§98.25–30 Lagging.

(a) Lagged tanks shall be covered with an incombustible insulation material of a thickness to provide a thermal conductance of not more than 0.075 B.t.u. per square foot per degree F. differential in temperature per hour. The insulating material shall be of an approved type complying with the requirements of subpart 164.009 of subchapter Q (Specifications) of this chapter, and shall be given a vapor proof coating with fire retardant material acceptable to the Commandant. Tanks exposed to the weather shall have the insulation and vapor proof coating covered with a removable sheet metal jacket of not less than 0.083 inch thickness and flashed around all openings so as to be weather tight. Materials other than sheet metal may be used to cover the insulation and vapor proof coating when specifically authorized by the Commandant.

(b) Where unlagged tanks are installed in insulated holds or insulated 'tween deck spaces, such tanks shall be considered lagged provided the thermal conductance of the insulation is not less than that required by paragraph (a) of this section.

§98.25–35 Refrigerated systems.

(a) Where refrigerated systems are installed to maintain the temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically regulated by pressure variations within the tanks shall be provided, each to be complete with the necessary auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient to maintain the vapor pressure in the tanks during the peak atmospheric temperature conditions below the pressure for which the tanks are designed.

(b) An alternate arrangement may consist of three compressors, any two of which shall be capable of maintaining the vapor pressure in the tanks during peak atmospheric temperature conditions below the pressure for which the tanks are designed, the third compressor acting as a stand-by unit.

(c) Refrigerated tanks shall be insulated in conformance with the requirements of §98.25–30.

46 CFR Ch. I (10–1–02 Edition)

§98.25–40 Valves, fittings, and accessories.

(a) All valves, flanges, fittings and accessory equipment shall be of a type suitable for use with anhydrous ammonia and shall be made of steel, or malleable or nodular iron meeting the requirements of §56.60-1 of subchapter F (Marine Engineering) of this chapter. Valves shall be fitted with noncorrosive material suitable for ammonia service. Valves, flanges, and pipe fittings shall be of the square or round tongue and groove type or raised-face, United States of America Standard 300pound standard minimum, fitted with suitable soft gasket material. Welded fittings shall be used wherever possible and the number of pipe joints shall be held to a minimum. Screwed joints are not permitted for pipe diameters exceeding 2 inches. Nonferrous materials, such as copper, copper alloys and aluminum alloys, shall not be used in the construction of valves, fittings or accessory equipment. Brazed joints are prohibited.

(b) Each tank shall be provided with the necessary fill and discharge liquid and vapor shut-off valves, safety relief valves, liquid level gaging devices, thermometer well and pressure gage, and shall be provided with suitable access for convenient operation. Connections to tanks installed below the weather deck shall be made to a trunk or dome extending above the weather deck. Connections to the tanks shall be protected against mechanical damage and tampering. Other openings in the tanks, except as specifically permitted by this part, are prohibited.

(c) All connections to the tanks, except safety devices and liquid level gaging devices, shall have manually operated shut-off valves located as close to the tank as possible.

(d) Excess flow valves where required by this section shall close automatically at the rated flow of vapor or liquid as specified by the manufacturer. The piping, including valves, fittings and appurtenances, protected by an excess flow valve, shall have a greater capacity than the rated flow of the excess flow valve.

(e) Liquid level gaging devices which are so constructed that outward flow of tank contents shall not exceed that

Coast Guard, DOT

passed by a No. 54 drill size opening, need not be equipped with excess flow valves.

(f) Pressure gage connections need not be equipped with excess flow valves if the openings are not larger than No. 54 drill size.

(g) Excess flow valves may be designed with a bypass, not to exceed a No. 60 drill size opening, to allow equalization of pressure.

(h) Prior to disconnecting shore lines, the pressure in the liquid and vapor lines shall be relieved through suitable valves installed at the loading header.

(i) Relief valves shall be fitted in liquid lines which may be subject to excessive pressure caused by liquid full condition, and the escape from the relief valves shall be piped to the venting system.

(j) The pressure gage shall be located at the highest practical point. The thermometer well shall terminate in the liquid space and be attached to the shell by welding with the end of the fitting being provided with a gas-tight screwed plug or bolted cover.

[CGFR 65-50, 30 FR 17022, Dec. 30, 1965, as amended by CGFR 68-82, 33 FR 18902, Dec. 18, 1968; CGFR 70-10, 35 FR 3712, Feb. 25, 1970]

§98.25–45 Liquid level gaging device.

(a) Each tank shall be fitted with a liquid level gaging device of suitable design to indicate the maximum level to which the tank may be filled with liquid at temperatures between 20° F. and 130° F.

(b) Liquid level gaging devices shall be of the following types: magnetic, rotary tube, slip tube, fixed tube, automatic float, or other types acceptable to the Commandant.

(c) Gaging devices that require bleeding of the product to the atmosphere, such as rotary tube, fixed tube, and slip tube, shall be so designed that the bleed valve maximum opening is not larger than a No. 54 drill size, unless provided with an excess flow valve.

(d) Gaging devices shall have a design pressure of at least 250 pounds per square inch.

(e) Gage glasses of the columnar type are prohibited.

§98.25–50 Filling and discharge pipes.

(a) Filling connections shall be provided with one of the following:

(1) Combination back pressure check valve and excess flow valve;

(2) One double or two single back pressure check valves; or

(3) A positive shut-off valve in conjunction with either an internal back pressure check valve or an internal excess flow valve.

(b) All other liquid and vapor connections to tanks, except filling connections, safety relief valves, and liquid level gaging devices and pressure gages described in \$98.25-40(e) and (f) shall be equipped with automatic excess flow valves; or in lieu thereof, may be fitted with quick closing internal stop valves, which, except during filling and discharge operations, shall remain closed. The control mechanism for such valves shall be provided with a secondary remote control of a type acceptable to the Commandant.

(c) The excess flow, internal stop or back pressure check valves shall be located on the inside of the tank or outside where the piping enters the tank. In the latter case, installation shall be made in such a manner that any undue strain will not cause breakage between the tank and the excess flow or internal stop valve.

(d) Where the filling and discharge are made through a common nozzle at the tank, and the connection is fitted with a quick-closing internal stop valve as permitted in paragraph (b) of this section, the back pressure check valve or excess flow valve is not required, provided, however, a positive shut-off valve is installed in conjunction with the internal stop valve.

[CGFR 65-50, 30 FR 17022, Dec. 30, 1965, as amended by CGFR 70-10, 35 FR 3712, Feb. 25, 1970]

§98.25–55 Cargo piping.

(a) Piping shall be of seamless steel meeting the requirements of §56.60–1 of subchapter F (Marine Engineering) of this chapter. The piping shall be of not less than Schedule 40 thickness. In case of piping on the discharge side of the liquid pumps or vapor compressors, the design shall be for a pressure of not less than the pump or compressor relief