Post-blowdown Salvage Logging Impacts on Fuel Loads and Fire Severity in Jack Pine Stands: Preliminary Results

Presenters: Laura Dunn and Doug Shinneman

Collaborators: John Bradford, Tony D'Amato, Shawn Fraver, Terrie Jain, Doug Kastendick, and Brian Palik

Joint Fire Science Program

Interagency Fire Research Consortium

- U.S. Forest Service
- National Park Service
- Bureau of Land Management
- U.S. Fish and Wildlife Service
- Bureau of Indian Affairs
- U.S. Geological Survey

JFSP Goal: Information Flow

From...

Map of 3 Disturbances

Possible Disturbance Interactions

Sampling Design

5 Treatments	Treatment	1999 Blowdown	Salvage Logging	2007 Wildfire
6 Sites per Treatment	A	YES	YES	YES
8 Plots per Site	В	YES		YES
Total Plots=240	С			YES
Plot= 8m radius	D	YES		
	Е			

Research Questions:

- 1. How have these disturbances affected
 - current fuel loads
 - regeneration
 - total carbon storage (above ground)
- 2. How did the blowdown and salvage logging influence the 2007 fire severity?

Results: Coarse Woody Debris

 Logging appears to reduce CWD to preblowdown levels

Results: Fine Fuels

 Logging has little effect on 1 hour fuels

 Burned sites appear to have highest 1 hour fuel levels

Fine Fuel Count (1hour) 18 16 14 12 1 hour Fuel tally 10 8 6 4 2 0 Blow Log Burn Blow Burn Burn Treatment

Results: Fine Fuels

 No significant differences detected between treatments for 10 hour fuels

 However, must remember that these sites ALL burned

Results: Fine Fuels

 B treatment is significantly different with both other treatments for 100 hour fuels

 Logged stands are not quite significantly different than burned stands

Results: Regeneration

Blow Log Burn Treatment Tree Regeneration

Aspen regeneration dominates logged treatment ~85%

Seedlings/ha =95,000

Results: Regeneration

Aspen regeneration still dominating blow burn treatment ~65%

Seedlings/ha =70,000

Results: Regeneration

Initial conclusion (Part I)

Salvage logging appears to reduce overall fuel load
 But...has limited effects on fine fuels

 Salvage logging appears to reduce Jack Pine and Balsam Fir regeneration
 But... increases Aspen regeneration

Part II – Does salvage logging reduce fire severity?

Canadian Forest Service

U.S. Forest Service

Severity of the Ham Lake Fire?

Given this sequence, we can evaluate...

How to Assess Severity?

Terrie Jain and Russell Graham: *The relation between tree burn severity and forest structure in the Rocky Mountains* (USFS PSW-GTR-203, 2007)

These methods differs in two ways:

- Focus on the post-fire environment: What conditions are left after the fire?
- Include separate assessments of forest-floor severity and tree-crown severity

Creeping Surface Fire

Crown Fire

Tree-crown Severity Key

	Characteristics	Index
A ₁	No evidence of recent fire	0
A ₂	Evidence of recent fire	
B ₁	Presence of green crowns on Dominant + Codominant trees	
	C_1 Plurality of Dominant + Codom. trees > 60% green crown	1.1
	C ₂ Plurality of Dominant + Codom. trees 30 - 60% green crown	1.2
	C ₃ Plurality of Dominant + Codom. trees 15 - 30% green crown	1.3
	C ₄ Plurality of Dominant + Codom. trees < 15% green crown	1.4
B ₂	Dominant + Codominant trees > 98% brown	2.0
B ₃	Transition: A mixture of brown and black crowns	
	C ₁ Plurality of brown-crowned trees	3.1
	C ₂ Plurality of black-crowned trees	3.2
B ₄	Dominant + co-dominant trees >98% black	4.0

Tree-Crown Severity

Preliminary analysis Results: Tree-Crown Severity

Statistical Model:

Tree-crown Severity = f (Treatment A, B, C)

Blowdown without Salvage (B) >> Blowdown with Salvage (A) >> No Blowdown, No Salvage (C)

Soil Severity Key

	Characteristics	Index
A ₁	No evidence of recent fire	0
A ₂	Evidence of recent fire	
B ₁	Pre-fire surface organics cover > 85%	1.1
C ₁	Pre-fire surface organics cover 40 to 85%	
	Mineral soil appears unburned	2.1
	Black char dominates mineral soil	2.2
	Grey/White ash dominates mineral soil	2.3
C ₂	Pre-fire surface organics cover < 40%	
	Mineral soil appears unburned	3.1
	Black char dominates mineral soil	3.2
	Grey/White ash dominates mineral soil	3.3
C ₃	No pre-fire surface organics left	
	Mineral soil appears unburned	4.1
	Black char dominates mineral soil	4.2
	Grey/White ash dominates mineral soil	4.3
	Orange color dominates mineral soil	4.4

Soil Severity

Fuel Loadings *before* the Ham Lake Fire

Summary of initial conclusions

We covered these relationships:
1. Salvage logging → fuel loads, etc.
2. Salvage logging → fire severity

Are fuel loads the mechanism for the second relationship?

Thank you

Questions?

 Special thanks to the Superior National Forest (especially the Gunflint RD)
 Funded by: Joint Fire Science Program

> Photo: U.S. Forest Service