Interactions between a Catastrophic Winddisturbance Event, Fuel-reduction Activities, and Insects in Northeastern Minnesota



K.J.K. Gandhi, D.W. Gilmore, R.A. Haack, S.A. Katovich, S.J. Krauth, W.J. Mattson, J.C. Zasada, S.J. Seybold

University of Minnesota; USDA Forest Service; University of Wisconsin

# A LARGE-SCALE WIND-DISTURBANCE EVENT



# **FUEL-REDUCTION TREATMENTS**

![](_page_2_Picture_1.jpeg)

## Salvage-logging

## **Prescribed-burning**

![](_page_2_Picture_4.jpeg)

# **ECOLOGICAL CHANGES AFTER THE STORM**

![](_page_3_Picture_1.jpeg)

## **Coarse-Woody Debris**

![](_page_3_Picture_3.jpeg)

## **Soil Disturbance**

## **ECONOMICALLY IMPORTANT TAXA** SUBCORTICAL INSECTS

![](_page_4_Picture_1.jpeg)

![](_page_4_Picture_2.jpeg)

![](_page_4_Picture_3.jpeg)

![](_page_4_Picture_4.jpeg)

![](_page_4_Picture_5.jpeg)

![](_page_4_Picture_6.jpeg)

Bark Beetles Woodboring Insects Root-attacking Beetles Associated Predators

## **ECOLOGICALLY IMPORTANT TAXA** LITTER-DWELLING BEETLES

![](_page_5_Picture_1.jpeg)

Agonum cupripenne (Say)

Sphaeroderus lecontei Dejean

**Ground Beetles** 

## **RESEARCH OBJECTIVES**

1. To determine the effects of a severe wind disturbance event and fuel-reduction practices on litter-dwelling beetles.

## **RESEARCH OBJECTIVES**

- 1. To determine the effects of a severe wind disturbance event and fuel-reduction practices on litter-dwelling beetles.
- 2. To determine the effects of a severe wind disturbance event and fuel-reduction practices and semiochemical treatments on subcortical insects.

## **RESEARCH OBJECTIVES**

- 1. To determine the effects of a severe wind disturbance event and fuel-reduction practices on litter-dwelling beetles.
- 2. To determine the effects of a severe wind disturbance event and fuel-reduction practices and semiochemical treatments on subcortical insects.
- 3. To assess the colonization patterns of subcortical insects on jack pine trees.

## LAND-AREA TREATMENTS

Years 2000-2003

![](_page_9_Picture_2.jpeg)

![](_page_9_Picture_3.jpeg)

![](_page_9_Picture_4.jpeg)

![](_page_9_Picture_5.jpeg)

# **FOREST COVER-TYPES**

![](_page_10_Picture_1.jpeg)

# Aspen/Birch

## **Jack Pine**

![](_page_10_Picture_4.jpeg)

#### **HISTORIC CHANGES IN FOREST COVER-TYPES**

![](_page_11_Picture_1.jpeg)

Tester (1995)

Post-settlement Vegetation 1900s

# **PITFALL TRAP Ground Beetles**

![](_page_12_Picture_1.jpeg)

![](_page_12_Picture_2.jpeg)

Six Pitfall Traps/Plot

![](_page_13_Figure_0.jpeg)

![](_page_14_Picture_0.jpeg)

# **PTEROSTICHUS MELANARIUS** Exotic Species

![](_page_14_Figure_2.jpeg)

#### **GROUND BEETLE SPECIES RICHNESS**

![](_page_15_Figure_1.jpeg)

## **RAREFACTION DIVERSITY ESTIMATES**

A/B-Aspen/Birch JP-Jack Pine

![](_page_16_Figure_2.jpeg)

## **CLUSTER-ANALYSIS**

A/B- Aspen/Birch JP- Jack Pine

![](_page_17_Figure_2.jpeg)

% age Similarity of Species Composition

## **CLUSTER-ANALYSIS** WITHOUT *PTEROSTICHUS MELANARIUS*

![](_page_18_Figure_1.jpeg)

% age Similarity of Species Composition without *Pterostichus melanarius* 

# LINDGREN FUNNEL TRAP Bark and woodboring Insects

![](_page_19_Picture_1.jpeg)

Eleven traps per plot

## SEMIOCHEMICAL TREATMENTS FOR FUNNEL TRAPS

## (A) Scolytidae

## **Beetle Species**

Ips grandicollis Ips perroti Ips perroti Ips perturbatus Ips pini D. rufipennis D. simplex D. valens D. valens Dryocoetes spp. Dryocoetes spp.

#### <u>Baits</u>

(-)-ipsenol, (-)-α-pinene
(-)-ipsenol, (-)-ipsdienol
(-)-ipsenol, (+)-ipsdienol, (-)-*cis*-verbenol
(+/-)-ipsdienol, lanierone
(+/-)-frontalin, (-)-α-pinene, methylcyclohexanol
(+/-)-seudenol, (-)-α-pinene
(+)-α-pinene, (-)-β-pinene
(+)-α-pinene, (-)-β-pinene, 3-carene
(+/-)-exo-brevicomin, (-)-α-pinene

### **(B) Wood-boring Beetles**

**Beetle Species** Buprestidae Cerambycidae **Baits** Ethanol, (–)-α-pinene Ethanol, (–)-α-pinene

### (C) Blank Trap (control)

# SUBCORTICAL INSECTS

84,201 insects 103 species

![](_page_21_Figure_2.jpeg)

![](_page_22_Figure_0.jpeg)

# **SUBCORTICAL INSECTS**

**U-Unbaited** 

![](_page_23_Figure_1.jpeg)

![](_page_24_Figure_0.jpeg)

Percentage Similarity of Subcortical Insect Species Composition

### Standing Live

## Standing Dead

Leaning Live or Dead

## **Downed Dead**

### **SPATIAL CLASSES OF TREES**

# **TREE MORTALITY**

![](_page_26_Figure_1.jpeg)

## **STANDING LIVE TREES**

![](_page_26_Figure_3.jpeg)

### LEANING LIVE TREES

![](_page_26_Figure_5.jpeg)

# **OVIPOSITION SCARS BY WOODBORING BEETLES**

![](_page_27_Picture_1.jpeg)

Monochamus s. scutellatus (Say) Monochamus mutator LeConte Monochamus notatus (Drury)

![](_page_27_Picture_3.jpeg)

1. Burned forests had the greatest carabid trap catches, species diversity, and most unique assemblages.

- 1. Burned forests had the greatest carabid trap catches, species diversity, and most unique assemblages.
- 2. An exotic carabid appears to be a major driver of beetle succession in these forests.

- 1. Burned forests had the greatest carabid trap catches, species diversity, and most unique assemblages.
- 2. An exotic carabid appears to be a major driver of beetle succession in these forests.
- **3.** Wind storm and burning increased subcortical insects catches for two years, but they declined thereafter.

- 1. Burned forests had the greatest carabid trap catches, species diversity, and most unique assemblages.
- 2. An exotic carabid appears to be a major driver of beetle succession in these forests.
- 3. Wind storm and burning increased subcortical insects catches for two years, but they declined thereafter.
- 4. Responses to semiochemical treatments varied with the year and disturbance type.

- 1. Burned forests had the greatest carabid trap catches, species diversity, and most unique assemblages.
- 2. An exotic carabid appears to be a major driver of beetle succession in these forests.
- **3.** Wind storm and burning increased subcortical insects catches for two years, but they declined thereafter.
- 4. Responses to semiochemical treatments varied with the year and disturbance type.
- 5. A woodboring beetle became primary colonizer of jack pine trees.

- 1. Burned forests had the greatest carabid trap catches, species diversity, and most unique assemblages.
- 2. An exotic carabid appears to be a major driver of beetle succession in these forests.
- 3. Wind storm and burning increased subcortical insects catches for two years, but they declined thereafter.
- 4. Responses to semiochemical treatments varied with the year and disturbance type.
- 5. A woodboring beetle became primary colonizer of jack pine trees.
- 6. More than half of the live trees died in wind-disturbed sites.

Did fuel reduction practices affect insect populations and subsequent fire risk? Can prescribed burns and logging be utilized to manage insect fire risk within fire adapted ecosystems?

Did fuel reduction practices affect insect populations and subsequent fire risk? Can prescribed burns and logging be utilized to manage insect fire risk within fire adapted ecosystems?

Fuel-reduction treatments negatively affect ground beetles, except for fire-adapted species.

Fuel-reduction treatments positively affect subcortical insects for 3-4 years after the windstorm.

Fuel-reduction treatments are not always necessary to control insect epidemics.

To what degree do insect populations contribute to standing and down fuel loading and subsequent fire risk? How do insects populations influence fire risk in blowdown vs. standing forest?

To what degree do insect populations contribute to standing and down fuel loading and subsequent fire risk? How do insects populations influence fire risk in blowdown vs. standing forest?

Subcortical insects contribute to standing and downed fuelloading in the wind-disturbed areas that may contribute to increased fire-risk.

# **FUTURE STUDIES IN SUB-BOREAL FORESTS**

- How do impacts of prescribed-fire on insects differ from wildfire?
- What are the mechanisms of responses by forest insects to disturbances?
- Long-term monitoring of these sites to assess faunal recovery and regeneration patterns.

## ACKNOWLEDGEMENTS

#### **University of Minnesota**

Lana Barkawi, Darren Blackford, Dennis Cook, Andy David, Laura Freund, Andy Graves, Ralph Holzenthal, Camille Jenson, John Kyhl, Jessie Koehle, Heather Krause, Jason McGovern, Diana Richmond, Jenni Snyder, Marla Spivak, Julie Tilman

### **USDA-Forest Service**

**Gunflint Ranger Station:** Jo Barnier, Becky Bartol, Terry Eggum, Dave Hilton, Anna Johnson, Patty Johnson, Tom McCann, Dennis Neitzke, Tim Norman, Leroy Pratt, Myra Theimer, Amy Wilfhart

North Central Research Station: Paula Anderson, Dennis Haugen, Doug Kastendick, Dennis McDougall, Manfred Mielke, Toby Petrice

**Pacific Southwest Research Station:** Chris Fettig, Mike Haverty, Shakeeb Hamud, Melissa Erickson

#### Minnesota Department of Natural Resources

Mike and Jana Albers, Mike Fitzgibbon, Gary Jorgenson, Tim Koski, Nate La Trace, Tom Lynch, Bob Maki, Deb Moritz, Mike Schelmeske, Laurie Spry

#### **University of California**

Dezene Huber, Jamie Lacsina, Jana Lee, Anna Luxova, Cesar Meleza, Dave Wood, and Lindsey Yuen; Department of Entomology (Davis)

![](_page_40_Picture_0.jpeg)

![](_page_40_Picture_1.jpeg)

![](_page_40_Picture_2.jpeg)

![](_page_40_Picture_3.jpeg)

# ACKNOWLEDGEMENTS

## **FUNDING SOURCES**

#### **University of Minnesota**

Departments of Entomology and Forest Resources Alexander P. and Lydia Anderson Graduate School Fellowship Carolyn M. Crosby Graduate School Fellowship Dayton Natural History Fund, Bell Museum of Natural History Doctoral Dissertation Graduate School Fellowship Doctoral Dissertation Graduate School Research Award Undergraduate Research Opportunity Program (UROP) Scholarships Minnesota Agricultural Experiment Station (Project MN-17-070)

#### Sigma Xi

2002 & 2003 Sigma Xi Grants-in-Aid Awards

#### **USDA-Forest Service**

USDA-Forest Service-Forest Health Protection, Forest Evaluation and Monitoring Program (01-GD-11244225-196, 01-DG-11244225-196) Joint Fire Science Program Grant (00-2-23) USDA-Forest Service North Central Research Stations USDA-Forest Service Pacific Southwest Research Station (PSW-4502)