04 15,54 15,54 15,54 15,54 16,08 er (three consecutions	Temp. (Colsius) [3%]* - 13.19 13.10 13.10 13.10 13.10	pH i0.1 units p	Sp. Cond. (ms/cm) (3%) 1.555 1.552 1.554 1.559 6-minuto interval	tholk - S, ethod as evacuation of the service of th	DO (mg/l) [10% or 0.1 mg/l]	ore (my) [10 my] [10 my] [10 my] [10 my] [10 my] [116 .6] [116 .6] [117 .8]	
Time 1055 100 105 110 1115 1120 1130 The stabilization	Water Quality Pump Rate (Union.) 150 250 250 250 250 150 150 150	Meter Type(s)/: Total Gailone Removed 0.20 0.40 0.73 /-06 /-85 /-85	Water Level (RTIC) 14,43 14,53 14,71 15,04 15,54 15,54 15,54 15,54 16,08 er (three consecutions	Temp. (Colsius) [3%]* - 13.19 13.10 13.10 13.10 13.10	pH i0.1 units p	Sp. Cond. (ms/cm) (3%) 1.555 1.552 1.554 1.559 6-minuto interval	tholk - S, ethod as evacuation of the service of th	DO (mg/l) [10% or 0.1 mg/l]	ore (my) [10 my] [10 my] [10 my] [10 my] [10 my] [116 .6] [116 .6] [117 .8]	
Time 1055 100 105 110 1115 1120 1130 The stabilization	Water Quality Pump Rate (Union.) 150 250 250 250 250 150 150 150	Meter Type(s)/: Total Gailone Removed 0.20 0.40 0.73 /-06 /-85 /-85	Water Level (RTIC) 14,43 14,53 14,71 15,04 15,54 15,54 15,54 15,54 16,08 er (three consecutions	Temp. (Colsius) [3%]* - 13.19 13.10 13.10 13.10 13.10	pH i0.1 units p	Sp. Cond. (ms/cm) (3%) 1.555 1.552 1.554 1.559 6-minuto interval	tholk - S, ethod as evacuation of the service of th	DO (mg/l) [10% or 0.1 mg/l]	ore (my) [10 my] [10 my] [10 my] [10 my] [10 my] [116 .6] [116 .6] [117 .8]	
Time 1055 100 105 110 1115 1120 1120 1120 1	Water Quality Pump Rate (Union.) 150 150 250 250 250 150 150 150	Meter Type(s)/: Total Gailone Removed 0.20 0.40 0.73 /-06 /-85 /-85	Water Level (RTIC) 14,43 14,53 14,71 15,04 15,54 15,54 15,54 15,54 16,08 er (three consecutions	Temp. (Colsius) [3%]* - 13.19 13.10 13.10 13.10 13.10	pH i0.1 units p	Sp. Cond. (ms/cm) (3%) 1.555 1.552 1.554 1.559 6-minuto interval	tholk - S, ethod as evacuation of the service of th	DO (mg/l) [10% or 0.1 mg/l]	ore (my) [10 my] [10 my] [10 my] [10 my] [10 my] [116 .6] [116 .6] [117 .8]	
Time 1055 100 105 110 115 1120 1130 The stabilization 110	Water Quality Pump Rate (Union.) 150 250 250 250 250 150 150 150	Meter Type(s)/: Total Gailone Removed 0.20 0.40 0.73 /-06 /-85 /-85	Water Level (RTIC) 14,43 14,53 14,71 15,04 15,54 15,54 15,54 15,54 16,08 er (three consecutions	Temp. (Colsites) [3%]* 13.19 13.19 13.10 13.19 thre readings on Mal Pa	pH i0.1 units†	Sp. Cond. (ms/cm) (3%) 1.555 1.555 1.555 1.557 1.559 6-minute interval (1.40)	tholk - S, ethod as evacuation of the service of th	DO (mg/l) [10% or 0.1 mg/l]	ore (my) [10 my] [10 my] [10 my] [10 my] [10 my] [116 .6] [116 .6] [117 .8]	
Time 1055 100 105 110 1115 1120 1120 1120 1	Water Quality Pump Rate (Union.) 150 250 250 250 250 150 150 150	Meter Type(s)/: Total Gailone Removed 0.20 0.40 0.73 /-06 /-85 /-85	Water Level (RTIC) 14,43 14,53 14,71 15,04 15,54 15,54 15,54 15,54 16,08 er (three consecutions	Temp. (Colsites) [3%]* 13.19 13.19 13.10 13.19 thre readings on Mal Pa	pH i0.1 units p	Sp. Cond. (ms/cm) (3%) 1.555 1.555 1.555 1.557 1.559 6-minute interval (1.40)	tholk - S, ethod as evacuation of the service of th	DO (mg/l) [10% or 0.1 mg/l]	ore (my) [10 my] [10 my] [10 my] [10 my] [10 my] [116 .6] [116 .6] [117 .8]	

PAGE ZoF Z

GROUNDWATER SAMPLING LOG

Well No. GMA5-9		
Well No	Site/GMA Name	11A5
	Sampling Personnel	With 1

MAS GE PHAREID

WELL INFORMATION - See Page 1

r										
		Pump	Total '	Water	Temp.	pН	Sp. Cond.	Turbidity	DO	ORP
	Time	Rate	Gallons	Level	(Celsius)		(mS/cm)	(NTU)	(mg/l)	(mV)
ŀ		(L/min.)	Removed	(ft TIC)	[3%]*	[0.1 units]*	[3%]*	[10% or 1 NTU]*	[10% or 0.1 mg/l]*	[10 mV]*
	1135	200	2.31	16,51	13.66	6.63	1.562	CH58	3.71	-113.6
4	1138	200	2.47		13.87	6.70	1.567	5	3.49	-113.0
ŀ	1141	+5	2.53		12,45	6.65	1.592	5_	3.51	-112.0
ł	1166	150	2.65		12.46	6,72	1.588	8	3.39	-110.8
ı	1147	150	2-77	gaphine manuals	12,96	6,74	1,590		3.22	-111,1
I	1150	150	2.89		12.42	6.70	1,603	10	3,17	-110,5
ŀ	1153	150	3-01		13,27	6.77	1.598	16	2,98	-109.6
-	1156	150	3.12		13,01	6.80	1.626	16	3.03	-110:1
	1159	150	3.24		13.10	6.77	1.624	17	2.99	-1085
ŀ	1200	S_	mple	0	12	00 -				
ŀ									2.5.00	
-	:									,
ļ								<u>'</u>	730.44	
						K/				
ļ										
-										
L		•								
					-2-7	·				
									,	
ſ										
7_				· · · · · · · · · · · · · · · · · · ·						

	The Stabilization Griefia for each field parameter (tribe consecutive readings conected at 5- to 5-thindle intervals) is listed in each column reading.
4	OBSERVATIONS/SAMPLING METHOD DEVIATIONS DANS BOOK WILLY (20)
•	Transporter man

GROUNDWATER SAMPLING LOG

Well	No.	Guas-	()		OM 1000 11	6	M45		
Key	No.	25			Site/GINA Na				* ***
	Background (p	pm) c2		3	Minipling Person		c (1)14 3/08		
Wet	Headepace (p	pm) 0			West		RCAST LI	40	
WELL INFO	ORMATION								····
	once Point Meri	ed? Y /	ັກ				Semple Ti		•
	t of Reference F	· · · · · · · · · · · · · · · · · · ·	Mena Fr			1	Sample	ID GMAS-	(U
-	Well Diam		Meas. Fr	om			Ouplicate		
Sc	roon interval De		Meas. Fr	om _ G-Roux			MS/MS	SD W/ KA	
	Water Table De		6 Moss. Fro		<u> </u>		Spilt Sample	ID <u>NIVY</u>	
	Well De	18 MT	Meas, Fro	***************************************					
Lengt	th of Water Colu	mn5",1(1				Required ()		cal Parameters:	Collected
	ne of Water in V	Vol .85				(/ -)		Cs (Std. list)	(入)
intaka Dep	oth of Pump/Tub	ing 15.7	Meas. Fro	m		()		SVOCs	()
Deferment of						()		Svous Bs (Total)	()
	oint Identificatio Inner (PVC) Car					()		s (Dissolved)	()
	niner (PVC) Çai f Outer (Protecti					()		organics (Total)	()
Grade/BGS:	Ground Surfac	ve) Casing				()		panics (Dissolved)	()
	CIOCIN GUILLO					()		nide (Dissolved)	()
Redevelop?	Y (N)					()		nide (Dissolved)	()
_						()	PCD	Ds/PCDFs	()
						()	Pesticid	los/Herbicides	()
						()	Natura	Attenuation	()
EVACUATIO	n informatio	N				()	Othe	or (Specify)	()
	Pump Start Time								
	Pump Stop Time		_		Evacuation M	othed: D-3		- 6	
	utes of Pumping		_ 1		Peristattic Pur			Pump (💢	
	Water Removed		gw		Pump Type:		ubmensible Pump	() Other/Sp	pecify ()
£	Did Well Go Dry?	Y (N)				cted by same m	ethod as evacuation	- Marine	
				V 65		ه و حصد			ify)
	water cluamy	Weter Type(s) / 5	Serial Numbers:		556 MPS	<u>" ' </u>	3M6230 A	15	
	Pump	Total	Water	Temp.	·	6500-00	1	-	
Time	Rate	Gallone	Level	(Colsius)	pH	Sp. Cond.	Turbidity	00	ORP
-	(L/min.)	Removed	(R TIC)	[3%]*	[0.1 units]*	(inS/cm)	(NTU)	(mg/l)	(mV)
14:30	200	THITIAL	13.16	-	10.1 drikes	[3%]-	[10% or 1 NTUP		[10 mVP
14:35	150	0.20	13.16		 		35	-	-
14:40	a	0.40	13.16	 	6.20	1	30	_	-
14:45	100	0.53		14.59	6.20	1.420	19	7.69	-73.3
14:50	125	0.70	13.16	14.36	6.58	1.473	15	0.91	-650
14:55	150	0.90	13.16	14.55	644	1.473	10	0.54	-62.9
15:00	4	1.10	13.16	14.81	6.42	1.474	7	0.45	- 59.1
15:05	11	1.29	13.16	14.88	6.41	1.477	5	0.38	-613
he stabilization	n criteria feu en e		13.16	1-1.00	6.41	1.479	4	0.33	-61.6
SERVATION		ETHOD DEVIA:	r (three consecu	itive readings or	plected at 3- to 6	i-minute interval	s) is listed in each	column heading.	
			INTO	17.13121	6 - 2	<u>1767、代色</u>	ference f	CINT NOT W	WRKED.
<u> </u>	WILL DO LAN	- Clear,	no oder.	Connec	cted YSI	: @ 14.			
···			1	***					-
							·		
								·	
PLE DESTIN									
aboratory:	565							·	
aboratory: ivered Via:							_		
aboratory:	565			, FI	ield Sampline C	cordinator	<i></i>		2
aboratory: ivered Via:	565			FI	ield Sampling C	continutor:	J.y	, <i>K</i>	2

GROUNDWATER SAMPLING LOG

Well No.	GM45-10	Site/GMA Name	GM45	_
		Sampling Personnel	Einc/04	
		Date	11/3/08	
		Weather	_ OVER CAST 49°	

WELL	INFORMATION - See Page	4

Time	Pump Rate (L/min.)	Total Gallons Removed 1.49 1.69	Water Level (ft TIC)	Temp. (Celsius) [3%]*	pH [0.1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
15:10	150	1.49	13.05	15.63	6.40	1.478	41	0.29	-603
15:15	à	2.69	13.16 1	15.00	6.39	1.477	3	0.29	-57.7
	5A	nous)			<u> </u>				
				 					
								· · · · · · · · · · · · · · · · · · ·	
	···								
									·

									~····
				 					
									·
									· · · · · · · · · · · · · · · · · · ·
-								7871	
							•		
						1			

 The stabilization criteria for each field parameter (three cons 	ecutive readings colle	ected at 3- to 5	-minute interv	als) is listed	l in each column h	eading.
OBSERVATIONS/SAMPLING METHOD DEVIATIONS	FINAL				ONOL.	
				,		

Appendix B

Validated Groundwater Analytical Results – Fall 2008

Table B-1
Fall 2008 Groundwater Analytical Results
Baseline Groundwater Quality and Interim Report for Fall 2008

Groundwater Management Area 5
General Electric Company - Pittsfield, Massachusetts
(Results are presented in parts per million, ppm)

Sample ID: Parameter Date Collected:	GMA5-4 10/30/08	GMA5-7 10/30/08	GMA5-9 10/30/08	GMA5-10 11/03/08
Volatile Organics				
1,1,1,2-Tetrachloroethane	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
1,1,1-Trichloroethane	NA NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
1.1.2.2-Tetrachloroethane	NA NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
1,1,2-Trichloroethane	NA NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
1,1-Dichloroethane	NA NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
1,1-Dichloroethene	NA NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
1,2,3-Trichloropropane	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
1.2-Dibromo-3-chloropropane	NA NA	ND(0.0050) J [ND(0.0050) J]	ND(0.0050) J	ND(0.0050) J
1,2-Dibromoethane	NA	ND(0.0010) [ND(0.0010)]	ND(0.0000) 0	ND(0.0000)
1,2-Dichloroethane	NA NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
1,2-Dichloropropane	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
1,4-Dioxane	NA NA	ND(0.10) J [ND(0.10) J]	ND(0.10) J	ND(0.10) J
2-Butanone	NA NA	ND(0.10) 3 [ND(0.10) 3] ND(0.0050) J [ND(0.0050) J]	ND(0.10) J	ND(0.0050) J
2-Chloro-1,3-butadiene	NA NA	ND(0.0030) 3 [ND(0.0030) 3]	ND(0.0030) 3	ND(0.0030) 3
2-Chloroethylvinylether	NA NA	ND(0.013) J [ND(0.013) J]	R ND(0.0050)	ND(0.013) J
2-Hexanone	NA NA	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)
3-Chloropropene	NA NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
4-Methyl-2-pentanone	NA	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)
Acetone	NA	ND(0.0050) J [ND(0.0050) J]	ND(0.0050) J	ND(0.0050) J
Acetonitrile	NA	ND(0.020) J [ND(0.020) J]	ND(0.020) J	ND(0.020) J
Acrolein	NA	ND(0.025) J [ND(0.025) J]	ND(0.025) J	ND(0.025) J
Acrylonitrile	NA	ND(0.025) J [ND(0.025) J]	ND(0.025) J	ND(0.025) J
Benzene	NA	0.00010 J [0.000090 J]	ND(0.0010)	ND(0.0010)
Bromodichloromethane	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
Bromoform	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
Bromomethane	NA	ND(0.0010) J [ND(0.0010) J]	ND(0.0010) J	ND(0.0010) J
Carbon Disulfide	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
Carbon Tetrachloride	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
Chlorobenzene	NA	0.00071 J [0.00071 J]	ND(0.0010)	ND(0.0010)
Chloroethane	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
Chloroform	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
Chloromethane	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
cis-1,3-Dichloropropene	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
Dibromochloromethane	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
Dibromomethane	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
Dichlorodifluoromethane	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
Ethyl Methacrylate	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
Ethylbenzene	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
Iodomethane	NA	ND(0.0010) J [ND(0.0010) J]	ND(0.0010) J	ND(0.0010)
Isobutanol	NA	ND(0.050) J [ND(0.050) J]	ND(0.050) J	ND(0.050) J
Methacrylonitrile	NA	ND(0.010) J [ND(0.010) J]	ND(0.010) J	ND(0.010) J
Methyl Methacrylate	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
Methylene Chloride	NA	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)
Propionitrile	NA	ND(0.020) J [ND(0.020) J]	ND(0.020) J	ND(0.020) J
Styrene	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
Tetrachloroethene	NA	0.034 [0.034]	0.026	ND(0.0010)
Toluene	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
trans-1,2-Dichloroethene	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
trans-1,3-Dichloropropene	NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
trans-1,4-Dichloro-2-butene	NA	ND(0.0050) J [ND(0.0050) J]	ND(0.0050) J	ND(0.0050) J
Trichloroethene	NA NA	0.0014 [0.0014]	ND(0.0010)	ND(0.0010)
Trichlorofluoromethane	NA NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
Vinyl Acetate	NA NA	ND(0.0010) [ND(0.0025)]	ND(0.0010)	ND(0.0010)
Vinyl Chloride	NA NA	ND(0.0023) [ND(0.0010)]	ND(0.0023)	ND(0.0023)
Xylenes (total)	NA NA	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)
Total VOCs	NA NA	0.036 J [0.036 J]	0.026	ND(0.0010)
Inorganics-Filtered	INA	0.030 J [0.030 J]	0.020	(ט. וט)
	(0.0400) [ND(0.0400)	\ 111	N1.4	h 1 A
Cadmium ND	(0.0100) J [ND(0.0100]) J] NA	NA	NA

Table B-1 Fall 2008 Groundwater Analytical Results

Baseline Groundwater Quality and Interim Report for Fall 2008 Groundwater Management Area 5 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

Notes:

- 1. Samples were collected by ARCADIS and submitted to SGS Environmental Services, Inc. for analysis of volatiles and cadmium
- (filtered).
 Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP), General Electric Company, Pittsfield, Massachusetts, ARCADIS (approved March 15, 2007 and re-submitted March 30, 2007).
- 3. NA Not Analyzed.
- 4. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 5. Field duplicate sample results are presented in brackets.

Data Qualifiers:

Organics (volatiles)

- J Indicates that the associated numerical value is an estimated concentration.
- R Data was rejected due to a deficiency in the data generation process.

Inorganics

J - Indicates that the associated numerical value is an estimated concentration.

Appendix C

Data Validation Report – Fall 2008

Appendix C
Groundwater Sampling Data Validation Report
Groundwater Management Area 5 – Fall 2008

General Electric Company Pittsfield, Massachusetts

1.0 General

This attachment summarizes the data validation review performed on behalf of the General Electric Company (GE) for groundwater samples collected in October and November 2008 as part of groundwater sampling activities conducted at Groundwater Management Area 5, located at the General Electric Company/Housatonic River Site in Pittsfield, Massachusetts. The samples were analyzed for volatile organic compounds (VOCs) and metals listed in Appendix IX of 40 CFR Part 264, plus one additional constituent -- 2-chloroethyl vinyl ether (hereafter referred to as Appendix IX) by SGS Environmental Services, Inc. of Wilmington, North Carolina. Data validation was performed for six VOC samples and two metal samples.

2.0 Data Evaluation Procedures

This attachment outlines the applicable quality control criteria utilized during the data review process and any deviations from those criteria. The data review was conducted in accordance with the following documents:

- Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP), General Electric Company, Pittsfield, Massachusetts, ARCADIS BBL (submitted by GE on March 30, 2007 and approved by EPA on June 13, 2007);
- Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses, USEPA Region I (June 13, 1988) (Modified February 1989); and
- Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, USEPA Region I (Draft, December 1996).

The data were validated to either a Tier I or Tier II level, as described below. Any deviations from the applicable quality control criteria utilized during the data review process are identified below. A tabulated summary of the Tier I/Tier II data review is presented in Table C-1. Each sample subject to evaluation is listed in Table C-1 to document that data review was performed. Samples that required data qualification are listed separately.

The following data qualifiers were used in this data evaluation:

J The compound was positively identified, but the associated numerical value is an estimated concentration. This qualifier is used when the data evaluation procedure identifies a deficiency in the data generation process. This qualifier is also used when a compound is detected at an estimated concentration less than the corresponding practical quantitation limit (PQL).

- U The compound was analyzed for, but was not detected. The sample quantitation limit is presented. Nondetect sample results are presented as ND(PQL) within this report for consistency with documents previously prepared for investigations conducted at the GE-Pittsfield/Housatonic River Site.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is estimated and may or may not represent the actual level of quantitation. Non-detect sample results that required qualification are presented as ND(PQL) J within this report for consistency with documents previously prepared for investigations conducted at the GE-Pittsfield/Housatonic River Site.
- R Indicates that the previously reported detection limit or sample result has been rejected due to a major deficiency in the data generation procedure. The data should not be used for any qualitative or quantitative purpose.

3.0 Data Validation Procedures

Section 7.5 of the FSP/QAPP states that analytical data will be validated to a Tier I level following the procedures presented in the *Region I Tiered Organic and Inorganic Data Validation Guidelines* (EPA guidelines). The Tier I review consisted of a completeness evidence audit, as outlined in the *EPA Region I CSF Completeness Evidence Audit Program* (EPA Region I, July 31, 1991), to ensure that laboratory data and documentation were present. In the event data packages were determined to be incomplete, the missing information was requested from the laboratory. Upon completion of the Tier I review, the data packages complied with the EPA Region I Tier I data completeness requirements.

The Tier II data review consisted of a review of data package summary forms for identification of quality assurance/quality control (QA/QC) deviations and qualification of the data according to the Region I Data Validation Functional Guidelines. Additionally, field duplicates were examined for relative percent difference (RPD) compliance with the criteria specified in the FSP/QAPP.

A tabulated summary of the samples subject to Tier I and Tier II data review is presented in the following table.

Summary of Samples Subjected to Tier I and Tier II Data Validation

Tier I Only		Tier I &Tier II					
Parameter	Samples	Duplicates	Blanks	Samples	Duplicates	Blanks	Total
VOCs	0	0	0	3	1	2	6
Metals	0	0	0	1	0	1	2
Total	0	0	0	4	1	3	8

When qualification of the sample data was required, the sample results associated with a QA/QC parameter deviation were qualified in accordance with the procedures outlined in EPA Region I data validation guidance documents. When the data validation process identified several quality control deficiencies, the cumulative effect of the various deficiencies was employed in assigning the final data qualifier. A summary of the QA/QC parameter deviations that resulted in data qualification is presented in Section 4 below.

4.0 Summary of QA/QC Parameter Deviations Requiring Data Qualification

This section provides a summary of the deviations from the applicable QA/QC criteria that resulted in qualification of results.

The initial calibration criterion for organic analyses requires that the average relative response factor (RRF) has a value greater than 0.05. Sample results were qualified as estimated (J) when this criterion was not achieved. The compounds that did not achieve the initial calibration criterion and the number of samples qualified are presented in the following table.

Compounds Qualified Due to Initial Calibration Deviations (RRF)

Analysis	Compound	Number of Affected Samples	Qualification
VOCs	1,2-Dibromo-3-chloropropane	6	J
	1,4-Dioxane	6	J
	2-Butanone	6	J
	2-Chloroethylvinylether	5	J
	Acetone	6	J
	Acetonitrile	6	J
	Acrolein	6	J
	Acrylonitrile	6	J
	Isobutanol	6	J
	Methacrylonitrile	6	J
	Propionitrile	6	J
	trans-1,4-Dichloro-2-butene	6	J

The continuing calibration criterion requires that the percent difference (%D) between the initial calibration RRF and the continuing calibration RRF for VOCs be less than 25%. Sample data for detect and non-detect compounds with %D values that exceeded the continuing calibration criteria were qualified as estimated (J). A summary of the compounds that exceeded the continuing calibration criterion and the number of samples qualified due to those deviations are presented in the following table.

Compounds Qualified Due to Continuing Calibration of %D Values

Analysis	Compound	Number of Affected Samples	Qualification
VOCs	Acetone	3	J
	Acrolein	6	7
	Bromomethane	6	J
	Iodomethane	3	J
	Methacrylonitrile	3	J

Matrix spike/matrix spike duplicate (MS/MSD) sample analysis recovery criteria for organics require that the MS/MSD recovery must be within the laboratory-generated QC control limits specified on the MS reporting form. Non-detect organic sample results that exhibited MS/MSD recoveries less than 10% were qualified as rejected (R). The compound that did not meet MS/MSD recovery criteria and the number of samples qualified due to those deviations are presented in the following table.

Compound Qualified Due to MS/MSD Recovery Deviations

Analysis	Compound	Number of Affected Samples	Qualification
VOCs	2-Chloroethylvinylether	1	R

Contract required detection limit (CRDL) standards were analyzed to evaluate instrument performance at low-level concentrations that are near the analytical method PQL. These standards are required to have recoveries between 80% and 120% to verify that the analytical instrumentation was properly calibrated. When CRDL standard recoveries were outside these control limits, the affected samples with detected results at or near the PQL concentration (i.e., less than three times the PQL) were qualified as estimated (J). The analyte that did not meet CRDL criteria and the number of samples qualified due to those deviations are presented in the following table.

Analyte Qualified Due to CRDL Standard Recovery Deviations

Analysis	Analyte	Number of Affected Samples	Qualification
Inorganics	Cadmium	2	J

5.0 Overall Data Usability

This section summarizes the analytical data in terms of its completeness and usability. Data completeness is defined as the percentage of sample results that have been determined to be usable during the data validation process. The percent usability calculation included analyses evaluated under both the Tier I/II data validation reviews. The percent usability calculation also includes quality control samples (i.e., field/equipment blanks, trip blanks, and field duplicates) to aid in the evaluation of data usability. Data usability is summarized in the following table.

Data Usability

Parameter	Percent Usability	Rejected Data
VOCs	99.7	A total of one sample result was rejected due to MS/MSD recovery deviations.
Metals	100	None

The data package completeness, as determined from the Tier I data review, was used in combination with the data quality deviations identified during the Tier II data review to determine overall data quality. As specified in the FSP/QAPP, the overall precision, accuracy, representativeness, comparability, and completeness (PARCC) parameters determined from the Tier I and Tier II data reviews were used as indicators of overall data quality. These parameters were assessed through an evaluation of the results of the field and laboratory QA/QC sample analyses to provide a measure of compliance of the analytical data with the Data Quality Objectives (DQOs) specified in the FSP/QAPP. Therefore, the following sections present summaries of the PARCC parameters assessment with regard to the DQOs specified in the FSP/QAPP.

5.1 Precision

Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared to their average value. For this investigation, precision was defined as the RPD between duplicate sample results. The duplicate samples used to evaluate precision included field duplicates, MS/MSD samples, and LCS/LCSD samples. None of the data required qualification due to field duplicate RPD deviations, MS/MSD RPD deviations, or LCS/LCSD RPD deviations.

5.2 Accuracy

Accuracy measures the bias in an analytical system or the degree of agreement of a measurement with a known reference value. For this investigation, accuracy was defined as the percent recovery of QA/QC samples that were spiked with a known concentration of an analyte or compound of interest. The QA/QC samples used to evaluate analytical accuracy included instrument calibration, internal standards, LCS/LCSDs, MS/MSD samples, CRDL samples, and surrogate compound recoveries. For this analytical program, 27.2% of the data required qualification due to instrument calibration deviations, 0.3% of the data required qualification due to KS/MSD recovery deviations, and 0.59% of the data required qualification due to CRDL sample recoveries. None of the data required qualification due to internal standard recovery deviations, LCS/LCSD recovery deviations, or surrogate compound recovery deviations.

5.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is a qualitative parameter, which is most concerned with the proper design of the sampling program. The representativeness criterion is best satisfied by making certain that sampling locations are selected properly and a sufficient number of samples are collected. This parameter has been addressed by collecting samples at locations specified in the EPA-approved work plans, and by following the procedures for sample collection/analyses that were described in the FSP/QAPP. Additionally, the analytical program used procedures consistent with EPA-approved analytical methodology. A QA/QC parameter that is an indicator of the representativeness of a sample is holding time. Holding time criteria are established to maintain the samples in a state that is representative of the in-situ field conditions before analysis. For this analytical data set, none of the data required qualification due to holding time deviations.

5.4 Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. This goal was achieved through the use of the standardized techniques for sample collection and analysis presented in the FSP/QAPP. Specifically, all the groundwater samples collected in October and November 2008 were analyzed by EPA SW-846 method 6010B for metals and 8260 for VOCs.

5.5 Completeness

Completeness is defined as the percentage of measurements that are judged to be valid or usable to meet the prescribed DQOs. The completeness criterion is essentially the same for all data uses -- the generation of a sufficient amount of valid data. The actual completeness of this analytical data set ranged from 99.7% to 100% for individual analytical parameters and had an overall usability of 99.9%, which is greater than the minimum required usability of 90% as specified in the FSP/QAPP.

Table C-1 Analytical Data Validation Summary Groundwater Management Area 5 Sampling - Fall 2008

General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

Metals G582-173 GMA5-4 (Filtered) G582-173 GMA5-Dup-01 (Filtered) VOCs G582-173 GMA5-7	10/30/2008 d) 10/30/2008	Water		Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
VOCs			Tier II	Yes	Cadmium	CRDL Standard %R	73.6%	80% to 120%	ND(0.0100) J	
	10/30/2008	Water	Tier II	Yes	Cadmium	CRDL Standard %R	73.6%	80% to 120%	ND(0.0100) J	Parent Sample GMA5-4 (Filtered)
G582-173 GMA5-7	10/30/2008									
		Water	Tier II	Yes	1,2-Dibromo-3-chloropropane	ICAL RRF ICAL RRF	0.019	>0.05	ND(0.0050) J	
					1,4-Dioxane 2-Butanone	ICAL RRF	0.001 0.047	>0.05 >0.05	ND(0.10) J ND(0.0050) J	
					2-Chloroethylvinylether	ICAL RRF	0.047	>0.05	ND(0.0030) J	
1					Acetone	ICAL RRF	0.032	>0.05	ND(0.0050) J	
					Acetone	CCAL %D	28.1%	<25%	ND(0.0050) J	
					Acetonitrile	ICAL RRF	0.009	>0.05	ND(0.020) J	
					Acrolein Acrolein	ICAL RRF CCAL %D	0.023 39.1%	>0.05 <25%	ND(0.025) J ND(0.025) J	
					Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
					Bromomethane	CCAL %D	44.3%	<25%	ND(0.0010) J	
					Iodomethane	CCAL %D	26.6%	<25%	ND(0.0010) J	
					Isobutanol	ICAL RRF	0.003	>0.05	ND(0.050) J	
			1		Methacrylonitrile	ICAL RRF	0.010	>0.05	ND(0.010) J	
					Propionitrile trans-1,4-Dichloro-2-butene	ICAL RRF ICAL RRF	0.012 0.028	>0.05 >0.05	ND(0.020) J ND(0.0050) J	
G582-173 GMA5-9	10/30/2008	Water	Tier II	Yes	1,2-Dibromo-3-chloropropane	ICAL RRF	0.028	>0.05	ND(0.0050) J	
	10,00,2000				1,4-Dioxane	ICAL RRF	0.001	>0.05	ND(0.10) J	
					2-Butanone	ICAL RRF	0.047	>0.05	ND(0.0050) J	
					2-Chloroethylvinylether	MS/MSD %R	0.0%, 0.0%	16.7% to 200%	R	
					Acetone	ICAL RRF	0.032	>0.05	ND(0.0050) J	
					Acetone Acetonitrile	CCAL %D ICAL RRF	28.1% 0.009	<25% >0.05	ND(0.0050) J ND(0.020) J	
					Acrolein	ICAL RRF	0.009	>0.05	ND(0.025) J	
					Acrolein	CCAL %D	39.1%	<25%	ND(0.025) J	
					Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
					Bromomethane	CCAL %D	44.3%	<25%	ND(0.0010) J	
					lodomethane	CCAL %D	26.6%	<25%	ND(0.0010) J	
					Isobutanol Methacrylonitrile	ICAL RRF	0.003 0.010	>0.05 >0.05	ND(0.050) J ND(0.010) J	
					Propionitrile	ICAL RRF	0.012	>0.05	ND(0.020) J	
					trans-1,4-Dichloro-2-butene	ICAL RRF	0.028	>0.05	ND(0.0050) J	
G582-173 GMA5-Dup-02	10/30/2008	Water	Tier II	Yes	1,2-Dibromo-3-chloropropane	ICAL RRF	0.019	>0.05	ND(0.0050) J	Parent Sample GMA5-7
					1,4-Dioxane	ICAL RRF	0.001	>0.05	ND(0.10) J	
					2-Butanone 2-Chloroethylvinylether	ICAL RRF ICAL RRF	0.047 0.027	>0.05 >0.05	ND(0.0050) J ND(0.013) J	
					Acetone	ICAL RRF	0.032	>0.05	ND(0.0050) J	
					Acetone	CCAL %D	28.1%	<25%	ND(0.0050) J	
					Acetonitrile	ICAL RRF	0.009	>0.05	ND(0.020) J	
					Acrolein	ICAL RRF	0.023	>0.05	ND(0.025) J	
			1		Acrolein Acrylonitrile	CCAL %D ICAL RRF	39.1% 0.040	<25% >0.05	ND(0.025) J ND(0.025) J	
					Bromomethane	CCAL %D	44.3%	>0.05 <25%	ND(0.025) J	
					Iodomethane	CCAL %D	26.6%	<25%	ND(0.0010) J	
					Isobutanol	ICAL RRF	0.003	>0.05	ND(0.050) J	
					Methacrylonitrile	ICAL RRF	0.010	>0.05	ND(0.010) J	
			1		Propionitrile	ICAL RRF ICAL RRF	0.012 0.028	>0.05	ND(0.020) J ND(0.0050) J	
G582-188 GMA5-10	11/3/2008	Water	Tier II	Yes	trans-1,4-Dichloro-2-butene 1,2-Dibromo-3-chloropropane	ICAL RRF	0.028	>0.05 >0.05	ND(0.0050) J ND(0.0050) J	
0002 100 OWAU-10	11/3/2006	water	116111	163	1,4-Dioxane	ICAL RRF	0.019	>0.05	ND(0.0030) J	
			1		2-Butanone	ICAL RRF	0.047	>0.05	ND(0.0050) J	
					2-Chloroethylvinylether	ICAL RRF	0.027	>0.05	ND(0.013) J	
			1		Acetone	ICAL RRF	0.032	>0.05	ND(0.0050) J	
					Acetonitrile Acrolein	ICAL RRF ICAL RRF	0.009 0.023	>0.05 >0.05	ND(0.020) J ND(0.025) J	
			1		Acrolein	CCAL %D	34.8%	>0.05 <25%	ND(0.025) J ND(0.025) J	
			I		Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
					Bromomethane	CCAL %D	40.0%	<25%	ND(0.0010) J	
			1		Isobutanol	ICAL RRF	0.003	>0.05	ND(0.050) J	
					Methacrylonitrile	ICAL RRF	0.010	>0.05	ND(0.010) J	
			Methacrylonitrile Propionitrile	CCAL %D ICAL RRF	30.0% 0.012	<25% >0.05	ND(0.010) J ND(0.020) J			
			1		trans-1,4-Dichloro-2-butene	ICAL RRF	0.012	>0.05	ND(0.020) J	

Table C-1 Analytical Data Validation Summary Groundwater Management Area 5 Sampling - Fall 2008

General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

Sample											
Delivery				Validation							
Group No.	Sample ID	Date Collected	Matrix	Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
VOCs (conti	nued)	•		•	•		•	•	•		
G582-188	GMA-5-RB-1	11/4/2008	Water	Tier II	Yes	1,2-Dibromo-3-chloropropane	ICAL RRF	0.019	>0.05	ND(0.0050) J	
						1,4-Dioxane	ICAL RRF	0.001	>0.05	ND(0.10) J	
						2-Butanone	ICAL RRF	0.047	>0.05	ND(0.0050) J	
						2-Chloroethylvinylether	ICAL RRF	0.027	>0.05	ND(0.013) J	
						Acetone	ICAL RRF	0.032	>0.05	ND(0.0050) J	
						Acetonitrile	ICAL RRF	0.009	>0.05	ND(0.020) J	
						Acrolein	ICAL RRF	0.023	>0.05	ND(0.025) J	
						Acrolein	CCAL %D	34.8%	<25%	ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
						Bromomethane	CCAL %D	40.0%	<25%	ND(0.0010) J	
						Isobutanol	ICAL RRF	0.003	>0.05	ND(0.050) J	
						Methacrylonitrile	ICAL RRF	0.010	>0.05	ND(0.010) J	
						Methacrylonitrile	CCAL %D	30.0%	<25%	ND(0.010) J	
						Propionitrile	ICAL RRF	0.012	>0.05	ND(0.020) J	
						trans-1,4-Dichloro-2-butene	ICAL RRF	0.028	>0.05	ND(0.0050) J	
G582-188	Trip Blank	11/3/2008	Water	Tier II	Yes	1,2-Dibromo-3-chloropropane	ICAL RRF	0.019	>0.05	ND(0.0050) J	
						1,4-Dioxane	ICAL RRF	0.001	>0.05	ND(0.10) J	
						2-Butanone	ICAL RRF	0.047	>0.05	ND(0.0050) J	
						2-Chloroethylvinylether	ICAL RRF	0.027	>0.05	ND(0.013) J	
						Acetone	ICAL RRF	0.032	>0.05	ND(0.0050) J	
						Acetonitrile	ICAL RRF	0.009	>0.05	ND(0.020) J	
						Acrolein	ICAL RRF	0.023	>0.05	ND(0.025) J	
						Acrolein	CCAL %D	34.8%	<25%	ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
						Bromomethane	CCAL %D	40.0%	<25%	ND(0.0010) J	
ĺ						Isobutanol	ICAL RRF	0.003	>0.05	ND(0.050) J	
						Methacrylonitrile	ICAL RRF	0.010	>0.05	ND(0.010) J	
ĺ						Methacrylonitrile	CCAL %D	30.0%	<25%	ND(0.010) J	
						Propionitrile	ICAL RRF	0.012	>0.05	ND(0.020) J	
						trans-1.4-Dichloro-2-butene	ICAL RRF	0.028	>0.05	ND(0.0050) J	

Appendix D

Historical Groundwater Data

Groundwater Elevation and Surface Water Monitoring Data – Fall 2008

Table D-1
Groundwater Elevation Monitoring Data

Groundwater Management Area 5 Long-Term Monitoring Program Monitoring Event Evaluation Report for Fall 2008 General Electric Company - Pittsfield, Massachusetts

Well Name	Measuring Point Elevation (feet AMSL)	Date	Depth to Water (feet BMP)	Corrected Water Elevation (feet AMSL)
GMA 5 - Forn	ner Oxbow Are	ea A		
GMA 5-1	984.82	10/30/2008	9.45	975.37
GMA 5-3	989.14	10/30/2008	16.91	972.23
GMA 5-4	979.10	10/30/2008	8.20	970.90
GMA 5-7	986.75	10/30/2008	12.78	973.97
GMA 5-8	984.69	10/30/2008	11.20	973.49
GMA 5-9	989.42	10/30/2008	14.21	975.21
GMA 5-10	987.11	10/30/2008	13.07	974.04
GMA 5-10	987.11	11/3/2008	13.06	974.05
Elm Street Mo	obil Monitorin	g Wells (Adja	cent to GMA	5)
GT-7	989.76	10/30/2008	16.03	973.73
GT-101	989.68	10/30/2008	17.07	972.61
Housatonic R	River (Lyman S	St. Bridge)		
BM-2A	986.32	5/7/2008	16.13	970.19
BM-2A	986.32	5/14/2008	16.20	970.12
BM-2A	986.32	5/19/2008	15.95	970.37
BM-2A	986.32	5/27/2008	16.44	969.88
BM-2A	986.32	6/2/2008	16.38	969.94
BM-2A	986.32	6/10/2008	16.20	970.12
BM-2A	986.32	6/18/2008	15.70	970.62
BM-2A	986.32	6/25/2008	15.75	970.57
BM-2A	986.32	7/2/2008	16.40	969.92
BM-2A	986.32	7/9/2008	16.46	969.86
BM-2A	986.32	7/15/2008	16.50	969.82
BM-2A	986.32	7/21/2008	16.52	969.80
BM-2A	986.32	7/30/2008	15.98	970.34
BM-2A	986.32	8/6/2008	16.45	969.87
BM-2A	986.32	8/13/2008	15.60	970.72
BM-2A	986.32	8/20/2008	16.55	969.77
BM-2A	986.32	8/27/2008	16.64	969.68
BM-2A	986.32	9/3/2008	16.60	969.72
BM-2A	986.32	9/10/2008	15.90	970.42
BM-2A	986.32	9/17/2008	16.26	970.06
BM-2A	986.32	9/26/2008	16.31	970.01
BM-2A	986.32	10/1/2008	16.15	970.17
BM-2A	986.32	10/8/2008	16.40	969.92
BM-2A	986.32	10/15/2008	16.46	969.86
BM-2A	986.32	10/16/2008	16.53	969.79
BM-2A	986.32	10/21/2008	16.42	969.90
BM-2A	986.32	10/23/2008	16.30	970.02
BM-2A	986.32	10/27/2008	14.90	971.42
BM-2A	986.32	10/28/2008	15.05	971.27
BM-2A	986.32	10/29/2008	13.76	972.56
BM-2A	986.32	10/30/2008	14.95	971.37

- 1. ft BMP feet Below Measuring Point.
- 2. A survey reference point was established on the Oxbow J & K foot bridge for staff gauge BM-2A. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.

Table D-2
East Branch Housatonic River at Coltsville, MA River Discharge

Groundwater Management Area 5 Long-Term Monitoring Program Monitoring Event Evaluation Report for Fall 2008 General Electric Company - Pittsfield, Massachusetts

Date	Maximum Discharge (cfs)	Minimum Discharge (cfs)	Comments
5/7/2008	111	93	BM-2A Measured
5/14/2008	74	64	BM-2A Measured
5/19/2008	122	102	BM-2A Measured
5/27/2008	61	49	BM-2A Measured
6/2/2008	58	47	BM-2A Measured
6/10/2008	100	82	BM-2A Measured
6/18/2008	188	130	BM-2A Measured
6/25/2008	188	145	BM-2A Measured
7/2/2008	74	53	BM-2A Measured
7/9/2008	122	40	BM-2A Measured
7/15/2008	40	35	BM-2A Measured
7/21/2008	43	37	BM-2A Measured
7/30/2008	140	93	BM-2A Measured
8/6/2008	89	66	BM-2A Measured
8/13/2008	225	198	BM-2A Measured
8/20/2008	42	38	BM-2A Measured
8/27/2008	28	24	BM-2A Measured
9/3/2008	66	17	BM-2A Measured
9/10/2008	162	117	BM-2A Measured
9/17/2008	67	61	BM-2A Measured
9/26/2008	86	25	BM-2A Measured
10/1/2008	96	86	BM-2A Measured
10/8/2008	47	43	BM-2A Measured
10/15/2008	47	35	BM-2A Measured
10/16/2008	40	33	BM-2A Measured
10/21/2008	38	31	BM-2A Measured
10/23/2008	61	54	BM-2A Measured
10/27/2008	355	215	BM-2A Measured
10/28/2008	496	215	BM-2A Measured
10/29/2008	478	394	BM-2A Measured
10/30/2008	398	266	Fall 08 Monitoring Round/ GMA5-4 and GMA5-7 Sampling
11/3/2008	142	132	GMA5-10 Sampling

- 1. 1. ft BMP feet Below Measuring Point.
- 2. Coltsville mean flow for the 10/30/08 Fall 2008 Monitoring/Sampling round was 324 cubic feet per second (cfs).

Summary of Historical Groundwater Analytical Results – Selected Wells

Table D-3 Historical Groundwater Analytical Results For Cadmium - Well GMA5-4

Groundwater Management Area 5 Long-Term Monitoring Program Monitoring Event Evaluation Report for Fall 2008 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

	Sample ID:	GMA5-4	GMA5-4	GMA5-4	GMA5-4
Parameter	Date Collected:	05/02/02	10/17/02	04/30/03	10/22/03
Inorganics-F	iltered				
Cadmium		ND(0.0100)	ND(0.00500)	ND(0.00500)	ND(0.00500)

	Sample ID:	GMA5-4	GMA5-4	GMA5-4	GMA5-4
Parameter	Date Collected:	11/15/06	11/15/07	05/15/08	10/30/08
Inorganics-F	iltered				
Cadmium		0.00411 J	ND(0.0100)	ND(0.0100) [ND(0.0100)]	ND(0.0100) [ND(0.0100)]

- 1. Samples were collected by ARCADIS between 2007and 2008 and submitted to SGS Environmental Services, Inc. for analysis.
- 2. Analytical results have been validated as per GE's approved Field Sampling Plan/Quality Assurance Project Plan.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. Only constituents which were detected during at least one prior sampling event and were analyzed for during the fall 2008 sampling event are summarized.
- 5. Field duplicate sample results are presented in brackets.
- 6. J Indicates that the associated numerical value is an estimated concentration.

Table D-4
Historical Groundwater Analytical Results For VOCs - Well GMA5-7

Groundwater Management Area 5 Long-Term Monitoring Program Monitoring Event Evaluation Report for Fall 2008 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

	Sample ID:	GMA5-7	GMA5-7	GMA5-7	GMA5-7	GMA5-7
Parameter	Date Collected:	04/16/02	10/17/02	04/30/03	10/21/03	05/11/04
Volatile Organi	ics					
Acetone		ND (0.010) J	ND(0.010)	0.014	ND(0.010)	ND(0.010) J
Benzene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Chlorobenzene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Ethylbenzene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Tetrachloroethe	ne	0.018	0.0045	0.020	0.024	0.034
Toluene		ND(0.0050)	ND(0.0050)	ND(0.0050)	0.0011 J	ND(0.0050)
trans-1,2-Dichlo	roethene	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.00082 J	ND(0.0050)
Trichloroethene		ND(0.0050)	ND(0.0050)	0.0067	0.0029 J	ND(0.0050)
Vinyl Chloride		ND(0.0020)	ND(0.0020)	ND(0.0020)	0.0029	ND(0.0020)
Total VOCs		0.018	0.0045	0.041	0.032 J	0.034

Parameter	Sample ID: Date Collected:	GMA5-7 04/12/06	GMA5-7 10/27/06	GMA5-7 11/15/07	GMA5-7 05/15/08	GMA5-7 10/30/08
Volatile Organ	ics	0 11 12 0 0	70,2700	10,10,0	00,10,00	10.00.00
Acetone		ND(0.010)	ND(0.0050)	ND(0.0050) J	ND(0.0050) J	ND(0.0050) [ND(0.0050)]
Benzene		ND(0.0050)	ND(0.0010)	ND(0.0010)	ND(0.0010)	0.00010 J [0.000090 J]
Chlorobenzene		ND(0.0050)	ND(0.0010)	ND(0.0010)	ND(0.0010)	0.00071 J [0.00071 J]
Ethylbenzene		ND(0.0050)	ND(0.0010)	0.00023 J	0.00018 J	ND(0.0010) [ND(0.0010)]
Tetrachloroethe	ene	0.062	0.046	0.024	0.037	0.034 [0.034]
Toluene		ND(0.0050)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010) [ND(0.0010)]
trans-1,2-Dichlo	roethene	ND(0.0050)	ND(0.0010)	0.0011	0.00080 J	ND(0.0010) [ND(0.0010)]
Trichloroethene		0.0023 J	0.0023	0.0031	0.0028	0.0014 [0.0014]
Vinyl Chloride		ND(0.0020)	ND(0.0010)	0.00061 J	0.00059 J	ND(0.0010) [ND(0.0010)]
Total VOCs		0.064 J	0.048	0.029 J	0.041 J	0.036 J [0.036 J]

- 1. Samples were collected by ARCADIS between 2002 and 2008 and submitted to SGS Environmental Services, Inc. for analysis.
- 2. Analytical results have been validated as per GE's approved Field Sampling Plan/Quality Assurance Project Plan.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. Only constituents which were detected during at least one prior sampling event and were analyzed for during the fall 2008 sampling event are summarized.
- 5. Field duplicate sample results are presented in brackets.
- 6. J Indicates that the associated numerical value is an estimated concentration.

Table D-5
Historical Groundwater Analytical Results For VOCs - Well GMA5-9

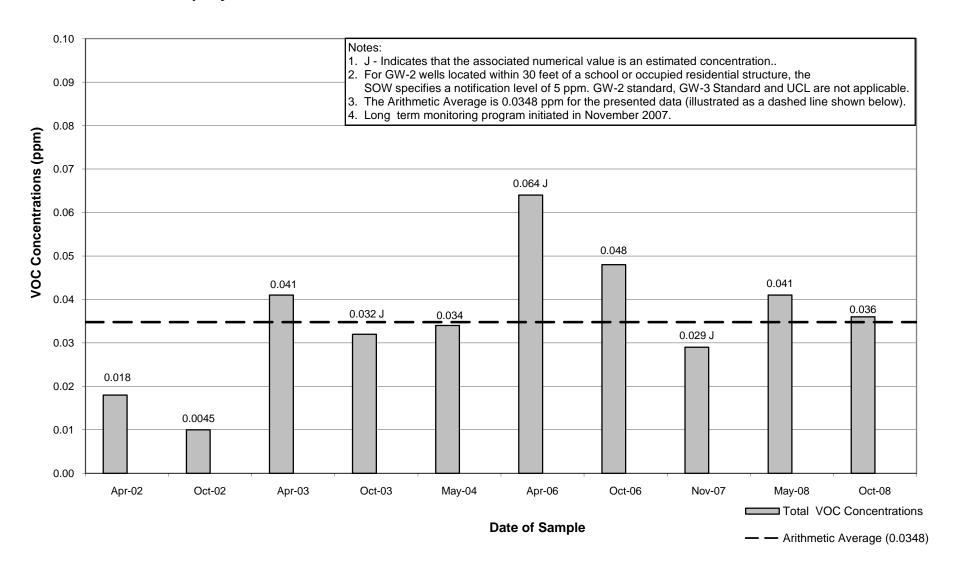
Groundwater Management Area 5 Long-Term Monitoring Program Monitoring Event Evaluation Report for Fall 2008 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:		GMA5-9 05/16/08	GMA5-9 10/30/08
Volatile Organics				
Chlorobenzene		ND(0.0010)	0.00011 J [ND(0.0010)]	ND(0.0010)
Tetrachloroethene		0.022	0.021 [0.020]	0.026
Total VOCs		0.022	0.021 [0.020]	0.026

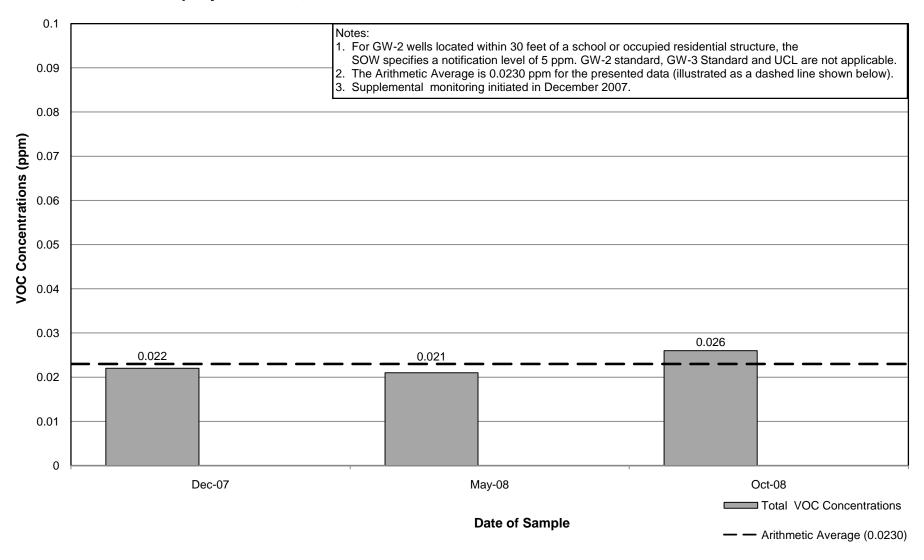
- 1. Samples were collected by ARCADIS between 2007and 2008 and submitted to SGS Environmental Services, Inc. for analysis.
- 2. Analytical results have been validated as per GE's approved Field Sampling Plan/Quality Assurance Project Plan.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. Only constituents which were detected during at least one prior sampling event and were analyzed for during the fall 2008 sampling event are summarized.
- 5. Field duplicate sample results are presented in brackets.
- 6. J Indicates that the associated numerical value is an estimated concentration.

Table D-6 Historical Groundwater Analytical Results For VOCs - Well GMA5-10

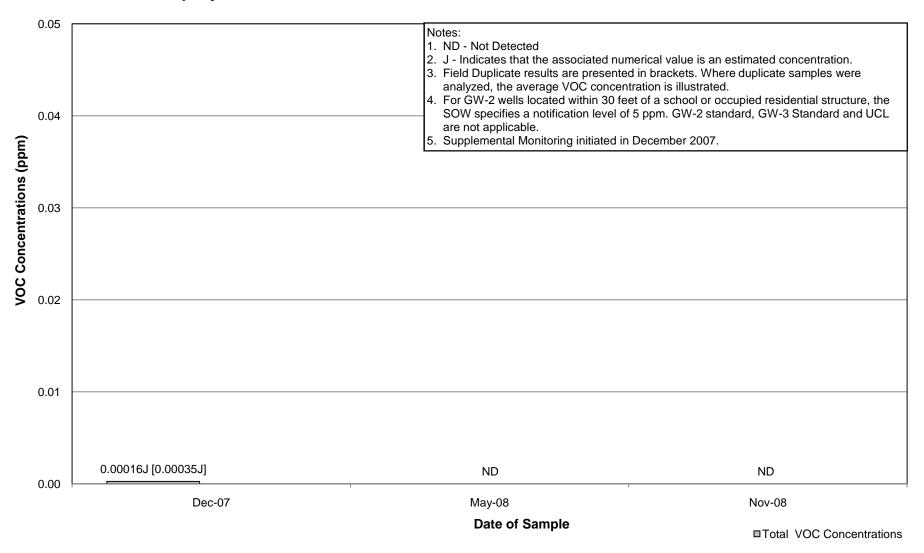
Groundwater Management Area 5 Long-Term Monitoring Program Monitoring Event Evaluation Report for Fall 2008 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)


Parameter	Sample ID: Date Collected:		GMA5-10 05/16/08	GMA5-10 11/03/08
Volatile Organics				
Toluene		0.00016 J [0.00035 J]	ND(0.0010)	ND(0.0010)
Total VOCs		0.00016 J [0.00035 J]	ND(0.10)	ND(0.10)

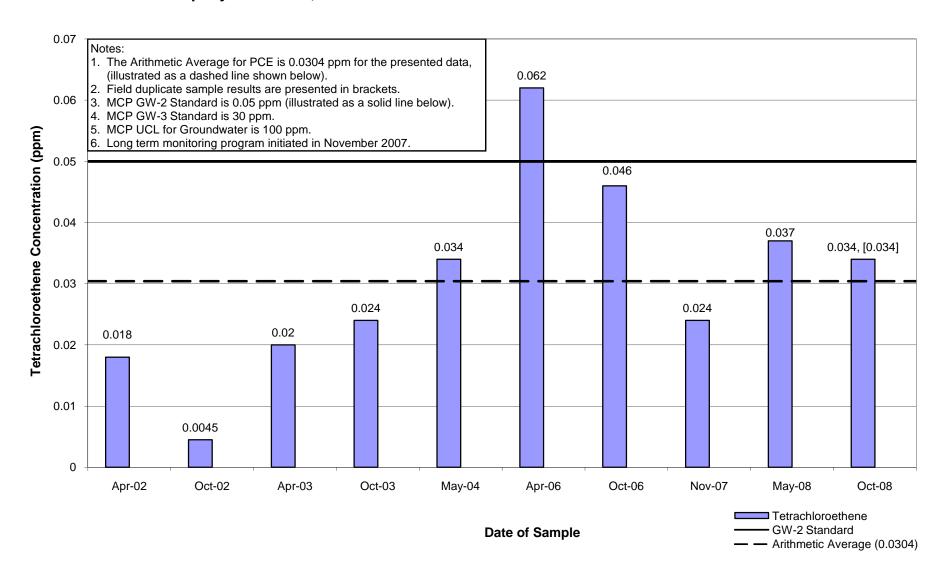
- Samples were collected by ARCADIS between 2007and 2008 and submitted to SGS Environmental Services, Inc. for analysis.
- 2. Analytical results have been validated as per GE's approved Field Sampling Plan/Quality Assurance Project
- 3. Plan.
- 4. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

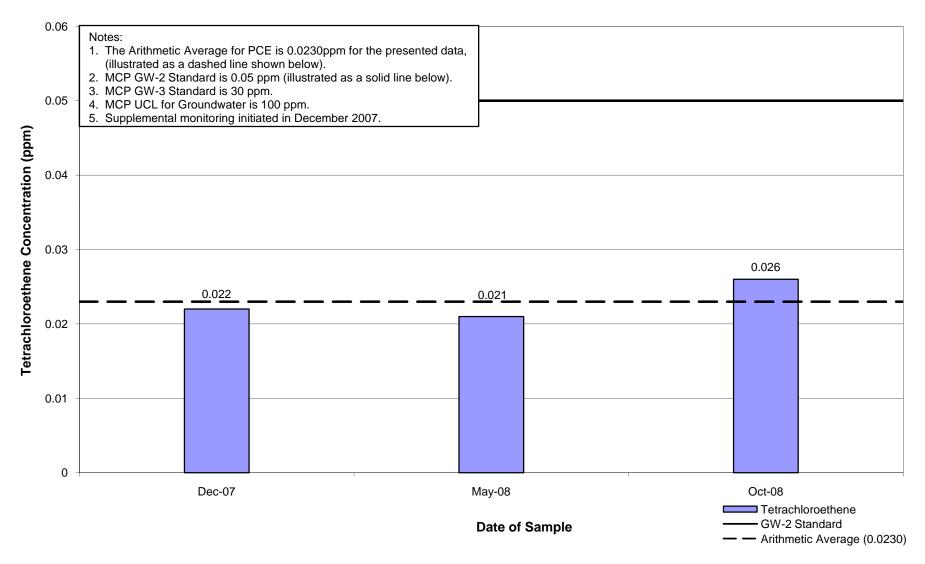

 Only constituents which were detected during at least one prior sampling event and were analyzed for during the
- 5. fall 2008 sampling event are summarized. Toluene was detected in duplicate samples analyzed during the December 2007 sampling event, which was the only sampling event where VOCs were detected in this well. The minimum and maximum detected
- 6. concentrations represent the duplicate sample results from that single sampling event.

Total VOC Concentrations - Selected Wells


Appendix D Well GMA5-7 Historical Total VOC Concentrations

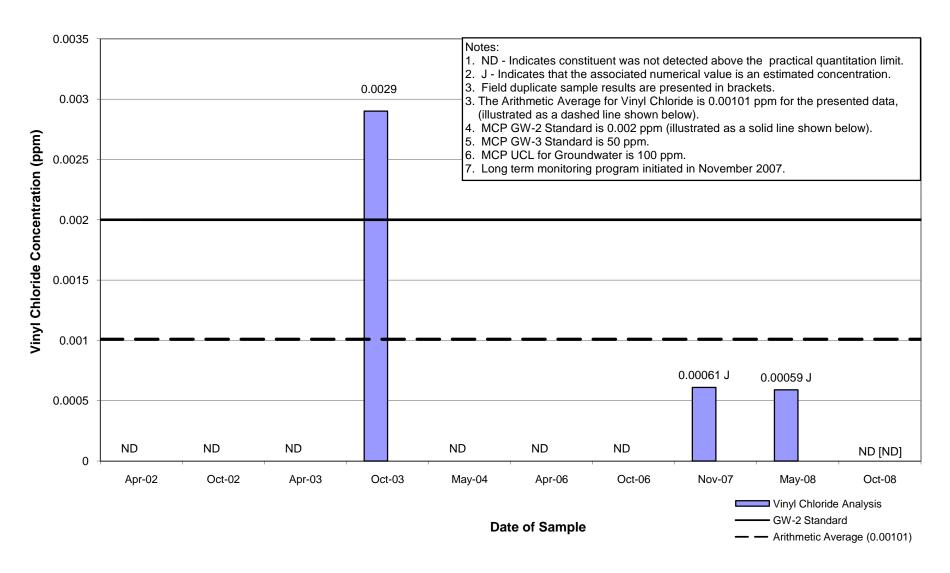
Appendix D Well GMA5-9 Historical Total VOC Concentrations


Appendix D Well GMA5-10 Historical Total VOC Concentrations


Tetrachloroethene Concentrations

- Selected Wells

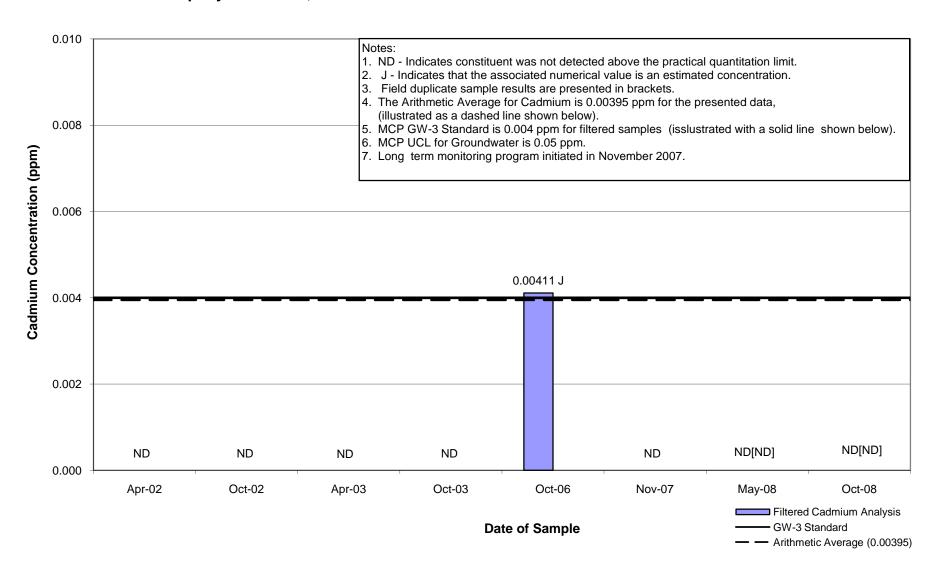
Appendix D Well GMA5-7 Historical Tetrachloroethene (PCE) Concentrations


Appendix D Well GMA5-9 Historical Tetrachloroethene (PCE) Concentrations

Vinyl Chloride Concentrations – Well GMA5-7

Appendix D Well GMA5-7 Historical Vinyl Chloride Concentrations

Groundwater Management Area 5 General Electric Company - Pittsfield, Massachusetts



Page 1 of 1 2/13/2009

Cadmium Concentrations – Well GMA5-4

Appendix D Well GMA5-4 Historical Cadmium Concentrations (Filtered Analysis)

Groundwater Management Area 5 General Electric Company - Pittsfield, Massachusetts

Page 1 of 1 2/13/2009

Appendix E

Monitoring Results for Adjacent MCP Disposal Site

P:\20474\32302\01-EC0\CSTPL004.DWG

FIGURE 1-2

TABLE 2-1 NAPL GAUGING SUMMARY

Former Mobil Service Station No. 01-ECQ 83-89 Elm Street Pittsfield, Massachusetts

Well ID:		GES-3	01I	EXP-	.7	EXP-	10	EXP1	0R	EXP-	13	ECS	9	GES-2	228	GT-	6		
		NIATOY	** 1	N.Y. A. Y.N.Y.	Y 7 . 1	N 1 A 701	** 1	N.T. A. TOT		NATO	,,,	NY A TOT	,,,) / 4 TOY					I . I
		NAPL	Vol.	NAPL	Vol.	NAPL	Vol.	NAPL	Vol.	NAPL	Vol.	NAPL	Vol.	NAPL	Vol.	NAPL	Vol.	m . 1 1	Approx.
		thickness	Bailed	thickness	Bailed	thickness	Bailed	thickness	Bailed	thickness	Bailed	thickness	Bailed	thickness	Bailed	thickness	Bailed	Total volume	%
Date		(in)	(gal)	(in)	(gal)	(in)	(gal)	(in)	(gal)	(in)	(gal)	(in)	(gal)	(in)	(gal)	(in)	(gal)	bailed (gal)	Product
4/26/2006	April	99.72	NR			ND	NA	9.36	NR	3.84	NR	33.6	NR	1.44	NR	1.32	NR	not recorded	NR
5/10/2006	May	39.72	NR			0.12	NR	5.76	NR	4.44	NR	9.36	NR	1.08	NR	1.44	NR	not recorded	NR
6/26/2006	June	50.52	Y	-		ND	NA	4.44	Y	3.48	Y	14.04	N	1.2	N	1.32	N	1.5	NR
7/24/2006	July	10.92	1.5	ı		ND	NA	7.08	2	ND	NA	10.92	N	ND	NA	2.04	1.5	5	1
8/23/2006	August	73.92	0.5	. 1		ND	NA	5.88	0.125	3.84	N	10.32	И	1.32	N	0.48	N	0.6	94
9/21/2006	September	66.12	Y	-	-	ND	NA	7.2	Y	4.08	Y	7.56	Y	1.08	N	0.72	N	2.5	NR
October	October	NG	NG			NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG
11/16/2006	November	111.72	Y			ND	NA	NG	NG	1.8	Y	33.84	Y	1.2	Y	0.48	Y	4	50
12/19/2006	December	67.56	1.5			ND	NA	0.48	0.01	2.76	0.01	3.6	N	0.6	N	0.48	N	1.5	95
1/9/2007	January	39.24	1.5	-		ND	NA	0.12	N	0.72	0.0264	9.96	N	0.24	N	0.24	N	1.526	NR
February	February	NG	NG			NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG
March	March	NG	NG			NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG
4/27/2007	April	85.56	N			ND	NA	NG	NA	ND	NA	12.96	N	0.48	N	0.24	N	NA	NA
5/17/2007	May*	11.40	N			ND	NA	0.12	N	0.24	N	3.72	N	0.36	N	0.12	N	NA	NA
6/26/2007	June	13.80	Y			ND	NA	Trace	N	0.72	N	2.28	Y	Trace	N	0.6	Y	0.5	10
7/20/2007	July	3.00	0.1	-		ND	NA	ND	NA	1.2	0.1	3	0.1	0.24	N	0.48	0.1	0.5	10
8/7/2007	August	3.24	N			ND	NA	ND	NA	2.64	N	2.04	N	0.36	N	0.6	N	NA	NA
9/9/2007	September	27.96	0.75	-		NG	NG	1.44	N	2.64	0.1	3.6	0.1	0.12	N	0.6	N	3	30
October	October	NG	NG			NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG
11/12/2007	November	15.00	N	-		ND	NA	2.64	N	ND	NA	2.04	N	0.36	N	0.96	N	NA	NA
12/18/2008	December	NG	NG			NG	NG	NG	NG	NG	NG	1.56	2.5	0.96	1.5	NG	NG	4	NR
1/16/2008	January	22.92	2			NG	NG	NG	NG	NĞ	NG	2.88	N	0.12	N	NG	NG	2	NR
2/7/2008	February	7.08	Y			NG	NG	NG	NG	NĞ	NG	4.32	Y	0.24	Y	NG	NG	1	25
3/27/2008	March	2.40	Y			ND	NA	3.12	Υ	NG	NG	5.4	Y	0.12	Y	0.48	Y	not recorded	NR
4/28/2008	April	0.60	0.25			ND	NA	1.68	0.5	ND	NA	1.68	0.5	0.12	N	0.24	0.25	1.5	95
5/8/2008	May	0.72	N			ND	NA	1.56	N	0.48	N	1.56	N	0.12	N	0.36	N	NA	NA
6/17/2008	June	6.24	2			ND	NA	0.48	N	0.36	N	1.92	1.5	Trace	N	0.12	N	3.5	10
7/25/2008	July	0.12	Y	3.24	Y	ND	NA	ND	NA	ND	NA	0.96	Y	Trace	N	Trace	N	2.5	8
8/22/2008	August	0.12	0.03	0.12	0.03	ND	NA	0.36	0.07	0.96	0.26	0.24	0.07	0.12	0.03	0.12	0.03	0.5	100
9/24/2008	September	Trace	N	Trace	N	ND	NA	ND	NA	0.6	0.25	0.12	Y	ND	NA	ND	NA		
10/16/2008	October	ND	N	0.36	2.5	ND	NA	ND	NA	0.72	2.5	0.24	1	ND	NA	0.24	2	8.0	NR
11/13/2008	November	0.12	0.07	ND	NA	ND	NA	0.6	0.13	0.24	0.07	0.24	0.07	0.12	0.07	0.12	0.07	0.48	NR

Notes

DTP = Depth to Product (Ft below top of riser pipe)

DTW = Depth to Water (Ft below top of riser pipe)

NA = Not Applicable

ND = NAPL not detected

NR = Not Recorded

NG = Not Gauged

Y = Product bailed, but quantity not recorded

N = Product not bailed

*Pumping began on these wells in May 2007. These measurements are during pumping.

TABLE 2-2

HISTORICAL GROUNDWATER MONITORING DATA VOLATILE PETROLEUM HYDROCARBONS

Former Mobil Service Station No. 01-ECQ

83-89 Elm Street

Pittsfield, Massachusetts

		-	1 8	ਵ	Ours)	u o			VPI	I Target Ana	ilytes			,	VPH Fractio	ns
Well ID/MP El (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (feet)	NAPL Thickness (feet)	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Benzene	Toluene	Ethylbenzene	Total Kylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	gallons	feet	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
					ethod 1 GW-		2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
						3 Standard:	10,000	40,000	5,000	5,000	-	50,000	20,000	50,000	50,000	50,000
ECS-4	21 Apr 00	8.93	NA	NA	NA	NA	31.6	216	40	385	673	<5.0	83	750	1,920	1,270
NA	23 Aug 00	8.32	NA	NA	NA	NA	<1.0	<5.0	<5.0	22.7	22.7	<5.0	54.6	200	190	400
	20 Nov 00	11.43	NA	NA	NA	NA	<1.0	6.3	23	65.7	95	<5.0	30.2	640	550	630
	12 Jan 01	12.85	NA	NA	NA	NA	<1.0	8.5	47.5	131.3	187.3	7.8	14.1	700	420	630
	11 Jul 01	10.45	NA	NA	NA	NA	<1.0	<5.0	<5.0	22.7	22.7	<5.0	36.8	350	170	150
	12 Oct 01	13.06	NA	NA.	NA	NA	<1.0	<5.0	<5.0	<15.0	ND	<5.0	13.5	160	<100	100
992.14	20 Aug 02	13.51	NA	NA	NA	978.63	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Dec 02	9.54	NA	NA	NA	982.60	<0.50	<1.0	<1.0	13.9	13.9	<1.0	14.2	72.2	<50	71
	01 Dec 03	9.05	NA	NA	NA	983.09	<2.0	9.9	159	310.4	479.3	<2.0	86.0	530	<50	835
	24 Feb 04	16.05	NA	NA	NA	976.09	<2.0	<2.0	<2.0	<4.0	ND	2.0	<3.0	219	<50	<50
	14 Sep 04	NM	NA	NA	NA	NA	<2.0	<2.0	92.3	9.3	101.6	<2.0	40.7	919	861	1,120
	23 Feb 05	9.20	NA	NA	NA	982.94	<2.0	<2.0	<2.0	13.1	13,1	<2.0	6.2	279	<50	194
	10 May 06	9.12	NA	NA	NA	983.02	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	21-Sep-06	11.49	NA	NA	NA	980.65	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	17-Oct-07	14.59	NA	NA	NA	977.55	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	63	<50	<50
	28-Mar-08	6.66	NA	NA	NA	985.48	<2.0	<2.0	<2.0	ND	ND	<2.0	<3.0	<50	<50	<50
	25-Jul-08	10.49	NA	NA	NA	981.65	<2.0	<2.0	5.0	21.0	26	<2.0	<3.0	<50	<50	<50
	17-Oct-08	12.44	NA	NA	NA	979.70	<2.0	<2.0	4.2	4.0	8.2	<1.0	<3.0	79.6	<50	<50
ECS-7	19 May 98	14.18	NA	NA	NA	977.48	<25	<50	372	270	642	<25	129	310	1,730	770
991.66	30 Nov 98	17.33	NA	NA	NA	974.33	7.2	<50	249	<50	256.2	1,220	<50	<250	690	690
	01 Apr 99	14.55	NA	NA	NA	977.11	<5.0	38	735	1,492	2,265	27	104	790	1,120	2,060
	24 Aug 99	16.35	NA	NA	NA	975.31	2.9	16.5	561	378.6	959	96.3	60.5	560	900	1,190
	24 Nov 99	16.46	NA	NA	NA	975.20	<5.0	<25	634	598	1,232	51	153	<500	980	1,420
	21 Apr 00	14.44	NA	NA	NA	977.22	<5.0	105	691	1,218	2,014	<25	185	770	2,920	2,310
	23 Aug 00	13.73	NA	NA	NA	977.93	1.5	64	596	878	1,539.5	<5.0	144	<500	1,360	1,890
	20 Nov 00	15.47	NA	NA	NA	976.19	3.0	19.1	439	420.6	881.7	22.8	99.9	980	3,390	1,540
	11 Jul 01	14.40	NA	NA	NA	977.26	<1.0	16.8	180	355	551.8	6.8	45.4	350	880	610
	12 Oct 01	16.75	NA	NA	NA	974.91	1.9	<5.0	126	7.7	135.6	11.4	7.4	300	260	530
991.71	20 Aug 02	16.92	NA	NA	NA	974.79	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	29 May 03	18.30	NA	NA	NA	973.41	<2.0	<2.0	15.3	15.2	30.5	<2.0	<3.0	117.0	<50	82.2
	01 Dec 03	16.73	NA	NA	NA	974.98	<2.0	<2.0	21.3	4.7	26	<2.0	<3.0	<50	<50	67.7
	25 Feb 04	20.08	NA	NA	NA	971.63	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	14 Sep 04	NM	NA	NA	NA	NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	22 Feb 05	16.78	NA	NA	NA	974.93	<2.0	<2.0	5.7	<4.0	5.7	<2.0	<3.0	<50	<50	<50

TABLE 2-2 HISTORICAL GROUNDWATER MONITORING DATA

VOLATILE PETROLEUM HYDROCARBONS Former Mobil Service Station No. 01-ECQ

83-89 Elm Street Pittsfield, Massachusetts

991.43	Units 8 Oct 96 Nov 96 Dec 96 Jan 97 May 98 Apr 99 Aug 99 Nov 99 8 Jan 00 Dec	14.02 17.06 11.88 14.65 14.32 14.66 19.09 12.35 18.87 17.52 16.60 16.91	NA 16.44 11.80 13.95 14.12 14.31 18.73 12.24 18.65 NA 16.28	MCP Mc MCP Mc NA 0.62 0.08 0.70 0.20 0.35 0.36 0.11	gallons ethod 1 GW- ethod 1 GW- NA 0.30 NA 0.50 NA	3 Standard: 977.41 974.84 979.61 977.31 977.26 977.04	10,000 NS NS NS NS NS NS NS	ид/L 50,000 40,000 NS NS NS	μg/L 20,000 5,000 NS NS	μg/L 9,000 5,000 NS NS	Total BIEK Total BIEK NS NS	pg/L 50,000 50,000 NS NS	ригина май май май май май май май ма	CS-CS Aliphartics CS-CS Aliphartics NS NS	Co-CI2 Aliphatics (co-CI2	μg/L 7,000 50,000
991.43	8 Oct 96 6 Nov 96 9 Dec 96 1 Jan 97 6 Mar 97 9 May 98 9 Nov 98 1 Apr 99 1 Aug 99 1 Nov 99 8 Jan 00 9 Feb 00	14.02 17.06 11.88 14.65 14.32 14.66 19.09 12.35 18.87 17.52	NA 16.44 11.80 13.95 14.12 14.31 18.73 12.24 18.65 NA	MCP Mc MCP Mc NA 0.62 0.08 0.70 0.20 0.35 0.36 0.11	ethod 1 GW- ethod 1 GW- NA 0.30 NA 0.50 NA NA NA	2 Standard: 3 Standard: 977.41 974.84 979.61 977.26 977.04	2,000 10,000 NS NS NS NS	50,000 40,000 NS NS NS	20,000 5,000 NS NS	9,000 5,000 NS NS	- - NS	50,000 50,000 NS	1,000 20,000 NS	3,000 50,000 NS	5,000 50,000 NS	7,000 50,000 NS
991.43	5 Nov 96 Dec 96 Lan 97 May 98 May 98 Nov 98 Lapr 99 Aug 99 Nov 99 Rov 90	17.06 11.88 14.65 14.32 14.66 19.09 12.35 18.87 17.52 16.60	16.44 11.80 13.95 14.12 14.31 18.73 12.24 18.65 NA	NA 0.62 0.08 0.70 0.20 0.35 0.36 0.11 0.22	NA 0.30 NA 0.50 NA NA NA	3 Standard: 977.41 974.84 979.61 977.31 977.26 977.04	10,000 NS NS NS NS	40,000 NS NS NS	5,000 NS NS	5,000 NS NS	- NS	50,000 NS	20,000 NS	50,000 NS	50,000 NS	50,000 NS
991.43	5 Nov 96 Dec 96 Lan 97 May 98 May 98 Nov 98 Lapr 99 Aug 99 Nov 99 Rov 90	17.06 11.88 14.65 14.32 14.66 19.09 12.35 18.87 17.52 16.60	16.44 11.80 13.95 14.12 14.31 18.73 12.24 18.65 NA	NA 0.62 0.08 0.70 0.20 0.35 0.36 0.11 0.22	NA 0.30 NA 0.50 NA NA	977.41 974.84 979.61 977.31 977.26 977.04	NS NS NS NS	NS NS NS	NS NS	NS NS	NS	NS	NS	NS	NS	NS
991.43	5 Nov 96 Dec 96 Lan 97 May 98 May 98 Nov 98 Lapr 99 Aug 99 Nov 99 Rov 90	17.06 11.88 14.65 14.32 14.66 19.09 12.35 18.87 17.52 16.60	16.44 11.80 13.95 14.12 14.31 18.73 12.24 18.65 NA	0.62 0.08 0.70 0.20 0.35 0.36 0.11	0.30 NA 0.50 NA NA	974.84 979.61 977.31 977.26 977.04	NS NS NS	NS NS	NS	NS			+			-
991.43 * 10 24 22 23 29 11 29 01	Dec 96 1 Jan 97 5 Mar 97 9 May 98 1 Nov 98 1 Apr 99 1 Aug 99 1 Nov 99 8 Jan 00 0 Feb 00	11.88 14.65 14.32 14.66 19.09 12.35 18.87 17.52	11.80 13.95 14.12 14.31 18.73 12.24 18.65 NA	0.08 0.70 0.20 0.35 0.36 0.11	NA 0.50 NA NA NA	979.61 977.31 977.26 977.04	NS NS	NS			143	143	110			NS
991.43 * 10 24 24 22 28 991.43 * 10 21 23 29 11 29	1 Jan 97 5 Mar 97 7 May 98 9 Nov 98 1 Apr 99 1 Aug 99 1 Nov 99 8 Jan 00 9 Feb 00	14.65 14.32 14.66 19.09 12.35 18.87 17.52 16.60	13.95 14.12 14.31 18.73 12.24 18.65 NA	0.70 0.20 0.35 0.36 0.11 0.22	0.50 NA NA NA	977.31 977.26 977.04	NS			NS	NS	NS	NS	NS	NS NS	NS
991.43 * 10 24 22 28 29 11 29 01	6 Mar 97 May 98 O Nov 98 Apr 99 Aug 99 Nov 99 Nov 99 Jan 00 O Feb 00	14.32 14.66 19.09 12.35 18.87 17.52 16.60	14.12 14.31 18.73 12.24 18.65 NA	0.20 0.35 0.36 0.11 0.22	NA NA NA	977.26 977.04			NS	NS	NS	NS	NS	NS NS	NS	NS
30 01 24 24 28 991.43 * 10 21 23 29 11 29 01	Nov 98 1 Apr 99 4 Aug 99 4 Nov 99 8 Jan 00) Feb 00	14.66 19.09 12.35 18.87 17.52 16.60	18.73 12.24 18.65 NA	0.36 0.11 0.22	NA			NS	NS	NS	NS	NS	NS	NS	NS	NS
991.43 * 10 23 29 11 29 01	1 Apr 99 4 Aug 99 4 Nov 99 8 Jan 00) Feb 00	12.35 18.87 17.52 16.60	12.24 18.65 NA	0.11 0.22		072 (1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
24 24 28 991.43 * 10 21 23 29 11 29 01	4 Aug 99 4 Nov 99 8 Jan 00 9 Feb 00	18.87 17.52 16.60	18.65 NA	0.22	0.20	972.61	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
24 28 991.43 * 10 21 23 29 11 29 01	Nov 99 8 Jan 00 9 Feb 00	17.52 16.60	NA		0.20	979.16	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
991.43 * 10 21 23 29 11 29 01	8 Jan 00) Feb 00	16.60			0.10	972.73	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
991.43 * 10 21 23 29 11 29 01) Feb 00		16.28	0.00	NA	973.91	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
21 23 29 11 29 01		16.91	10.20	0.32	0.10	975.07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
23 29 11 29			16.70	0.21	0.53	974.68	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
29 11 29 01	Apr 00	14.14	14.13	0.01	0.10	977.30	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
11 29 01	3 Aug 00	12.75	11.88	0.87	0.00	979.34	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
29 01	Dec 00			Well Found		-,		T	1		r	r				·
01	Dec 02	14,95	13.81	1.14	0.00	977.35	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	May 03	DRY	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1 27	Dec 03	13.00	12.88	0.12	0.00	978.52	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7 Feb 04	NA 20,23	22.11	0.13	0.00	NA 971.30	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS
	Aug 05	16.22	15.44	0.13	NA	9/1.30 NA	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS
	May 06 3 Oct 96	16.42	NA	NA	NA NA	977.02	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS
	Nov 96	17.43	16.83	0.60	0.30	976.47	NS NS	NS NS	NS	NS	NS NS	NS NS	NS	NS NS	NS	NS NS
	Dec 96	16.35	NA	NA NA	NA NA	977.09	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS
	1 Jan 97	17,18	15.85	1.33	0.50	977,27	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	Mar 97	15.53	15.28	0.25	NA	977.91	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	May 98	16.25	16.20	0.05	NA	977.19	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
30	Nov 98	19.54	19.20	0.34	NA	973.90	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
993.44 01	Apr 99	16.34	16.32	0.02	0.10	977.12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
24	Aug 99	19.23	19.08	0.15	0.10	974.32	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	Nov 99	18.15	18.14	0.01	NA	975.30	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8 Jan 00	18.47	18.45	0.02	0.00	974.99	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
) Mar 00	14,47	14.37	0.10	<0.03	979.05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	Apr 00	15.85	15.83	0.02	0.03	977.61	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
23		16.71 DESTROYE	14.48	2.23	0.00	978.42	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Former Mobil Service Station No. 01-ECQ 83-89 Elm Street

Pittsfield, Massachusetts

-		4	(feet)	2	ons)	5			VPI	l Target Ana	ilytes				VPH Fractio	ns
Well ID/MP EI (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (fe	NAPL Thickness (feet)	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Вепzене	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	C5-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
3022502020	Units	feet	feet	feet	gallons	feet	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L
					thod 1 GW-		2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
BOS 11	10.14. 00	15.00	12.00		thod 1 GW-		10,000	40,000	5,000	5,000	210	50,000	20,000	50,000	50,000	50,000
ECS-11	19 May 98	15.07	12.00	3.07	NA NA	980.09	NS NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS
992.83	30 Nov 98	DRY	NA NA	NA NA	NA NA	NA	NS NS	NS NS	NS	NS	NS	NS NS	NS	NS NS	NS	NS
	24 Aug 99 28 Jan 00	DRY	NA	NA NA	NA	NA	NS NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS
	10 Feb 00	DRY	NA NA	NA NA	NA NA	NA NA	NS NS	NS NS	NS	NS	NS	NS NS	NS	NS	NS	NS
				-		NA 001.02			NS	NS	NS NS		NS	NS NS	NS	NS
	21 Apr 00	11.03 DRY	11.01 NA	0.02 NA	NA NA	981.82	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS
	20 Nov 00 29 Dec 00	DRY	NA NA	NA NA	NA NA	NA NA	NS NC	NS	NS	NS	NS	NS	NS NS	NS	NS	NS NS
993.01		DRY		NA NA	NA NA	NA NA	NS	NS NS	NS	NS	NS	NS	NS	NS NS	NS	NS
993.01	20 Aug 02 11 Dec 02	DRY	NA NA	NA NA		NA NA	NS NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS
	29 May 03	DRY	NA NA	NA NA	NA NA	NA NA	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS
	01 Dec 03	DRY	NA NA	NA NA	NA NA	NA NA	NS NS	NS NS	NS NS	NS NS	 	NS NS	NS NS	NS NS	NS	NS NS
	27 Feb 04	DRY	NA NA	NA NA			NS NS		NS NS		NS NS			NS	NS	NS NS
					NA NA	NA NA	NS NS	NS		NS	NS	NS	NS NS	NS	NS	NS
ECS-14	09 Aug 05 01 Apr 99	DRY 8.90	NA NA	NA NA	NA NA	NA NA	<1.0	NS <5.0	NS 11.6	NS 139.4	NS 151	NS <5.0	NS	NS -50	NS 0.5	NS 107
NA NA	24 Nov 99	8.90	NA NA	NA NA	NA NA	NA NA	<1.0	<5.0	<5.0	139.4	ND ND	<5.0 <5.0	33.1 <5.0	<50 <100	95	407
l NA	24 Nov 99 21 Apr 00	6.70	NA NA	NA NA	NA NA	NA NA	<1.0	<5.0	5.4	117,2	122.6		<5.0 14		<100	<100 490
	11 Dec 02	7.39	NA NA	NA NA	NA NA	NA NA	<0.50	2.4	<1.0	5.5	7.9	<5.0 <1.0	<5.0	<100 <50	400 <50	
	01 Dec 02	7.65	NA NA	NA NA	NA NA	NA NA	<2.0	<2.0			ND					<50
	13 Sep 04	7.03 NM	NA NA	NA NA	NA NA	NA NA	<2.0	<2.0	<2.0 <2.0	<4.0 <4.0	ND ND	<2.0 <2.0	<3.0 <3.0	<50 <50	<50 <50	<50 <50
	21 Feb 05	8.47	NA NA	NA NA	NA NA	NA NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	
	16 Oct 07	13.38	NA NA	NA NA	NA NA	NA NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0		<50	<50
	16 Oct 07 Dup	13.38	NA NA	NA NA	NA NA	NA NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50 <50	<50	<50 <50
	27 Mar 08	6.39	NA NA	NA NA	NA NA	NA.	<2.0	<2.0	<2.0	ND	ND	<2.0	<3.0	<50	<50	<50
	24 Jul 08	4,30	NA NA	NA NA	NA NA	NA NA	<2.0	<2.0	<2.0	ND ND	ND ND	<2.0	<3.0	<50 <50	<50	<50
1	16 Oct 08	9.78	NA NA	NA NA	NA NA	NA NA	<2.0	<2.0	<2.0	ND	ND	<1.0	<3.0	<50	<50	<50
ECS-15	21 Apr 00	10.16	NA	NA NA	NA NA	979.70	<1.0	15	15.4	181.3	211.7	<5.0	13.8	870	480	500
989.86	20 Nov 00	11.36	NA NA	NA NA	NA NA	979.70	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	4,190	<500	<500
707.00	11 Dec 02	10.73	NA NA	NA NA	NA NA	978.30	1.8	37.9	19.4	106	165.1	<1.0	8.0	457	52.7	134
	07 Feb 03	11.39	NA NA	NA NA	NA NA	978.47	NS	NS NS	NS	NS NS	NS	NS	NS	NS NS	32.7 NS	NS
	28 Feb 03	11.17	NA	NA	NA NA	978.69	NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS	NS NS
	22 Apr 03	10.81	NA	NA NA	NA	979.05	NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS
	23 Apr 03	11.35	NA NA	NA NA	NA	978.51	NS	NS	NS NS	NS	NS NS	NS NS	NS	NS NS	NS	NS NS
	30 May 03	13.95	NA NA	NA NA	NA NA	975.91	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	03 Dec 03	12.81	NA NA	NA NA	NA NA	977.05	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
	03 Dec 03	12.01	L. INA	INA	INA	9//.03	<u>~2.0</u>	_ <2.0	0.2	1 <2.0	ND	<2.0	<3.0	<30	<50	J <30

TABLE 2-2 HISTORICAL GROUNDWATER MONITORING DATA VOLATILE PETROLEUM HYDROCARBONS Former Mobil Service Station No. 01-ECQ

•		=	(F)	-	ons)	ion			VPI	I Target Ana	alytes				VPH Fractio	ns
Well ID/MP El (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (feet)	NAPL Thickness (feet)	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	gallons	feet	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
					ethod 1 GW		2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
	1					-3 Standard:	10,000	40,000	5,000	5,000	-	50,000	20,000	50,000	50,000	50,000
GES-7	24 Nov 99	14.71	NA	NA NA	NA	983.07	1.2	19	10	56.6	87.1	<5.0	8.5	140	<100	120
997.78	21 Apr 00	12.78	NA NA	NA	NA	985.00	<1.0	<5.0	<5.0	18.5	18.5	<5.0	6.6	<100	<100	<100
	23 Aug 00	10.31	NA	NA	NA	987.47	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
992.10	20 Nov 00	12.70	NA NA	NA NA	NA NA	985.08 978.05	<1.0	<5.0 <5.0	<5.0	<15 <15	ND ND	<5.0	<5.0	<100	<100	<100
992.10	12 Jan 01	14.05	NA NA	NA NA	NA NA	981.37	<1.0	<5.0	<5.0 <5.0	<15	ND ND	<5.0 <5.0	<5.0 <5.0	<100 <100	<100 <100	130
	1	14.20	NA NA	NA NA	NA NA	981.37	<0.50	<1.0	<1.0	<1.0	ND	<0.1>	<5.0			<100
	01 Dec 03	14.76	NA NA	NA NA	NA NA	977.34	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50 <50	<50 <50	<50 <50
GES-8	24 Nov 99	12.03	NA NA	NA NA	NA NA	983.75	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
995.78	21 Apr 00	9.83	NA NA	NA NA	NA NA	985.95	<1.0	50.2	38.8	197.5	286.5	<5.0	23.9	<100	600	600
993.76	23 Aug 00	10.67	NA NA	NA NA	NA NA	985.11	<1.0	<5.0	<5.0	18.3	18.3	<5.0	<5.0	<100	<100	<100
	20 Nov 00	11.77	NA NA	NA NA	NA NA	984.01	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
995.78	12 Jan 01	13.17	NA NA	NA NA	NA NA	982.61	<1.0	<5.0	<5.0	73.6	73.6	<5.0	<5.0	<100	310	510
273.76	11 Jul 01	10.82	NA NA	NA NA	NA NA	984.96	<1.0	<5.0	<5.0	<15	ND ND	<5.0	<5.0	<100	<100	<100
	12 Oct 01	13.65	NA NA	NA NA	NA NA	982.13	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
990.15	20 Aug 02	12.01	NA NA	NA NA	NA NA	978.14	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS NS
,,,,,,,	11 Dec 02	10.05	NA	NA NA	NA	980.10	<0.50	<1.0	<1.0	<1.0	ND	<1.0	<5.0	<50	<50	<50
	02 Dec 03	14.52	NA	NA	NA	975.63	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
GES-9	24 Nov 99	14.91	NA	NA	NA	981.47	<1.0	<5.0	<5.0	<15	ND	<5.0	4.7	<100	<100	<100
996.38	21 Apr 00	13.36	NA	NA	NA	983.02	<1.0	<5.0	<5.0	20.4	20.4	<5.0	<5.0	<100	<100	<100
	23 Aug 00	12.23	NA	NA	NA	984.15	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
	20 Nov 00	14.11	NA	NA	NA	982.27	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
	12 Jan 01	14.83	NA	NA	NA	981.55	<1.0	<5.0	<5.0	29.7	29.7	<5.0	7.1	<100	180	300
990.72	20 Aug 02	14.57	NA	NA	NA	976.15	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Dec 02	13.80	NA	NA	NA	976.92	<0.50	1.1	<1.0	<1.0	1.1	<1.0	<5.0	<50	<50	<50
	02 Dec 03	15.66	NA	NA	NA	975.06	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50

			æ	£	ins)	g			VPI	l Target An	alytes				VPH Fractio	ns
Well ID/MP EI (feet)	Date of Sampling	Depth to Water (feet)	Depth ta Product (feet)	NAPL Thickness (feet)	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Вептене	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	C5-C3 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	gallons	feet	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
					ethod 1 GW- ethod 1 GW-		2,000 10,000	50,000 40,000	29,000 5,000	9,000 5,000	-	50,000 50,000	1,000 20,000	3,000 50,000	5,000 50,000	7,000
GES-11	23 Aug 00	12.67	NA	NA NA	NA	985.44	<5.0	54	346	2,100	2,500	<25	143	1,940	2,560	50,000 3,390
998.11	20 Nov 00	14.86	NA NA	NA NA	NA NA	983.25	<5.0	<25	496	1,348	1,844	<25	187	3,510	3,640	2,930
<i>,,</i> 0.11	12 Jan 01	15.23	NA	NA	NA	982.88	<1.0	7.8	255	526.4	789.2	12	82	1,850	1,050	1,370
	19 Jan 01	15.65	NA	NA	NA	982.46	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Jul 01	14.46	NA	NA	NA	983.65	<1.0	17	325	999	1,341	<5.0	145	2,270	2,400	1,400
	12 Oct 01	17.23	NA	NA	NA	980.88	<5.0	<25	344	1,160	1,504	<25	118	1,640	1,130	2,070
992.65	20 Aug 02	17.82	NA	NA	NA	974.83	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	29 May 03	16.70	NA	NA	NA	975.95	<2.0	8.9	226	1,013.2	1,248.1	<2.0	123	1,870	574	1,780
	01 Dec 03	16.90	NA	NA	NA	975.75	<2.0	<2.0	62.4	165.2	227.6	<2.0	47	813	<50	564
	25 Feb 04	19.49	NA	NA	NA	973.16	<2.0	4.0	170	956.4	1,130.4	<2.0	229	2,420	<50	2,420
	14 Sep 04	NM	NA	NA	NA	NA	<2.0	<2.0	121	447.2	568.2	<2.0	101	1,450	1,200	1,200
	23 Feb 05	16.10	NA	NA	NA	976.55	<2.0	<2.0	118	404.1	522.1	<2.0	68.9	1,280	233	1,330
	10 Aug 05	19.20	NA	NA	NA	973.45	<2.0	<2.0	14,1	2.5	16.6	<2.0	7.6	424	<50	<50
	09 May 06	16.21	NA	NA	NA	976.44	<2.0	2.4	353	2,945	3,300.4	<2.0	319	4,440	1,990	4,050
	20 Sep 06	18.11	NA	NA	NA	974.54	<2.0	<2.0	21	64	85.7	<2.0	17	504	101	219
	28 Mar 08	12.38	NA	NA	ΝA	980.27	<2.0	<2.0	4.2	97.7	101.9	<2.0	54.9	1,050	<50	556
	25 Jul 08	14.15	NA	NA	NA	978.50	<2.0	4.5	327	1,622.4	1,953.9	<2.0	354	6,670	1,580	5,660
	25 Jul 08 Dup	14.15	NA	NA	NA	978.50	<10	<10	298	1705.2	2,003.2	<10	325	4,350	413	5,690
	17-Oct-08	16.96	NA	NA	NA	975.69	<2.0	<2.0	66.7	299.4	366.1	<1.0	71.1	1,090	<50	1,180
GES-12	23 Aug 00	12.47	NA	NA	NA	985.38	<5.0	2,740	2,030	10,120	14,890	<25	490	22,700	14,400	12,800
997.85	20 Nov 00	14.34	NA	NA	NA	983.51	104	3,810	2,010	8,740	14,664	<50	416	17,200	19,200	7,800
	12 Jan 01	14.70	NA	NA	NA	983.15	108	2,640	1,960	9,380	14,088	<100	530	9,700	11,300	13,300
	19 Jan 01	15.04	NA	NA	NA	982.81	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Jul 01	13.90	NA	NA	NA	983.95	48	3,360	2,570	12,410	18,388	<100	670	14,800	22,400	10,900
	12 Oct 01	16.66	NA	NA	NA	981.19	99	1,790	1,790	8,280	11,959	<100	430	12,700	8,000	8,200
	20 Aug 02	17.26	NA	NA	NA	975.12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
992.38	11 Dec 02	14.43	NA	NA	NA	977.95	84.5	955	1,480	7,300	9,819.5	<2.0	448	8,650	7,180	9,800
	29 May 03	16.40	NA	NA	NA	975.98	<10	333	1,470	6,310	8,113	<10	549	15,600	4,480	11,300
	02 Dec 03	14.64	NA	NA	NA	977.74	<2.0	54.1	410	3,716	4,180.1	<2.0	423	4,610	<50	18,300
	25 Feb 04	18.81	NA	NA	NA	973.57	<10	53.1	1,090	5,047	6,190.1	<10	959	38,700	<250	126,000
	14 Sep 04	NM	NA	NA	NA	NA	<10	293.0	1,280	4,958	6,531.0	543	566	86,400	41,000	28,800
	23 Feb 05	15.87	NA	NA	NA	976.51	14.6	125.0	612	4,110	4,861.6	<10	343	12,900	4,720	13,200
	10 Aug 05	18.42	NA	NA	NA	973.96	18.3	48.8	52.2	47.7	167.0	<2.0	32.6	498	<50	248
	09 May 06	10.02	NA NA	NA NA	NA NA	982.36	42.2	414	981	3,064	4,501.2	<2.0	481	2,620	<50	5,880
	20 Sep 06	17.31	NA NA	NA NA	NA NA	975.07	22.8	341	619	2,540	3,522.8	<4.0	292	5,450	2,860	4,840
	27 Apr 07	12.60	NA NA	NA	NA NA	979.78	<4.0	19.5	264	1,671	1,954.5	<4.0	130	2,180	<100	3,290
	27 Apr 07 Dup	12.60	NA	NA	NA	979.78	<2.0	12.4	88.1	499.2	599.7	<2.0	32.3	1,680	75.9	1,170

Kinnyanden zertilizen		1 2 12 4 14 22 2 4 2 4	ad apprecations	.c.l.com energoso	- A	discussion of the		Tassacnusetts	15/12/21/10/30/20/25/25	1925.002.9169163				Processors		200.000.000.000
•		e e	₹ .	(Reet)	lons	ion			VPI	I Target Ana	alytes			,	PH Fractio	ns
Well ID/MP El (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (feet)	NAPL Thickness (R	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Benzene	Toltene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	gallons	feet	μg/L	μg/L	րg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L
				MCP M	lethod 1 GW	2 Standard:	2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
		(9a2)41224		MCP M	lethod 1 GW	3 Standard:	10,000	40,000	5,000	5,000	-	50,000	20,000	50,000	50,000	50,000
GES-13	23 Aug 00	12.22	NA	NA	NA	986.50	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
998.72	20 Nov 00	15.63	NA	NA	NA	983.09	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
	12 Jan 01	16.09	NA	NA	NA	982.63	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
	19 Jan 01	16.65	NA	NA	NA	982.07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Jul 01	15.42	NA	NA	NA	983.30	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
	12 Oct 01	18.22	NA	NA	NA	980.50	<1.0	<5.0	5.0	23	28	<5.0	<5.0	<100	<100	<100
993.27	20 Aug 02	18.72	NA	NA	NA	974.55	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Dec 02	15.12	NA	NA	NA	978.15	< 0.50	<1.0	<1.0	3.3	3.3	<1.0	<5.0	<50	<50	<50
	01 Dec 03	13.51	NA	NA	NA	979.76	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
GES-14	12 Jan 01	NS	NA	NA	NA	NA	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
998.65	19 Jan 01	7.20	NA	NA	NA	991.45	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	20 Aug 02	13.39	NA	NA	NA	979.83	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	30 May 03	NS	NA	NA	NA	NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
993.22	02 Dec 03	3.81	NA	NA	NA	989.41	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
GES-15	12 Jan 01	NS	NA	NA	NA	NA	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
998.52	19 Jan 01	6.07	NA	NA	NA	992.45	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
993.08	20 Aug 02	DRY	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	30 May 03	NS	NA	NA	NA	NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	02 Dec 03	DRY	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GES-16	12 Jan 01	NS	NA	NA	NA	NA	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
	19 Jan 01	16.06	NA	NA	NA	982.80	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Jul 01	14.52	NA	NA	NA	984.34	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
998.86	12 Oct 01	17.97	NA	NA	NA	980.89	<1.0	9.0	<5.0	<15	9.0	<5.0	<5.0	<100	<100	<100
	20 Aug 02	18.57	NA	NA	NA	974.85	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
993.42	30 May 03	NA	NA	NA	NA	NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	02 Dec 03	DRY	NA	NA	NA	NA	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	< 50	<50

						Ÿ	rittstield, N	Massachusetts								
*		₩	i e	et)	lons)				VP	H Target An	alytes			,	VPH Fraction	15
Well ID/MP El (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (feet)	NAPL Thickness (feet)	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Вепхене	Tolucne	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	gallons	feet	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L,
		310246			ethod 1 GW-		2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
	7/2/2	(1)/2/2016	(6/2/02/92/6		ethod 1 GW-		10,000	40,000	5,000	5,000		50,000	20,000	50,000	50,000	50,000
GT-101	09 Aug 94	NS	NA	NA	NA	NA	0.4	ND	ND	ND	0.4	11	NS	NS	NS	NS
989.72	07 Dec 94	16.38	NA	NA NA	NA NA	973.34	ND	ND	ND	ND	ND	23	NS	NS	NS	NS
	07 Apr 95	15.27	NA NA	NA NA	NA NA	974.45	ND	ND	ND	1	1	11	NS	NS	NS	NS
	03 Aug 95 14 Nov 95	16.98	NA NA	NA NA	NA NA	974.71 972.74	0.4 ND	0.3 ND	ND ND	ND ND	0.7	15	NS NS	NS	NS	NS
989.68	20 Aug 02	19.11	NA NA	NA NA	NA NA	972.74	NS NS	NS	NS NS	NS NS	ND NS	ND NS	NS NS	NS	NS	NS
767.06	11 Dec 02	18.20	NA NA	NA NA	NA NA	970.37	< 0.50	<1.0	<1.0	<1.0	ND ND	65.5	NS <5.0	NS <50	NS c50	NS 550
	29 May 03	21.35	NA NA	NA NA	NA	968.33	<2.0	<2.0	<2.0	<4.0	ND	123	<3.0	<50 <50	<50 <50	<50 <50
	03 Dec 03	18.40	NA NA	NA NA	NA NA	971.28	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
	24 Feb 04	19.93	NA	NA NA	NA	969.75	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	13 Sep 04	NM	NA	NA	NA	NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	22 Feb 05	18.12	NA	NA	NA	971.56	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	10 Aug 05	18.85	NA	NA	NA	970.83	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
GT-102	09 Aug 94	NS	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
990.03	07 Dec 94	15.37	NA	NA	NA	974.66	ND	ND	ND	ND	ND	5	NS	NS	NS	NS
	07 Apr 95	14.85	NA	NA	NA	975.18	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	03 Aug 95	16.55	NA	NA	NA	973.48	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	14 Nov 95	14.76	NA	NA	NA	975.27	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	23 Aug 00	14.03	NA	NA	NA	976.00	<1.0	<5.0	<5.0	32.9	32.9	<5.0	<5.0	<100	<100	<100
	12 Jan 01	15.48	NA	NA	NA	974.55	<1.0	<5.0	<5.0	11	11	<5.0	<5.0	<100	<100	<100
	11 Jul 01	14,47	NA	NA	NA	975.56	<1.0	<5.0	<5.0	<10	ND	<5.0	<5.0	<100	<100	<100
	12 Oct 01	16.43	NA	NA	NA	973.60	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
	20 Aug 02	16.43	NA	NA	NA	973.72	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Dec 02	15.50	NA	NA	NA	974.65	<0.50	<1.0	<1.0	<1.0	ND	<1.0	<5.0	<50	<50	<50
	02 Dec 03	16.87	NA	NA	NA	973.28	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
GT-1	24 Aug 99	11.00	NA	NA	NA	NA	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
	23 Aug 00	7.23	NA	NA	NA	NA	<1.0	<5.0	6.1	105.3	111.4	<5.0	18.2	<100	590	860
	12 Jan 01	11.09	NA	NA NA	NA	NA	<1.0	<5.0	7.0	40	47.0	<5.0	<5.0	<100	<100	<100
	11 Jul 01	9.13	NA	NA	NA NA	NA	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
002.00	12 Oct 01	10.64	NA NA	NA	NA	NA NA	<1.0	<5.0	<5.0	<15	ND	<5.0	<5.0	<100	<100	<100
992.80	20 Aug 02	12.17	NA NA	NA	NA NA	980.63	NS -0.50	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Dec 02	7.95	NA NA	NA NA	NA	984.85	<0.50	<1.0	<1.0	<1.0	ND	<1.0	<5.0	<50	<50	<50
	30 May 03 01 Dec 03	9.90 7.01	NA NA	NA NA	NA	982.90	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	27 Feb 04	16.16	NA NA	NA NA	NA NA	985.79 976.64	<2.0	<2.0	<2.0	<2.0	ND NC	<2.0	<3.0	<50	<50	<50
		10.16	NA NA	NA NA	NA NA		NS	NS NS	NS	NS NS	NS NS	NS NS	NS	NS	NS	NS
	09 Aug 05	11.13	INA	, INA	INA	981.65	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

								iassaciiusciis			7					
ę.		÷.	(feet)	(feet)	ous	.5			VPI	l Target Ana	ilytes			,	/PH Fractio	ns
Well ID/MP El (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (fe	NAPL Thickness (fe	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Веплене	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	gallons	feet	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
				MCP M	ethod 1 GW-	2 Standard:	2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
			e moj svoj.	MCP M	ethod 1 GW-	3 Standard;	10,000	40,000	5,000	5,000	-	50,000	20,000	50,000	50,000	50,000
GT-2	19 May 98	15.01	NA	NA	NA	975.49	3,180	7,460	310	12,440	23,390	<250	770	15,300	20,500	6,400
990.50	30 Nov 98	16.98	NA	NA	NA	973.52	5,520	12,900	1,140	10,570	30,130	<250	<500	14,100	15,100	7,300
	01 Apr 99	14.70	NA	NA	NA	975.80	3,580	8,270	510	8,330	20,690	<130	340	16,900	5,000	7,800
	24 Aug 99	17.09	NA	NA	NA	973.41	2,960	6,650	530	7,550	17,690	<100	300	14,200	4,300	5,600
	24 Nov 99	16.26	NA	NA	NA	974.24	2,650	5,660	310	6,000	14,620	<100	260	10,600	4,300	3,700
990.50	21 Apr 00	15.03	NA	NA	NA	975.47	2,710	5,060	280	6,750	14,800	<100	370	10,600	8,000	4,800
	23 Aug 00	14.49	NA	NA	NA	976.01	3,060	6,030	730	7,300	17,120	<100	350	11,700	6,300	5,600
	12 Jan 01	15.84	NA	NA	NA	974.66	2,640	5,270	499	6,430	14,839	<50	312	10,600	6,700	5,400
	11 Jul 01	15.03	NA	NA	NA	975.47	1,290	3,070	332	5,040	9,732	<50	174	7,200	9,800	5,600
	12 Oct 01	16.73	NA	NA	NA	973.77	2,510	6,050	1,080	7,660	17,300	<50	339	11,100	6,600	6,200
990.29	20 Aug 02	16.23	16.22	0.01	NA	974.07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	29 May 03	20.90	NA	NA	NA	969.39	1,560	2,950	320	5,210	10,040	<10	152	8,620	2,160	5,550
	03 Dec 03	18.96	NA	NA	NA	971.33	1,200	1,660	1,360	8,160	12,380	<10	610	67,300	<250	24,800
	25 Feb 04	21.60	NA	NA	NA	968.69	1,180	2,280	881	4,680	9,021	<10	424	275,000	<250	11,600
	13 Sep 04	NM	NA	NA	NA	NA	925	1,130	618	3,111	5,784	<10	252	8,700	5,600	4,140
	22 Feb 05	20.05	NA	NA	NA	970.24	716	1,380	518	2,808	5,422	<4.0	194	8,400	1,290	3,230
	10 May 06	18.71	NA	NA	NA	971.58	722	1,430	552	3,515	6,219	<2.0	239	10,700	1,520	4,480
	20 Sep 06	19.31	NA	NA	NA	970.98	784	110	623	2,437	3,954	<4.0	249	8,880	2,260	2,800
	26 Apr 07	16.55	NA	NA	NA	973.74	380	805	460	1,947	3,592	<4.0	137	4,110	<100	2,320
	17 Oct 07	19.84	NA	NA	NA	970.45	726	989	677	2,416	4,808	<2.0	189	8,270	766	2,380
	27 Mar 08	16.68	NA	NA	NA	973.61	464	623	243	2,036	3,366	<2.0	158	5,750	361	2,290
	24 Jul 08	16.67	NA	NA	NA	973.62	422	540	341	2,046	3,349	<2.0	177	7,420	1,010	2,340
	16 Oct 08	19.06	NA	NA	NA	971.23	263	542	115	1,763	2,683	<1.0	121	4,100	527	1,730

	·						Pittsfield, I	Massachusetts								
· p		9	(tet)	(feet)	lons)	, E			VPI	I Target An	alytes				VPH Fractio	ns
Well IB/MP El (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (feet)	NAPL Thickness (Fe	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Benzene	Тойнене	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	gallons	feet	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L
						2 Standard:	2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
om a	18 Oct 97	14.75	14,67		7	-3 Standard:	10,000	40,000	5,000	5,000	-	50,000	20,000	50,000	50,000	50,000
GT-3 990.27	25 Nov 96	14.75	14.67	0.08	NA NA	975.58 975.33	NS NC	NS NG	NS NO	NS	NS NS	NS	NS	NS	NS	NS
990.27	19 Dec 96	13.30	13.28	0.02	NA NA	975.33	NS NS	NS NS	NS NS	NS	NS NS	NS	NS NS	NS	NS	NS
	31 Jan 97	14.18	14.16	0.02	NA NA	976.11	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS
	06 Mar 97	13.90	NA NA	NA NA	NA NA	976.37	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NG
	01 Apr 99	13.80	13.78	0.02	0.10	976.49	NS NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS
990.27	24 Nov 99	17.05	15.95	1.10	NA NA	974.06	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS	NS NS
1 ,,0.2,	28 Jan 00	16.80	15.89	0.91	0.50	974.16	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS
	10 Feb 00	16.66	16.32	0.34	0.50	973.87	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	21 Apr 00	13.90	13.63	0.27	0.03	976.58	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
:	23 Aug 00	13.15	NA	0.00	NA	977.12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	20 Nov 00	14.83	14.82	0.01	0.03	975.45	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	29 Dec 00	14.78	14.76	0.02	0.00	975.51	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	29 Jan 01	16.21	15.65	0.56	0.25	974.49	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Jul 01	14.04	13.93	0.11	NA	976.31	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12 Oct 01	15.89	15.10	0.79	0.80	974.98	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
990.53	20 Aug 02	16.89	NA	0.00	NA	973.64	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Dec 02	15.69	14.50	1.19	0.80	975.74	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	29 May 03	17.65	NA	NA	NA	972.88	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	03 Dec 03	DRY	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GT-4	30 Nov 98	17.50	NA	NA	NA	975.59	298	170	369	3,500	4,337	1,020	500	1,630	15,400	11,800
993.09	01 Apr 99	13.54	NA	NA	NA	979.55	269	33	126	1,519	1,947	1,690	468	<250	3,700	8,910
	24 Aug 99	16.97	NA	NA	NA	976.12	309	76	160	1,953	2,498	1,540	-	<500	4,860	8,850
	24 Nov 99	15.55	NA	NA	NA	977.54	588	63	174	1,998	2,823	2,230	874	<500	6,530	8,600
	21 Apr 00	12.17	NA	NA	NA	980.92	308	36	100	1,335	1,779	533	390	<500	8,620	6,900
	23 Aug 00	11.32	NA	NA	NA	981.77	166	79	307	2,026	2,578	66	476	<500	5,620	7,160
	09 Aug 05	DESTROYE	ED													
GT-5	21 Apr 00	13.22	13.05	0.17	0.02	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	23 Aug 00	12.67	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Jul 01	12.52	NA	NA	NA	NA	21	1,230	875	9,730	11,856	133	431	4,700	23,400	13,200
NA	12 Oct 01	15.59	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
990.15	20 Aug 02	15.58	15.57	0.01	NA	974.58	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Dec 02	13.85	NA	NA	NA	976.30	12.9	519	945	15,400	16,876.9	15.1	847	11,900	11,300	17,400
	29 May 03	17.20	NA	NA	NA	972.95	<10	56.7	173	5,720	5,949.7	<10	365	3,680	2,750	14,500
	24 Feb 04	18.43	NA	NA	NA	971.72	<10	27.2	194	3,577	3,798.2	18.3	414	9,400	<250	23,700
	27 Mar 08	13.03	NA	NA	NA	977.12	<2.0	2.1	58	532	592.1	<2.0	73.9	2,170	387	4,580

TABLE 2-2 HISTORICAL GROUNDWATER MONITORING DATA

VOLATILE PETROLEUM HYDROCARBONS Former Mobil Service Station No. 01-ECQ

83-89 Elm Street Pittsfield, Massachusetts

		2) _©	- G	(suo	uo ou			VPI	I Target Ana	alytes			,	PH Fractio	ns
Well ID/MP E] (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (feet)	NAPL Thickness (feet)	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	C5-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	gallons	feet	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
						-2 Standard:	2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
		<i>50.50.0027</i>	27/2/2/2/200			-3 Standard:	10,000	40,000	5,000	5,000	-	50,000	20,000	50,000	50,000	50,000
GT-6	18 Oct 96	14.86	14.82	0.04	NA	975.44	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
990.27	25 Nov 96	14.91	14.87	0.04	NA	975.39	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	19 Dec 96	13.49	13,45	0.04	NA	976.81	NS	N\$	NS	NS	NS	NS	NS	NS	NS	NS
	31 Jan 97	14.34	14.31	0.03	NA	975.95	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	06 Mar 97	13.81	NS	NS	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	01 Apr 99	14.14	NS	NS	NA	NS	1,220	5,010	560	8,160	14,950	230	410	6,400	5,100	10,200
	24 Nov 99	15.69	NA	0.00	NA	974.58	2,420	9,080	2,190	11,610	25,300	1,270	770	12,400	6,800	8,200
	28 Jan 00	15.99	15.97	0.02	0.00	974.30	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	21 Apr 00	13.43	13.28	0.15	NA	976.95	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	23 Aug 00	13.89	13.86	0.03	0.00	976.40	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	20 Nov 00	14.98	14.95	0.03	0.00	975.31	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	29 Jan 01	16.02	15.59	0.43	0.25	974.58	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Jul 01	14.30	14.27	0.03	NA	975.84	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12 Oct 01	16.23	16.22	0.01	NA	973.90	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	20 Aug 02	16.42	16.41	0.01	NA	973.71	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	29 May 03	19.10	19.00	0.10	NA	971.10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	02 Dec 03	17.20	NA	NA	NA	972.92	901	11,300	10,200	46,500	68,901	<100	4,560	120,000	<2500	135,000
	27 Feb 04	NA	20.44	0.02	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10 May 06	17.74	17.62	0.12	NA	972.53	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GT-7	19 May 98	14.08	NA	NA	NA	975.77	<25	<50	<25	536	536	<25	188	<250	500	<250
989.85	30 Nov 98	16.23	NA	NA	NA	973.62	6.3	<10	<5	22	28.6	<5	94	<50	195	138
	01 Apr 99	13.80	NA	NA	NA	976.05	2.6	37	49	667	756.2	<5.0	118	434	1,210	1,980
	24 Aug 99	16.35	NA	NA	NA	973.50	8.2	<5.0	<5.0	14	22.2	<5.0	108	<100	<100	110
	24 Nov 99	15.24	NA	NA	NA	974.61	7.6	15	60	156.4	239.5	<5.0	123	230	280	380
	21 Apr 00	13.73	NA	NA	NA	976.12	5.9	10.5	31.8	176.1	224,3	<5.0	75.7	410	400	380
	23 Aug 00	13.10	NA	NA	NA	976.75	6.1	12.4	25.1	160.6	204.2	<5.0	93.8	280	280	440
	12 Jan 01	14.72	NA	NA	NA	975.13	3.8	<5.0	7.8	<15	11.6	<5.0	12.5	<100	<100	<100
	11 Jul 01	13.82	NA	NA	NA	976.03	5.6	<5.0	19.3	43.1	68.0	<5.0	63.3	<100	260	250
	12 Oct 01	15.75	NA	NA	NA	974.10	7.6	<5.0	<5.0	<15	7.6	<5.0	<5.0	<100	<100	<100
989.76	20 Aug 02	13.23	NA	NA	NA	976.53	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Dec 02	14.82	NA	NA	NA	974.94	4.1	7.5	50.6	179.0	241.2	<1.0	34.7	211	117	319
	29 May 03	19.20	NA	NA	NA	970.56	<2.0	<2.0	<2.0	2.1	2.1	<2.0	<3.0	<50	<50	<50
	02 Dec 03	17.31	NA	NA	NA	972.45	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50

_		•	F F	- p	(Suo	800			VPI	I Target Ans	ilytes			,	/PH Fractio	ns
Well ID/MP El (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (feet)	NAPL Thickness (feet)	NAPL Recovered (gailons)	Groundwater Elevation (feet)	Вептене	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	gallons	feet	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
				MCP M	ethod 1 GW-2	2 Standard:	2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
275 BER 285 BE				MCP M	ethod 1 GW-	3 Standard:	10,000	40,000	5,000	5,000	-	50,000	20,000	50,000	50,000	50,000
RW-1	18 Oct 96	16.00	NA	NA	NA	976.48	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
992.48	31 Jan 97	NS	NS	NS	1.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	06 Mar 97	NS	NS	NS	0.10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	01 Apr 99	NS	NS	NS	1.50	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	24 Aug 99	20.20	18.98	1.22	2.00	973.21	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	28 Jan 00	18.52	18.30	0.22	0.30	974.13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10 Feb 00	NS	NS	0.67	2.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	21 Apr 00	16.80	16.50	0.30	0.50	975.91	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	23 Aug 00	16.20	15.85	0.35	NA	976.55	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	20 Nov 00	16.80	14.00	2.80	1.75	977.81	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	29 Dec 00	16.75	16.70	0.05	2.00	975.77	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	29 Jan 01	17.86	17.76	0.10	0.25	974.70	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Jul 01	17.17	15.40	1.77	1.00	976.66	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12 Oct 01	18.34	18.30	0.04	0.60	974.17	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
992.46	20 Aug 02	21.46	17.63	3.83	0.00	973.91	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	29 May 03	22.50	20.95	1.55	NA	971.14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RW-101	24 Feb 04	20.33	NA	NA	NA	969.66	<2.0	<2.0	<2.0	5.9	5.9	<2.0	<3.0	<50	<50	<50
989.99																
RW-2	28 Jan 00	17.50	16.05	1.45	1.10	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NA	30 Mar 00	16.33	14.95	1.38	3.00	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	21 Apr 00	14.52	14.39	0.13	0.50	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	23 Aug 00	13.69	13.65	0.04	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	20 Nov 00	15.22	NS	NS	0.60	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	29 Jan 01	17.10	16.00	1.10	1.75	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Jul 01	15.59	14.57	1.02	1.20	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12 Oct 01	17.30	17.22	0.08	0.10	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
991.49	20 Aug 02	17.58	NA	NA	NA	973.91	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Dec 02	16.45	NA	NA	NA	975.04	3,320	13,700	3,390	20,600	41,010	30	1,160	18,700	13,000	13,600
	29 May 03	18.60	NA	NA	NA	972.89	2,250	9,870	2,570	12,450	27,140	<20	789	20,600	6,200	14,800
	10 Aug 05	19.38	NA	NA	NA	972.11	120	71	35	112	339	3	34	567	168	341
	25 Jul 08	16.13	NA	NA	NA	975.36	48.9	2,330	1,140	7,840	11,358.9	<2.0	409	4,110	884	6,410

TABLE 2-2 HISTORICAL GROUNDWATER MONITORING DATA

VOLATILE PETROLEUM HYDROCARBONS

Former Mobil Service Station No. 01-ECQ 83-89 Elm Street

83-89 Elm Street Pittsfield, Massachusetts

	Well ID/MP El (feet)			et)	- ਦ	(gallons)	5			VPI	I Target Ana	ilytes				VPH Fractio	ns
	Well ID/MP EI (fee	Date of Sampling	Depth to Water (feet)	Depth to Product (feet)	NAPL Thickness (feet)	NAPL Recovered (gall	Groundwater Elevation (feet)	Вептепе	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
		Units	feet	feet	feet	gallons	feet	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Г					MCP M	ethod 1 GW-	2 Standard:	2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
					MCP M	ethod 1 GW-	3 Standard:	10,000	40,000	5,000	5,000		50,000	20,000	50,000	50,000	50,000
	RW-3	31 Jan 97	NS	NS	NS	0.40	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	989.89	06 Mar 97	NS	NS	NS	1.20	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		28 Jan 00	16.96	15.32	1.64	0.60	974.18	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		30 Mar 00	14.30	13.52	0.78	1.00	976.18	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		21 Apr 00	14.60	14.09	0.51	0.06	975.68	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		23 Aug 00	13.66	NA	0.00	NA	976.23	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		20 Nov 00	14.83	14.82	0.01	NA	975.07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		29 Jan 01	16.18	15.72	0.46	0.50	974.06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		11 Jul 01	14.55	14.34	0.21	0.50	975.50	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		12 Oct 01	16.07	15.87	0.20	0.20	973.97	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		20 Aug 02	16.16	16.15	0.01	NA	973.84	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		11 Dec 02	15.65	14.15	1.50	0.20	975.48	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		29 May 03	DRY	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	GES-201	11 Dec 02	15.14	NA	NA	NA	974.92	71.2	9.8	466	1,100	1,647	51.2	176	2,110	2,100	4,330
	990.06	29 May 03	17.90	NA	NA	NA	972.16	41.1	74.5	353	519.5	988.1	46.1	69.3	3,160	542	2,970
		20 Jun 03	18.36	NA	NA	NA	971.70	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
ļ		24 Feb 04	17.10	NA	NA	NA	972.96	6.0	<2.0	18.3	15.8	40.1	10	6.2	1,200	<50	531
		13 Sep 04	NM	NA	NA	NA	NA	7.6	<2.0	6.3	<4.0	13.9	<2.0	4.1	1,100	88	509
		22 Feb 05	16.80	NA	NA	NA	973.26	2.9	4.1	142.0	224.1	373.1	<2.0	35.2	332	207	791
		10 Aug 05	18.04	NA	NA	NA	972.02	4,2	<2.0	7.1	<2.0	11,3	<2.0	<3.0	367	<50	83
		10 May 06	16.88	NA	NA	NA	973.18	4.1	<2.0	23.6	12.5	40.2	<2.0	4.2	367	61.1	220
		20 Sep 06	17.63	NA	NA	NA	972.43	4.7	<2.0	8.5	5.4	18.6	<2.0	<3.0	358	80.0	167
		26 Apr 07	14.66	NA	NA	NA	975.40	<2.0	<2.0	12.4	28.9	41.3	<2.0	5.5	198	<50	205
		17 Oct 07	18.22	NA	NA	NA	971.84	5.2	2.8	10.1	52.3	70.4	<2.0	25.6	892	106.0	752
		24 Jul 08	15.09	NA	NA	NA	974.97	5.5	5.4	31.4	76.7	119.0	<2.0	72.1	1,070	184	1,040
		16 Oct 08	16.92	NA	NA	NA	973.14	<2.0	<2.0	16.2	ND	16.2	<1.0	17.5	254	<50	183
Г	GES-202	11 Dec 02	13.69	NA	NA	NA	976.42	<0.5	<1.0	<1.0	<1.0	ND	5.6	<5.0	<50	<50	<50
	990.11	29 May 03	17.60	NA	NA	NA	972.51	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
		20 Jun 03	18.49	NA	NA	NA	971.62	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		02 Dec 03	16.35	NA	NA	NA	973.76	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
L		24 Feb 04	20.58	NA	NA	NA	969.53	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50

•			(feet)	(feet)	lons)	ion			VPF	l Target An	alytes				/PH Fraction	ns
Well ID/AIP EI (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (fe	NAPL Thickness (fe	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Benzenc	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	19	feet	μg/L	μg/L	μg/L	μg/L	μg/L,	μg/L	μg/L	μg/L	µg/L	μg/L
					thod 1 GW-2		2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
(%)					ethod 1 GW-3		10,000	40,000	5,000	5,000	1	50,000	20,000	50,000	50,000	50,000
† GES-203	11 Dec 02	11.90	NA	NA	NA	977.94	<0.50	2.9	4.9	75.3	83.1	<1.0	99.3	116	<50	882
989.84	29 May 03	13.50	NA	NA	NA	976.34	<2.0	<2.0	<2.0	10.0	10.0	<2.0	67.0	104	109	581
	20 Jun 03	16.21	NA	NA	NA	973.63	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	02 Dec 03	13.67	NA	NA	NA	976.17	<2.0	<2.0	<2.0	9.5	9.5	<2.0	34.0	62.8	<50	479
	13 Sep 04	NM	NA	NA	NA	NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	72.8
	21 Feb 05	16.04	NA	NA	NA	973.80	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	17 Oct 07	17.35	NA	NA	NA	972.49	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	27 Mar 08	7.14	NA	NA	NA	982.70	<2.0	<2.0	<2.0	ND	ND	<2.0	<3.0	<50	<50	<50
	24 Jul 08	13.02	NA	NA	NA	976.82	<2.0	<2.0	<2.0	ND	ND	<2.0	<3.0	<50	<50	<50
	16 Oct 08	14.67	NA	NA	NA	975.17	<2.0	<2.0	<2.0	ND	ND	<1.0	<3.0	<50	<50	<50
GES-204	11 Dec 02	14.86	NA	NA	NA	974.57	<0.50	<1.0	<1.0	<1.0	ND	<1.0	<5.0	<50	<50	<50
989.43	29 May 03	17.00	NA	NA	NA	972.43	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	20 Jun 03	19.58	NA	NA	NA	969.85	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	02 Dec 03	14.69	NA	NA	NA	974.74	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
	24 Feb 04	20.78	NA	NA	NA	968.65	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	16 Oct 07	18.86	NA	NA	NA	970.57	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
GES-205	11 Dec 02	14.07	NA	NA	NA	974.99	<0.50	<1.0	<1.0	<1.0	ND	<1.0	<5.0	<50	<50	<50
989.06	30 May 03	18.50	NA	NA	NA	970.56	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	01 Dec 03	19.33	NA	NA	NA	969.73	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	13 Sep 04	NM	NA	NA	NA	NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	10 May 06	16.64	NA	NA	NA	972.42	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	21 Sep 06	16.02	NA	NA	NA	973.04	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	16 Oct 07	18.46	NA	NA	NA	970.60	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	27 Mar 08	12.52	NA	NA	NA	976.54	<2.0	<2.0	<2.0	ND	ND	<2.0	<3.0	<50	<50	<50
	24 Jul 08	16.17	NA	NA	NA	972.89	<2.0	<2.0	<2.0	ND	ND	<2.0	<3.0	<50	<50	<50
	16 Oct 08	17.52	NA	NA	NA	971.54	<2.0	<2.0	<2.0	ND	ND	<1.0	<3.0	<50	<50	<50
* GES-206	11 Dec 02	23.30	12.75	10.55	NA	973.78	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
989.06	04 Dec 03	21.34	19.48	1.86	NA	969.13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	27 Feb 04	21.86	21.83	0.03	NA	967.22	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12 Mar 04	22.96	22.55	0.41	NR	966.25	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

		/ <u>+</u> //	ę	e e	(suc				VPI	I Target An	alytes				VPH Fractio	ns
Well ID/MP El (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (feet)	NAPL Thickness (feet)	NAPL Recovered (gailons)	Groundwater Elevation (feet)	Вептене	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	gallons	feet	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		257 1150			lethod 1 GW		2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
050.000	N. D 62	12.27	NI A		lethod 1 GW		10,000 470	40,000 3,790	5,000	5,000	10.640	50,000	20,000	50,000	50,000	50,000
GES-208 993.47	11 Dec 02 29 May 03	13.37	NA NA	NA NA	NA NA	980.10 977.47	311	2,950	2,360	13,400 9,920	19,640	237	416 547	7,810 7,500	10,300 6,140	8,990 7,510
993.47	02 Dec 03	16.85	NA NA	NA NA	NA NA	976.62	512	2,930	1,960	9,920	11,706	82.7	510	9,440	52.0	9,030
	27 Feb 04	20.00	NA NA	NA NA	NA NA	973.47	NS NS	NS NS	1,900 NS	NS	NS	NS	NS	NS	NS NS	9,030 NS
	13 Sep 04	NM	NA NA	NA NA	NA NA	NA NA	630	298	1,520	5,591	8,039	26.3	720	4,790	4,850	8,720
	23 Feb 05	18.60	NA	NA NA	NA NA	974.87	745	616	2,070	7,300	10,731	<10	588	9,720	3,400	10,400
	10 Aug 05	19.67	NA.	NA NA	NA NA	973.80	207	55.7	286	1,167	1,715.7	<2.0	147	6,140	305	6,810
	10 May 06	15.50	NA.	NA.	NA NA	977.97	314	632	3,000	15,580	19,526	<2.0	598	6,210	1,080	33,600
	20 Sep 06	17.96	NA	NA	NA	975.51	302	525	2,090	10,020	12,937	<2.0	1,100	8,710	10,900	17,800
	26 Apr 07	11.67	NA	NA	NA NA	981.80	10.4	212	388	3,714	4,324	<4.0	200	1,450	<100	8,940
	17 Oct 07	DRY	NA	NA	NA NA	NA	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS NS
	28 Mar 08	11.76	NA	NA	NA	981.71	36.9	295	1,140	4,837	6,309	<4.0	433	3,260	1,890	10,700
	25 Jul 08	15.94	NA	NA	NA	977.53	38.1	415	1,870	8,830	11,153	<10	621	5,980	5,880	15,200
	17 Oct 08	18.42	NA	NA	NA	975.05	49.1	520	2,740	19,930	23,239	<5.0	1,090	13,600	19,500	68,000
	17 Oct -08 Dup	18.42	NA	NA	NA	975.05	48.6	457	2,420	11,596	14,522	<2.0	808	8,950	6,850	27,700
GES-209	21 Mar 03	12.96	NA	NA	NA	976.36	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
989.32	30 May 03	13.10	NA	NA	NA	976.22	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	03 Dec 03	13.09	NA	NA	NA	976.23	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
	27 Feb 04	DRY	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
989.31	13 Sep 04	NM	NA	NA	NA	NA	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
	22 Feb 05	16.00	NA	NA	NA	973.31	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
GES-210	30 May 03	9.80	NA	NA	NA	975.86	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
985.66	04 Dec 03	8.23	NA	NA	NA	977.43	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
	27 Feb 04	DRY	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	09 Aug 05	13.00	NA	NA	NA	969.29	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GES-211	21 Mar 03	13.66	NA	NA	NA	977.21	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
990.87	30 May 03	14.40	NA	NA	NA	976.47	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	04 Dec 03	14.63	NA	NA	NA	976.24	<2.0	<2.0	<2.0	<2.0	ND	<2.1	<3.1	<50	<50	<50
	27 Feb 04	DRY	NA	NA	NA	NA	ŅS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	09 Aug 05	DRY	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GES-212	21 Mar 03	10.89	NA	NA	NA	976.74	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
987.63	30 May 03	11.65	NA	NA	NA	975.98	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
	05 Dec 03	MISSING u	-p				NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
987.59	14 Sep 04	NM	NA	NA	NA	NA	12.2	55.3	61.4	2,047	2,175.9	<2.0	232	1,290	2,590	7,440
	21 Feb 05	11.69	NA	NA	NA	975.90	3.3	<2.0	19.2	292	314.5	<2.0	49.6	490	411	942
	10 Aug 05	12.24	NA	NA	NA	975.35	<2.0	<2.0	<2.0	34.6	34.6	<2.0	6.7	<50	<50	<50

	ar.	7	-		r <u>w</u>		Tittisficia, i	Aassachusetts								
c		-	g g	Ç.	(suo	ion			VPI	I Target An:	alytes			,	VPH Fractio	ns
Well ID/MP El (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (feet)	NAPL Thickness (feet)	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	gallons	feet	μg/L	րg/L	μg/L.	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
				MCP M	ethod 1 GW-	2 Standard:	2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
		7874499		MCP M	ethod 1 GW	3 Standard:	10,000	40,000	5,000	5,000	-	50,000	20,000	50,000	50,000	50,000
GES-213	21 Mar 03	9.53	NA	NA	NA	979.67	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
989.20	30 May 03	9.90	NA	NA	NA	979.30	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	04 Dec 03	10.74	NA	NA	NA	978.46	<2.0	<2.0	<2.0	3.3	3.3	<2.0	<3.0	348	<50	<50
	27 Feb 04	13.87	13.85	0.02	NA	975.35	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GES-214	21 Mar 03	10.65	NA	NA	NA	975.95	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
986.60	30 May 03	12.20	NA	NA	NA	974.40	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	05 Dec 03	11.79	NA	NA	NA	974.81	228	44.4	76.6	964	1,313	<2.0	42.7	691	109	806
	27 Feb 04	15.94	NA	NA	NA	970.66	195	4.6	181	258.2	638.8	<2.0	115	868	<50	1,030
986.57	13 Sep 04	NM	NA	NA	NA	NA	3.2	<2.0	4.0	26.3	33.5	7.8	60.0	71.3	<50	564
	21 Feb 05	13.38	NA	NA	NA	973.19	<2.0	<2.0	<2.0	3.3	3.3	<2.0	<3.0	<50	<50	<50
	10 Aug 05	15.30	NA	NA	NA	971.27	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
GES-215	21 Mar 03	11.46	NA	NA	NA	975.19	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
986.65	30 May 03	13.70	NA	NA	NA	972.95	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	04 Dec 03	11.66	NA	NA	· NA	974.99	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
	27 Feb 04	15.91	NA	NA	NA	970.74	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	13 Sep 04	NM	NA	NA	NA	NA	<2.0	<2.0	<2.0	<4.0	ND	4.3	<3.0	<50	<50	<50
	21 Feb 05	15.39	NA	NA	NA	971.26	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	10 Aug 05	15.45	NA	NA	NA	971.20	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
GES-216	10 Apr 03	14.05	NA	NA	NA	NA	245	559	602	2,777	4,183	<4.0	261	2,820	1,000	4,110
986.88	30 May 03	20.50	NA	NA	NA	NA	66.7	1,330	2,010	9,010	12,416.7	<10	1,110	9,730	4,380	20,300
	03 Dec 03	19.28	19.25	0.03	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	01 Feb 04	20.91	20.80	0.11	NA	966.05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10 Aug 05	22.69	NA	NA	NA	964.19	10.5	72.9	201.0	3,403	3,687.4	<10.0	465.0	6,240	<250	22,900
	09 May 06	17.05	NA	NA	NA	969.83	11,1	14.5	11.0	42.8	79.4	<2.0	7.1	230	100	541
	21 Sep 06	17.53	NA	NA	NA	969.35	245.0	327.0	267.0	672	1,511.0	<2.0	103.0	2,790	751	1,160
GES-217	10 Apr 03	13.46	NA	NA	NA	NA	19.6	14.4	11.6	32	77.6	2.8	<3.0	88.1	<50	<50
986.76	30 May 03	20.65	NA	NA	NA	NA	450	158	191	333.2	1,132,2	<2.0	61.4	2,070	68.0	549
	05 Dec 03	19.10	NA	NA	NA	NA	539	10,100	4,540	40,100	55,279	100	5,120	67,700	3,400	85,600
	26 Feb 04	20.78	NA	NA	NA	965.98	28.1	442	300	2,636	3,406	<2.0	416	14,700	<50	14,200
	12 Mar 04	21.50	NA	NA	NA	965.26	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	21 Feb 05	21.13	20.53	0.60	NA	966.09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10 Aug 05	22.68	NA	NA	NA	964.08	383	1,360	5,250	36,850	43,843	<50	4,550	220,000	34,000	171,000
	09 May 06	16.94	NA	NA	NA	969.82	90.5	15.5	96.8	906	1,109.2	6.3	176	6,380	<50	11,000
	21 Sep 06	17.31	NA	NA	NA	969.45	119.0	39.5	337.0	673	1,168.3	<2.0	295	16,900	7,110	5,820

							Pittsfield, N	Aassachusetts								
		6	Ģ	=	(SHO)	90			VPI	I Target An	alytes			,	VPH Fractio	ns
Well ID/MP El (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (feet)	NAPL Thickness (feet)	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Велгене	Tolnene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	gallons	feet	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
					ethod 1 GW-		2,000	50,000	20,000	9,000	•	50,000	1,000	3,000	5,000	7,000
		6 3 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7699000		ethod 1 GW-		10,000	40,000	5,000	5,000	•	50,000	20,000	50,000	50,000	50,000
GES-218	03 Dec 03	21.10	20.46	0.64	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
989.74	27 Feb 04	25.01	NA	NA	NA	964.73	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12 Mar 04	NM	22.66	NM	NR	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	09 Aug 05	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GES-219	30 May 03	16.10	NA	NA NA	NA	NA	416	259	199	477.9	1,351.9	<4.0	64.0	1,850	<100	695
981.58	05 Dec 03	13.84	NA NA	NA	NA	NA NA	232	19.7	22.0	68.4	342.1	90.7	32.6	1,280	<50	199
	27 Feb 04	15.55	NA	NA NA	NA	966.03	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12 Mar 04	16.99	NA	NA NA	NA	964.59	NS 2.0	NS 2.0	NS -2.0	NS	NS 2.0	NS 2.7	NS 2.0	NS 150	NS	NS
	13 Sep 04	NM	NA	NA	NA	NA 0.65.02	2.8	<2.0	<2.0	<4.0	2.8	2.7	<3.0	<50	<50	<50
	22 Feb 05	15.65	NA	NA NA	NA	965.93	115.0	<2.0	13.4	<4.0	128.4	33.6	<3.0	400	<50	73.0
	11 Aug 05	15.41	NA NA	NA NA	NA NA	966.17 969.75	<2.0 <2.0	<2.0	<2.0	12.8	12.8 ND	<2.0	6.1	<50 <50	93.7	295
	09 May 06	11.83	NA NA	NA NA		969.73	<2.0	<2.0	<2.0				<3.0		<50	<50
	21 Sep 06	12.24	NA NA	NA NA	NA NA	969.09	<2.0	<2.0	<2.0 <2.0	<4.0	ND ND	<2.0	<3.0	<50 <50	<50 <50	<50
	27 Mar 08	 		NA NA		971.18	<2.0	<2.0	<2.0	ND	ND	<2.0	<3.0			<50
	24 Jul 08	10.40 9.85	NA NA	NA NA	NA NA	971.73	<2.0	<2.0	<2.0	ND ND	ND ND	<2.0	<3.0	<50 <50	226 <50	96.5 <50
	16 Oct 08	12.29	NA NA	NA NA	NA NA	969.29	<2.0	<2.0	<2.0	ND	ND	<1.0	<3.0	<50	<50	<50
GES-220	30 May 03	19.50	NA NA	NA NA	NA	NA NA	688	121	299	470.6	1,578.6	38.5	73.9	2,100	<100	862
025-220	05 Dec 03	18.70	NA NA	NA NA	NA NA	NA	683	134	253	557	1,627	69.4	104	3,600	112	822
988.39	26 Feb 04	20.78	NA	NA	NA	967.61	91.6	2.4	<2.0	7.3	101.3	12.0	11.3	603	<50	94.0
	12 Mar 04	20.56	NA	NA	NA	967.83	NS	NS	NS	NS	NS	NS	NS.	NS	NS	NS
	11 Aug 05	27.25	NA	NA	NA	961.14	347	10.8	209	143.8	710.6	29.3	36.5	2,150	280	466
	16 Oct 07	19.55	NA	NA	NA	968.84	10.7	<2.0	<2.0	<4.0	10.7	<2.0	<3.0	<50	<50	<50
	27 Mar 08	15.61	NA	NA	NA	972.78	<2.0	<2.0	<2.0	ND	ND	<2.0	<3.0	<50	<50	<50
	24 Jul 08	15.32	NA	NA	NA	973.07	<2.0	<2.0	<2.0	ND	ND	<2.0	<3.0	<50	<50	<50
	16 Oct 08	16.95	NA	NA	NA	971.44	<2.0	<2.0	<2.0	ND	ND	<1.0	<3.0	<50	<50	<50
GES-221	04 Dec 03	19.00	NA	NA	NA	968.28	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
987.28	27 Feb 04	20.38	NA	NA	NA	966.90	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	12 Mar 04	21.54	NA	NA	NA	965.74	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	13 Sep 04	NM	NA	NA	NA	NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	21 Feb 05	20.09	NA	NA	NA	967.19	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	10 Aug 05	21.31	NA	NA	NA	965.97	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
	09 May 06	17.25	NA	NA	NA	970.03	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	21 Sep 06	17.77	NA	NA	NA	969.51	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
GES-222	05 Dec 03	19.00	NA	NA	NA	NA	1,640	9,010	993	9,370	21,013	57.5	473	21,800	1,760	8,090
986.73	26 Feb 04	20.70	NA	NA	NA	966.03	37.9	127	54.2	700	919.1	11.0	44.8	1,690	<50	959
	12 Mar 04	21.60	21.10	0.50	NR	965.51	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	09 Aug 05	19.05	19.00	0.05	NA	967.72	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

							ritisticia, N	Aassachusetts				·				
e ·		*	9	+	lons)	l ioi			VPI	I Target An	alytes				VPH Fractio	ns
Well ID/MP El (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (feet)	NAPL Thickness (feet)	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	gallons	feet	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
					ethod 1 GW-		2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
		<u> 1913/2019</u>			ethod 1 GW-		10,000	40,000	5,000	5,000		50,000	20,000	50,000	50,000	50,000
GES-223	02 Dec 03	17.63	NA	NA	NA	NA	674	3.6	9.3	7.6	694.5	1,600	<3.0	1,090	<50	177
989.16	24 Feb 04	21.00	NA	NA	NA	968.16	925	<2.0	<2.0	<4.0	925	1,460	<3.0	1,430	<50	69.1
	13 Sep 04	NM	NA	NA	NA	NA	98.6	<2.0	<2.0	<4.0	98.6	309	<3.0	<50	<50	<50
	22 Feb 05	19.45	NA	NA	NA	969.71	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	10 Aug 05	19.54	NA	NA	NA	969.62	<2.0	<2.0	<2.0	5.3	5.3	7.7	<3.0	<50	<50	76.5
	09 May 06	17.90	NA	NA	NA	971.26	<2.0	<2.0	<2.0	<4.0	ND	7.4	<3.0	<50	<50	<50
	20 Sep 06	18.50	NA	NA	NA	970.66	<2.0	<2.0	<2.0	<4.0	ND	30.9	<3.0	<50	<50	<50
	26 Apr 07	15.96	NA	NA	NA	973.20	<2.0	<2.0	<2.0	<4.0	ND	4.4	<3.0	<50	<50	<50
	16 Oct 07	18.94	NA	NA	NA	970.22	<2.0	<2.0	<2.0	<4.0	ND	7.0	<3.0	<50	<50	<50
	27 Mar 08	16.03	NA	NA	NA	973.13	<2.0	<2.0	<2.0	ND	ND	<2.0	<3.0	<50	<50	<50
	24 Jul 08	16.10	NA	NA	NA	973.06	<2.0	<2.0	<2.0	ND	ND	8.8	<3.0	<50	<50	<50
	16 Oct 08	18.27	NA	NA	NA	970.89	<2.0	<2.0	<2.0	ND	ND	4.6	<3.0	<50	<50	<50
GES-224	03 Dec 03	18.65	NA	NA	NA	970.83	<2.0	<2.0	<2.0	<2.0	ND	1,040	<3.0	<50	<50	<50
989.48	24 Feb 04	21.43	NA	NA	NA	968.05	3.6	<2.0	<2.0	<4.0	3.6	232	<3.0	<50	<50	<50
	13 Sep 04	NM	NA	NA	NA	NA	<2.0	<2.0	<2.0	<4.0	ND	3.7	<3.0	<50	<50	<50
	22 Feb 05	20.15	NA	NA	NA	969.33	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	10 Aug 05	20.02	NA	NA	NA	969.46	<2.0	<2.0	<2.0	2.8	2.8	104.0	<3.0	<50	<50	<50
	09 May 06	18.70	NA	NA	NA	970.78	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	20 Sep 06	19.28	NA	NA	NA	970.20	<2.0	<2.0	<2.0	<4.0	ND	12.5	<3.0	<50	<50	<50
	26 Apr 07	16.90	NA	NA NA	NA	972.58	<2.0	<2.0	<2.0	<4.0	ND	2.5	<3.0	<50	<50	<50
GES-225	17 Oct 07 02 Dec 03	17.79	NA NA	NA NA	NA NA	971.69	<2.0	<2.0	<2.0	<4.0	ND 24.701	<2.0	<3.0	<50	<50	<50
992.82	02 Dec 03 27 Feb 04	18.17	NA NA	NA NA	NA NA	NA 969.62	611 NS	9,160 NS	2,410 NS	12,610 NS	24,791 NS	<2.0	549 NS	21,200 NS	211 NS	10,900
772.02	12 Mar 04	22.85	22.80	0.05	NA NA	970.01	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	12 Mai 04	20.57	NA	NA	NA NA	972.25	115	314	2,100	8,546	11,075	49.7	363	9,240	7,460	9,380
	10 May 06	18.14	NA NA	NA NA	NA NA	972.23	243	587	1,930	8,546	11,075	<2.0	303 468	9,240 8,170	354	9,600
	10 May 06 Dup	18.14	NA NA	NA NA	NA NA	974.68	252	614	1,760	7,657	10,283	<2.0	501	8,310	<50	9,000
	21 Sep 06	19.87	NA NA	NA NA	NA NA	972.95	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
	17 Oct 07	20.40	NA	NA NA	NA NA	972.42	27.6	21.0	1,460	5,369.6	6,878.2	<2.0	603	8,430	898	8,440
	17 Oct 07 Dup	20.40	NA NA	NA	NA NA	972.42	22.4	16.9	1,470	5,225.9	6,735.2	<2.0	601	7,920	1,230	7,950
	28 Mar 08	16.32	NA.	NA	NA	976.50	16.7	85.2	1,820	6,451	8,372.9	<2.0	603	6,650	1,450	10,900
	28 Mar 08 Dup	16.32	NA.	NA	NA	976.50	16.0	82.8	1,650	5,656	7,404.8	<2.0	582	6,850	<50	11,400
	25 Jul 08	16.79	NA	NA	NA	976.03	16.2	25.6	1,520	4,414	5,975.8	<10	620	6,600	695	8,430
	17 Oct 08	19.51	NA	NA	NA	973.31	23.3	137	1,340	3,695.4	5,195.7	<5.0	606	4,510	<250	7,910

TABLE 2-2

HISTORICAL GROUNDWATER MONITORING DATA

VOLATILE PETROLEUM HYDROCARBONS Former Mobil Service Station No. 01-ECQ 83-89 Elm Street

Pittsfield, Massachusetts

		Y /					i ittaricia, ii	lassachusetts						,		
•		9	(a)	et)	lons)	5			VPI	I Target An:	alytes			,	VPH Fractio	ns
Well ID/MP E] (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (feet)	NAPL Thickness (feet)	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Венхене	Toluene	Ethylbenzene	Total Kylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphafics	C9-C12 Aliphatics	C9-C10 Aromatics
Militaria de la composición de la comp	Units	feet	feet	feet	gallons	feet	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	<u> Jerestingsport</u>	<u> </u>	2245.74		thod 1 GW-		2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
<u> </u>		<u> </u>	102246849 		ethod 1 GW-		10,000	40,000	5,000	5,000	-	50,000	20,000	50,000	50,000	50,000
GES-226	04 Dec 03	17.53	NA	NA	NA	NA 000.55	128	578	92.6	408.8	1,207.4	<2.0	<3.0	12,800	<50	375
989.27	24 Feb 04	19.70	NA NA	NA NA	NA NA	969.57	12.9	19.3	3.1	42.7	78.0	16.0	3.1	4,100	<50	165
	13 Sep 04 21 Feb 05	NM 20.11	NA NA	NA NA	NA NA	NA 969.16	<2.0 <2.0	<2.0	<2.0	<4.0 <4.0	ND ND	<2.0 <2.0	<3.0 <3.0	217	<50 <50	<50
	11 Aug 05	20.84	NA NA	NA NA	NA NA	969.16	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<3.0	<50 <50	<50 <50	<50 <50
GES-227	27 Feb 04	23.02	23.00	0.02	NA NA	967,42	NS	NS NS	NS	NS	NS NS	NS	NS NS	NS	NS	NS NS
990,42	12 Mar 04	23.74	23.15	0.59	NA	967.13	NS	NS	NS	NS	NS NS	NS	NS NS	NS	NS	NS
,,,,,	21 Feb 05	25.90	25.00	0.90	NA	965.20	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GES-228	01 Dec 03	23.57	NA	NA	NA	NA	22,2	2,160	1,400	9,930	13,512.2	<20	1,460	16,500	<500	41,300
991.40	27 Feb 04	23.61	23.56	0.05	NA	967.83	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	13 Sep 04	NM	NA	NA	NA	NA	81.6	786	343	4,600	5,810.6	<2.0	643	21,400	4,130	11,700
	09 Aug 05	26.30	26.20	0.05	NA	965.14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10 May 06	18.71	18.62	0.09	NA	972.76	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GES-229	04 Dec 03	24.13	NA	NA	NA	NA	<2.0	<2.0	<2.0	2.3	2.3	<2.0	<3.0	<50	<50	<50
990.80	25 Feb 04	23.81	NA	NA	NA	966.99	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	13 Sep 04	NM	NA	NA	NA	NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	21 Feb 05	20.88	NA	NA	NA	969.92	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
GES-230	04 Dec 03	20.12	20.06	0.06	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
988.82	27 Feb 04	22.92	NA	NA	NA	965.90	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12 Mar 04	23.81	23.79	0.02	NA	965.03	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GES-231	05 Dec 03	23.48	23.02	0.46	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
987.72	26 Feb 04	21.68	NA	NA	NA	966.04	935	6,370	1,480	9,160	17,945	<2.0	694	13,300	<50	11,500
SP TOTAL STATE OF THE	10 Aug 05	25.15	NA	NA	NA	962.57	55.3	48.4	62.3	142.4	308.4	13.8	22.5	1,050	233	348
2000	09 May 06	17.91	NA	NA	NA	969.81	507	726	252	955	2,440	<2.0	119	2,580	220	1,720
	21 Sep 06 .	18.27	NA	NA	NA	969.45	395	456	245	857	1,953	<2.0	150	3,660	1,640	2,110
GES-232	04 Dec 03	20.19	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
988.21	27 Feb 04	25.10	20.60	4.50	NA	963.11	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
000.5	12 Mar 04	22.42	NM	NA	NA NA	965.79	NS 12.0	NS	NS 12.0	NS 2.0	NS	NS 2.0	NS -2.0	NS 150	NS 150	NS
GES-301D	26 Feb 04	16.51	NA	NA	NA	975.89	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
992.40	14 Sep 04	NM	NA	NA	NA NA	NA 077.07	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
	23 Feb 05	15.33	NA NA	NA NA	NA NA	977.07	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
-	10 Aug 05	17.03	NA NA	NA NA	NA NA	975.37	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	268	205
	28 Mar 08 17 Oct 08	12.85	NA NA	NA NA	NA NA	979.55 976.00	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0	ND ND	<2.0 <1.0	<3.0 <3.0	<50	<50 <50	<50
GES-301I	17 Oct 08 10 May 06	16.40 22.15	18.84	NA 3.31	NA NA	976.00 NA	<2.0 NS	<2.0 NS	<2.0 NS	<2.0 NS	ND NS	<1.0 NS	<3.0 NS	<50 NS	<50 NS	<50 NS
GES-3011 GES-301M	27 Feb 04	27.20	20.84	6.36	NA NA	970.03	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1				and the second of the second of the second												NS NS
992.40	09 Aug 05	20.86	22.25	1.39	NA	972.60	NS	NS	NS	NS	NS	NS	NS	NS	NS	1

TABLE 2-2

HISTORICAL GROUNDWATER MONITORING DATA VOLATILE PETROLEUM HYDROCARBONS

							ritisheid, N	lassachusetts								
æ		- Car	g g	5	(Suno)	5			VPI	I Target An	alytes			,	VPH Fractio	ns
Well ID/MP El (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (feet)	NAPL Thickness (feet)	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	gallons	feet	μg/L	μg/L	μg/L	μg/L,	μg/L	µg/L	μg/L	μg/L	μg/L,	μg/L
11/9/20/2010 pp.	<u> 19 ayul udu</u>		<u>darigari</u>		ethod 1 GW-		2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
			<u> </u>		ethod 1 GW-		10,000	40,000	5,000	5,000	1 -	50,000	20,000	50,000	50,000	50,000
GES-301S	26 Feb 04	11.64	NA	NA NA	NA	980.77	<2.0	<2.0	13.7	32.4	46.1	<2.0	11,1	76.4	<50	370
992.41	10 Aug 05	11.50	NA NA	NA NA	NA	980.91	<2.0	<2.0	<2.0	2.4	2.4	<2.0	<3.0	<50	<50	<50
	10 May 06	10.09	NA	NA	NA	982.32	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	20 Sep 06 17 Oct 07	10.91	NA NA	NA NA	NA NA	981.50	<2.0 <2.0	<2.0	<2.0	<4.0	ND 2.0	<2.0	<3.0	<50	<50	<50
	25 Jul 08	9.90	NA NA	NA NA	NA NA	980.38 982.51		<2.0	2.8	<4.0	2.8	<2.0	<3.0	<50	<50	152
	17 Oct 08	10.94	NA NA	NA NA		1	<2.0	<2.0	<2.0	ND	ND	<2.0	<3.0	<50	<50	<50
CEC 202D			+		NA NA	981.47	<2.0	<2.0	<2.0	ND	ND	<1.0	<3.0	<50	<50	<50
GES-302D 990.38	24 Feb 04	16.19 NM	NA NA	NA NA	NA NA	974.19	<2.0	<2.0 <2.0	<2.0 <2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
990.38	13 Sep 04					NA NA				2.4	2.4	<2.0	<3.0	<50	<50	<50
	21 Feb 05	15.87	NA NA	NA NA	NA	974.51	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
CEC 2021	28 Mar 08	15.87	NA NA	NA NA	NA NA	974.51	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
GES-3021	24 Feb 04	22.05	NA	NA NA	NA	968.34	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
990.39	13 Sep 04	NM	NA	NA NA	NA	NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
GEO 202G	21 Feb 05	20.25	NA NA	NA NA	NA	970.14	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
GES-302S	27 Feb 04	14.95	NA	NA	NA	975.45	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
990.40	27 Feb 04	13,96	NIA	NA	NI A	072.20	-20	-2.0	-2.0		NID	-2.0	-2.0		-50	
GES-303 987.16	13 Sep 04	13.96 NM	NA NA	NA NA	NA NA	973.20 NA	<2.0	<2.0 <2.0	<2.0 <2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
987.10	21 Feb 05	14.23	NA NA	NA NA	NA NA	972.93	<2.0	<2.0	<2.0	<4.0	ND		<3.0	<50	<50	<50
		15.38	NA NA	NA NA	NA NA	971.78	<2.0	<2.0	<2.0	<4.0 <2.0	ND	<2.0	<3.0	<50	<50	<50
	10 Aug 05 16 Oct 07	13.70	NA NA	NA NA	NA NA	971.78	<2.0	<2.0	<2.0		ND ND	<2.0 <2.0	<3.0	<50	<50	<50
	27 Mar 08	11.49	NA NA	NA NA	NA NA	975.67	<2.0	<2.0	<2.0	<2.0 ND	ND	<2.0	<3.0 <3.0	<50 <50	<50	<50
	24 Jul 08	12,73	NA NA	NA NA	NA NA	974.43	<2.0	<2.0	<2.0	ND ND	ND	<2.0		·	<50	<50
	16 Oct 08	13.30	NA NA	NA NA	NA NA	973.86	<2.0	<2.0	<2.0	ND	ND	<1.0	<3.0	<50 <50	<50 <50	<50 <50
GES-304D	24 Feb 04	16.98	NA NA	NA NA	NA NA	972.00	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0			+
988.98	22 Feb 05	17.30	NA NA	NA NA	NA NA	972.00	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
GES-304I	24 Feb 03	17.00	NA NA	NA NA	NA NA	971.08	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50 <50	<50 <50	<50 <50
988.98	13 Sep 04	NM	NA NA	NA NA	NA NA	NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50 <50	<50 <50
GES-304S	24 Feb 04	10.99	NA NA	NA NA	NA NA	978.02	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50 <50
989.01	2.1.000			14/2	18/1	7,3.02	0	-2.0	-2.0	~+.0	עאו	٠٠.٠	~3.0	-30	~30	-30
GES-305	25 Feb 04	17.96	NA	NA	NA	972.99	<2.0	<2.0	<2.0	2.2	2,2	<2.0	<3.0	<50	<50	<50
990.95	13 Sep 04	NM	NA NA	NA NA	NA NA	NA NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	21 Feb 05	12.20	NA	NA	NA NA	978.75	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
GES-306	24 Feb 04	16.36	NA	NA	NA NA	974.59	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
989.37	10 Aug 05	18.57	NA	NA	NA	972.38	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
GES-307	25 Feb 04	16.56	NA	NA	NA	972.33	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
988.89							-				† -					

TABLE 2-2 HISTORICAL GROUNDWATER MONITORING DATA

VOLATILE PETROLEUM HYDROCARBONS Former Mobil Service Station No. 01-ECQ 83-89 Elm Street

Pittsfield, Massachusetts

			7	71 - 1 rec 2 / 700 2	alexae e 🐣 e e e e	T 585 (April 2016)	r monera, r	lassachusetts	995	CONTRACTOR OF THE CONTRACTOR O	gagaga geografia a sa	58.708.025.02		an Forgogramson are to	observation of	X11.0001120111011111111
ę		8	9	() set	lons	Į, į			VPI	I Target Ana	alytes				VPH Fractio	RS
Well ID/MP El (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (feet)	NAPL Thickness (feet)	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Benzene	Tolnene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	C5-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	gallons	feet	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
1223.2423			404124149		Iethod 1 GW-		2,000	50,000	20,000	9,000	4	50,000	1,000	3,000	5,000	7,000
			20/01/01/01 T		lethod 1 GW-		10,000	40,000	5,000	5,000		50,000	20,000	50,000	50,000	50,000
GES-308	27 Feb 04	13.81	NA	NA	NA	976.75	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
990.56	27.5.1.04	22.02	<u> </u>	214	N	040.01	2.0	-20		20			<u> </u>	20#		
GES-310	27 Feb 04	22.82	NA	NA	NA	968.91	2.8	<2.0	2.4	2.8	8.0	6.5	3.8	295	<50	223
991.73	13 Sep 04	NM	NA NA	NA NA	NA NA	NA 072.52	5.6	<2.0	8.1	-14.7	28.4	<2.0	<3.0	1,500	549	772
	22 Feb 05	18.20	NA NA	NA NA	NA NA	973.53	4.8	3.0	36.5	39.6	83.9	<2.0	6.8	321	138	366
	09 May 06	18.26	NA NA	NA	NA NA	973.47	<2.0	<2.0 <2.0	2.0	4.7	6.7	<2.0	<3.0	<50	<50	50.6
	20 Sep 06	19.33	NA NA	NA NA	NA NA	972.40 976.95	<2.0	<2.0	<2.0	<4.0 <4.0	ND ND	<2.0 <2.0	<3.0 <3.0	<50	<50	<50
	26 Apr 07 17 Oct 07	19.94	NA NA	NA NA	NA NA	971.79	2.3	<2.0	17.3	2.7	22.3	<2.0	18.7	<50 406	<50 55	<50
	25 Jul 08	16.26	NA NA	NA NA	NA NA	971.79	<2.0	<2.0	<2.0	ND	22.3 ND	<2.0	<3.0	<50	<50	206.0 <50
	17 Oct 08	16.18	NA NA	NA NA	NA NA	975.55	<2.0	<2.0	4.3	ND	4.3	<1.0	9.1	129	<50	146
GES-311	24 Feb 04	20.63	NA NA	NA NA	NA NA	969.52	<2.0	<2.0	<2.0	<4.0	ND	9.7	<3.0	<50	<50	<50
990.15	13 Sep 04	20.03 NM	NA NA	NA NA	NA NA	NA NA	<2.0	<2.0	<2.0	<4.0	ND	4,9	<3.0	<50	<50	<50
990.13	21 Feb 05	17.95	NA NA	NA NA	NA NA	972.20	<2.0	<2.0	<2.0	<4.0	ND	3.2	<3.0	<50	<50	<50
	27 Mar 08	15.63	NA NA	NA NA	NA NA	974.52	<2.0	<2.0	<2.0	ND	ND	<2.0	<3.0	<50	<50	<50
	27 Mar 08 (Dup)	15.63	NA NA	NA	NA NA	974.52	<2.0	<2.0	<2.0	ND	ND	<2.0	<3.0	<50	<50	<50
	24 Jul 08	15.93	NA NA	NA.	NA NA	974.22	<2.0	<2.0	<2.0	ND	ND	<2.0	<3.0	<50	<50	<50
	16 Oct 08	18.22	NA NA	NA NA	NA NA	971.93	<2.0	<2.0	<2.0	ND	ND	<1.0	<3.0	<50	<50	<50
GES-312	24 Feb 04	20.58	NA.	NA NA	NA NA	968.90	74.4	<2.0	<2.0	25.4	99.8	65.8	4.7	530	<50	126
989.48	13 Sep 04	NM	NA	NA	NA NA	NA NA	3.5	<2.0	<2.0	<4.0	3.5	2.0	<3.0	<50	<50	<50
, ,,,,,	21 Feb 05	17.80	NA NA	NA	NA	971.68	<2.0	<2.0	<2.0	<4,0	ND	<2.0	<3.0	<50	<50	<50
	27 Mar 08	15.67	NA	NA	NA	973.81	128	11.5	131	67.6	338.1	<2.0	18.7	784	<50	290
	24 Jul 08	15.70	NA	NA	NA	973.78	14.7	<2.0	15.9	9.3	39.9	<2.0	3.2	145	<50	<50
	16 Oct 08	18.90	NA	NA	NA	970.58	8.3	<2.0	2.9	ND	11.2	<1.0	<3.0	<50	<50	<50
GES-314	24 Feb 04	19.01	NA	NA	NA	970.11	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
989.12													<u> </u>			
GES-315	24 Feb 04	13.12	NA	NA	NA	977.25	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
990.37	13 Sep 04	NM	NA	NA	NA	NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	22 Feb 05	11.83	NA	NA	NA	978.54	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
GES-316 989.24	25 Feb 04	25.03	NA	NA	NA	964.21	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GES-317	27 Feb 04	15.98	NA	NA	NA	974.71	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
990.69																
GES-318D	26 Feb 04	17.73	NA	NA	NA	975.13	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
992.86						1										

TABLE 2-2 HISTORICAL GROUNDWATER MONITORING DATA

VOLATILE PETROLEUM HYDROCARBONS Former Mobil Service Station No. 01-ECQ

83-89 Elm Street Pittsfield, Massachusetts

(,		Pittstieid, N	1assachusetts								
		- T	ਚ	9	(suo	5			VPI	I Target Ana	ilytes			,	PH Fractio	ns
Well ID/MP El (feet)	Date of Sampling	Depth to Water (feet)	Bepth to Product (feet)	NAPL Thickness (feet)	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Benzene	Tolucue	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet		feet	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		BREVIOUS			ethod 1 GW-2		2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
225721657222	227233455456				ethod 1 GW-3		10,000	40,000	5,000	5,000	-	50,000	20,000	50,000	50,000	50,000
GES-318S	26 Feb 04	19.42	NA	NA	NA	973.29	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
992.71	14 Sep 04	NM	NA	NA	NA	NA	<2.0	<2.0	<2.0	3.2	3.2	<2.0	<3.0	295	<50	<50
	23 Feb 05	12.87	NA	NA	NA	979.84	3	516	205	5,500	6,223.6	<2.0	135	762	1,980	3,010
	10 May 06	18.37	NA	NA	NA	974.34	<2.0	<2.0	<2.0	2.2	2.2	<2.0	<3.0	<50	<50	<50
	10 May 06 Dup	18.37	NA	NA	NA	974.34	<2.0	<2.0	<2.0	2.1	2.1	<2.0	<3.0	<50	<50	<50
	21 Sep 06	19.69	NA	NA NA	NA	973.02	179	199	1,560	6,163.0	8,101.0	<2.0	632	7,500	5,050	7,100
	17 Oct 07	20.76	NA	NA NA	NA NA	971.95	<2.0	<2.0 <2.0	<2.0 <2.0	<4.0 ND	ND ND	<2.0 <2.0	<3.0 <3.0	<50	<50	<50
	28 Mar 08 25 Jul 08	17.05	NA NA	NA NA	NA NA	975.66 975.13	<2.0	<2.0	<2.0	ND ND	ND	<2.0	<3.0	<50 <50	<50 <50	<50
	17 Oct 08	17.38	NA NA	NA NA	NA NA	973.13	<2.0	<2.0	<2.0	ND ND	ND	<1.0			<50	<50
CEC 310D	26 Feb 04	19.87	NA NA	NA NA	NA NA	972.84	<2.0	3.9	<2.0	<4.0	3.9	<2.0	<3.0	<50 <50	<50 <50	<50
GES-319D 992.31	10 Aug 05	16.58	NA NA	NA NA	NA NA	972.33	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50 <50
GES-319S	26 Feb 04	27.25	NA NA	NA NA	NA NA	965.07	<2.0	5.2	<2.0	<4.0	5,2	<2.0	<3.0	<50	<50	<50
992,32	13 Sep 04	27.23 NM	NA NA	NA NA	NA NA	963.07 NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50 <50	<50
992.32	22 Feb 05	14.69	NA NA	NA NA	NA NA	977.63	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
		16.57	NA NA	NA NA	NA NA	977.03	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	68.3	197	114
GES-320D	10 Aug 05 26 Feb 04	17.28	NA NA	NA NA	NA NA	975.88	<2.0	24.5	<2.0	3.2	27.7	<2.0	<3.0	<50	<50	<50
993.16	10 Aug 05	17.28	NA NA	NA NA	NA NA	975.35	<2.0	4.5	<2.0	4.3	8.8	<2.0	<3.0	<50	<50	<50
GES-320S	26 Feb 04	32.31	NA NA	NA NA	NA	960.80	<2.0	2.2	<2.0	2.3	4.5	<2.0	<3.0	<50	<50	<50
993.11	13 Sep 04	NM	NA NA	NA NA	NA	NA NA	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
773.11	23 Feb 05	17.97	NA NA	NA NA	NA NA	975.14	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	10 Aug 05	18.23	NA.	NA NA	NA	974.88	<2.0	<2.0	<2.0	2.6	2.6	<2.0	<3.0	<50	<50	<50
GES-321D	27 Feb 04	12.14	NA.	NA NA	NA	976.30	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
988.44			1	1		7,000				1		2.0				1
GES-321S	27 Feb 04	20.18	NA	NA	NA	968.02	<2.0	4.2	2.9	14.4	21.5	<2.0	<3.0	<50	<50	<50
988.20	14 Sep 04	NM	NA	NA	NA	NA	<2.0	<2.0	<2.0	2.7	2.7	<2.0	<3.0	231	<50	<50
GES-322D	27 Feb 04	10.10	NA	NA	NA	976.09	<2.0	3.1	<2.0	<4.0	3.1	<2.0	<3.0	<50	<50	<50
986.19	10 Aug 05	10.60	NA	NA	NA	975.59	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
GES-322S	27 Feb 04	19.74	NA	NA	NA	966.62	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
986.36	14 Sep 04	NM	NA	NA	NA	NA	<2.0	<2.0	<2.0	6.0	6.0	<2.0	<3.0	420	66	<50
	21 Feb 05	19.97	NA	NA	NA	966.39	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	10 Aug 05	20.93	NA	NA	NA	965.43	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
EXP-1	28 Mar 08	15.66	NA	NA	NA	NA	36.0	600	540	2,552	3,728	<2.0	158	3,690	588	3,710
EXP-2	27 Feb 04	DRY	NA	NA.	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
993.25	28 Mar 08	12.19	NA	NA	NA	981.06	78.3	34.0	128	1,071	1,311.3	<2.0	233	658	156	6,450
	25 Jul 08	9.33	NA	NA	NA	983.92	58.8	667	119	1,581	2,425.8	<2.0	38.7	1,030	666	1,670
	17 Oct 08	18.31	NA	NA	NA	974.94	189	1,060	224	2,567	4,040	<1.0	117	1,300	1,130	3,520

Well ID/MP El (fect)		4.437	æ	-	Ous)	8		ASAMS.	VPI	Target Ana	alytes			,	VPH Fractio	ns
Well ID/MP El (feet	Date of Sampling	Depth to Water (feet)	Depth to Product (feet)	NAPL Thickness (feet)	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	galions	feet	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		24454V2X		MCP M	ethod 1 GW-	2 Standard:	2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
				MCP M	ethod 1 GW-	3 Standard:	10,000	40,000	5,000	5,000	•	50,000	20,000	50,000	50,000	50,000
EXP-4	26 Feb 04	13.91	NA	NA	NA	978.87	<2.0	<2.0	<2.0	2.8	2.8	<2.0	<3.0	<50	<50	<50
992.78																
EXP-5	28 Mar 08	11.11	NA	NA	NA	NA	<2.0	13.6	341	1978	2,332.6	<2.0	50.1	439	177	815
EXP-6	01 Dec 03	18.37	NA	NA	NA	974.04	6.3	15.1	39.8	653	714.2	<2.0	116	935	<50	1,390
992.41	09 May 06	17.79	NA	NA	NA	974.62	5.4	5.4	220	435	665.8	<2.0	111	1,940	244	1,330
	20 Sep 06	19.40	NA	NA	NA	973.01	3.8	7.7	121	348	480.5	<2.0	71	13,220	388	822
	26 Apr 07	15.41	NA	NA	NA	977.00	<2.0	5.8	27.7	183.4	216.9	<2.0	25.2	567	<50	420
	26 Apr 07 Dup	15.41	NA	NA	NA	977.00	<2.0	5.6	27.0	179.9	212.5	<2.0	26.9	549	56	396
	28 Mar 08	14.92	NA	NA	NA	977.49	<2.0	<2.0	4.0	39.0	43.0	<2.0	5.7	118	<50	145
	25 Jul 08	16.57	NA	NA	NA	975.84	<2.0	2.6	66.1	75.0	143.7	<2.0	32.9	832	77.7	329
	17 Oct 08	18.95	NA	NA	NA	973.46	<2.0	<2.0	88.3	152.2	240.5	<1.0	49.2	954	52.6	669
EXP-7	01 Dec 03	19.10	NA	NA	NA	NA	247	118	237	930.8	1,532.8	<2.0	79.1	2,560	<50	1,850
992.30	27 Feb 04	21.84	NA	NA	NA	970.46	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	14 Sep 04	NM	NA	NA	NA	NA	14.8	2.7	31	100.4	148.9	<2.0	11.9	968	429	418
	22 Feb 05	13.09	NA	NA	NA	980.11	19.8	10.8	15.0	49.3	94.9	<2.0	<3.0	116	<50	<50
	10 Aug 05	18.75	NA	NA	NA	973.55	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
	09 May 06	19.20	NA	NA	NA	973.10	50.0	39.2	192	419	700.2	<2.0	33.0	744	116	558
	20 Sep 06	19.86	NA	NA	NA	972.44	64.4	4.8	44	256	369.6	<2.0	28.7	805	231	521
	26 Apr 07	17.74	NA	NA	NA	974.56	<2.0	<2.0	2.1	3.7	5.8	<2.0	<3.0	<50	<50	<50
	17 Oct 07	DRY	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	25 Jul 08	17.19	16.92	0.27	0.00	975.11	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	17 Oct 08	19.22	19.19	0.03	2.5	973.08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
EXP-9	01 Dec 03	DRY	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
993.20	27 Feb 04	DRY	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
EXP-10	10 May 06	17.03	17.02	0.01	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
EXP-10R	03 Dec 03	19.96	19.84	0.12	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
990.11	27 Feb 04	20.35	NA	NA	NA	969.76	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	21 Feb 05	17.85	17.86	0.01	NA	972.27	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10 May 06	17.79	17.31	0.48	NA	972.68	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

•		•	ਚ	- €	(Suo)	uo			VPI	I Target Ana	alytes				VPH Fractio	ns
Well ID/MP EI (feet)	Date of Sampling	Depth to Water (feet)	Depti to Product (feet)	NAPL, Thickness (feet)	NAPL Recovered (gailons)	Groundwater Elevation (feet)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
	Units	feet	feet	feet	galions	feet	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		<u> </u>	38/28/67		lethod 1 GW		2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
					lethod 1 GW		10,000	40,000	5,000	5,000	-	50,000	26,000	50,000	50,000	50,000
EXP-11R	03 Dec 03	18.70	NA	NA	NA	NA	135	589	290	1,811	2,825	13.8	243	2,090	<50	3,070
	24 Feb 04	20.65	NA	NA	NA	969.61	234	25.9	567	1,423	2,249.9	23.2	418	5,360	<50	4,670
	12 Mar 04	15.20	NA	NA	NA	975.06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
990.26	11 Aug 05	13.72	NA	NA	NA	976.54	20	255	211	1,039	1,525	<2.0	125	770	<50	1,560
	10 May 06	17.82	NA	NA	NA	972.44	128	109	939	1,786.9	2,962.9	<2.0	340	4,560	343	3,570
	20 Sep 06	18.53	NA	NA	NA	971.73	361	361	713	1,376	2,811.0	<2.0	297	6,230	1,800	2,460
	27 Apr 07	15.70	NA	NA	NA	974.56	167	344	603	1,492	2,606	17.7	168	2,930	<100	2,160
	17 Oct 07	19.15	NA	NA	NA	971.11	456	357	781	1,363	2,957	<2.0	170	5,380	457	2,010
	27 Mar 08	15.58	NA	NA	NA	974.68	214	247	555	1,230	2,246	<2.0	157	3,540	86.6	1,950
	24 Jul 08	15.91	NA	NA	NA	974.35	296	240	888	1,762	3,186	<2.0	237	6,850	1,200	3,010
	16 Oct 08	18.23	NA	NA	NA	972.03	223	145	873	1,464	2,705	<1.0	161	4,800	804	2,790
EXP-12	03 Dec 03	18.08	NA	NA	NA	NA	132	342	248	1,517	2,239	8.9	259	3,030	<50	3,800
990.14	24 Feb 04	21.25	NA	NA	NA	968.89	134	61.1	360	640.5	1,195.6	16.5	365	5,610	<50	2,600
990.08	12 Mar 04	15.60	NA	NA	NA	974.48	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10 May 06	16.34	NA	NA	NA	973.74	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	20 Sep 06	17.33	NA	NA	NA	972.75	<2.0	94.4	153	1,124.0	1,371.4	<2.0	44	2,550	828	1,500
	26 Apr 07	17.45	NA	NA	NA	972.63	144	11.5	136	316.6	608.1	<2.0	40.1	1,590	<50	664
	17 Oct 07	18.91	NA	NA	NA	971.17	353	24.3	494	446.3	1,317.6	<2.0	115	5,040	235	1,310
	27 Mar 08	15.63	NA	NA	NA	974.45	<2.0	51.7	235	781.6	1,068.3	<2.0	115	1,930	<50	1,450
	24 Jul 08	16.06	NA	NA	NA	974.02	166	26.5	468.0	447.3	1,107.8	<2.0	108	4,550	361	1,510
	16 Oct 08	18.24	NA	NA	NA	971.84	172	19.3	404	379.6	974.9	<1.0	77.1	2,990	235	1,050
EXP-13	03 Dec 03	19.68	19.17	0.51	NA	971.20	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
990.37	12 Mar 04	22.00	21.00	1.00	NA	969.13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10 May 06	18.85	18.48	0.37	NA	971.80	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
EXP-13R	03 Dec 03	18.80	18.77	0.03	NA	971.64	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
990.42	12 Mar 04	14.40	NA	NA	NA	976.02	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
EXP-14	27 Mar 08	9.72	NA	NA	NA	NA	<2.0	20.3	75.2	1,093	1,189	<2.0	54.3	1,490	59.6	2,180
	24 Jul 08	9.89	NA	NA	NA	NA	<2.0	16.3	26.1	563	605.4	<2.0	33.2	1,480	302	1,370
	17 Oct 08	19.58	NA	NA	NA	NA	<2.0	21.1	26.9	477	525.0	<1.0	37.3	1,240	63.6	1,290
	17 Oct 08 Dup	19.58	NA	NA	NA	NA	<2.0	21.2	26.8	459	507.0	<1.0	31.7	1,170	196	1,160
EXP-16	03 Dec 03	20.78	NA	NA	NA	NA	63.1	49.1	5.6	224.1	341.9	<2.0	40.3	2,960	<50	2,940
990,42	Long															

TABLE 2-2

HISTORICAL GROUNDWATER MONITORING DATA VOLATILE PETROLEUM HYDROCARBONS

Former Mobil Service Station No. 01-ECQ 83-89 Elm Street

Pittsfield, Massachusetts

	48.44.656	100,025,02	1 -		(Si	ı e			VPI	I Target An	alvies			,	VPH Fractio	18
Well ID/MP El (feet)	Date of Sampling	Depth to Water (feet)	Depth to Product (feet)	NAPL Thickness (feet)	NAPL Recovered (gallons)	Groundwater Elevation (feet)	Benzene	Toluene	Ethylbenzene	Total Xylenes 1	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
1200-5-120	Units	feet	feet	feet	gallons	feet	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
						-2 Standard:	2,000	50,000	20,000	9,000	-	50,000	1,000	3,000	5,000	7,000
	<u> </u>			MCP M	ethod 1 GW	-3 Standard:	10,000	40,000	5,000	5,000		50,000	20,000	50,000	50,000	50,000
EXP-17	05 Dec 03	21.20	NA	NA	NA	NA	857	13,100	5,050	26,570	45,577	126	3,130	73,200	4,690	43,600
990.39	26 Feb 04	21.11	NA	NA	NA	969.28	<2.0	<2.0	<2.0	<4.0	ND	<2.0	<3.0	<50	<50	<50
	12 Mar 04	20.80	NA	NA	NA	969.59	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Aug 05	16.90	NA	NA	NA	973.49	326	61.8	234	316.4	938.2	<2.0	54	1,120	<50	544
	10 May 06	18.47	NA	NA	NA	971.92	243	62.1	178	161.7	644.8	<2.0	49.5	1,710	72.1	414
	21 Sep 06	16.02	NA	NA	NA	974.37	134	53.1	149	64.1	400.2	<2.0	21.6	1,190	145.0	177
	27 Apr 07	16.15	NA	NA	NA	974.24	24.4	58.1	45	88.1	216	<2.0	5.8	339	<50	81.3
	16 Oct 07	19.57	NA	NA	NA	970.82	5.3	<2.0	3	<4.0	7.9	<2.0	<3.0	<50	<50	<50
	27 Mar 08	15.64	NA	NA	NA	974.75	5.6	13.1	16.1	23.1	57.9	<2.0	3.9	123	<50	<50
	24 Jul 08	15.76	NA	NA	NA	974.63	<2.0	<2.0	<2.0	4.2	4.2	<2.0	<3.0	<50	<50	<50
	16 Oct 08	17.62	NA	NA	NA	972.77	<2.0	4.2	5.6	11.0	20.8	<1.0	<3.0	<50	<50	<50
EXP-18	03 Dec 03	20.15	20.02	0.13	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
988.87	26 Feb 04	22.05	NA	NA	NA	966.82	<2.0	96.5	6.7	2,779	2,882.2	<2.0	319	7,330	<50	16,300
	12 Mar 04	22.69	NA	NA	NA	966.18	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	14 Sep 04	NM	NA	NA	NA	NA	<2.0	589.0	267.0	2,386	3,242.0	201	200	39,600	24,700	5,780
	09 Aug 05	DRY	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10 May 06	18.77	NA	NA	NA	970.10	14.6	87.9	24.0	1,891	2,017.5	<2.0	84.4	3,210	73.5	3,810
	21 Sep 06	19.23	NA	NA	NA	969.64	13.9	40.1	16.0	581	651.0	<2.0	44.4	2,550	828.0	1,500
	27 Apr 07	16.74	NA	NA	NA	972.13	12.9	31.3	11.3	428	483.5	<2.0	19.3	759	<50	656
	16 Oct 07	19.39	NA	NA	NA	969.48	12.3	10.8	13.1	188	224.6	<2.0	22.2	1,250	307.0	586
	27 Mar 08	16.96	NA	NA	NA	971.91	8.9	16.3	18.8	335.6	379.6	<2.0	34.4	1,430	<50	1,160
	24 Jul 08	16.61	NA	NA	NA	972.26	7.8	26.8	25.0	686	745.6	<2.0	61.5	2,310	472	1,950
	24 Jul 08 Dup	16.61	NA	NA	NA	972.26	7.4	30.7	29.4	837	904.5	<2.0	72.2	2,300	545	2,060
	16 Oct 08	18.93	NA	NA	NA	969.94	7.7	25.0	25.9	633	691.6	<1.0	69.6	2,170	130	1,830
EXP-20	26 Feb 04	20.15	NA	NA	NA	966.09	21,1	4.6	6.9	34.8	67.4	3.5	3.4	243	<50	65.3
986.24	12 Mar 04	20.95	NA	NA	NA	965.29	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10 Aug 05	22.87	NA	NA	NA	963.78	9.5	<2.0	<2.0	<2.0	ND	12.6	<3.0	<50	<50	<50

Former Mobil Service Station No. 01-ECQ

83-89 Elm Street Pittsfield, Massachusetts

Well ID/MP El (feet)		(feet)	(feet)	(feet)	NAPL Recovered (gailons)	Groundwater Elevation (feet)		,		VPH Fractions						
	Date of Sampling	Depth to Water (fe	Depth to Product (f	NAPL Thickness (Fe			Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Naphthalene	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
Units feet feet feet gallons feet					μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		
	MCP Method 1 GW-2 Standard:				2,000	50,000	20,000	9,000	•	50,000	1,000	3,000	5,000	7,000		
BARBORSET				MCP M	lethod 1 GW	-3 Standard:	10,000	40,000	5,000	5,000	-	50,000	20,000	50,000	50,000	50,000
EXP-21	27 Feb 04	NA**	20.12	>2.59	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
986.85	12 Mar 04	NA**	21.00	>1.2	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10 Aug 05	20.40	NA	NA	NA	NA	<2.0	<2.0	<2.0	<2.0	ND	<2.0	<3.0	<50	<50	<50
EXP-22	05 Dec 03	18.80	NA	NA	NA	969.43	284	1,720	368	3,629	6,001	41	170	9,800	1,200	2,470
988.23	26 Feb 04	20.62	NA	NA	NA	967.61	30.7	152	64.9	857	1,104.6	<2.0	52.0	1,450	<50	1,170
	12 Mar 04	20.66	NA	NA	NA	967.57	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11 Aug 05	17.80	NA	NA	NA	967.61	2.3	2,4	4.3	100.8	109.8	8.0	13.2	739	167	420
	10 May 06	17.00	NA	NA	NA	971.23	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Notes:

BTEX = benzene, toluene, ethylbenzene, and xylenes

MTBE = methyl tert-butyl ether

NA = not applicable

"<" = less than the laboratory reporting limit

ND = not detected

NS = not sampled, analyzed and/or measured

VPH = volatile petroleum hydrocarbons (analyzed according to Massachusetts Department of Environmental Protection VPH Methodology)

MCP = Massachusetts Contingency Plan 310 CMR 40.0000

† MCP Method 1 Groundwater Standard "GW-3" is applicable to all wells; however, "GW-2" is also applicable to this well

Bolded values represent concentrations that exceed applicable groundwater standards

*Well was thought to have been destroyed, but was found and saved during 9/01 trenching activities

**Well was blocked therefore depth to groundwater could not be determined

NAPL = non aqueous-phase liquid

NAPL recovered = non aqueous-phase liquid recovered during bailing

ARCADIS

Appendix F

Results of Statistical Data Assessment

Table F-1
Summary Of Historical Groundwater Analytical Results - Well GMA5-4

Groundwater Management Area 5 Long-Term Monitoring Program Monitoring Event Evaluation Report for Fall 2008 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:	Method 1 GW-2 Standards	Method 1 GW-3 Standards	MCP UCL for GroundWater	GMA5-4 10/30/08	Detection Frequency	Minimum Detect	Maximum Detect	Median Value	Arithmetic Average	Geometric Mean	Standard Deviation
Inorganics-F	iltered											
Cadmium		Not Listed	0.004	0.05	ND(0.0100) [ND(0.0100)]	1/8	0.00411	0.00411	0.00455	0.00395	0.00376	0.00124

Notes:

- 1. Samples were collected by ARCADIS between 2007and 2008 and submitted to SGS Environmental Services, Inc. for analysis.
- 2. Analytical results have been validated as per GE's approved Field Sampling Plan/Quality Assurance Project Plan.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. Only constituents which were detected during at least one prior sampling event and were analyzed for during the fall 2008 sampling event are summarized.
- 5. Field duplicate sample results are presented in brackets.

Table F-2 Summary Of Historical Groundwater Analytical Results - Well GMA5-7

Groundwater Management Area 5 Long-Term Monitoring Program Monitoring Event Evaluation Report for Fall 2008 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

Sample ID Parameter Date Collected		Method 1 GW-3 Standards	MCP UCL for GroundWater	GMA5-7 10/30/08	Detection Frequency		Maximum Detect	Median Value	Arithmetic Average	Geometric Mean	Standard Deviation
Volatile Organics											
Acetone	50	50	100	ND(0.0050) [ND(0.0050)]	1/10	0.014	0.014	0.00500	0.00490	0.00420	0.00343
Benzene	2	10	100	0.00010 J [0.000090 J]	1/10	0.00009	0.0001	0.00250	0.00166	0.00111	0.00109
Chlorobenzene	0.2	1	10	0.00071 J [0.00071 J]	1/10	0.00071	0.00071	0.00250	0.00172	0.00136	0.00101
Ethylbenzene	20	5	100	ND(0.0010) [ND(0.0010)]	2/10	0.00018	0.00023	0.00250	0.00164	0.00110	0.00111
Tetrachloroethene	0.05	30	100	0.034 [0.034]	10/10	0.0045	0.062	0.0290	0.0304	0.0254	0.0161
Toluene	50	40	100	ND(0.0010) [ND(0.0010)]	1/10	0.0011	0.0011	0.00180	0.00156	0.00121	0.00101
trans-1,2-Dichloroethene	0.09	50	100	ND(0.0010) [ND(0.0010)]	3/10	0.0008	0.0011	0.00180	0.00162	0.00133	0.000941
Trichloroethene	0.03	5	50	0.0014 [0.0014]	7/10	0.0014	0.0067	0.00250	0.00290	0.00269	0.00141
Vinyl Chloride	0.002	50	100	ND(0.0010) [ND(0.0010)]	3/10	0.00059	0.0029	0.00100	0.00101	0.000874	0.000702
Total VOCs	5	Not Listed	Not Listed	0.036 J [0.036 J]	10/10	0.0045	0.064	0.0350	0.0348	0.0294	0.0162

- 1. Samples were collected by ARCADIS between 2002 and 2008 and submitted to SGS Environmental Services, Inc. for analysis.
- 2. Analytical results have been validated as per GE's approved Field Sampling Plan/Quality Assurance Project Plan.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- Only constituents which were detected during at least one prior sampling event and were analyzed for during the fall 2008 sampling event are summarized.
 Field duplicate sample results are presented in brackets.

Organics

J - Indicates that the associated numerical value is an estimated concentration.

Table F-3 Summary Of Historical Groundwater Analytical Results - Well GMA5-9

Groundwater Management Area 5 Long-Term Monitoring Program Monitoring Event Evaluation Report for Fall 2008 **General Electric Company - Pittsfield, Massachusetts** (Results are presented in parts per million, ppm)

Sampl Parameter Date Collect		Method 1 GW-3 Standards	MCP UCL for GroundWater	GMA5-9 10/30/08	Detection Frequency	Minimum Detect	Maximum Detect	Median Value	Arithmetic Average	Geometric Mean	Standard Deviation
Volatile Organics											
Chlorobenzene	0.2	1	10	ND(0.0010)	1/3	0.00011	0.00011	0.000500	0.000437	0.000426	0.000110
Tetrachloroethene	0.05	30	100	0.026	3/3	0.02	0.026	0.0220	0.0230	0.0229	0.00265
Total VOCs	5	Not Listed	Not Listed	0.026	3/3	0.02	0.026	0.0220	0.0230	0.0229	0.00265

- Samples were collected by ARCADIS between 2007and 2008 and submitted to SGS Environmental Services, Inc. for analysis.
 Analytical results have been validated as per GE's approved Field Sampling Plan/Quality Assurance Project Plan.
 ND Analyte was not detected. The number in parenthesis is the associated detection limit.

- 4. Only constituents which were detected during at least one prior sampling event and were analyzed for during the fall 2008 sampling event are summarized.
- 5. Field duplicate sample results are presented in brackets.

Table F-4
Summary Of Historical Groundwater Analytical Results - Well GMA5-10

Groundwater Management Area 5 Long-Term Monitoring Program Monitoring Event Evaluation Report for Fall 2008 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:	Method 1 GW-2 Standards	Method 1 GW-3 Standards	MCP UCL for GroundWater	GMA5-10 11/03/08	Detection Frequency	Minimum Detect	Maximum Detect	Median Value	Arithmetic Average	Geometric Mean	Standard Deviation
Volatile Organics												
Toluene		50	40	100	ND(0.0010)	1/3	0.00016	0.00035	0.000500	0.000420	0.000402	0.000139
Total VOCs		5	Not Listed	Not Listed	ND(0.10)	1/3	0.00016	0.00035	0.0500	0.0334	0.00866	0.0287

Notes:

- 1. Samples were collected by ARCADIS between 2007and 2008 and submitted to SGS Environmental Services, Inc. for analysis.
- 2 Analytical results have been validated as per GE's approved Field Sampling Plan/Quality Assurance Project Plan.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. Only constituents which were detected during at least one prior sampling event and were analyzed for during the fall 2008 sampling event are summarized.
- 5. Toluene was detected in duplicate samples analyzed during the December 2007 sampling event, which was the only sampling event where VOCs were detected in this well. The minimum and maximum detected concentrations represent the duplicate sample results from that single sampling event.