In Situ Chemical Reduction (ISCR)

Combined Remedies Workshop June 27-28, 2006; Tufts University

Richard A. Brown, Ph.D.; Maureen Leahy, Ph.D.

The Four Pillars of ISCR

- 1. Abiotic processes are frequently based on reduced metals
- 2. Abiotic pathways are different than biological pathways
- 3. Abiotic process are surface catalyzed
- 4. Abiotic processes can be enhanced by chemical reductants or biological reduction

Reduced Iron Minerals Active in Dechlorination

- Pyrite FeS,
- Marcasite FeS₂
- Green Rust [Fe²⁺₆Fe³⁺₂(OH)₁₈-4(H₂O)]
- Magnetite Fe³⁺₂Fe²⁺O₄
- Siderite FeCO₃
- Artificially Created
 - Steel Slag amended with Fe⁺²
 - Cement amended with Fe⁺²
 - Minerals treated with reductants

Reduction of TCE by FeS

W.O./Init./Date, 4

Products Formed

Biotic

W.O./Init./Date, 5

Abiotic Pathways

W.O./Init./Date, 6

ERM

Surface Catalysis

W.O./Init./Date, 7

Delivering sustainable solutions in a more competitive world

Scherer, Balko, & Tratnyek (1998) ACS Symp. Ser. No. 715

cathode

/ RX (sur)

RH

Solution

RX - RH (sur) (sur)

RX

(sur)

(sur)

(sur)

Enhancing Abiotic Reactions

Chemical Enhancements

- Increasing reduced iron ISRM
- Enhancing Reactivity
- Biological Enhancements
 - Synergy
 - Biogenic reduced minerals (FeS)

In Situ Redox Manipulation

Iron Chemistry:

 $6Fe^{+3} + S_2O_4^{=} + 4H_2O \rightarrow 6Fe^{+2} + 2SO_4^{=} + 8H^+$ Dechlorination:

ERM

In Situ Redox Manipulation

W.O./Init./Date, 10

Reduced Minerals can be Biogenic

Iron Reduction $3Fe_2O_3 + 2e^- + 2H^+ \rightarrow 2Fe_3O_4 + H_2O$

Sulfate Reduction $SO_4^{=} + 8H^{+} + 8e^{-} \rightarrow S^{=} + 4H_2O$ $4Fe_2O_3 + 9S^{=} + 16H^{+} \rightarrow 8FeS + SO_4^{=} + 8H_2O$

ERM

Conclusions

- Reduced iron minerals can effectively degrade chlorinated solvents including chloroethenes (PCE, TCE), chloroethanes (TCA, DCA) and chloromethanes (carbon tetrachloride),
- Reduced iron minerals react by generally the same pathways as ZVI to dechlorinate chlorinated solvents.
- A number of iron minerals such as pyrites, green rust (mixed Fe (II) and Fe (III) oxides and hydroxides), and magnetite are active reductants,
- Oxidized iron minerals can be reduced in situ by the application of a chemical reductant or by biological reduction generating active reduction zones.

Combinations with ISCR

- Spatially
 - ISCO→ISCR
 - BRD→ISCR
 - Thermal→ISCR
 - BRD→ISCR→MNA
 - ISCR→MNA
 - ZVI→ISCR→MNA

- Temporally
 - ISCO (Persulfate) → ISCR
 - BRD→ISCO
 - AS/SVE→ISCR

BRD = Biological Reductive Dechlorination

"If you only knew the power of the Dark Side!"

W.O./Init./Date, 14

