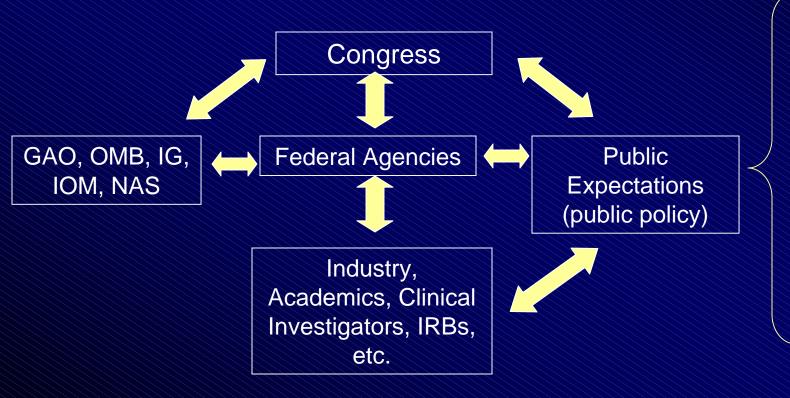
NIEHS Metabolic Profiling May 15, 2003 Research Triangle Park, NC

Metabolic Profiling: An FDA Perspective

James T. MacGregor, Ph.D., D.A.B.T FDA National Center for Toxicological Research Rockville, MD for Bernard A. Schwetz, D.V.M. Department of Health and Human Services

Some general issues


- The biotechnology revolution has greatly expanded our knowledge of cell and tissue biochemistry and function
- It is creating innovative products and therapies
 - Evaluation requires non-traditional approaches
- And providing opportunities for improved safety evaluation
- These changes may revolutionize our regulatory approaches

The Key Questions

Are we prepared for the challenges?

Will we capitalize on the opportunities?

Regulatory and Public Policy

patient groups consumer groups ethicists clinical study participants media biotech/pharma industry internet venture capitalists

FDA Policies and Authorities

Centers for:

- Drugs
- Food Safety & applied Nutrition
- > Devices & Radiological Health
- Biologics
- > Veterinary Medicines
- > Toxicological Research
- Regulatory Affairs-Inspectors & Field Labs
- Metabonomics will have applications in each area, but focus may differ

Potential Impacts of Profile Information

- Pharmaceuticals-strong current focus
- Foods and Nutrition-direct relationship to metabolic endpoints
- Individualization of medications and diet
- Metabolic profile may reflect genetic characteristics, disease, probable health outcomes
 - Major opportunities for improved health
 - Major societal and ethical considerations

Public Acceptance will be a Key Factor

Privacy issues are a major concern

- Insurability, family & interpersonal relationships, employability can all be affected
- Benefits will be weighed against privacy issues and individual desires to know, or not know, probable health outcomes
- FDA must structure regulations and guidances that balance these factors

Industry Acceptance will Depend on Government Approaches and Public Opinion

- Industry must have clear definition of regulatory consequences of alternative development approaches
 - > Their financial viability depends on it
 - FDA must provide clear guidance on regulatory applications of new scientific information
- Industry must respond to public perceptions
 - > Use of their products depends on it
 - Public participation in product development depends on it

Careful attention must be given to both science and public perception

Including terminology and language

- "Profiling", for example, may have a negative connotation--eliciting thoughts of:
 - racial profiling
 - religious profiling
 - socioeconomic profiling
- Regulatory implementation needs to include input from all "stakeholders", including the public
 - FDA Advisory Committee system provides for this
 - The "scientific" Advisory Committees need to provide a bridge between the science, the public, and regulatory implementation

To implement new technologies effectively:

Need to move all aspects simultaneously

- Scientific
- Societal
- > Legal
- Regulatory

The Role of FDA (1)

The FDA <u>Does</u> <u>Not</u>:

- regulate the practice of medicine
- direct the development of new technology
- set public policy

The Role of FDA (2)

- FDA can play a major role in implementing new approaches and technologies by:
- Providing forums for discussion among government, industry, academia, and the public
- Providing clear definition of regulatory requirements, expectations, and consequences
- Providing guidances on implementation and application

A specific opportunity

 Genomics, proteomics, and metabonomics technologies have the potential to revolutionize safety assessment

They provide the potential for:

- Molecular biomarkers that link laboratory studies to human outcomes ("bridging biomarkers")
- Simultaneous measurement of entire cellular classes of molecules ("-omics" technologies)
 - Can monitor complete biochemical pathways rather than single biomarkers

Current approach to safety evaluation

Treat for various durations and measure or observe:

- Behavior/appearance/body weight
- Clinical Chemistry
- Hematology
- Histopathological alterations
- Conduct special tests for:
 - reproduction & development
 - cancer
 - mutation
 - > neurotoxicology, immunotoxicology
 - ► etc.

Current practice: biomarker categories

 Cellular integrity (AST, ALT, AP, CPK, troponins, etc.)
 Function/homeostasis (BUN, creatinine, electrolytes, BSP, cell type, body & organ wts., etc.)
 Damage/stress-response (Morphology, cellular host defense responses, apoptosis markers)

Nonclinical Toxicological Practice

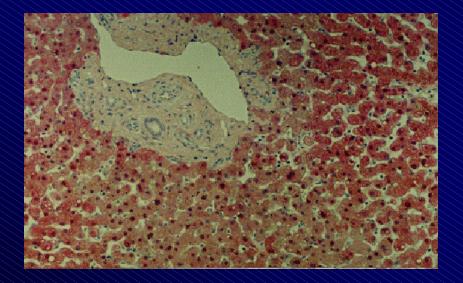
Major Limitation: Uncertainty of quantitative extrapolation from laboratory models to the human
 Major Opportunity: Bridging biomarkers that permit monitoring of functional pathways, damage, and damage-response in both humans and laboratory models
 Human markers must be minimally invasive

Opportunities for improved biomarkers

Cellular integrity Systematic i.d. of cell/tissue-specific markers Function/homeostasis Pathway monitoring (metabonomics, proteomics, expression arrays) Damage & damage-response Expression arrays & proteomics for discovery Knowledge-based: apoptosis signals; cyto- and chemokines

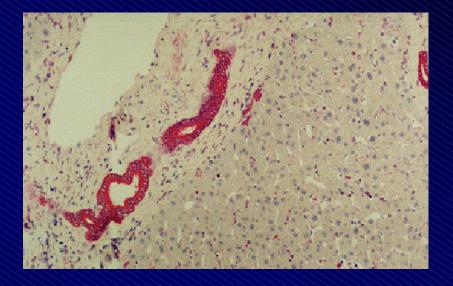
Biomarkers can be integrated with other technical advances

- "Humanized" laboratory models with human molecular targets
- Noninvasive pathology and functional monitoring via imaging of molecular biomarkers

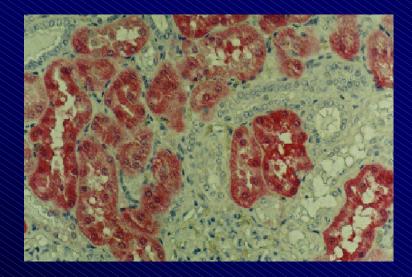

 Identification of genetic variations that modify sensitivity of humans to disease and treatments

Biomarkers of cell and tissue integrity: a "ripe" opportunity

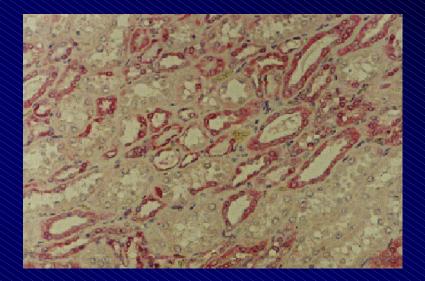
- Biomarkers of cellular integrity are an indispensable element of toxicological assessment and clinical practice
- Those markers developed in the 1950s have "stood the test of time"
- No systematic approach to identification & application of tissue-specific markers of integrity has yet been undertaken


Proteomic, metabonomic, & other new tools provide an exciting opportunity to undertake such a systematic approach

Immunohistochemical Localisation of GST Forms in The Liver


α GST in Hepatocytes

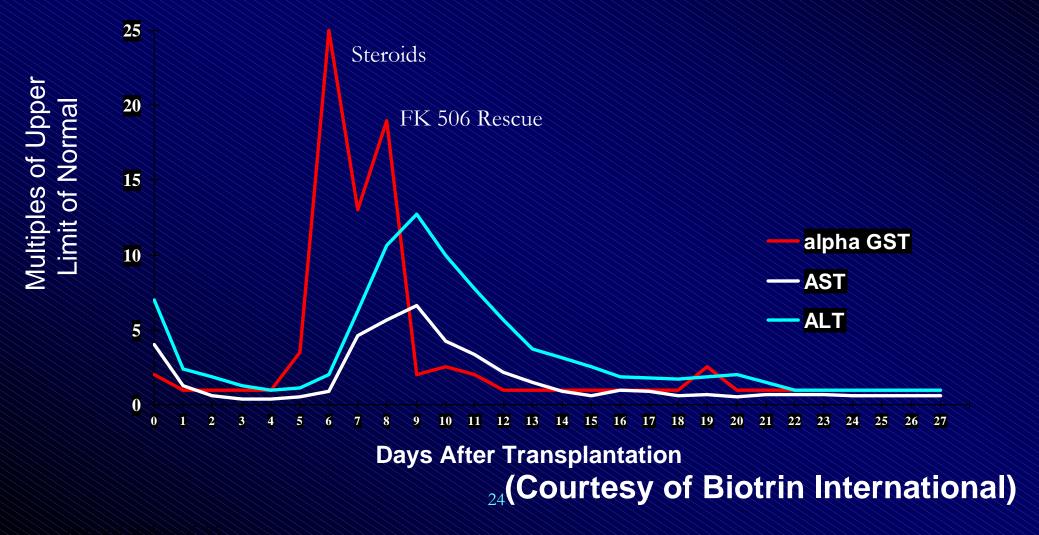
(Courtesy of Biotrin International)



π GST in Bile Duct Epithelium

Immunohistochemical Localisation of GST Isoforms In The Human Kidney

aGST in Proximal Tubules



 π GST in Distal Tubules

(Courtesy of Biotrin International)

Q: What makes an ideal biomarker? A: It depends on your application.

Alpha GST Levels During Acute Steroid-Resistant Rejection

Value of accessible cell- and tissue-markers of injury

- A set of markers, specific to key cell and tissue types, or characteristic of a particular mechanism of injury, could provide:
 - A minimally-invasive means to monitor cell and tissue damage in animals and in humans
 - A means to identify those tissues in which damage is occurring or has occurred
 - Information about mechanisms of injury
 - A marker of pathology that could be easily monitored as a function of time

How can we best develop and introduce new technologies?

Through collaboration on common-interest science among FDA, industry, & public (government) and private institutions
 CRADAs and collaborations
 ILSI Consortia: cancer bioassays, genomics
 JIFSAN, PQRI

 By allocating resources to foster innovation in regulatory science

Consortium approaches may be particularly useful for:

- Addressing sensitivity & specificity issues
- Quantitative correlations between biomarkers & pathology
- Comparative evaluation of biomarkers for same types of injury
- "omic" approaches to identification of appropriate markers for specific cell populations
- Validation & regulatory acceptance of suitable biomarkers 27

The Future

- Novel products and therapies that require specific regulatory evaluation
- "Bridging biomarkers" to monitor key damage responses in laboratory models and humans
- Reliable estimates of human risk from laboratory studies
 - Safer and better products
- Integrated studies of efficacy
- Identification of sensitive individuals
 Protection of sub-populations at risk of adverse reactions