Fire Management in Quetico Provincial Park

Overview

- Fire Management Direction
- New Fire Plan Highlights
- Fire Compartments
- Fire Monitoring Protocols
- Prescribed Burn in the 1999
 Blowdown

Fire Management Direction

- Provincial Parks and Conservation Reserves Act (2006)
- Fire Management Planning Guidelines for Provincial Parks and Conservation Reserves (Draft)
- Quetico Fire Management Plan (release April 2009)

Fire Management Plan

- Ecological integrity
- Goals and objectives related to research and monitoring
- More flexibility in fire response and use
- Commitment to develop Prescribed Burn Strategy

Definitions

- Prescribed Fire: Forest fires deliberately utilized in a predetermined area in accordance with a pre-specified and approved burning prescription to achieve preset objectives
- Prescribed Burn: The deliberate, planned a knowledgeable application fire by authorized personnel in accordance with MNR policy and guidelines to a specific land area to accomplish pre-determined forest management or other land use objectives

Fire Monitoring Protocols

- Assess the effects of prescribed fire and burns on regeneration, succession, reduction of competition, fuels reduction and changes in vegetation structure.
- Soil sampling is also completed to describe and measure the soil type, depth of the 'duff' layer, moisture regime and drainage class.

Fire Monitoring Protocols

Five plots used to collect required information:

- 20 X 20 metre tree plot
- 20 X 20 metre vegetation plot (Releve)
- 10 X10 metre shrub and small tree (<5.5 cm diametre) plot
- 2 X 2 metre seedling plot
- 20 metre fuels transect (1, 10, 100 and 1000 hour fuels)

Emerald Lake Prescribed Burn

- Prescribed Burn conducted in a 2000 hectare are of the blowdown on October 12, 2000
- Primary objectives to reduce hazardous fuels and create fire break along international boundary
- Secondary objective to encourage regeneration of *Pinus* species

PB Prescription and Actual Weather

	Temp (C)	RH (%)	Wind Dir.	Wind Speed (km/hr)	Precip (mm)	FFMC	DMC	DC	ISI	BUI	FWI
Rx			45-270	0-15		85-90		>300		>50	
Actual Wx											
Day 1	18.5	43	191	5	0	89.9	13	238	5	23	9.2
Day 2	14.5	80	179	2	0	84.8	13	241	2	23	4
Day 3	3.2	100	30	9	16.5	14.4	6	200	0	11	0
Day 5	5.9	89	262	6	0.5	26.8	6	203	0	11	0

Emerald Lake PB Monitoring

- Fuels data collected pre-burn and less than one year post burn
- Pre-burn vegetation pieced together from Forest Resource Inventory, snag and downed trees on plot
- Forest composition: majority of plots dominated by jack pine, with lesser components of red pine, white pine, black spruce and poplar spp.
- Each plot contained a minimum of 50% Conifer species

Fuels

- Pre and immediate post burn fuels data very minimal – Only two transects completed
- Pre-burn fuel loading:
 - 1hr-100 hr fuels 2.95kg^2 and 1.78kg^2
 - 1000hr fuels 10.44kg². and 11.07kg²
- Post-burn fuel loading:
 - 1hr-100 hr fuels 1.24kg^2 and 0.56kg^2
 - 1000hr fuels 6.99kg^2 and 8.16kg^2

Species Composition Pre-burn

Number of Plots	Species Composition				
2	CE60 PO20 SB10 BW10				
3	PJ40 PO30 SB10 BW10				
2	PJ40 PO30 SB10 PR10 BW10				
2	PJ40 PR30 SB20 PO10				
4	PJ40 SB30 PW10 PO10 BW 10				
4	PJ50 SB30 PW10 PO10				
6	PO50 PJ20 SB10 SW10 PW10				
2	PR30 CE20 PJ20 BW10 PO10 SB10				
3	PW30 PO30 BW20 SW10 PJ10				
3	PW40 PO30 CE20 SW10				
Total: 31					

Species Composition 10 Years after the Burn

Species Composition 10 Years Post-Prescribed Burn

Next Steps

- Present results from pb monitoring to fire managers
- Develop Prescribed Burn Strategy, incorporating active adaptive management framework
- Explore feasibility of spring prescribed burns
- Complete Pre-burn monitoring plots in new prescribed fire compartments

As the Canadians say: Thanks, eh.