# **Oxalate Transport: Intestine**

### Marguerite Hatch, Michael L. Green, and Robert W. Freel

Department of Pathology, College of Medicine University of Florida, Gainesville, FL

#### **Intestinal Oxalate Transport**

- Role of Oxalobacter sp.
- Oxalate transport studies
- Expression profiles for "candidate" transporters

Potential Role for Oxalobacter in the Intestinal Handling of Oxalate

- Oxalobacter may reduce intestinal absorption of oxalate by utilizing dietary sources of oxalate.
- Oxalobacter may derive oxalate from systemic sources, possibly by initiating or enhancing intestinal oxalate secretion.



# Colonic Oxalate Transport in Hyperoxaluric CRF Rats Treated with Placebo or Encapsulated Oxalobacter Lysate



- Simultaneous treatment with 0.75% Et. Gly. in the drinking water and capsules, for 5 days, BID.
- Urinary oxalate is reduced 50% (102 ± 11 to 57 ± 8 µmol/24 h).
- Oxalobacter lysate treatment induced local oxalate secretion in the distal colon.

# Recommendations and Directions for Future Investigations in 2000

- A laboratory rat that is naturally colonized with Oxalobacter is required.
- Factors involved in initiating and sustaining colonization with Oxalobacter should be elucidated.
- Definitive studies in animals are warranted to address the physiological interactions between Oxalobacter and the gut mucosa.
- Further investigations specifically directed at exploiting enteric secretory pathways for oxalate will most likely reveal the potential for alternative therapeutic approaches in reducing the burden of urinary oxalate excretion.

# Colonic Oxalate Transport in Naturally Colonized Rats with Normal Renal Function



•Rats were colonized or not-colonized from birth by rearing with colonized (gavaged with OxWR) or noncolonized mother.

•Urinary oxalate was significantly lower in colonized rats ( $5.3 \pm$ 0.5 µmol/24 hours) *vs.* rats not colonized (8.3  $\pm$  0.8 µmol/24 hours).

# Rationale for studies on intestinal oxalate secretion

Our working hypothesis is that by maximizing enteric elimination of oxalate, the burden of oxalate excretion *via* the kidneys will be reduced and consequently the risk of hyperoxaluria, oxalosis and kidney failure may be mitigated.

### Oxalate transport studies in Animal Models of Hyperoxaluria

- Experimental evidence in support of adaptive enteric oxalate excretion in rats with Chronic Renal Failure (CRF) and in oxalate-loaded rats.
- Identified ANG II-mediated oxalate secretory pathways in CRF with/without hyperoxaluria
- In oxalate-loaded rats with normal renal function, adaptive enteric oxalate excretion appears to be largely independent of ANG II mediation.

## Heterogeneity in Oxalate Handling in Rat Intestine



• Various proteins have been implicated in transepithelial oxalate and include those coded by genes of the SO<sub>4</sub>-Anion (slc26 family), AE series, and even poorly selective anion channels.

• Can the expression patterns of genes encoding these putative oxalate transporters help explain segmental heterogeneity and provide a basis for understanding the nature of the adaptive processes attendant with oxalate diseases?

### mRNA Expression Patterns along the Rat Intestinal Tract



## SAT-1 mRNA Expression in Rat Kidney and Intestine



### Acknowledgements

Milton Allison, Iowa State University Janet G. Cornelius, University of Florida Ammon B. Peck, University of Florida Harmeet Sidhu, Ixion Biotechnology, FL

Hatch Lab: Anastasia Harris, Candi Morris, and Bonnie Murphey

Supported by grants from OHF and NIH (DK56245, DK55944)