Appendix G

Standard Test Reporting Template

This template is recommended to compile the data necessary to check the performance of a NRU test. Additional data, (e.g., temperature, CO_2 , and humidity of incubators, or temperature of refrigerators, calibration of scales and pipettes, etc.), are not included since GLP laboratories usually record these in master records for the whole laboratory.

TEST SUBSTANCE								
Name	CAS-No. (if known)							
Laboratory Code	Molecular Weight (gram)							
Storage Conditions (tick_)	_ deep frozen room temperature							
	_ refrigerated dark							
Expiration date (if known)								
PREPARATION OF TEST SUBSTANCE								
Name of Solvent (if used)								
Percent Solvent (v/v) present in all wells								
Aids used to dissolve (tick _)	_ magnetic stirrer _ ultra-sonication							
	_ vortex	_ heating to °C						
pH (measured at highest test concentration)								
Was neutralization necessary? (tick _)	_NO	_ YES, with HC1		_ YES, with NaOH		Н		
Concentration series (specify in µg/ml)								
Concentration series (specify in µmol/ml)								
CELL LINE	<u> </u>	<u> </u>			<u> </u>			
Name:	Supplier:							
Total Passage No. (if known):	No. of Passages after Thawing:							
CELL CULTURE CONDITIONS								
Name of Medium:	Supplier:			Lot No.:				
Name of Serum:	Supplier:			Lot No.:				
Serum Concentration	During growth:%		During	During Exposure:%				

Appendix G: Standard Test Reporting Template

TEST ACCEPTANC	CE CRITERIA						
VC: mean absolu	te OD540 (specify	and _)	Mean OD =		_ ACCEPT	_REJECT	
VC: diff. betw. co	C: diff. betw. columns 2 and 11 (specify and _) Difference		=%	_ ACCEPT	_ REJECT		
PC: IC_{50} of concurrent SLS test (specify and _) $IC_{50} =$		IC ₅₀ =	µg /ml	_ ACCEPT	_ REJECT		
PC: specify where PC data are recorded:							
TEST RESULTS							
Chem. Conc. (µmol/ml)	OD540 MEAN " SD	Viabili MEAN	• • •	$eq:continuous_continuous$			
VC = ZERO C1 = C2 =		100					
C3 = C4 = C5 = C6 =							
C7 = C8 =				PREDICTED STA one step (factor 3.2) b Signature: Date:	elow LD ₅₀ =	UDP .mg/kg	