MULTIVARIATE ANALYSIS OF METABONOMICS DATA

Chris Ambrozic Umetrics Inc. www.umetrics.com

Research & Development involves, among others:

- Ideas
- **Checking ideas**

 \leftarrow Creativity, Knowledge, Insight \leftarrow Experimentation, Measurements Analysis of Data and Interpretation

Modern instrumentation – spectrometers (NMR, X-Ray, MS, IR,) chromatography, EF, gene-arrays, ..., genes, proteins, cells, urine, blood,..... and samples, provide LOTS of data highly multidimensional (K > 1000)

Mega and Giga-variate

Pull out information from data, but not more, and not less

Software issues

- Software packages are an integral part of metabonomics analysis
- Integrated part of tools, not separate issue
- Subject to 21CFRpt 11& regulatory concerns
- Calculations must be understandable
- And science based
- Results must be interpretable
- And quantitative
- And reproducible

Metabonomics Analysis implementation needs the following:

- Planning & Organization
- Process knowledge what and where to measure
- Hardware
- Software
- Education & Training
 - operators
 - engineers & scientists
 - managers & executives
 - regulatory agencies (++)
 - academic community (- -)

Ex.1 Classification of rats (Sprague-Dawley) controls vs exposed to amiodarone or chloroquine using metabonomic profiling. (Data from Eriksson, Antti, Holmes and Johansson, Tox Met, 2003)

- N=28
- K=197
- G=3

Traditional analyses;

COST, cross-tab, t-tests, regression, *inadequate and misleading*. Why ?

Risk for *spurious results* when testing K times, e.g., for group differences, or for correlations

 $risk = 1-0.95^{K}$

K =	1	10	30	100
risk=	.05	.40	.79	.994

Basic Assumption: independent variables

–absurd when K > 10-20

- -spurious results when tested independently
- -information about complicated systems sits in *combinations* of variables !

COST approach does not give your research ideas a fair chance !

Data from complicated systems (David Botstein, 2002)

- Correlated patterns more robust than individual measurements
 - Look at all variables together
- Patterns based on ALL data
 - Look at all observations (samples, cases) together
- Importance ≠ Significance
 - Have separate criteria for importance and significance
- Open access to data \Rightarrow reanalysis
 - Desirable redundancy and reliability

1. Not one variable at a time (confusion, false positive) But, PCA of normalized data matrix (N=28 x K=197)

PC scores, $t_1 \& t_2 \& t_3$ (optimal summaries), show *some* separation.

Convincing, but....

2. A more efficient class separation by PLS-DA

PLS-DA scores, t₁ & t₂ & t₃ show a clear separation between the three classes Ctrl S_chlorquine S_amiodarone # 27 is out

27 is out, also in DModX (lower plot)

Why is # 27 an outlier ? Contribution Plot

2b. The PLS-weights $(w_1 \& w_2 \& w_3)$ indicate which variables that together separate the classes

Each point in the plot marks a **variable**.

Directions in score plot *correspond* to directions in weight plot (loading plot)

25 Largest Discriminant Coefficients s_c size ↔ importance; error bar ↔ significance

We need *tools and models* (simplifications); intuition is not a sufficient basis for data analysis.

"If our brains were simple enough for us to understand them, we'd be so simple that we couldn't."

Jack Cohen and Ian Stewart: The Collapse of Chaos.

Hofstadter, Wiener, Gödel, Schrödinger, Heisenberg, Bohr, ...

Postulate:This generalizes to all biological systemsConsequence:Our brains alone are not sufficient for the analysis
of these systems

Metabonomics, **xxx-omics**

- Each sample (tissue, blood, urine, cell,) is characterized by LOTS of data, typically 200 to 20000 numbers (variables, peaks, ...), *multivariate profiles, "finger prints"*
- No good theory how (and if) the profiles are related to the current question / problem
- The data contain patterns NOT related to the current question, and also various types of noise.
- Questions: Classification and/or *Quantitative relationships*
- One desires quantitative results including
 - dominating variables (peaks) in relation to questions
 - similarities / dissimilarities of samples.
 - estimates of signal /noise, etc., reliability, precision, ...
 - understandable displays

Tools: Multivariate analysis by means of projections (data often are noisy, collinear, and incomplete)

- Data shaped as a table, **X**
- Space with K axes (K-space)
 K = number of variables (col.s)
 Each obs. (process time point)
 is a point in this space
- Multivariate analysis

 finding structures in M-space
 describing them (math & stat)
 using them for problem solving
 and for predictions

Data tables X approximated (summarized) as: X = T P' + EColumns of $T \leftrightarrow$ score plot. Rows of $P' \leftrightarrow$ loading plot

UMETRICS

Projection methods (PCA, PLS,) apply to: (analysis & predictions)

- Data set overview
- Identification
- Classification & Discriminant Analysis
- Variation (PC ANOVA)
- Relationships
- Dynamics
- Cluster Analysis
- Visualization
- Parsimonious models
- Structure
- Expert Systems
- MV Design,

PCA PCA or PLS PCA Class or PLS-DA PCA + ANOVA**PLS** PLS, y=time, Batch PLS in PC or PLS scores T & P + color + connectsel-PLS Hierarchical models Scores + DModXDesign in scores

2. A more efficient class separation by PLS-DA

PLS-DA scores, t₁ & t₂ & t₃ show a clear separation between the three classes Ctrl S_chlorquine S_amiodarone # 27 is out

27 is out, also in DModX (lower plot)

(c) **PLS-DA** + permutation test

20 permutations 3 components

SIMCA-P+ 10.0 - 10/02/2002 05:12:55 A

Nature of Batch Data, e.g., individuals evolving with time

- The data structure is a 3-way matrix
- Batches can have different lengths
- Additional tables with (for each batch)

 initial conditions
 quality measurements
- Multivariate batch analysis models the dynamic correlation structure(s) in the 3-way data
- Participating variables (coefficients, confidence intervals)
- Predictions
- Plots

Control Charts of score 1 (t1) vs. time (chip production, IBM Burlington)

🛩 Batch Control Charts (Scores)

Can address maturity concerns, etc.

Why multivariate projections (PCA & PLS & extensions)

- Based on all data
- Dimensionality problem

 –can handle 1000's of variables
 –also K >> N
- Collinearities
- Missing data
- Noise in X and Y
- Models X, Y, and $X \Rightarrow Y$
- Graphical representation

 –score plots of X, Y, & X ⇒ Y
 –loading plots

The three basic applications

- Overview, Summary (PCA)
 –maps
 –trends, patterns, clusters
- Classification (Simca, PLS-DA)

 –resolution of classes
 –relevant variables
- Relationships $X \leftrightarrow Y$ (PLS) -interpretation
 - -predictions $x \rightarrow y$
 - –optimization, $y \rightarrow x$

Some recent developments in chemometrics

- Hierarchical models (H-PCA and H-PLS)
 - Variables divided into meaningful blocks, that are modelled separately
 - The block scores (optimal summaries) are used as new variables on a higher level in the hierarchical model
 - Facilitates interpretation, lets us deal with very many variables
 - Analogous to clustering but of variables instead of observations (cases, samples)
- Orthogonal signal correction in PLS (Wold et al., 1998)
 - Filtering X data from secondary variation that is unrelated to Y
 - OPLS, O2PLS; Trygg, 2001- 2002
- Multivariate Batch modeling
 - Dynamics of batches (beer brewing, fermentation, patient data over time)

The block scores are variables in the "super" model

Many variants:

- No Y's (hier PCA)
- Few Y's; (H-PLS) Y unblocked
- Few X's; (H-PLS) X unblocked
- Many X's and Y's X and Y blocked (H-PLS)

MVA in Metabonomics - Give your ideas a fair chance !

- Much Data, especially in numbers of variables
- Possibilities
 - Overview, Classification, Relationships, Variation, Dynamics, ...
- Types of results -- optimal summaries + deviations
 - Similarities, Dissimilarities between objects (samples, molecules, ...)
 - Relationships
 - Outliers
 - Variables related to these patterns
 - Feedback, Predictions
- The basis of Knowledge;
 - Representative cases (Design). Do NOT change one factor at a time
 - Informative variables (Insight).
 - Adequate Analysis (Not one thing at a time).
 - Understandable representation of results, relationships, etc. MODELS & PLOTS
- Conclusions what we can do, and what we can NOT do

Some references

- H.Martens and T.Naes. Multivariate Calibration. Wiley, N.Y., 1989.
- J.E. Jackson. A User's guide to principal components. Wiley, N.Y., 1991.
- L.Eriksson et al., Introduction to Multi and Megavariate Analysis, Umetrics 2000
- Nicholson, Holmes, Antti et al.
- WWW.umetrics.com
 - and links to
 Chemometrics Home Page,
 Rasmus Bro's reference base
 Umeå Univ. Chemometrics group
 NAmICS (N. Amer. Ch. Int. Chemom. Soc)
- Chemometrics and Intell. Lab. Syst. (Elsevier),
- J. Chemometrics (Wiley)
- J.Med.Chem, QSAR,
- QSAR society

One last comment:

CHAMPS: <u>CH</u>emometrics <u>Applied to M</u>etabonomics, <u>P</u>roteomics & <u>S</u>ysteomics, Sept 2004, Malmö, Sweden. More info: anna@chemsoc.se

The End

Thanks for your attention

