

Estimating Nutrient and Bacteria Concentrations in Kansas Streams with Real-Time Water-Quality Monitoring

International Water Association 5th International Conference on Diffuse Pollution and Watershed Management June 10 - 15, 2001

> By Victoria Christensen, Andrew Ziegler, Xiaodong Jian, and Patrick Rasmussen

What Is a Surrogate?

 A surrogate is a sensor measurement that can be used in place of a constituent of greater interest.
 In real time
 Continuous

More sensor measures available

Objectives of Real-Time Water-Quality Monitoring

- Continuously measure constituents of concern
- More accurately estimate constituent concentrations and loads
- Provide regulatory agencies & water suppliers information
- Optimize timing of sample collection
 USGS
 Science for a changing world

Approach

- Upgrade USGS stream gaging stations with water-quality monitors
- Collect manual samples over the range in hydrologic conditions
- Develop regression equations using collected samples and sensor values
- Estimate concentrations and loads from continuous data and equations

Real-time, Continuous Water-Quality Monitor

Turbidity sensor

- pH
- Water Temperature
- Dissolved Oxygen
- Specific
 Conductance
- Turbidity
- Fluorescence

YSI Sonde

Surrogate used

to Predict

Specific Conductance

Turbidity

Fluorescence

Chloride, alkalinity, dissolved solids, sulfate, triazine

Total suspended solids, suspended sediment, fecal coliform, *E. coli*, total nitrogen, total phosphorus

Chlorophyll-a, Taste and odor (Geosmin and MIB)

Collection of manual samples

- Collected throughout the range of expected hydrologic conditions
- Analyzed for chloride, sediment, bacteria, and other constituents
- Historical data may be used

Problems with Conventional Water-Quality Monitoring

- Limited number of samples are collected annually
- Annual load estimates are based on a small finite number of samples
- Seasonal, diurnal, and event driven fluctuations are nearly always missed
- Costs of manual sampling and analysis

Streamflow-Gaging and Real-Time Water-Quality Stations in Kansas

Streamflow-gaging station 1999 water year

Streamflow-gaging station with water quality monitor

Real-Time Water-Quality Studies in Kansas

Quivira National Wildlife Refuge

Kansas River Real-Time TMDL Network

New Lake Olathe

Equus Beds Ground-Water Recharge Project

Quivira National Wildlife Refuge U.S. Fish and Wildlife Service/GMD 5 Alert USFWS to high constituent concentrations entering refuge Possibly divert when T&E species are present Establish TMDLs

Establish baseline concentrations before hog CAFOs move into basin

Kansas River Real-time Network

- In cooperation with Kansas Dept of Health and Environment (KDHE)
- Monitor TMDLs
- Alert downstream
 water suppliers
- Optimize sample collection frequency
- Fecal Coliform vs. E. Coli

New Lake Olathe

City of Olathe Determine nutrient loads to urban reservoir Taste and odor problems Chlorophyll sensors

Equus Beds Ground Water Recharge Project – Little Arkansas River

- City of Wichita
- Increase drinking water supply
- Prevent salt-water intrusion into aquifer
- Development of TMDLs
- Real-time warning of high constituent concentrations

Real-time turbidity

Estimated versus Measured Total Phosphorus Concentrations TP=0.00113NTU-0.223log10SC+0.00568WT+0.754

science for a changing wor

Instantaneous Measured vs. **Estimated Bacterial Densities** $\log_{10}(FCB) = -0.129 \sin\left(2\pi \left(\frac{D}{365}\right)\right) - 0.325 \cos\left(2\pi \left(\frac{D}{365}\right)\right) + 0.892 \log_{10} NTU + 0.878$ A. Little Arkansas River at Highway 50 near Halstead, KS 1000000 ensity, in colonies per 100 milliliters Estimated fecal coliform bacteria $R^2 = 0.59$ 100000 10000 1000 100 10 10 100 10000 1000 100000 1000000 Measured fecal coliform bacteria density, in colonies per 100 milliliters

Little Arkansas River near Sedgwick, Kansas Fecal Coliform Densities, 2000

Uncertainty Between Instantaneous Measured and Estimated Concentrations

Nitrogen Load and Yields

Benefits of Real Time Water Quality Surrogates

- Continuously measure water-quality in real time similar to streamflow
- Estimate selected constituent concentrations and loads more accurately
- Provide early warning of changes in chemical conditions in recreational and source waters
- Optimize timing of sample collection

Real-time Water-Quality Concentration and Load Estimated by Regression Analysis

Water Quality and **Regression Analysis**

Water quality parameters and standards in Kansas **Regression** analysis Regression equation table

Ouivira OW Kansas River QW

Publications

Additional Information KDHE home page KDHE TMDL Equus Bed info

Real-time Water-Quality Concentration and Load Estimated by Regression Analysis

Real-time Water-Quality Concentration and Load Estimated by Regression Analysis

Important notes: The data used to produce this plot are **provisional** and have not been reviewed or edited. They may be subject to significant change

For more information on realtime water quality in Kansas:

Propared in cooperation with the CITY OF WICHTIA, KANSAS, as part of the Eguns Beds Ground-Water Recharge Demonstration Project

Regression Analysis and Real-Time Water-Quality Monitoring to Estimate Constituent Concentrations, Loads, and Yields in the Little Arkansas River, South-Central Kansas, 1995–99

Water-Resources Investigations Report 00-4125

http://ks.water.usgs.gov/Kansas/qw/

http://water.usgs.gov/ks/nwis/current?type=qw

