National Cancer Institute
U.S. National Institutes of Health | www.cancer.gov

NCI Home
Cancer Topics
Clinical Trials
Cancer Statistics
Research & Funding
News
About NCI
Chronic Lymphocytic Leukemia Treatment (PDQ®)
Patient Version   Health Professional Version   En español   Last Modified: 03/05/2009



Purpose of This PDQ Summary






General Information About Chronic Lymphocytic Leukemia






Stage Information for Chronic Lymphocytic Leukemia






Treatment Option Overview






Stage 0 Chronic Lymphocytic Leukemia






Stage I, II, III, and IV Chronic Lymphocytic Leukemia






Refractory Chronic Lymphocytic Leukemia






Get More Information From NCI






Changes to This Summary (03/05/2009)






More Information



Page Options
Print This Page
Print Entire Document
View Entire Document
E-Mail This Document
Quick Links
Director's Corner

Dictionary of Cancer Terms

NCI Drug Dictionary

Funding Opportunities

NCI Publications

Advisory Boards and Groups

Science Serving People

Español
Quit Smoking Today
NCI Highlights
The Nation's Investment in Cancer Research FY 2010

Report to Nation Finds Declines in Cancer Incidence, Death Rates

High Dose Chemotherapy Prolongs Survival for Leukemia

Prostate Cancer Study Shows No Benefit for Selenium, Vitamin E
Stage Information for Chronic Lymphocytic Leukemia

Rai Staging System
Binet Classification

Staging is useful in chronic lymphocytic leukemia (CLL) to predict prognosis and also to stratify patients to achieve comparisons for interpreting specific treatment results. Anemia and thrombocytopenia are the major adverse prognostic variables.

CLL has no standard staging system. The Rai staging system and the Binet classification are presented below.[1,2] A National Cancer Institute (NCI)-sponsored working group has formulated standardized guidelines for criteria related to eligibility, response, and toxic effects to be used in future clinical trials in CLL.[3]

Rai Staging System

Stage 0

Stage 0 CLL is characterized by absolute lymphocytosis (>15,000/mm3) without adenopathy, hepatosplenomegaly, anemia, or thrombocytopenia.

Stage I

Stage I CLL is characterized by absolute lymphocytosis with lymphadenopathy without hepatosplenomegaly, anemia, or thrombocytopenia.

Stage II

Stage II CLL is characterized by absolute lymphocytosis with either hepatomegaly or splenomegaly with or without lymphadenopathy.

Stage III

Stage III CLL is characterized by absolute lymphocytosis and anemia (hemoglobin <11 g/dL) with or without lymphadenopathy, hepatomegaly, or splenomegaly.

Stage IV

Stage IV CLL is characterized by absolute lymphocytosis and thrombocytopenia (<100,000/mm3) with or without lymphadenopathy, hepatomegaly, splenomegaly, or anemia.

Binet Classification

Clinical stage A*

Clinical stage A CLL is characterized by no anemia or thrombocytopenia and fewer than three areas of lymphoid involvement (Rai stages 0, I, and II).

Clinical stage B*

Clinical stage B CLL is characterized by no anemia or thrombocytopenia with three or more areas of lymphoid involvement (Rai stages I and II).

Clinical stage C

Clinical stage C CLL is characterized by anemia and/or thrombocytopenia regardless of the number of areas of lymphoid enlargement (Rai stages III and IV).

* [Note: Lymphoid areas include cervical, axillary, inguinal, and spleen.]

The Binet classification integrates the number of nodal groups involved with the disease with bone marrow failure. Its major benefit derives from the recognition of a predominantly splenic form of the disease, which may have a better prognosis than in the Rai staging, and from recognition that the presence of anemia or thrombocytopenia has a similar prognosis and does not merit a separate stage. Neither system separates immune from nonimmune causes of cytopenia. Patients with thrombocytopenia or anemia or both, which is caused by extensive marrow infiltration and impaired production (Rai III/IV, Binet C) have a poorer prognosis than patients with immune cytopenias.[4] The International Workshop on Chronic Lymphocytic Leukemia has recommended integrating the Rai and Binet systems as follows: A(0), A(I), A(II); B(I), B(II); and C(III), C(IV).[5] The NCI-sponsored working group has published guidelines for the diagnosis and treatment of CLL in both clinical trial and general practice settings.[3] Use of these systems allows comparison of clinical results and establishment of therapeutic guidelines.

Prognostic factors

New prognostic markers are now available to the clinician and investigator.[6,7] The use of these markers to stratify patients in clinical trials, to help assess the need for therapy, and to help select the type of therapy continues to evolve. Prospective trials to verify and establish the role of these prognostic markers are ongoing. No large multivariable analyses exist as yet to test the relative power of these individual prognostic variables.[8]

  • Immunoglobulin variable region heavy chain gene (IgVH) mutation.[9-13] The finding of significant numbers of mutations in this region is associated with a median survival in excess of 20 to 25 years. The absence of mutations is associated with a median survival of 8 to 10 years.


  • ZAP-70. ZAP-70 has been proposed as a surrogate for the mutational status.[14-17] ZAP-70 positivity for previously untreated and asymptomatic patients (>30%) is associated with a more unfavorable median survival (6–10 years), while a negative ZAP-70 is associated with a median survival of more than 15 years. A prospective evaluation of these markers in a randomized study of fludarabine-based chemotherapy (ECOG-2997) failed to show any difference in response rates, response duration, progression-free survival, or overall survival.[18]


  • Chromosomal abnormalities by fluorescent in situ hybridization (FISH). FISH chromosomal abnormalities were associated with prognosis in retrospective and prospective studies and clonal evolution has been seen over time.[19-22] 13q- is favorable (with a 17-year median overall survival [OS] in a prospective study).[22] Trisomy 12 and 11q- have less favorable prognoses (with a 9- to 11-year median OS in a prospective study).[22] In particular, 17p- is associated with mutated p53 and with poor response rates and short duration of response to the standard therapeutic options.[12] 17p- is associated with the most unfavorable prognosis (with a 7-year median OS in one prospective trial).[18,22] The combination of adverse cytogenetics such as 11q- or 17p- (suggesting a worse prognosis) with ZAP-70 negativity (suggesting a better prognosis) in the same patients resulted in a poor prognosis.[17] These findings emphasize the need for prospective studies of combinations of these prognostic markers.[8]


  • CD38 immunophenotype.[10,23] CD38 positivity (>30%) correlates with a worse prognosis, but there is a 30% false-positive rate and a 50% false-negative rate using IgVH mutational status as the gold standard for prognosis.


Other prognostic factors include:

  • Stage (see Rai staging system and Binet classification above).[1,2]


  • Lymphocyte doubling time (doubling of the white blood cell count in excess of 1 year implies a favorable prognosis).[24]


  • Beta-2-microglobulin (higher levels imply a worse prognosis).[25]


References

  1. Rai KR, Sawitsky A, Cronkite EP, et al.: Clinical staging of chronic lymphocytic leukemia. Blood 46 (2): 219-34, 1975.  [PUBMED Abstract]

  2. Binet JL, Auquier A, Dighiero G, et al.: A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 48 (1): 198-206, 1981.  [PUBMED Abstract]

  3. Hallek M, Cheson BD, Catovsky D, et al.: Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 111 (12): 5446-56, 2008.  [PUBMED Abstract]

  4. Mandelli F, De Rossi G, Mancini P, et al.: Prognosis in chronic lymphocytic leukemia: a retrospective multicentric study from the GIMEMA group. J Clin Oncol 5 (3): 398-406, 1987.  [PUBMED Abstract]

  5. Chronic lymphocytic leukemia: recommendations for diagnosis, staging, and response criteria. International Workshop on Chronic Lymphocytic Leukemia. Ann Intern Med 110 (3): 236-8, 1989.  [PUBMED Abstract]

  6. Dighiero G, Hamblin TJ: Chronic lymphocytic leukaemia. Lancet 371 (9617): 1017-29, 2008.  [PUBMED Abstract]

  7. Developments in the treatment of lymphoproliferative disorders: rising to the new challenges of CLL therapy. A report of a symposium presented during the 48th American Society of Hematology Annual Meeting and Exposition, December 8, 2006, Orlando, Florida. Clin Adv Hematol Oncol 5 (3 Suppl 5): 1-14; quiz 15-6, 2007.  [PUBMED Abstract]

  8. Binet JL, Caligaris-Cappio F, Catovsky D, et al.: Perspectives on the use of new diagnostic tools in the treatment of chronic lymphocytic leukemia. Blood 107 (3): 859-61, 2006.  [PUBMED Abstract]

  9. Hamblin TJ, Davis Z, Gardiner A, et al.: Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94 (6): 1848-54, 1999.  [PUBMED Abstract]

  10. Damle RN, Wasil T, Fais F, et al.: Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94 (6): 1840-7, 1999.  [PUBMED Abstract]

  11. Rosenwald A, Alizadeh AA, Widhopf G, et al.: Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 194 (11): 1639-47, 2001.  [PUBMED Abstract]

  12. Byrd JC, Gribben JG, Peterson BL, et al.: Select high-risk genetic features predict earlier progression following chemoimmunotherapy with fludarabine and rituximab in chronic lymphocytic leukemia: justification for risk-adapted therapy. J Clin Oncol 24 (3): 437-43, 2006.  [PUBMED Abstract]

  13. Kharfan-Dabaja MA, Chavez JC, Khorfan KA, et al.: Clinical and therapeutic implications of the mutational status of IgVH in patients with chronic lymphocytic leukemia. Cancer 113 (5): 897-906, 2008.  [PUBMED Abstract]

  14. Crespo M, Bosch F, Villamor N, et al.: ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 348 (18): 1764-75, 2003.  [PUBMED Abstract]

  15. Orchard JA, Ibbotson RE, Davis Z, et al.: ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet 363 (9403): 105-11, 2004.  [PUBMED Abstract]

  16. Rassenti LZ, Huynh L, Toy TL, et al.: ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 351 (9): 893-901, 2004.  [PUBMED Abstract]

  17. Kröber A, Bloehdorn J, Hafner S, et al.: Additional genetic high-risk features such as 11q deletion, 17p deletion, and V3-21 usage characterize discordance of ZAP-70 and VH mutation status in chronic lymphocytic leukemia. J Clin Oncol 24 (6): 969-75, 2006.  [PUBMED Abstract]

  18. Grever MR, Lucas DM, Dewald GW, et al.: Comprehensive assessment of genetic and molecular features predicting outcome in patients with chronic lymphocytic leukemia: results from the US Intergroup Phase III Trial E2997. J Clin Oncol 25 (7): 799-804, 2007.  [PUBMED Abstract]

  19. Döhner H, Stilgenbauer S, Benner A, et al.: Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343 (26): 1910-6, 2000.  [PUBMED Abstract]

  20. Kröber A, Seiler T, Benner A, et al.: V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 100 (4): 1410-6, 2002.  [PUBMED Abstract]

  21. Catovsky D, Fooks J, Richards S: Prognostic factors in chronic lymphocytic leukaemia: the importance of age, sex and response to treatment in survival. A report from the MRC CLL 1 trial. MRC Working Party on Leukaemia in Adults. Br J Haematol 72 (2): 141-9, 1989.  [PUBMED Abstract]

  22. Shanafelt TD, Witzig TE, Fink SR, et al.: Prospective evaluation of clonal evolution during long-term follow-up of patients with untreated early-stage chronic lymphocytic leukemia. J Clin Oncol 24 (28): 4634-41, 2006.  [PUBMED Abstract]

  23. Ghia P, Guida G, Stella S, et al.: The pattern of CD38 expression defines a distinct subset of chronic lymphocytic leukemia (CLL) patients at risk of disease progression. Blood 101 (4): 1262-9, 2003.  [PUBMED Abstract]

  24. Montserrat E, Sanchez-Bisono J, Viñolas N, et al.: Lymphocyte doubling time in chronic lymphocytic leukaemia: analysis of its prognostic significance. Br J Haematol 62 (3): 567-75, 1986.  [PUBMED Abstract]

  25. Di Giovanni S, Valentini G, Carducci P, et al.: Beta-2-microglobulin is a reliable tumor marker in chronic lymphocytic leukemia. Acta Haematol 81 (4): 181-5, 1989.  [PUBMED Abstract]

Back to Top

< Previous Section  |  Next Section >


A Service of the National Cancer Institute
Department of Health and Human Services National Institutes of Health USA.gov