AGT Mutations and Population Genetics of AGT Polymorphisms

Marion Coulter-Mackie

Department of Pediatrics University of British Columbia Vancouver, British Columbia Canada

Oxalosis and Hyperoxaluria, Annapolis, MD

November 20-21, 2003

MAP OF MUTATIONS IDENTIFIED:

10 kb deletion

5 kb deletion

Minor allele markers

Major allele mutations

Major/minor uncertain

Missense mutation

Minor allele mutations

Mutation in Hong Kong Chinese PH1

Deletion exon 6/intron 6 junction

A g NNNAG/gtaagt co

consensus splice sequence

GCCAA/gtgagtgaccca

normal AGT exon6/intron6

GCCGA/gtgaccca

Hong Kong Chinese PH1

Common Major Allele Mutation

156insC
9 10 11 12 13
thr pro pro lys ala
ACC CCC CCC AAG GCC
↓
ACC CCC CCC CAA GGC
thr pro pro gln gly

Frameshift Exon 1

ETHNIC BACKGROUNDS OF PH1 CASES WITH 156INSC

First discovered:

Italian* Croatian**

13%3 alleles in 2 patients

My findings: American Black 1 heterozygote

South African Indian 1 homozygote

Caucasian 6 heterozygotes

1 homozygote

*Pirulli et al Hum Genet 104:523, 1999 **Milosevic et al Pediatr Nephrol 17: 896, 2002

ALLELE FREQUENCIES OF PH1 MUTATIONS

	156insC	Gly170Arg		
PH1 alleles	12.5%	35%		
PH1 Major alleles	28%	0		
PH1 Minor alleles	0	70%		
PH1 patients	18.9%	56.8%		

BLACK AFRICAN MUTATIONS

Ala112Asp deleterious mutation

 $GCC \rightarrow GAC$ exon 2

Val326llepolymorphism (3% Blacks)GTA \rightarrow ATAexon 10

Intron 1 74 bp insertion Mi^A vs Mi

Haplotype of African Variant

ALLELE FREQUENCIES:

*Danpure et al. Hum Gen 94:55 (1994)

IMPLICATIONS-1

1. Should not rely on the presence of an intron 1 duplication as the sole indicator of a minor allele if the ethnic background of the patient is Black or unknown.

2. Low frequency of Mi in South Africa suggests that mis-targeting is unlikely to be the most common phenotype in Black Africans with PH1.

IMPLICATIONS-2

3. The Mi^A haplotype may be found in Blacks throughout southern Africa and worldwide in descendents of emigrants from these areas.

IMPLICATIONS -3

4. Evolution of the minor allele?

Is the Mi^A a predecessor of Mi?

Has the duplication event occurred more than once?

SUMMARY

1. Aside from a few common mutations, the mutations causing PH1 are heterogeneous.

2. The most common Ma mutation, 156insC, has been found in a variety of ethnic groups including American Blacks and South African Indians.

3. A deletion in the exon 6/intron 6 junction may be associated with Hong Kong Chinese PH1 patients.

SUMMARY -2

4. A missense mutation, A112D, and a normal polymorphism, V326I found in 2 patients from South Africa and Botswana may be specific to this ethnic group.

5. An African variant haplotype, designated Mi^A was linked to A112D and V326I and was found at 12% in the normal Black population of South Africa.

Contributors:

Derek ApplegarthVancouver, British Columbia, CanadaJennifer TooneVancouver, British Columbia, CanadaAndrew TungVancouver, British Columbia, CanadaHoward HendersonCape Town, South AfricaGillian RumsbyLondon, England

Funding: Garrod Association of Canada Hospital for Sick Children Foundation

Frequencies of Mutant Alleles (37 PH1 patients)

	Ма	Mi	G170R	F152I	1244T	156insC
# alleles	32	37	26	5	2	9
# patients	25	27	21	5	1	7
# homozygotes	8	10	5	0	1	2
% patients	67.6	73.0	56.8	13.5	2.7	18.9
Allele frequency	43.2	50	35.1	6.8	2.7	12.1
(published values)	50-60	40-50	30	4	9	13

EFFECTS OF MUTATIONS ON AGT ACTIVITY

AGT expression construct

A MUTATION THAT RESULTS IN NO TARGETING

FRAMESHIFT MUTATION IN EXON 11

GTG GAC CGC GTG ACG GAG GCC... V D R V T E A GTG GAC CGT GAC GGA GGC... V D R D G G

normal ...VDRVTEALRAALQHCPKKKLstop

frameshift ...VDRDGGPEGGPAALPQEEAVTCPLAHSWHWHTPVPCPPstop