Issues related to the use of turbidity as a surrogate for suspended sediment

"The murkiness of turbidity measurements"

By
Andy Ziegler, USGS
Lawrence, Kansas

Rattlesnake Creek near Zenith, KS

Problems with conventional monitoring:

- Sampling of seasonal, diurnal, and event driven fluctuations are frequently missed
- Annual load estimates are based on a small finite number of samples with undefined uncertainty
- Relations used for loads are based on the only data available continuously--streamflow
- Techniques used differ among monitoring groups EDI/EWI vs. grab samples
- Costs (and time) of manual sampling and analysis for equivalent data

Do these data reflect your conceptual model of streamflow related to water quality?

Little Arkansas River near Halstead, Kansas July 28-31, 2000

Kansas River at DeSoto, Kansas

Rattlesnake Creek near Zenith, Kansas

Kansas River at DeSoto, Kansas

Little Arkansas River near Sedgwick, Kansas Fecal Coliform Densities, 2001

Issues with turbidity measurements as a surrogate

- Methods used for measurement
- Wavelengths of light used for measurement
- Detector orientation
- Standards used for calibration
- Grain size and color effects
- Reporting of data
- Future needs

Turbidity definition

- Decrease in the transparency of water due to the presence of suspended and some dissolved substances
- Operationally defined by method used and instrument configuration using nephelometry

Light through a solution with solids

Scattering of light by substances in water

From Brumberger and other "Light Scattering" Science and Technology, 1968 Reproduced from Sadar, 1998

Nephelometric Turbidity

Figure 4. In nephelometric measurement, turbidity is determined by the light scattered at an angle of 90° from the incident beam.

From Mike Sadar "Turbidity Science" 1998

Incident Light Wavelengths

ISO 7027 GLI Method 2

Comparison of Turbidity methods

- EPA 180.1- Drinking water <40 NTU
 - Tungsten lamp, 400-600 nm
 - Detector 90 +/- 30 degrees
- ISO 7027
 - Diffuse-Drinking water <40 FTU
 - Diode, 860 +/- 30 nm
 - Detector 90 +/- 2.5 degrees
 - Attenuated- streams and wastewater 40-4,000 FAU
 - Diode, 860 +/- 30 nm
 - Detector 90 +/- 2.5 degrees
- GLI Method 2- Drinking water <40 NTU
 - Two diodes, 860 +/- 30 nm
 - Two detectors each at 90 +/- 2.5 degrees

Detector orientations

From Mike Sadar, Turbidity Instrument Comparison HACH, 1999 Technical Information Series, 7063

ISO 7027

EPA 180.1

Calibration standards

- Primary Standards
 - Formazin polymers
 - Other synthetic polymer standards
- Secondary Standards
 - Synthetic polymers
 - · Blocks, cubes, filaments

Standards issues

- Stability of standards
- Safety of formazin
 — compounds used to make formazin are known carcinogens
- Inconsistent particle size ranges from 0.1 to 10 microns Papacosta (2002)
- Differing instrument responses for other polymers relative to formazin
- Instrument manufacturer guidelines need to be followed to have reproducible measurements

Grain size and color effects of grains

- Substantial negative bias possible with grain color and water color for EPA 180.1
- Negative bias for "black" colored sediments (Sutherland and others, 2001)
- Grain size and orientation all can affect the readings

Differences in measurements

- In stream ISO 7027 Turbidity

 → EPA 180.1 Turbidity
- EPA 180.1 Turbidity ISO 7027 in office

Comparison of OBS to In-stream ISO

Summary of comparison of instrument methods

- All methods measure a response to suspended material in the water that are qualitatively in agreement
- Readings from the different methods or meters generally differ by more than 10 percent
- All of the measurements are reported as NTU

Storage of data

- Not all "NTU" are equal.
- Storage of EPA 180.1, ISO 7027-diffuse, ISO 7027-attenuated, GLI Method 2, ratio mode measurements, and OBS measurements must be differentiated
- Method, instrument manufacturer and model, and calibration standards need to be stored with data for valid comparisons to be made

UK Monitoring Certification Scheme (MCERTS)

- Objectives
 - Clearly state for regulated industries its requirements
 - Improve the reliability of monitoring results
- Drafted for review January 7, 2002
- Includes proposals for turbidity, COD, DO, flow, NO₃, pH, samplers, TOC, TP, and NH₃
- Available at
- http:// <u>www.environment-</u>
 agency.gov.uk/business/mcerts/water/

Summary of proposed MCERTS requirements for turbidity

- Reported as FTU, 0-2,000 FTU
- Performance requirements including span, response time, flow rate, pressure, temperature, humidity, incident light, entrained gases limits
- Maintain at least 94 % up time in performance tests
- Environmental conformity and performance tests
- Upper range limits
- Maximum permissible error +/- 2 % in lab and +/- 4 % in field not exceeded in more than 10 % of pairs
- Maintainable with only monthly visits
- Uncertainty documented
- Effects of loss of power supply and reset defaults

Summary site test performance requirements

- Representative- range of expected values and pattern of variation documented
- Continuously operated for at least 12 weeks
- Safe access to the site
- Reference checks to formazin performed with 12 paired readings every 4 weeks at least 1 day apart and no more than 5 pairs in one week
- Maintain a log book of labor and equipment requirements

Immediate needs for turbidity as a surrogate

- Differentiate data storage from different methods and when instrument design is changed
- Document color effects of differing grain mineral compositions
- Develop a method/standard specifically designed and approved as an in-stream sediment surrogate
- Different meters and readings should be compared to each other and to SSC or other constituents of interest

Future needs for in-situ measurement of sediment and associated constituents

- Consider reporting data in units of beam attenuation coefficient (beam transmissometer) as suggested by Davies-Collies and Smith (2001)
- Measure concentrations from 1 to at least 5,000mg/L
- Sensitive to grain sizes from a couple microns to at least 2 millimeters
- Be deployable in stream under all conditions
- Have mechanical or other devices that minimize servicing
- Read all colored material equally
- Eliminate maximum problem or equip with autoranging
- Communicate the uncertainty of the measurements and estimated concentrations

