Nickel and Megasites

- Nickel compounds are major contaminants in many superfund sites
- Although Ni ions are required for certain enzymes in bacteria and plants (Ureases, Dehydrogenases), No known function in mammals.
- Certain Ni compounds that deliver Ni ions into cells, are potently carcinogenic (nasal, lung cancers etc at site of exposure)
- Additional toxicities include: contact dermititis, depression of lung function, and cardiovascular effects.

Effect of 24 hr exposure of A549 Cells to NiCl₂ On Cell Colony Formation

Cell Colony Formation After Ni Treatment

HIF-1 alpha protein levels at 5 hrs

Persistent Stabilization of HIF-1 alpha by NiCl₂

Lack of reversibility of Ni Inhibition of HIF hydroxylation

Requirement for Fe of PH2 (2ug protein)

Inhibition of HIF-PHD2 and HIF-PHD3 by NISO₄

Biochemical assay performed according to Oehme et al. (2004) Anal. Biochem. **330**, 74 - 80 6His-PHD3: expressed in insect cells, initially purified by incubation with DEAE-Sepharose MBP-PHD2: expressed in E. coli, purified by affinity chromatography with Amylose Resin MBP-PHD2: 2 µg 6His-PHD3: 20 ng (estimated) Measurements were performed in triplicate and are show as mean values ± SEM

Binding Constants of Metal Ions to Immidazole

Periodic Table

22212											ATT HER
12 0 2+ um	³ IIIB	4 IVB	۶ VB	6 VIB	7 VIIB		9 	10	11 IB	12 IIB	20 1.5 A
20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	(
3 2+ 1	44 955910 1 3 3+ Scandium	47.88 1.5 4+ Titanium	50.9415 1.6 5+ Vanadium	51.9961 1.6 3+ Chromium	54.93805 1.5 2+ Manganese	55.847 1.8 3+ Iron	58.9332 1.8 2+ Cobait	58.6934 1.8 2+ Nickel	63.546 1.9 2+ Copper	65.39 1.6 2+ Zinc	1.6
8	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru 44	Rh 45	Pd 46	Ag 47	Cd 48	
2+ M	88 90585 133+ Yttrium	91.224 1.4 4+ Zirconium	92.90638 1.6 5+ Niobium	95.94 1.8 6+ Molybdenum	98.9063 1.9 7+ Technetium	101.57 2.2 3+,4+ Ruthenium	102.9055 2.2 3+ Rhodium	106.42 2.2 2+ Palladium	107.8682 1.9 1+ Silver	112.411 1.7 2+ Cadmium	1.7
;6	La 57	Hf 72	Ta 73	W 74	Re 75	Os 76	lr 77	Pt 78	Au 79	Hg 80	and a second
7 2+ 1	138.9055 1.1 3+ Lanthanum	178.49 1.3 4+ Hafnium	180.9479 1.5 5+ Tantalum	183.85 1.7 6+ Tungsten	186.207 1.9 7+ Rhenium	190.2 2.2 4+ Osmium	192.22 2.2 4+ Iridium	195.08 2.2 4+ Platinum	196.96654 2.4 3+ Gold	200.59 1.9 2+ Mercury	2 1.{
38	Ac 89	Rf 104	Db 105	Sg 106	Bh 107	Hs 108	Mt 109	Uun 110	Uuu 111	Uu 112	
54	227.0278	261.11	262.11	263.12	262.12	264	266.1378	269	272	277	
2+ N	Actinium	- Rutherfordium	 Dubnium	- Seaborgium	 Bohrium	 Hassium	Meitnerium	Ununnilium	- Unununium	 Ununbium	

Summary of Findings

- Transformation of Chinese hamster primary embryo fibroblast by Nickel Compounds inactivated tumor suppressor gene by DNA Methylation (*Science* 251:796-799 (1991)
- Carcinogenic Nickel compounds Induce trangene silencing based upon the location of the trangene near Heterochromatin (mammalian cells) or a telomere silencing in yeast. (Lee et al MCB 15 2547 1995)

Structure of Nucleosome

Luger K et al. Nature, **389:**251

Blue: H3; green: H4; yellow: H2A; red: H2B

Histone Code Hypothesis:

Different combinations of histone modifications, especially located near or within a gene's promoter, may be VERY SPECIFIC to the transcriptional state of that gene.

Jenuwein and Allis, Science, August 2001.

Associated with active/accessible chromatin

- H3K9 Acetylated
- H3K14 Acetylated
- H3K4 (di-)Methylated
- H4 Acetylated

ADD IN DNA METHYLATION, AND THE TRANSCRIPTIONAL REGULATION OF A GENE CAN BECOME VERY COMPLEX!!!

Associated with inactive/condensed chromatin

- H3K9 Methylated
- H3K9 di-Methylated (inactive X-chromosome)
- H3K27 tri-Methylated (inactive X-chromosome)
- H3K9 tri-Methylated (pericentromeric heterochromatin)
- H3K27 mono-Methylated (pericentromeric heterochromatin)

Aim1

Fig.1A. Ni decreases histone acetylation in A549 cells.

<u>Aim1</u> Fig.1B. Ni decreases histone acetylation in other cell lines.

Exposure to TSA soft agar	reverted the ability	/ of Ni-transformed	cells to grow in
Ni-transformed clones	0 ng/ml TSA	5 ng/ml TSA	25 ng/ml TSA
1	100.0 ± 2.7	38.5 ± 5.2**	16.0 ± 1.3**

65.7 ± 11.0*

54.1 ± 6.9**

34.2 ± 1.4** 22.3 ± 0.3**

 100.0 ± 12.4

 100.0 ± 6.4

4	100.0 ± 13.0	48.7 ± 5.5**	36.5 ± 5.9**			
5	100.0 ± 0.85	33.3 ± 1.1**	21.6 ± 4.1**			
Note. One million	of the Ni-transfor	med cells were se	eded into flasks			
and exposed to 0, 2	5, or 25 ng/ml TS	A for 24 h. The 7	FSA containing			
medium was remov	ed and cells were	rinsed three times	with saline A.			
Fresh medium was added and the cells were allowed to grow to $\sim 80\%$						
confluence. The cult	ures were split and	l the cells were see	ded at a density			
of 1 million cells again. And cells were treated with TSA from a second						
time. After third round of TSA exposure, cells were allowed to repopulate						
the culture prior to test for the ability of anchorage-independent growth in						
soft agar. Results are expressed as a percentage of control (0 ng/ml TSA						
treatment group). Values are mean ± SE. Asterisk indicates significant						
differences from that	t of control.					

* *P* < 0.05. **P < 0.005, N = 3.

Table 1

2 3

Figure 4

a <u>3h</u> 6h 12h C Hy C Hy C Hy G9a

Di-Methyl H3K9

Coomassie

b

C Hy DFX DMOG

-	1000	State State	-
		Transfer to the second	00820208
- March State	protection of	AND COMPANY	Conception of the local division of the loca

a

Summary of the Effect of Ni compounds on G9a and H3K9 methylation

- Ni ions inhibited G9a activity and decreased its presence in the nucleus (see poster by H. Chen)
- We have been working on Fe, Oxoglutarate, ascorbic acid dependent H3K9 demethylase and 5methylctyosine- demethylase and have found these activities in crude cell extracts. Ni ions are effective inhibitors of these enzymes.
- These are new enzymes and further work on their identification, purification and characterization is required.

Gene Silencing

loss of demethylation

Fe in Triad KK(DorE)

H3K9 and 5mC demethylase

Ni+2

Fe loss and Ni substituted

Inhibition of Fe enzymes

Ackowledgements

Todd Davison Haobin Chen Karin Ke Thomas Kluz Konstatin Salnikow Qin Li Yan Yan

Randy Johnson Yoichi Shinkai