2005 Superfund Basic Research Program Annual Meeting

Chromate and Polycyclic Aromatic Hydrocarbon Interactions

(Transcriptional Repression by Chromium-Chromatin Interactions)

Alvaro Puga Department of Environmental Health University of Cincinnati

Why study mixtures of PAHs and metals?

As, Cr, B(a)P and PCBs are in USEPA top 20 hazardous substance priority list

9,727 Superfund sites with PAH contamination; 2,539 have also Cr; 2,274 have also As

1,200 sites in National Priority List; 40% have Cr/As and PAHs.

Is there enough time in the combined lifetimes Of <u>all</u> biological scientists to study <u>all</u> mixtures?

275 CERCLA compounds

37,675 binary combinations 3,428,425 ternary combinations 233,132,900 quaternary combinations

175,000 biological scientists (Latest NSF estimates)

To study complex mixtures we need a different experimental paradigm

For binary mixtures:

Cross-talking signaling pathways

How does one member of the mixture modify the effect of the other?

Ah Receptor-Dependent Transactivation and Target Gene Expression in the presence of Cr

Mouse Hepa-1 cells

Cr inhibits inducible gene expression

- Cr-DNA crosslinks
- Cr-DNA adducts

Zhitkovich (2005) Chem.Res.Tox. 18:3-11

- Disruption of transcriptional complexes
 - MT, PEPCK, but not actin

Hamilton et al (1989) Mol.Carcinog. 2:274-286

• Blocks binding of p300 to NFkB p65 Shumilla et al (1999) J.Biol.Chem. 274:36207-36212 Chromium Speciation and Distribution

• Transrepression of AHR-inducible Genes by Chromium

• Epigenetics of Chromium-Chromatin Interactions

Chromium speciation by HPLC/ICP-MS

Chromium distribution to nuclei and cytoplasm

⁵¹Cr Uptake

ICP-MS

As, Cd and Cr affect AHR-dependent gene expression differently in Hepa-1 cells

The effect of Chromium on AHR-dependent gene expression is transcriptional

Cr represses <u>only</u> inducible gene expression B[a]P-induced CYP1A1 mRNA in Human HepG2 cells

CYP1A1

BaP: Benzo[a]pyrene (5 μM, 8h) Cr: chromium (50 μM, 9h) Cr+BaP: Cr (50 μM, 1h) + BaP (5 μM, 8h) * *p<0.01 Vs DMSO,* + *p<0.01 Vs BaP*

CYP1A2

CYP1B1

Cr is less effective if added after AHR activation

Cr affects the expression profiles of BaP-induced genes

Treatment

Profiles of Other BaP-Induced Genes

Treatment

TCDD activates the AHR to a DNA-binding configuration in the presence of Cr

In the presence of Cr AHR binds to DNA but transcription is inhibited

Several co-regulators increase BaP-induced gene expression and their effect is blocked by Cr

Chromium interferes with co-activator recruitment and chromatin structure

ChIP for AHR and ARNT

ChIP for p300 and HDAC-1

Effect of Cr on AHR-inducible genes

Cr crosslinks HDAC-1 to the Cyp1a1 promoter in Hepa-1 cells

n=3

DNA demethylation by 5-azacytidine inhibits Cr effects

Effect of Cr on AHR-inducible genes

Conclusions and Questions

Cr inhibits *BaP inducible* gene expression by keeping HDAC-1 bound to chromatin and derailing methylation/demethylation patterns in promoters

Does chromium affect epigenetic imprinting?

How generalized is this mechanism?

Kathy Tepperman

Yu-Dan Wei

Ming-ya Huang

(R01 ES10807, P42 ES04908)

Michael Schnekenburger

GSH depletion or replenishment does not affect significantly inhibition by Cr of the expression of an AHR reporter