Plastics and Composites –

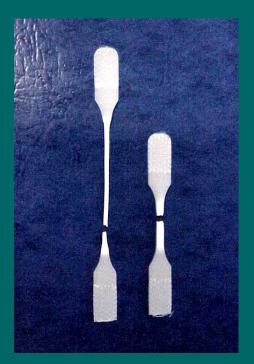
The Benefit of Industry-Accepted Testing and Modelling Goes Beyond Implementation

Dr. Jackie Rehkopf August 4, 2008

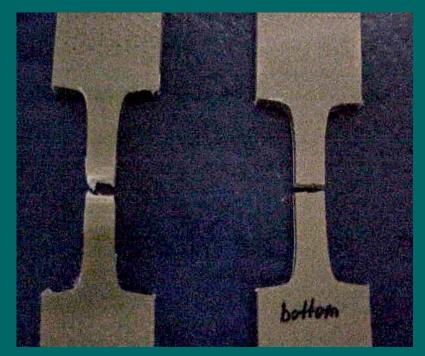
SAE High Strain Rate Plastics Consortium \Rightarrow SAE J2749

Public Perception of "New Materials" \Leftrightarrow Litigious Aspects

SAE High Strain Rate Consortium (HSRPC)


Who *	\Rightarrow	GM, Ford, Delphi, Visteon, BASF, Basell, Bayer, DOW, DSM, GE / LNP, LG Chem, Solvay
What	\Rightarrow	SAE Consortium : Cooperative Research Program → SAE Subcommittee
Why	\Rightarrow	To develop an industry standard for High Strain Rate Tensile Testing of Plastics
When	\Rightarrow	Formed in 2001 under impetus of UDRI (Principal Investigator)
How	\Rightarrow	Self-Funded by Membership Dues of <mark>\$10K + \$5K + \$5K</mark> and In-Kind Work

* Toyota paid initial \$10K but did not participate



Practical View of High Strain Rate Behaviour of Plastics

Energy – Absorbing TPO *left*: Slow rate, *righ*t: High rate

Cladding TPO *left*: Slow rate, *right*: High rate

High Strain Rate Tensile Testing

- Why: $\sigma \epsilon$ behavior at rates appropriate for the application
- How: Conditions of Quasi-Uniform Stress/Strain in Gauge Section - High Accuracy Measurement of Load and Strain
 - Strain Rates 1 s⁻¹ 500 s⁻¹
 - Possible Testing Temperature Range –40°C to +120°C
- **For:** Direct input for Finite Element Modeling
 - Material Development (Modulus, Strength, Ductility)

HSRPC Credentials

Members are involved with:

- ESIS (European Society on Integrity of Structures), whose Technical Committee 5 is generating high rate standards
- IISI (International Iron and Steel Institute) High Strain Rate Experts Group
- A/SP (Automotive Steel Partnership) High Rate Characterization Team
- USCAR ACC (Automotive Composites Consortium) Crash Energy Management Group
- Initiatives by DOT/Volpe on safety of PCIV (plastics and composites intensive vehicles)
- Initiatives by the Plastics Division of the ACC (American Chemistry Council) on automotive safety and plastics

6

Conducting Valid High Rate Tests Aspects to Address

- Initial loading
- "Constant" velocity
- System frequency
- Measurement System
- Time lag
- Filtering
- Specimen Geometry

Summary of HSRPC Work

 UDRI developed Recommended Practice based on tests done by them and member labs

Round Robin conducted on 5 materials:
HDPE, PC/ABS, TPO, LGFR-PP, GFR-Nylon

Testing split in two phases:

- Load Measurement (12 labs) completed 2005
- Strain Measurement (4 labs) completed 2006-2007

Final Product

SAE J-2749 Recommended Practice "High Strain Rate Tensile Testing of Polymers"

- load measurement protocol and strain measurement discussion

Formal Ballot by SAE Plastics Comm	May 2008	
Comments Addressed		May 2008
2 nd Phase Ballot by SAE	expected	Aug. 2008

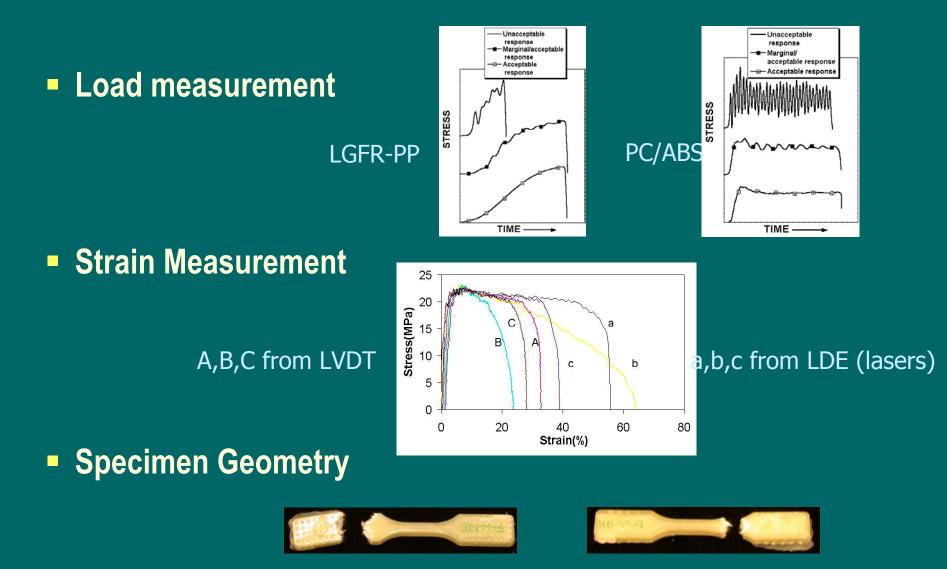
Potential Adaption to a Global Standard

Discussions with ASTM D20 Plastics Committee

E^xponent

Differences Between SAE J-2749 and ISO 18872

SAE J-2749 High Strain Rate Tensile Testing of Polymers


- For testing at strain rates between 0.001 S⁻¹ 1,000 S⁻¹
- Use ASTM D638 or ISO 527-2 for rates ≤ 0.01 S⁻¹
- Detailed guidance on conducting good tests speed variation tolerance, specimen gauge, grips, damping, time shift, measurement requirements, "quasi-homogeneous" stress and strain field, acceptable failure
- Use same specimen geometry and test procedures across all tested rates
- Precision Statistics

ISO 18872 Plastics – Determination of tensile properties at high strain rates

- Use ISO 527-2 to determine tensile stress-strain curves at speeds 0.1-100 mm/s
- Measure variation of Poisson's ratio with strain
- Recommend long specimen gauge for strains below yield, short gauge for strains above yield
- **Calculate** true stress and true plastic strain at each rate
- Mathematically <u>model</u> stress-plastic strain curve
- Model / Extrapolate to higher strain rates 2 decades faster than measurement rate
- Precision is mentioned but not addressed

Current Issues for Standard

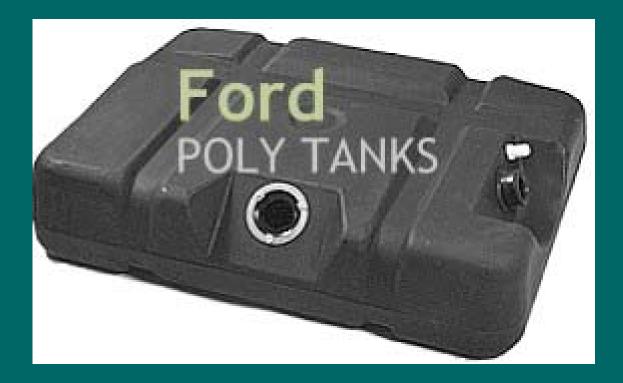
Need for Standards / Industry-Accepted Methods

Implementation of Plastics/Composites

- Appropriate Material Selection
- Robust Product Design

Beyond Implementation & Towards Failure Analysis

- Public Perception of Material Integrity
- Litigious Aspects



Beyond Implementation & Towards Failure Analysis Examples

Coextruded 6-Layer Plastic Fuel Tank vs Traditional Steel Tank

New 6m, -40C drop test added for plastic tanks

Beyond Implementation & Towards Failure Analysis Examples

Laminated Glass -Saflex ®

2007 Ford Focus Carbon Fibre Decklid

2007 Opel Zafira Composite Roof



2008 Nissan Murano Composite Liftgate

Beyond Implementation & Towards Failure Analysis Examples

 $E^{x}(40)$