

Division of Labor at the Eukaryotic Replication Fork

Stephanie A. Nick McElhinny

Dmitry A. Gordenin, Carrie M. Stith, Peter M. J. Burgers,

Thomas A. Kunkel

DNA Replication Fidelity Group

Laboratory of Molecular Genetics Laboratory of Structural Biology National Institute of Environmental Health Sciences

Division of Labor at the Replication Fork

Pol δ and Pol ϵ are both required for replication

Division of Labor at the Replication Fork

What is the Division of Labor at the Fork?

Pol ε

What is the Division of Labor at the Fork?

How is Pol δ synthesis distributed between the leading and lagging strand during replication?

Strand Assignment of Pol δ During Replication

Approach:

Track the activity of Pol δ during replication in vivo

1. Identify leading and lagging strands during *in vivo* replication

2. Mark sites of Pol δ synthesis using a mutator allele

3. Assign mutator Pol δ to leading and/or lagging strand according to mutational bias

Identify Leading and Lagging Strands

Yeast Chromosome III Replication Origins

Identify Leading and Lagging Strands

Identify Leading and Lagging Strands

Mutator Pol δ to Mark Sites of Synthesis

L612M Pol δ

Nick McElhinny et al., JBC 2007

- 1. Wild-type catalytic activity
- 2. Intact exonuclease activity
- 3. Normal cell growth
- 4. Reduced fidelity in vitro
- 5. Mutator phenotype in vivo
- 6. Mutational bias

Pol active site Motif A

RB69	410	F	D	L	т	S	L	Y	Ρ	S	I	I	R	Q	v	N	424
S.cer $\boldsymbol{\alpha}$	863	М	D	F	N	S	L	Y	Ρ	S	I	I	Q	Е	F	N	877
S.cer δ	607	L	D	F	N	S	L	Y	Ρ	S	I	М	М	A	н	N	621
S.cer ϵ	639	V	D	v	A	S	М	Y	Р	N	I	М	т	т	N	R	653
S.cer ζ	974	L	D	F	Q	S	L	Y	Ρ	S	I	М	I	G	Y	N	988

L612M Pol δ Exhibits an Orientation Bias in Mutagenesis

Orientation Bias implies Strand Bias

Strand Assignment of Pol δ via Mutational Bias

28 T-dG : 1 A-dC

3

0

6

Pol & Primarily Replicates the Lagging Strand

Bias of Pol δ for Lagging Strand is not Limited to Hotspots

Pol & Primarily Replicates the Lagging Strand

Conclusions

Nearly equal division of labor at the eukaryotic replication fork

Pol δ primarily replicates the lagging strand template Pol ϵ primarily replicates the leading strand template

