

Estimation of Nutrient Loads using Continuous Water-Quality Monitoring and Regression Analysis

V.G. Christensen, P.P. Rasmussen, and A.C. Ziegler

National Water Quality Monitoring Conference, Madison, WI, May 22, 2002

Nutrient Load Calculations

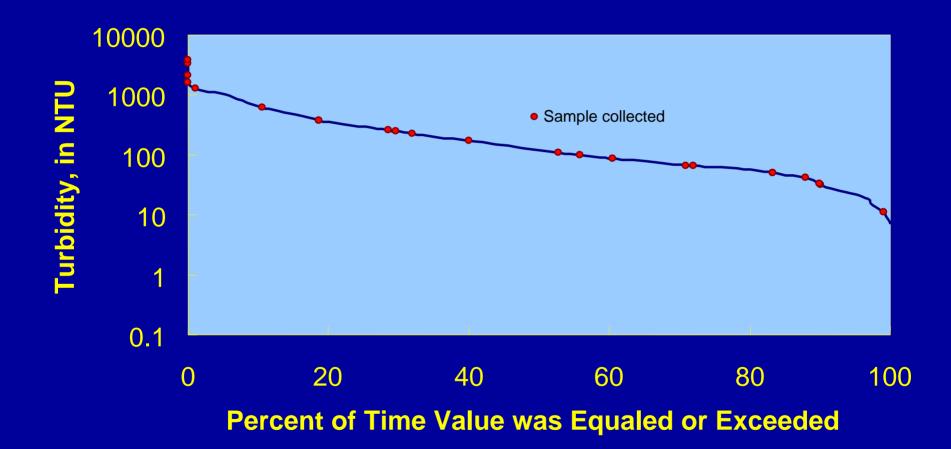
- Historically, discrete nutrient samples are regressed against discharge
- Computer programs have automated this process, but most still rely on discharge only
- Discrete nutrient concentrations can be regressed against turbidity, leading to more accurate load calculations for some sites

Approach

- Upgrade USGS stream gaging stations with water-quality monitors
- Collect nutrient samples over the range in hydrologic conditions
- Develop regression equations using collected samples and sensor values
- Estimate concentrations from the regression equations and loads from continuous data.

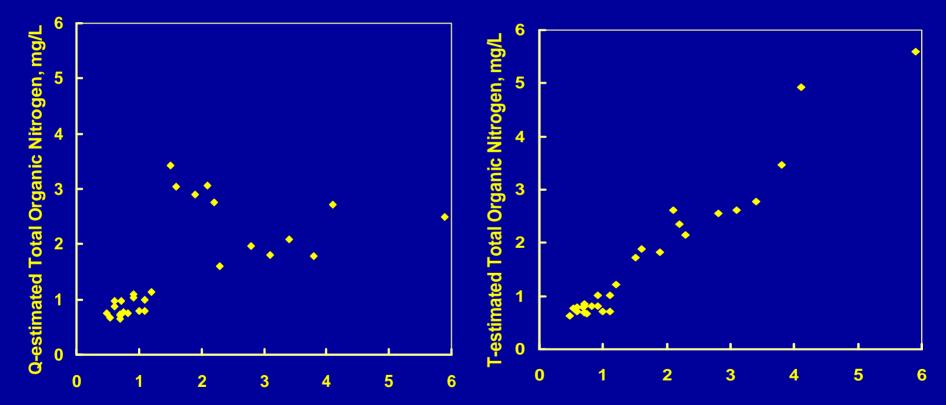
Real-time, Continuous Water-Quality Monitor

- pH
- Water Temperature
- Dissolved Oxygen
- Specific Conductance
- Turbidity
- Fluorescence


Collection of manual samples

- Collected throughout the range of expected hydrologic conditions
- Analyzed for nutrients
- Use EWI or EDI methods

Turbidity Duration Curve



Measured Nitrogen vs Streamflow- and Turbidity-estimated Concentrations

Little Arkansas River near Halstead

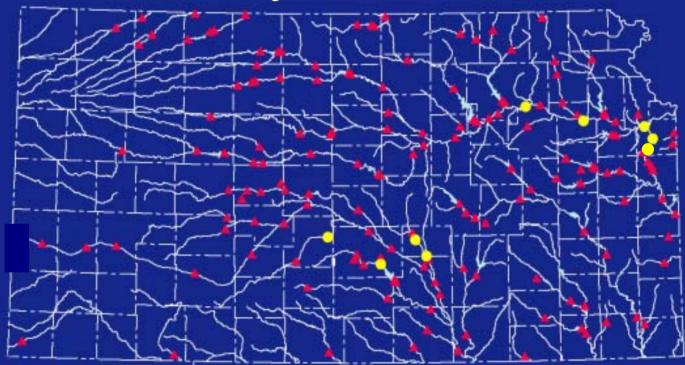
Streamflow-estimated

Turbidity-estimated

Measured Total Organic Nitrogen, mg/L

Total Nitrogen vs Streamflow or Turbidity

Comparison of R² for Simple Regression

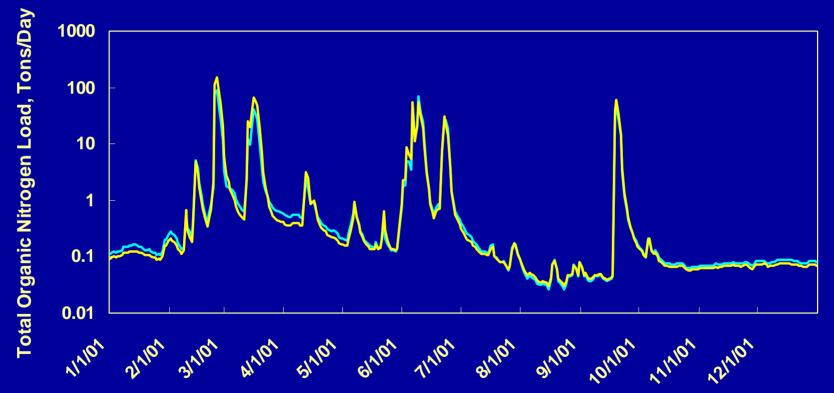

	Station	R ² streamflow equation	R ² turbidity equation
*	06887500	0.23	0.99
*	06889000	0.30	0.98
*	06892350	0.14	0.49
*	06892440	0.88	0.60
*	06892450		0.42
*	07142575	0.25	0.71
*	07143672	0.65	0.95
*	07144100	0.54	0.74
	07144601	0.13	0.70
	07144660	0.65	0.85
	07144680	0.48	0.84
	07144730	0.47	0.88
*	07144780	0.27	0.73
	07144795	0.27	0.02
	MEDIAN	0.27	0.74

Total Phosphorous vs Streamflow or Turbidity

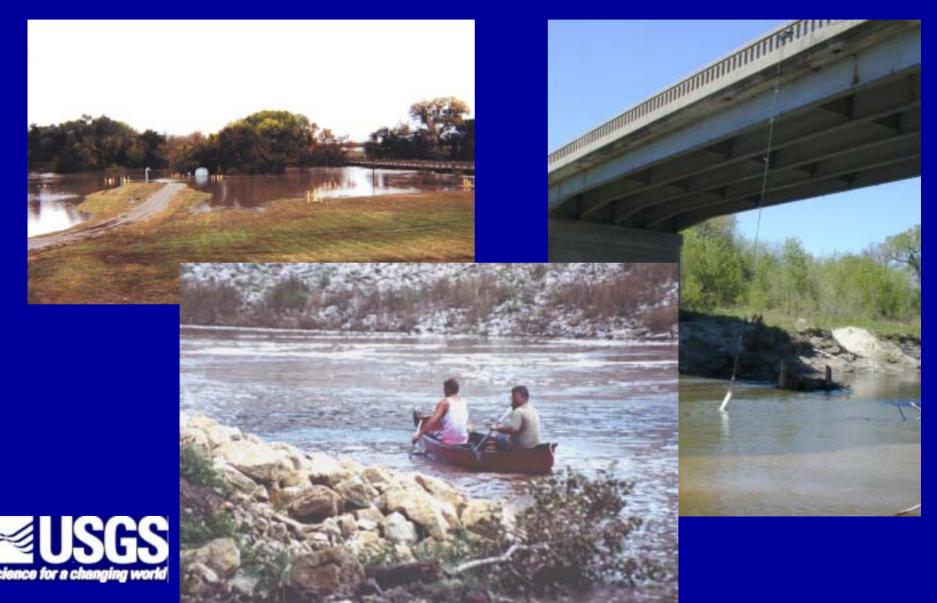
Comparison of R² for Simple Regression

	Station	R ² streamflow equation	R ² turbidity equation	
*	06887500	0.60	0.99	
*	06889000	0.70	0.98	
*	06892350	0.14	0.52	
*	06892440	0.92	0.78	
*	06892450		0.15	
*	07142575	0.51	0.81	
*	07143672	0.60	0.90	
*	07144100	0.29	0.52	
	07144601	0.50	0.87	
	07144660	0.20	0.59	
	07144680	0.59	0.67	
	07144730	0.44	0.84	
*	07144780	0.58	0.89	
	07144795	0.57	0.95	
	MEDIAN	0.57	0.82	

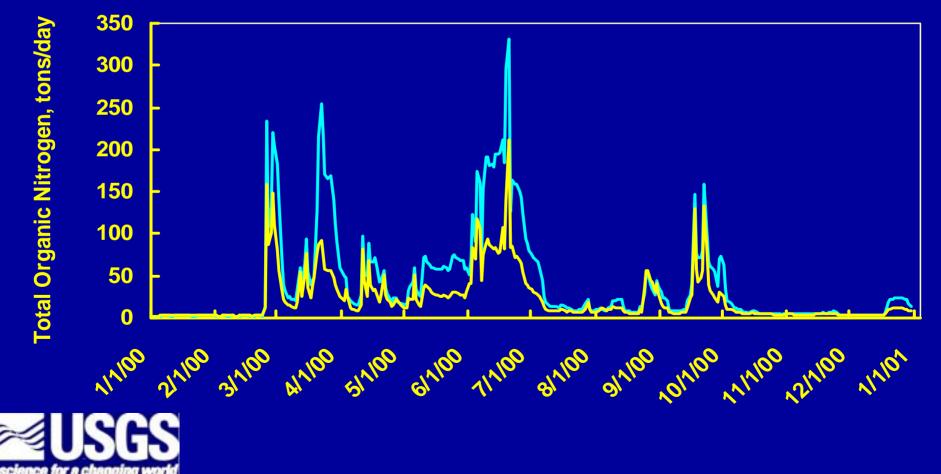
Streamflow-Gaging and Real-Time Water-Quality Stations in Kansas


Streamflow-gaging station 1999 water year

Streamflow-gaging station with water quality monitor


Comparison of Streamflow- and Turbidity-estimated Loads Little Arkansas River at Sedgwick

- Streamflow-estimated Load ---- Turbidity-estimated Load



Little Arkansas River

Comparison of Streamflow- and Turbidity-estimated Loads

Kansas River at Wamego

Kansas River

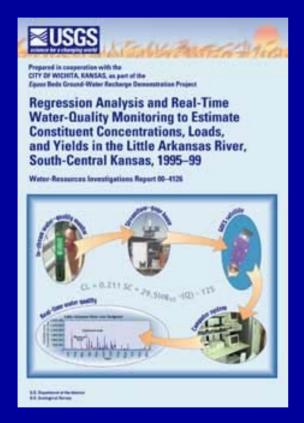
Multiple Regression Analysis--Nitrogen

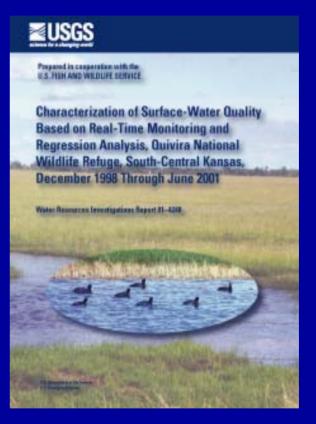
Station Lowest PRESS

*	06887500	Turbidity
*	06889000	Turbidity
*	06892350	Turbidity, Q
*	06892440	Q
*	06892450	Water Temperature
*	07142575	Turbidity, Q, Water Temperature
*	07143672	Turbidity, Q
*	07144100	Turbidity
	07144601	Turbidity
	07144660	Turbidity
	07144680	Turbidity, Q
	07144730	Turbidity, Q
*	07144780	Turbidity, Water Temperature, Q
	07144795	Water Temperature

Multiple Regression Analysis--Phosphorus

Station Lowest PRESS


*	06887500	Turbidity, Q
*	06889000	Turbidity, Q
*	06892350	Turbidity, Q, Water Temperature
*	06892440	Q, Turbidity
*	06892450	Water Temperature
*	07142575	Turbidity, Q, Water Temperature
*	07143672	Turbidity, Water Temperature
*	07144100	Turbidity
	07144601	Turbidity
	07144660	Turbidity
	07144680	Turbidity, Q, Water Temperature
	07144730	Turbidity, Q
*	07144780	Turbidity
	07144795	Turbidity, Q


Conclusions

- At 12 of 14 sites, nitrogen was more significantly correlated to turbidity than to streamflow
- At 13 of 14 sites, phosphorus was more significantly correlated to turbidity than to streamflow
- Very large differences between annual loads estimated with turbidity vs streamflow at some sites (especially those with altered flow conditions)
- Multiple regression analysis (turbidity and streamflow) should be considered for all sites

For more information on continuous monitoring in Kansas:

http://ks.water.usgs.gov/Kansas/rtqw/

