

Factor of Two: Halving the Fuel Consumption of New U.S. Automobiles by 2035

Lynette Cheah, Christopher Evans, Anup Bandivadekar, John Heywood Sloan Automotive Laboratory, Massachusetts Institute of Technology (MIT) Safety Characterization of Future PCIVs workshop, Aug 4, 2008

How can we halve fuel consumption?

Available technical options

Emphasis on reducing fuel consumption Market penetration of alternative powertrains

Additional weight reduction

1. Increase emphasis on reducing fuel consumption (ERFC)

2. Alternative, more efficient powertrains

Data source: Kasseris and Heywood, 2007

- Current market share of alternative powertrains < 5%
- Assume market share of alternative powertrains can go up to 85% by 2035 5

3. Vehicle weight reduction

 Assume up to 35% weight reduction can be achieved, through a combination of lightweight material substitution, vehicle redesign, and downsizing.

6

Results: Illustrative scenarios

Scenario	INPUTS			OUTPUTS (vehicle characteristics)						
	Degree of each option			2035 average new car			2035 average new light truck			
	% ERFC	% alternative powertrain	% weight reduction from today	0-60 mph acc. time	Fuel consump tion , L/100km	Vehicle weight	0-60 mph acc. time	Fuel consumpti on, L/100km	Vehicle weight	
2006 values		5%		9.5s	9.6	1,616 kg	9.9s	12.8	2,137 kg	
I	100%	34%	35%	9.4s	4.8	1,054 kg	9.8s	6.4	1,394 kg	
II	96%	85%	19%	9.2s	4.8	1,318 kg	9.6s	6.4	1,743 kg	
III	61%	85%	35%	7.6s	4.9	1,060 kg	8.4s	6.3	1,402 kg	

Historical trend

Use of lighter-weight materials in vehicles increasing

Material use in an average car

Material composition of a new car after lightweight material substitution

9

From literature

Cost of material substitution depends on many factors

Lightweight vehicle / component	Incremental OEM cost	Weight reduction	US\$ per kg reduction	Volume per yr	Source							
General lightweight vehicle	-	-	2.20 to 3.70	-	NRC 2002							
High strength steel (HSS)-intensive												
Front end	-\$13	11 kg	-1.20	-	Roth 2006							
SUV frame	-	(-23%)	0.68	220,000	Altair 2003							
Body-in-white	-\$32-52	52-67 kg	-1.00 to -0.47	225,000	Shaw 2002							
Aluminum-intensive												
Vehicle	\$661	346 kg	1.91	200,000	Stodolsky 1995							
Unibody	\$537	138 kg	3.88	500,000	Han 1994							
Polymer composites-intensive												
Body (glass fiber reinforced)	\$400	127 kg	3.16	100,000	Kang 1998							
Body (glass fiber-thermoset)	\$930	68 kg	13.68	250,000	Dieffenbach '96							
Body (carbon fiber reinforced)	-	-	2.20 to 8.82	-	Das 2001							
Body (carbon fiber reinforced)	\$900	196 kg	4.59	100,000	Kang 1998							
Body (carbon fiber-thermoset)	\$728	114 kg	6.39	100,000	Mascarin 1995							
Vehicle (carbon fiber)	\$2,926	444 kg	6.59	200,000	Stodolsky 1995							
Body (carbon fiber-thermoplastic)	\$1,140	145 kg	7.86	250,000	Dieffenbach '96							

Vehicle sales distribution before and after downsizing

Safety concerns

- Lighter vehicles can be designed to be safe
 - Reinforce the structural stiffness of the vehicle at critical points, side airbags, crumple zones
- Societal vs. individual safety
 - A heavier vehicle poses less risk to its occupants
 - A lighter vehicle poses less risk to other road users

4/5 stars, like many family-sized cars in European NCAP

4/5 stars in US NHTSA crash and rollover ratings

Questions?

Report available at:

http://web.mit.edu/sloan-auto-lab/ research/beforeh2