
Quenching of Singlet Oxygen by Double Fluorescent and Spin Sensors, Consisting of Fluorophore Moiety and Heterocyclic Amine Oxidizable to Stable Nitroxide

P. Bilski¹, K. Hideg², T. Kalai², and C.F. Chignell¹

¹Laboratory of Pharmacology & Chemistry, NIEHS, RTP, NC 27709, USA; ²Institute of Organic & Medicinal Chemistry, University of Pecs, H-7643 Pecs, P.O. Box 99, Hungary

Double fluorescent and spin sensors were recently used to detect transient oxidants *via* simultaneous fluorescence change and production of nitroxide observed by electron paramagnetic resonance spectrum. One such oxidant, singlet molecular oxygen $({}^{1}O_{2})$, was detected in thylakoid membrane using these probes. In the present study, we investigated the total (physical and chemical) quenching of ${}^{1}O_{2}$ phosphorescence by

sensors composed of either 2,5dihydro-2,2,5,5-tetramethyl-1*H*pyrrole or 2,2,6,6-tetramethylpiperidine attached to the xanthene or dansyl fluorophores. We found that the quenching rate constants

were in the range $(2-7)\times10^7$ M⁻¹s⁻¹ in acetonitrile or D₂O. Quenching of ¹O₂ is usually an additive process in which different functional groups may contribute to the quenching. We estimated that the ¹O₂ quenching by the amine fragments was *ca*. one to two orders of magnitude lower than that for the complete molecules. Our data suggests that the incorporation of a fluorescent chromophore induces an additional strong quenching of ¹O₂, which may in turn decrease the nitroxide yield *via* ¹O₂ path, and may affect quantitative interpretations. We hope that our results will contribute to a better characterization and wider use of these novel double sensors.