
Presented at the water quality technical section of the annual meeting of the LMRCC, 9/16/06 at Vicksburg, MS

Overview of Existing EMAP-GRE Field Operations

http://www.epa.gov/emap/greatriver/fom.html

Extent of EMAP-GRE Phase I

Field Operations

- Current EMAP-GRE methods are the default for LMR unless unsafe, unfeasible, or clearly suboptimal with regard to program objectives
- LMR methods will be a compromise between program continuity and optimization for LMR
- Basic program framework and functions the same for LMR
- Changes based on consensus of EPA and LMR collaborators

EPA provides:

- Probability sample design
- Site dossiers/GIS data
- Field operations manual
- Initial and annual training
- QA field audits
- Preprinted field forms and sample labels
- Specialized supplies (certain filters and vials)
- Sample tracking and IM functions
- Laboratory analyses
- Data entry
- Validated data
- Hosting technical meetings and workshops
- Final assessment report

Cooperator responsibilities:

- Crews
- Gear
- Most supplies
- Data collection
- Shipping/sample transport
- Data Verification
- Workshop attendance; collaboration on report preparation

Section I - Basics

- Survey design
 - Sites randomly located based on probability sample
 - Goals of the design are to insure representativeness and prevent bias
- Index period
 - July 1 through September 30

Basics, cont.

- Habitats sampled
 - Main channel
 - Main-channel littoral zone to 6 m depth
 - Main-channel terrestrial riparian
 - Integrative assumption: Presence and quality of off-channel habitats influences ecological integrity of main-channel at some spatial scale

EMAP features multiple indicators:

- Biotic assemblages (fish)
- Chemical indicators ([nutrients])
- Exposure indicators (fish tissue contaminants)
- Function indicators (sediment metabolism)
- Physical habitat indicators (riparian vegetation structure)

Biotic assemblage indicators:

- Littoral
 - Fish
 - Benthos
 - Periphyton
 - Aquatic vegetation
- Channel
 - Snag surface Invertebrates
 - Zooplankton
 - Phytoplankton

Water chemistry

On boat: DO, conductivity, pH, temperature, Secchi depth

In field: Turbidity

In lab: cations, anions, nutrients, metals, DIC, DOC, TSS, seston geomarkers, chl a

Exposure indicators

- Fish tissue contaminants
 - Pesticides, PCBs, PBDEs, Hg
- Sediment toxicity and chemistry

Physical Habitat Indicators

- Riparian vegetation
- Riparian land use
- Human disturbance
- Fish cover
- Channel and bank morphology

QA is a priority

Table 1-1. Generic QA activities for EMAP-GRE field operations.

Category	Considerations
Training	All crews will be thoroughly and consistently trained for assigned field tasks, safety, and project QA procedures. Initial training is supplemented by annual "booster" training.
Standardization	Crews will receive standardized training based on this manual. Standardized field forms and labels will be used by all crews. Field instruments, sampling equipment, and supplies will be specified or supplied.
Calibration	Calibration of field instruments will be integrated with field operations.
Ob jectivity	Field operations are designed to minimize unnecessary subjectivity in measurements. To the extent possible, rules will be provided for site verification and other field decisions.
Communication Biggest challenge	Regular communication between field crews and coordinating EPA personnel forestalls problems, misinterpretations, and supply shortages and promotes inter-river and among-crew uniformity. Field-season QA audits and post-field-season debriefings improve QA.
Documentation	Non-standard or unusual situations or conditions are documented with data quality flags and notes on the field forms and by communication with EPA scientists and IM personnel.
Information management	Web-based sample tracking and 100% data proofing are fully integrated into the program

Training is a priority

Duluth EMAP-GRE core team

- David Bolgrien: Sample design, program administration, GIS
- Ted Angradi: Ops manual, benthos, reference
- Mark Pearson: fish, training
- Terri Jicha: IM, water chemistry
- Debra Taylor: Physical habitat and vegetation
- Brian Hill: Branch chief and algae
- Allan Batterman: QA officer

Section 2 Field Operations

- Crew configuration and responsibilities
- Flow of daily operations
- Guidelines for recording field data

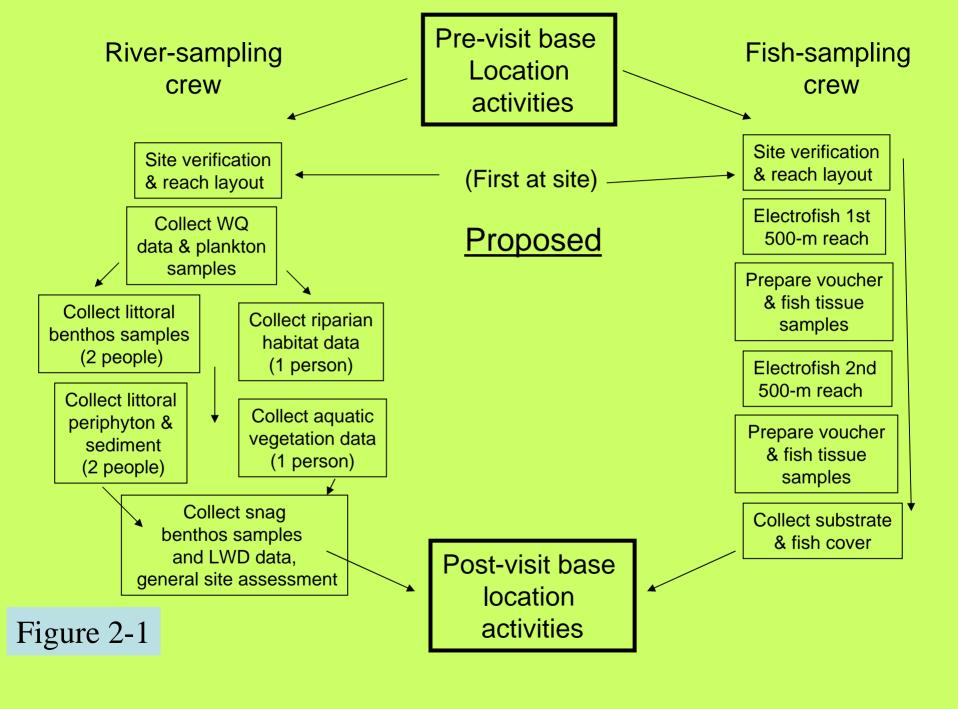

Crew Responsibilities

Table 2-1. Outline of the responsibilities of each field crew.

Crew	Habitats	Sampling responsibilities	Section of manua
Fish sampling	Near-shore littoral	Fish assemblages	8
		Substratum	8
		Fish cover	8
		Fish tissue for contaminants	9
		Fish tissue for DNA	8
River sampling	Main channel	Water chemistry	5
		Phytoplankton	5
		Macrozooplankton	5
		Microzooplankton	5
		LWD	10
	Near-shore littoral	LWD	10
		Benthic macroinvertebrates	10
		Snag macroinvertebrates	10
		Sediment	11
		Periphyton	11
		Aquatic vegetation	6
	Riparian zone	Bank characteristics	7
		Riparian vegetation structure	7
		Human disturbance	7
		Invasive plants	7

Crew Configuration

- Two 3 person crews suggested
- Other configurations are acceptable
- Crew division of labor is flexible
- Safety first
- Need sufficient crew to complete a site in a day
- Everybody goes through training

Sampling platforms vary

EPA provides specialized field forms

EMAP-GRE WATER CHEMISTRY AND PLANKTON FORM (front)												
SITE ID: GRW04449- DATE:					<i>I</i>	1	2 0 0	ANNUAL NU	VISIT 1	Revie		
					Water C	hemi	stry					
	٧	Vater S	ample		FLAG			DO/PH Cali	bration		FLAG	
Sample ID 2 L composite												
Sample	Collected? Composite of 3 Stations?				FLAG	FLAG Was DO meter calibrated on day of sampling? Yes No						
2 L composite 1												
500 mL grab		Yes	☐ Yes	□ No		Was	pH meter calib	rated on day	of sampling?	☐ Yes ☐	No	
2 L Composite Field Duplicate Sample ID			1 1 1	_		Alka	linity s	Sample ID		1 1		
DI Blank Sample ID							linity S licate S	Sample ID		1 1	_	
				Wate	r Quality N	/leasur	ements					
* See below for rules			River Left				Thalweg			River Right		
on which depths to take readings; flag		n from rface	Mid depth	0.5 m from	n 0.5 m surfa		Mid depth	0.5 m from bottom	0.5 m from surface	Mid depth	0.5 m from bottom	
depths not used.	Tota	l depth	Sample depth	Sample dep	th Total o	lepth	Sample depth	Sample depth	Total depth	Sample depth	Sample depth	
Depth xx.x m												
DO (mg/L)												
Conductivity (uS/cm)												
Temperature (C)												
pH												
Flag												
		Phytopla	nkton Compo	site Desire	d Sample (1935-n	nl composite e	xcluding pres	ervative)			
Sample ID			Composite vo	ol. (mL)							FLAG	
					N	umber	of Locations	Sampled (0-3):	·			
			63-um M	acrozoopla	nkton Con	nposite	Sample (180-	L composite f	iltration desire	ed)		
Sample ID			Volume filter	ed (L)							FLAG	
					N	umber	of Locations \$	Sampled (0-3):	:			
			20-um M	icrozoonlar	kton Com	nosite	Sample (18-L	composite filt	ration desired)		
Sample ID			Volume filtere							<u>'</u>	FLAG	
· · · · · · · · · · · · · · · · · · ·					N	umber	of Locations	Sampled (0-3):	:			
If depth at the station >2 45mLfor water; 215mL fo	m, coll	lect mete oplanktor	r readings and n, 20L for macr	a subsampl	e 0.5 m abo	ove the	bottom, mid-de	epth, and 0.5m	from the surfa	ce; subsample	volumes:	
If depth at the station ≤2 olumes: 665mLfor water;	m and	<u>></u> 1m, co	llect meter reac	lings and a	subsample	0.5 m	above the botto		and 0.5m from	the surface; su	ibsample	
If depth at the station <1 nacrozooplankton, 6L for	m, coll	lect mete	r readings and						650mL for phy	toplankton, 60l	_ for	

Section 3 Pre- and post-visit base location activities

Pre-visit base location activities

- Confirm site/ramp status and location
- Preload waypoints into GPS units
- WQ meter calibrations
- Ship previous samples
- Compile forms, load supplies
- Prepare preservatives

Post-visit base location activities

- Filter water, make turbidity readings
- Review data forms
- Download camera files
- Preserve/store samples
- Fill out sample tracking forms
- Fax tracking and field verification forms to Corvallis data center
- Arrange FedEx pickup for next day

Sample not preserved in formalin

- Water: shipped fresh next day
- Chlorophyll filters: frozen, shipped weekly
- DIC, DOC, Other filters: dried, shipped weekly
- Sediment: refrigerated, shipped fresh next day
- Fish tissue: frozen, shipped weekly

Samples preserved in formalin

- Benthos (10%): carried to MED at EOS
- Fish vouchers (10%): carried to MED at EOS Periphyton (4%): carried or shipped at EOS to MED
- Phytoplankton (4%): carried or shipped at EOS to MED
- Zooplankton (4%): carried or shipped to lab in batches

ZOOPLANKTON (4% formalin) BZ (63µm) LZ (20µm)	PHYTOPLANKTON (PP) (4% formalin) GRW04449				
GRW044449 // 200 Volume filtered L	// 200 Composite volume L				
Site visit number 1 2 3 4	Site visit number 1 2 3 4 300214				

WATER CHEMISTRY							
WC AL							
GRW04449							
// 200							
Site visit number 1 2 3 4							
300213							

Sample type
GRW04449
// 200
Comp/filtered vol
Site visit number 1 2 3 4
Sample ID

FILTERS
CF GF SS1 SS2
GRW04449
// 200
Volume filtered mL
Filter ID
Site visit number 1 2 3 4
300216

EPA provides specialized labels

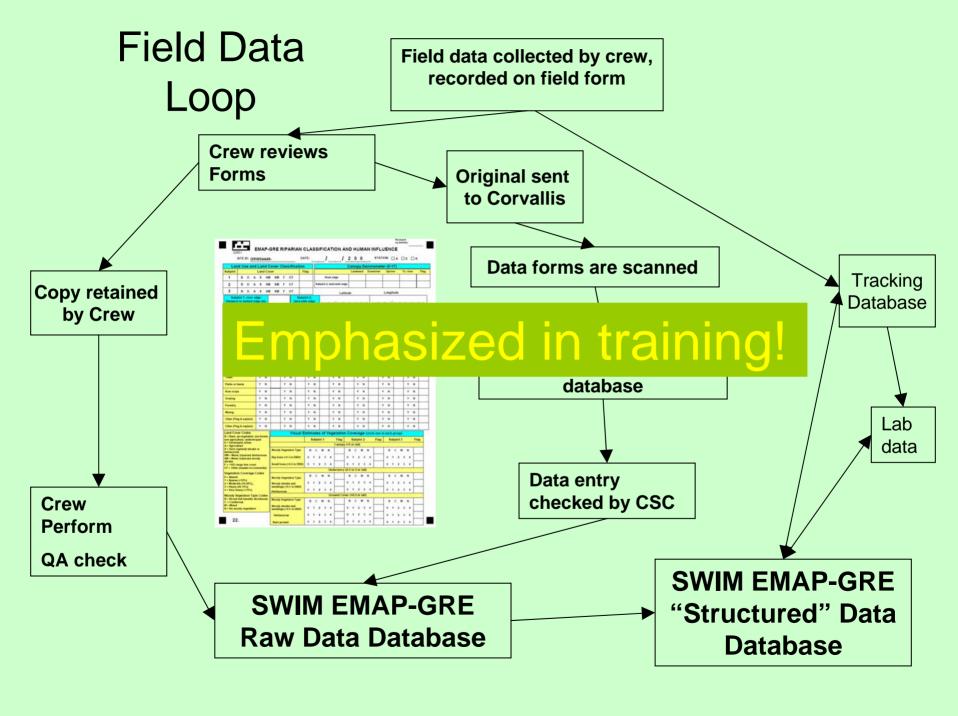
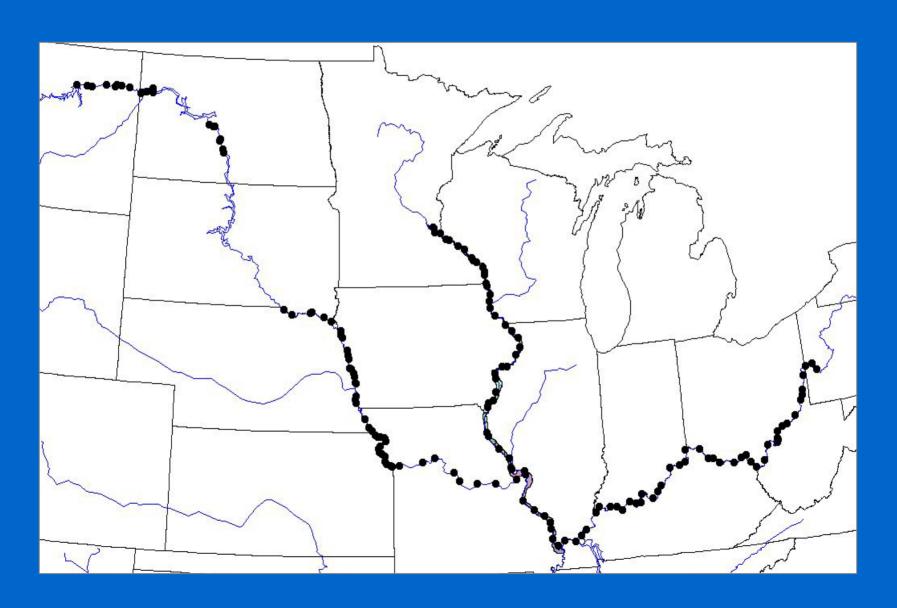

Sample preservative recipes

Table 3-1. Stock preservative solutions and instructions for their preparation. All stock solutions should be stored in clearly-labeled non-breakable containers. Labels should include container contents, date of preparation, and the initials of the preparer.

the propert						
Solution	Use	Recipe				
100% borax-buffered form alin ^a (pH 7-8)	Preservative for phytoplankton and periphyton; stock solution for fish	Add 20 g borax (hydrated sodium borate: Na ₂ B ₄ O ₇ -10H ₂ O) detergent (20 Mule Team [®]) per L 100% formalin (37% formaldehyde). Test pH with paper.				
100% carbonate-buffered formalin (pH 10) ^b	Stock solution for macroinvertebrate preservative	Add 35 g Na ₂ CO ₃ (also called "washing soda") per L 100% formalin (37% formaldehyde). Test pH with paper.				
12% buffered formalin- sugar solution ^c (pH 7-8)	Preservative for zooplankton	Add 600 mL 100% formalin, 5 tablespoons borax and 400 g table sugar (sucrose) to 4.4 L tap water (makes 5 L). Test pH with paper.				
10% borax-buffered formalin	Preservative for fish ^d	Add 1 part 100% borax-buffered formalin to 9 parts tap water.				
95% benzene-free ethanol	Stock solution for fish preservation (2005 DNA sites) ^e	Full strength agriculture-derived.				
85% benzene-free ethanol	Field preservation of fish (2005 DNA sites)	Add 9 parts 95% ethanol to 1 part tap water.				
75% benzene-free ethanol	Lab preservation of fish (2005 DNA sites)	Add 8 parts 95% ethanol to 2 parts tap water.				
10% carbonate-buffered formalin (pH10)	Preservative for macroinvertebrates	Add 1 part 100% carbonate buffered formalin to 9 parts tap water. Test pH with paper.				
Concentrated rose bengal solution	Stain added to macroinvertebrate samples	Add 1 teaspoon rose bengal powder to 1 L of 10% carbonate-buffered formalin stock solution.				
	1	1				


Sample tracking

- Critical for for good QA!
- We use a Web-based system called SWIM
- There are multiple sample types going to multiple labs
- Relatively bombproof after 3 years

Chapter 4: Site Verification Process

The sample design puts sites on the river. Site verification puts actual sample locations at each site.

Chapter 4 Site Verification

Site verification asks:

- 1. Should the site be sampled?
- 2. If it should be sampled, can it be sampled?
- 3. If it can sampled, how should it be laid out?

Site verification is an agreement on how crews will "lay out" the site for sampling.

Laying out the site without bias enhances data integrity.

Site verification

- Determine if site is in the population and can be safely sampled.
 - Not in a tributary or reservoir
 - Not above or below the reach
- All decisions verified with EPA
- Sample locations can be moved around to a limited (and proscribed) degree to avoid problems (safety, islands, tributary mouths)

The Site Dossier

The dossier is a document that guides the crew to the site and provides approximate nominal station locations

EMAP-GRE Site Dossier GRW04449-300

River Thalweg Shoreline Transect Points Lines: Attribute Information

NAME	NED_ELEV	SECTION	SAMPLE BANK	CLOSEST RIVER MILE	* PLANNED VISITS	POOL/REACH
Mississippi River	165	Hineis Iewa	Left	427	1	Paol 16

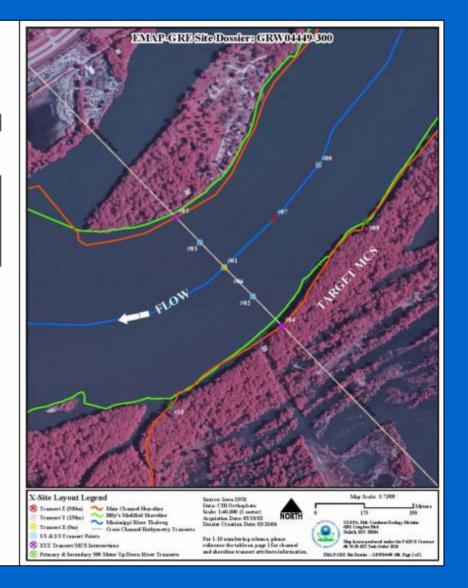
DETAIL	TRAN	ID	DESIGN_NO	LON_DD	LAT_DD	OR_AZ	58_DIST	NSB_DIST	CH_WIDTH
X-58c	X	#01	300	-90.6835	41.4619				
1/9 Point	X	802	300	-59.6524	41,4609		***		***
2/3 Point	X	703	300	-59.6545	41.4627				
Cross Channel Transact/MCS Int.	X	994	300	-90.6312	41.4599				
Cross Channel Transact/MCS Int.	X	905	300	-59.6555	41.4636				**
Transect X	X	/105	300			315.94	295.52	248.98	544.50
25 lim Site	Y	607	366	-90.6813	41.4633	-			
50fm 8ile	2.	/98	300	-51.6492	41,4650				
Primary 500m Upstream MCS Transect	X	A22	300	-50.6473	41.4631				
Secondary 500m Downstream MCS Transact	X	#10	300	-90.6562	41.4575				

DATA DICTIONARY

DETAIL — Develoption
TRAIN — Benediption
TRAIN — Benediption
TO—III mancher from map page 2
DESIGNS SOO — Simple mancher
LOS _ DO — Longhrade in declarat degrees
LOS _ DO — Longhrade in declarat degrees
OB _ AZ — Orthogonal admirch Liegener solvative from methy
ER _ DHET — Deliment in sample basis in marken

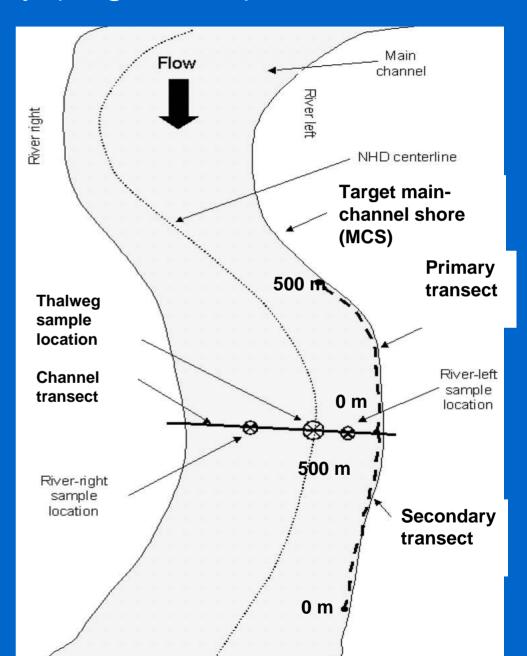
SE_DHIT - Distance to sample both in meters NSE_DHIT - Distance to non-rample healt in meters CH_WIDTH - Total width of channel in meters **All distance values are in excient.
**All azimuth values are in dispress.

**All coordinate nation were derived using Projection: Geographic Datum: NADO Scharold: GDS1000

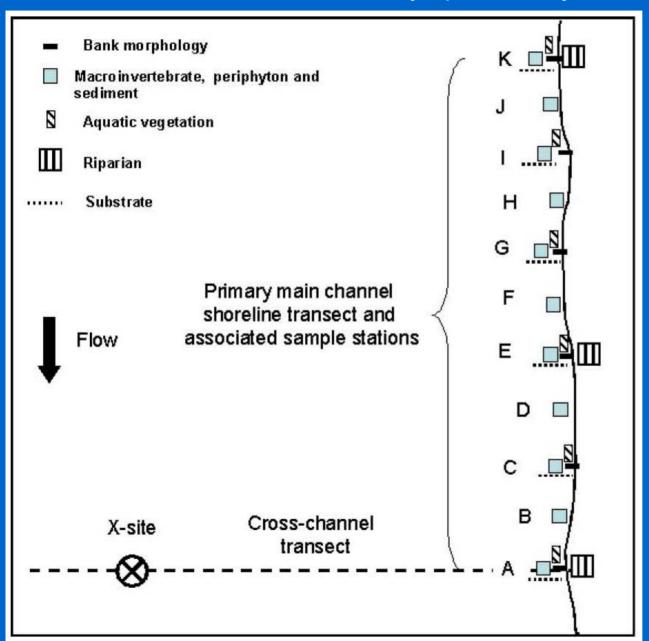

Seminajor Axia: 6375537.0000000000000000000 Seminalner Axia: 6365752.314346565300000000 Javers Flatening: 290.15722210000010000

TS RVA, Mid-Dedicand Endings Districts
ed Sto Complete titled
Deleth, MN 57804
Map layers produced model the EADR II Contract
di Wide Sty Test Coder 2014

EMAP-GRE Site Domice


GRW04449-300

Figs Loft



Site Anatomy (large scale)

- "X-site" comes from design file
- Channel transect
 - Transect is perpendicular to the main-channel and through the X-site.
 - Thalweg station is the deepest point of channel transect.
 - River-right and River-left stations are along transect half-way between thalweg and shore.
- Shore transects.
 - Primary transect
 - 500 m upstream (fish, littoral biota, WQ, habitat)
 - Secondary transect
 - 500 m downstream (fish and fish habitat only)

Site Anatomy (Primary transect)

Primary shore transect has 11 stations (A-K) at 50 m intervals. Different things happen at different stations.

Secondary transect has 6 fish habitat stations at 100 m intervals.
Upstream end is 500 m and downstream end is 0 m.

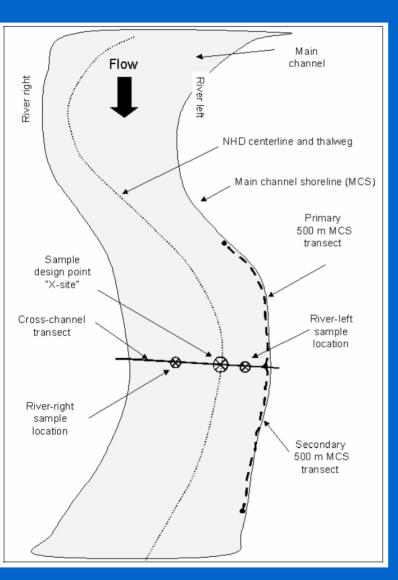
Site verification involves a lot of rules and guidelines to minimize the possibility that bias in sample location will creep in.

Verification emphasized in training and EPA holds hands with cooperators through the

process.

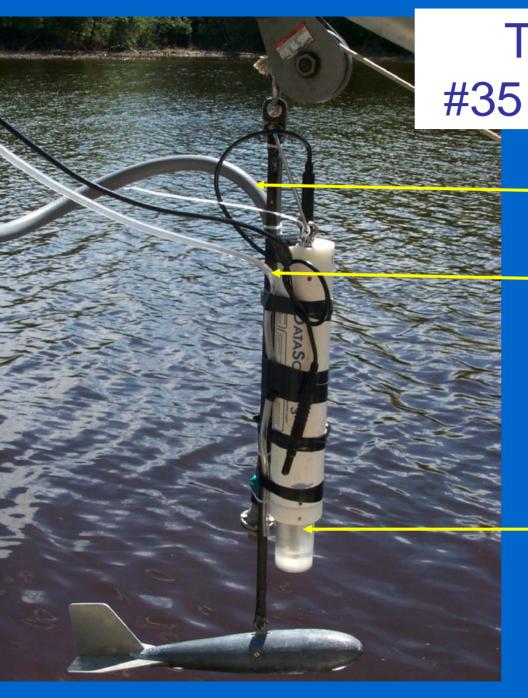
Section 5 Water chemistry and plankton

Objective is to characterize integrated water chemistry and plankton at the site as indicators of condition and stress (WC)


What is being collected:

- Water Chemistry:
 - Bulk grab for analysis
 - Meter Chemistry
 DO, pH, conductivity, temperature, turbidity
 - Clarity Secchi
 - Dissolved Inorganic Carbon (DIC) grab
- Plankton:
 - Phytoplankton
 - Microzooplankton
 - Macrozooplankton

Lab analysis (Lab TBD)


- Alkalinity
- Metals (As, Pb, Se, Al, Fe, Ni, Zn)
- Ammonia, NOx, Total N
- Total P
- TOC
- SO4, CI
- Na, Ca, K, Mg
- Chlorophyll a
- DOC, DIC
- 15N, 13C (of seston)

Depth and width integrated sampling

Samples and meter data collected at 3 depths at each of 3 stations

Samples composited for the site

Typical rig with #35 sounding weight

High volume hose for plankton

Low volume clean hose for water sample

Meter sensors

Volumes for water and plankton samples

Bulk water	8 L -
Alkalinity	500 mL
Phytoplankton	2 L
Macrozooplankton	180 L
(63-um mesh)	filtered
Microzooplankton	18 L filtered
(20-um mesh)	

Plankton collection (Macrozooplankton)

Guzzler pump

63-µm mesh plankton net

Water Quality "Field" Sample Processing

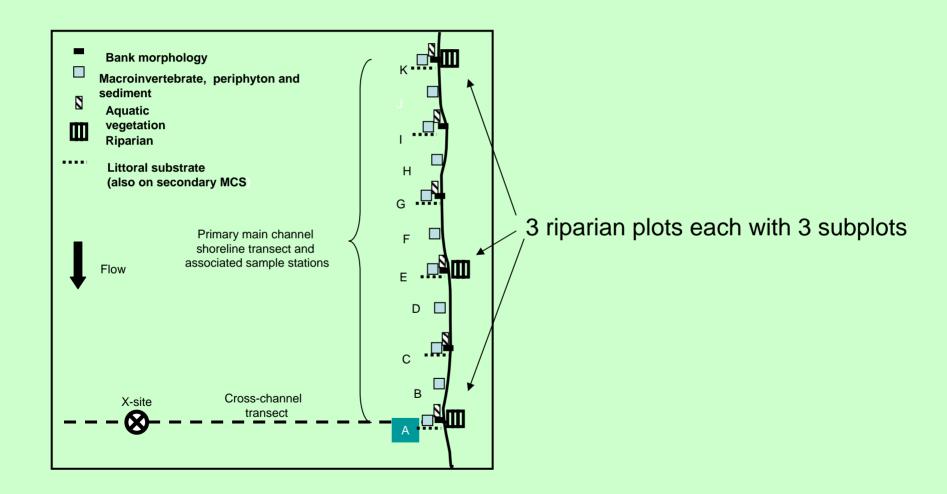
- Filter aliquots of churned bulk sample for Chl, TSS, geomarkers, etc.
- Extract churned aliquot for lab analysis
- Make replicate turbidity measurements

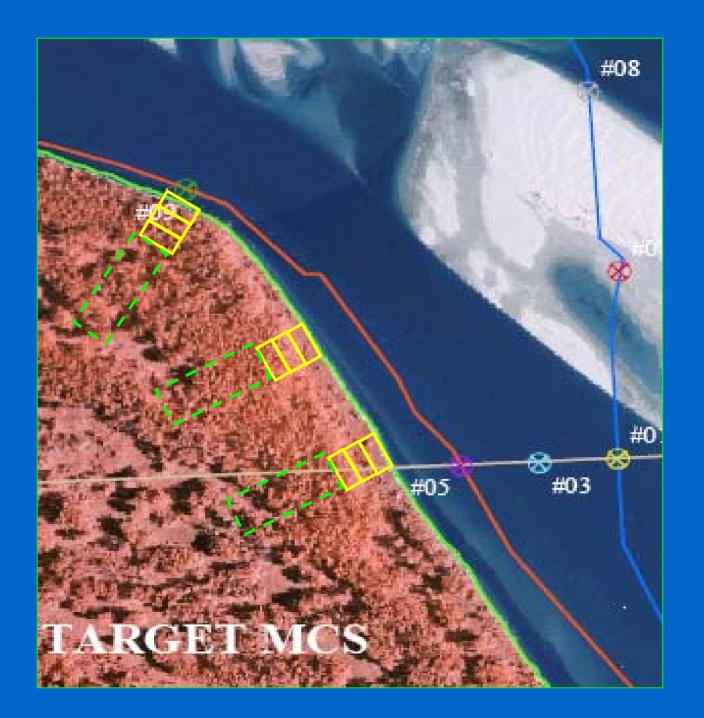
Lab processing for LMR

Water chemistry: TBD, currently UMESC

Zooplankton: TBD, currently INHS and SMSU

Phytoplankton: TBD, currently same lab as periphyton (UMD-Ely)


Section 6 Aquatic Vegetation


- Most relevant for impounded Upper Mississippi River
- Based on USGS LTRM methods
- Probably not applicable to LMR main channel habitats

Section 7 Riparian Habitat

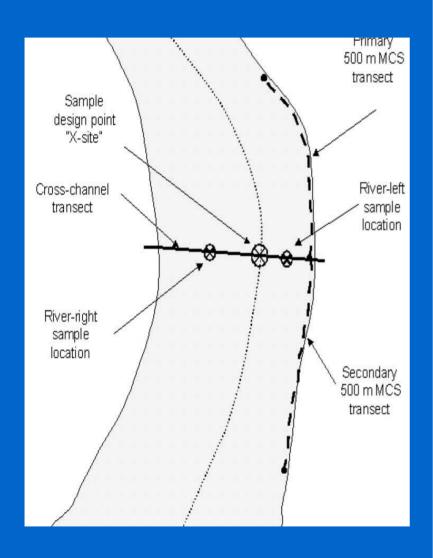
Objective is to characterize the riparian zone adjacent to the primary transect as an indicator of condition and stress

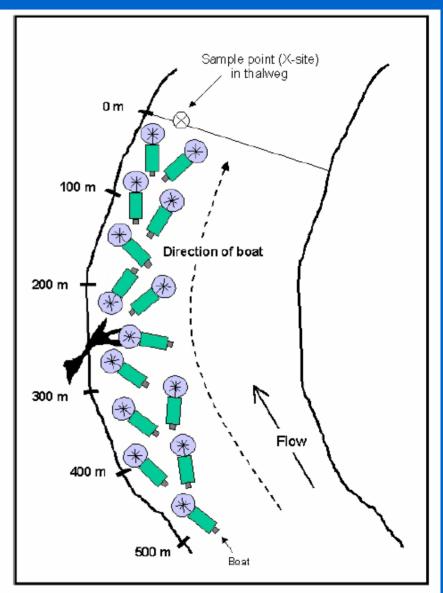
Riparian sample locations

Riparian Measurements

- Bank and channel width measurements
 - Bank heights and channel wetted widths
 - Shoreline type
 - Macrohabitat type
- Riparian measurements
 - Land cover
 - Canopy density
 - Vegetation structure
 - Invasive plant species
 - Human influence
- Channel form and general site assessment

Issues

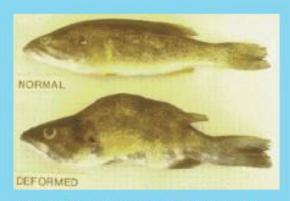

- Requires getting out of the boat and into the jungle
- Safety issues
- Measuring levees, batture lands…?
- May be able to characterize human disturbance of the riparian zone from the boat.


Section 8 Fish

Objective is to get a standardized representative sample of the near-shore fish assemblage. It is very important to avoid sampling bias toward large fish, game fish, rare fish, etc. Not every species in the river at a site will be collected.

Daytime electrofishing

- Suggested crew configuration
 - 2 netters using 1/4" mesh dip nets
 - 1 driver
- 1 EMAP site = two 500 meter shoreline electrofishing zones (Primary & Secondary)
 - Fish using ~3000 Watts of pulsed DC
 - Sample each 500 meter zone from upstream to downstream for a minimum of 1800 seconds
 - Zone is shore to 30 m out or 6 m depth, whichever is closer



Sample Processing

- Identify all fish to species
 - Use AFS Common Name
- Record DELT anomalies
- Record Length & Weight
- Save target species for tissue analysis
- Fish smaller than 12 cm are preserved for identification in the lab
- Voucher photos and specimens

Examples of DELT Anomalies

a. Example of deformities (DE) showing a normal spine (top) and curved spine (bottom).

b. Example of severe eroded fins (ER).

 Example of body surface lesions (LE) (note reddened area in front of fins).

d. Example of raised tumors (TU) on the body surface.

Fish Habitat

- Near shore substratum characterized by tactile evaluation of bottom composition
- The "copper pole" technique
- Fish cover estimated by observation
- Based on ORSANCO methods

Section 9 Fish Tissue Contaminants

Objective: characterize whole-fish tissue contaminant load of target large and small fish species as indicator of exposure risk to piscivorous wildlife

Processing

- Analysis based on whole fish samples
- One large-fish sample from each site (5 fish < 2 kg ea)
- One small-fish sample from each site (50 400 g total)
- Fish retained from efishing catch based on a target species list
- Sampled shipped to EPA lab for analysis

Fish Species Priority List

Priority	Common name	Size range (mm)	3-cm size	
	Primary target species			
1	emerald shiner	< 120	1 - 4	
2	river shiner	< 120	1 - 4	
3	spotfin shiner	< 120	1 - 4	
4	bullhead minnow	< 120	1 - 4	
5	silver chub	< 120	1 - 4	
6	another minnow species	< 120	1 - 4	
7	gizzard shad	< 150	1 - 5	
Secondary target species				
1	sauger	120 - 180	5 - 6	
2	sauger	180 - 240	7 - 8	
3	sauger	> 240	<u>></u> 9	
4	largemouth bass	180 - 240	7 - 8	
5	largemouth bass	240 - 300	8 - 10	
6	largemouth bass	> 300	<u>></u> 11	
7	other black bass	> 180	<u>≥</u> 7	
8	brown trout	> 120	<u>></u> 5	
9	rainbow trout	> 120	<u>≥</u> 5	
10	channel catfish	120 - 180	5 - 6	
11	channel catfish	450 - 510	16 - 17	
12	channel catfish	180 - 450	7 - 15	
13	freshwater drum	>120	<u>≥</u> 5	
14	shorthead redhorse	>120	<u>≥</u> 5	
15	other redhorse species	>120	<u>></u> 5	
16	bluegill	>120	<u>></u> 5	
17	longear sunfish	>120	<u>></u> 5	
18	other sunfish species	>120	<u>></u> 5	
19	common carp	>180	<u>></u> 7	
20	smallmouth buffalo	>120	<u>≥</u> 5	
21	river carpsucker	>120	<u>≥</u> 5	

Target species list for Upper Basin may need to be re-evaluated for LMR

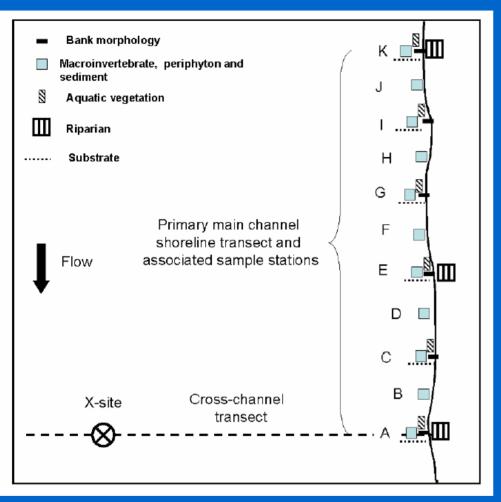
Table 9-1. Target analytes for composite fish tissue samples. Detection limit for mercury is 0.01 ppm. Detection limit for all other analytes is 0.001 ppm. Number in parentheses is the CAS number. Number followed by a # is the Ballschmitter-Zell number.

Aldrin (309-00-2) Chlordane-cis (5103-71-9) Chlordane-trans (5103-74-2) 2.4'-DDD (53-19-0) 4,4'-DDD (72-54-8) 2.4'-DDE (3424-82-6) 4.4'-DDE (72-55-9) 2,4'-DDT (789-02-6) 4.4'-DDT (50-29-3) Dieldrin (60-57-1) Endosulfan I (959-98-8) Endosulfan II (33213-65-9) Endrin (72-20-8) Heptachlor (76-44-8) Heptachlor Epoxide (1024-57-3) Hexachlorobenzene (118-74-1) Hexachlorocyclohaxane [Gamma-BHC/Lindane] (58-89-9) Mirex (2385-85-5) trans-Nonachlor (3765-80-5) cis-Nonachlor (5103-73-1) Oxychlordane (27304-13-8) PCB Congeners

Mercury (7439-97-6)

2,4-Dichlorobiphenyl, #8 (34883-43-7) 2,2',5-Trichlorobiphenyl, #18 (37680-65-2) 2,4,4'-Trichlorobiphenyl, #28 (7012-37-5) 2,2',5,5'-Tetrachlorobiphenyl, #52 (35693-99-3) 2,2',3,5'-Tetrachlorobiphenyl, #44 (41464-39-5) 2,3',4,4'-Tetrachlorobiphenyl, #66 (32598-10-0) 2,2',4,5,5'-Pentachlorobiphenyl, #101 (37680-73-2) 3,3',4,4' Tetrachlorobiphenyl, #77 (32598-13-3) (coplaner) 2,3',4,4',5-Pentachlorobiphenyl, #118 (31508-00-6) 2,2',4,4',5,5'-Hexachlorobiphenyl, #153 (35065-27-1) 2,3,3',4,4'-Pentachlorobiphenyl, #105 (32598-14-4) 2,2',3,4,4',5-Hexachlorobiphenyl, #138 (35065-28-2) 2,2',3,4',5,5',6-Heptachlorobiphenyl, #187 (52663-68-0) 2,2',3,3',4,4'-Hexachlorobiphenyl, #128 (38380-07-3) 2,2',3,4,4',5,5'-Heptachlorobiphenyl, #180 (35065-29-3) 2,2',3,3',4,4',5-Heptachlorobiphenyl, #170 (35065-30-6) 2,2',3,3',4,4',5,6-Octachlorobiphenyl, #195 (52663-78-2) 2.2',3,3',4,4',5,5',6-Nonachlorobiphenyl, #206 (40186-72-9) Decachlorobiphenyl, #209 (2051-24-3) 3,3',4,4',5 Pentachlorobiphenyl, #126 (coplaner)

Polybrominated Diphenyl Ethers (PBDE) congeners 47, 99, 100, 153 and 154


Analyte list needs to be updated

Percent Moisture and Lipid content

Section 10 Benthic macroinvertebrates

- Kick sampling (littoral)
- Snag sampling (channel)

Objective is to characterize nearshore benthos at site scale (kick) and to evaluate usefulness of an alternative water-column method (snag)

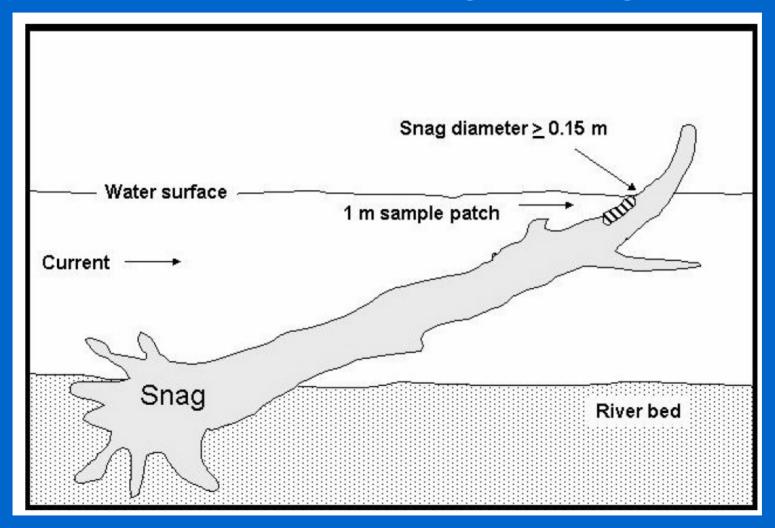
Kick samples collected at all 11 littoral stations

Kick Sampling

- Sample is a composite of up to 22 0.26-m kicks
- Two 30-s kicks at each of 11 stations
- Standard kick net with 500-µm mesh
- Sample any littoral habitat (no targeted habitats) that can be safely sampled

Kick Sampling, cont.

- Kick from low water mark to 0.6 m deep
- Sweep sample in slackwater areas
- Composite all 22 kicks
- Samples shipped to contract lab for sorting and identification


Is kick sampling in LMR a unsafe or sub-optimal approach?

Snag sampling

- Semi-quantitative water column adjunct to benthic sampling
- Specialized snag net

Typical "planter" snag configuration

Section 11 Periphyton and Sediment

Objective is to collect a representative periphyton sample for taxonomic analysis and a representative fine sediment sample for toxicity testing (*Hyalella*)

Periphyton

- Composite scrape, scoop, or brush samples from all littoral stations
 - collected by wading
- Can mix substrates at site
- Shipped to cooperator for taxonomic analysis

Sediment

- Composite of fine sediment samples from all stations at a site collected by wading
- Target sample volume = 5 L
- Shipped to EPA lab for toxicity testing

Will we need a new manual for LMR?

United States Environmental Protection Agency Office of Research and Development Washington, DC 20460

Great River Ecosystems Field Operations Manual EMAP- GRE II - The Lower Mississippi River

- New reaches
- New design
- New data forms?
- New sample labels?
- New Indictors ?
- New gears ?
- New methods?
- New logistics?
- New labs?

Environmental Monitoring and Assessment program

Discussion

- What won't work at most sites?
 - Unsafe
 - Unfeasible
 - Suboptimal
- What are the alternatives?
- What indicators should be added?
 - Analytes
 - Indicator types
- Do we have the optimal Index period?
- Is there regional expertise we don't know about?

