

Spatial genome organization in the formation of translocations and in DNA repair

Tom Misteli, Ph.D.

Genomes exist in the cell nucleus

ะสyแyะyแyเyะสะะะะะะะะละและyเสyะสเyะเสyะเสyะเสyะเyเะสyเะสyเสะy

tgtaco gtgca aggco acaco ccgcta tggcta gagta actag gcgtc ctatgo gcggd actga cggat cttagt tgatgo

3 billion bp

10 um nucleus

2m DNA

5x10¹² cells/person 10¹³ m DNA/person

100x distance from Earth-Sun

ctagcta ctacgta gtgtgtg gtcagta ctatcgta tcatgad gtcatg catcatg tatatta agtcag ctagtco gctacgt aacgat cgatcga tacgato

The complex cell nucleus

ะสyแบบบูแบบบูเนี้ยงอาการและมีเลการเลการเลการเลการเลการ

cta acgta aaato cagta atcgta atgad tcatg itcatg atatta gtcag tagtco ctacgt acgat atcga cgate

Non-random spatial genome organization

Non-random spatial genome organization

Non-random gene positioning

Roix & Misteli, Nat Gen., 2003

Takizawa and Misteli, G&D, 2008

Non-random gene positioning

Roix & Misteli, Nat Gen., 2003

- Activity-dependent
- Cell type-specific
- Tissue-specific
- Evolutionarily conserved
- Differentiation
- Development
- Disease

Chromosome translocations

- Hallmark of cancer cells
 - Formation of fusion proteins
 - Gene misregulation
- Can be causal in tumor
- Form by illegitimate joining of broken chromosomes

Fundamentally a spatial problem: Translocations require physical interaction of partners

Spatial positioning of translocation partners

80% of lymphomas contain translocations involving combinations of 12/14/15

Liyanage et al., Blood, 2000

A cluster of chromosomes 12/14/15 in lymphocytes

Tissue-specific translocations and tissue-specific positions

Parada et al., Genome Biology, 2004

Proximity of translocation partners in Burkitt's lymphoma

 T(8;14)
 myc-lg(H) 85% of patients

 T(8;22)
 myc-lg(λ) 10% of patients

 T(8;2)
 myc-lg(κ) <5% of patients</th>

Roix et al., Nature Genetics, 2003

Proximity of translocation-prone partners

<u>Human</u>	
Burkitt's lymphoma	multiple partners
Chronic lymphocytic lymphoma	multiple partners
Chronic myeloid leukemia	BCR – ABL
Promyelocytic leukemia	PML – RAR
Papillary thyroid cancer	RET - H4
Ewing sarcoma	EWSR1 - FLI1
Anaplastic large cell lymphoma	multiple partners
<u>Mouse</u>	
Lymphoma	12:14:15
Hepatoma	5:6

Chromosome intermingling and tranlsocations

B. Interchromosomal network model

From Branco & Pombo, PLoS Biology, 2006

Mobility

Lisby et al., NCB, 2003 Aten et al., Science, 2004

Immobility

Nelms et al., Science, 1998 Kruhlak et al., JCB, 2005

yeast endonuclease I-Scel

TAGGGATAACAGGGTAAT ATCCCTATTGTCCCATTA

yeast endonuclease I-Scel

TAGGGATAACAGGGTAAT ATCCCTATTGTCCCATTA

Soutoglou et al., Nature Cell Bio., 2007

Rapid repair kinetics

Cutting (Ligation-mediated PCR)

Recruitment of repair factors

Soutoglou et al., Nature Cell Bio., 2007

DSB are positionally stable

Local separation of chromosome ends

Ku80 mediates chromosome end stability

wt

Ku80 kd

Soutoglou et al., Nature Cell Bio., 2007

Increased mobility in the absence of Ku80

Identification of a recurrent array translocation

Soutoglou et al., Nature Cell Bio., 2007

Proximity of array translocation partners

DSBs are immobile

Correlation between translocation frequency and spatial proximity

Non-random spatial arrangement of the genome is a significant determinant of translocations

Determinants of translocations: tissue-specific genomes

Determinants of translocations: gene expression

Mathas et al., PNAS, in press

Determinants of translocations: gene expression

Anaplastic large cell lymphoma

• patients with no translocations

Mathas et al., PNAS, in press

Yeast vs. mammalian

Yeast - mobility

Lisby et al., NCB, 2003 Nagai et al., Science, 2008 Kalocsay, Mol. Cell, 2009

Mammalian – immobility

Nelms et al., Science, 1998 Kruhlak et al., JCB, 2005 Soutoglou et al., NCB, 2007 but

Aten et al., Science, 2004 Dimitrova et al., Nature, 2009

Nature Reviews | Molecular Cell Biology

Soutoglou and Misteli, 2009 Nature Reviews Mol Cell Bio

DSB repair

Repair foci: cytological manifestations of DNA repair

What is the functional relevance of repair foci? How do they assemble? What is their structure?

Bringing repair factors to chromatin

DDR activation by tethering is ATM-dependent

Repair factor tethering leads to cell-cycle delays

Repair factor tethering leads to cell-cycle delays

Phosphorylation of Rb

Soutoglou and Misteli, Science, 2008

Activation of DDR does not require DNA lesions

Ligation-mediated PCR

-DNA damage is not required to assemble the repair machinery -DNA damage is not required to propogate/maintain DDR

Probing repair factor interplay

Interdependencies in repair factor recruitment

Downstream factors can recruit upstream components

Interdependencies in repair factor recruitment

Downstream, but not upstream, recruitment events are dependent on H2AX

Amplification and spreading of DDR via cyclical recruitment

Amplification of DDR signal Spreading of repair machinery

Spatial genome organization and genome stability

tttactctagtacgatgctagctacgtacgtcatgatc atcgatcgtagctagctagctagctagactacgcat

Global genome organization

- Effect of non-random organization
- Mechanisms of translocations

Local chromatin organization

- Assembly of the repair machinery
- Role of chromatin in assembly
- Effect of chromatin on repair signaling

Reini Luco Luis Parada Steve Mabon Bilbao, Spain Karen Meaburn Jeffrey Roix **Alexandre Mejat** Constellation Pharma Paola Scaffidi **Gianluca** Pegoraro Phil McQueen Sara Snyder NIH Evi Soutoglou (Strasbourg) Maria Jasin **Travis Dittmer** Sloan Kettering Vassillis Roukos Nicolas Rascovan Thomas Ried **Pilar Saladores** Andre Nussenzweig NIH Nard Kubben

