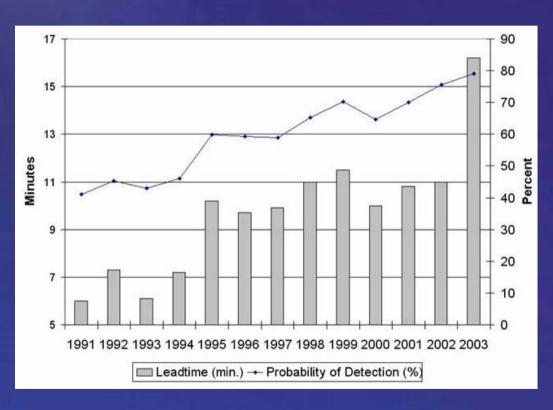
Tornado Detection Capabilities and Limitations*

April 2004 Media Workshop

David Craft

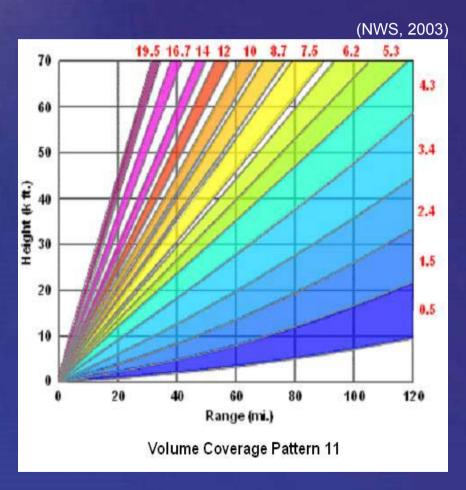
Weather Forecaster


*This briefing covers the major limitations common to all Doppler weather radars

Overview

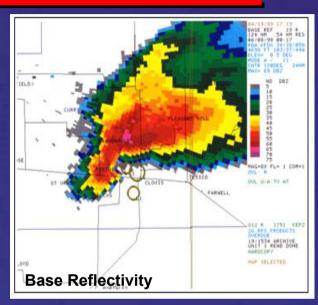
- Background
- Doppler Radar Limitations
- Examples
- Other Tornado Detection Capabilities
- Prepare & React Appropriately
- Bottom Line
- References

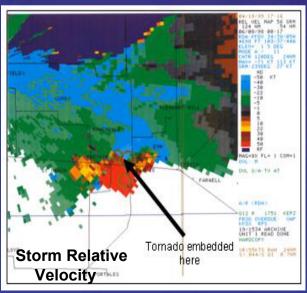
National Average Lead Times & Probability of Detection


- WSR-88D network installed early 1990s
 - Doppler technology
 - Greater sensitivity
 - Improved volume scanning & computer processing
- Training advancements
 - Improved local training on Doppler radars & storm structure/evolution
 - Four-week course in residence

Significant improvement in the last 10 years

Weather Radar Basics


- Doppler radars obtain data by:
 - Transmitting electromagnetic energy in brief pulses at specific angles
 - Energy returns from precipitation, cloud droplets, mountains, etc.
 - Doppler measures strength of return and the component of object motion toward and away from the radar



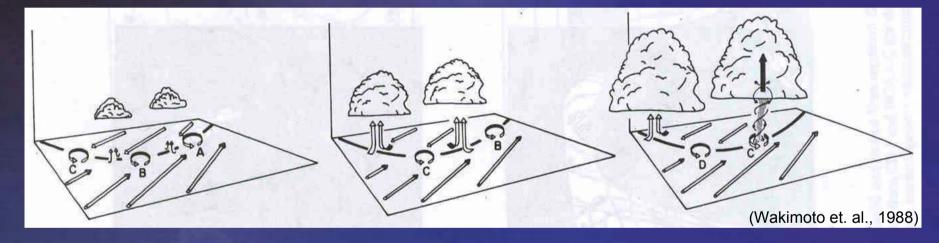
Angles used by the WSR-88D

Weather Radar Basics

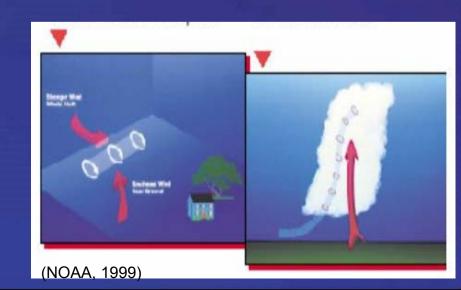
- Technically, radar shows larger shear zones, not the actual tornado
- Base reflectivity shows hook echo due to precipitation thrown out of/around rotating updraft core
- Storm relative velocity
 - Speed of wind toward (cool colors) and away (warm colors) from radar
 - The stronger, tighter, & deeper (more than one elevation angle) the rotation, the greater the likelihood a tornado is present
 - Time continuity is also important (more than one volume scan)

Supercell Thunderstorm

Supercell Tornadoes


- Occur during a supercell thunderstorm's mature stage
- Preceded by strong mid-level [15-25,000 feet (ft)] rotation (where radars have a better view)
- In NM, occur mostly along eastern border with TX during May, June, and July
- WSR-88Ds earned excellent reputation with these
- Supercell thunderstorms produce the majority of NM's confirmed tornadoes each year, but not all of them

Non-Supercell Tornadoes A.K.A. landspout, gustnado, or spin-up

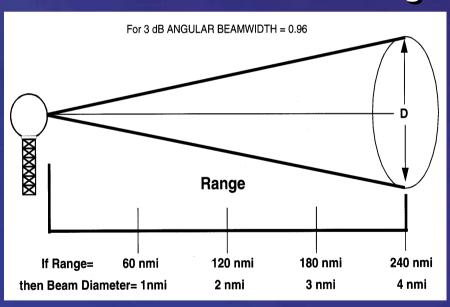

- Probably more frequent in Western U.S.
- Often unseen or unreported
- Form early in thunderstorm lifecycle, sometimes before lightning strikes
- May form rapidly near surface then extend upward
- May form simultaneously at low and mid levels
- Shallow and/or narrow (rarely exceed F-2 intensity)
- Larger atmospheric circulations usually cause these to dissipate in only a few minutes

Spin-Up Tornado Formation

 Cause 1: small and shallow circulations along surface convergence zone, stretched upward by strong updraft

Cause 2: horizontal vorticity roll downwind of mountains, tilted to vertical when crossed by a strong updraft

Doppler Radar Limitations

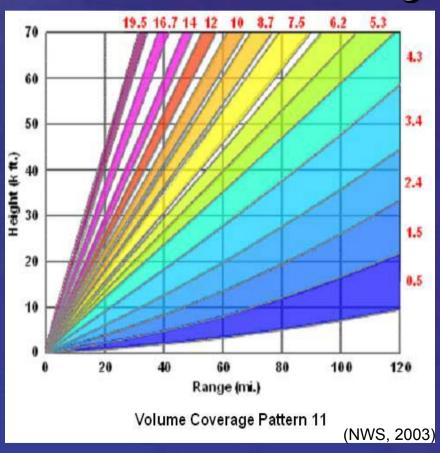

All Doppler radars have difficulty detecting circulations...

- Too far from radar
 - Beam broadening
 - Overshooting
- Too close to radar
- Blocked from radar view
- Dissipate too quickly

Limitation 1: Too Far From the Radar

- Beam grows too large compared to size of the circulation
 - Large # of slow wind returns outside tornado outweigh small # of fast wind returns within
 - Averaged away/toward velocities too small to represent a threat
- Effective detection range depends on circulation size; effective detection range ≤ 63 statute miles (sm) for the WSR-88D (WSR-88D Operational Support Facility, 1997)
- For very small tornadoes, or radars with larger beam diameters, the range shrinks even shorter

Cause 1: Beam Broadening

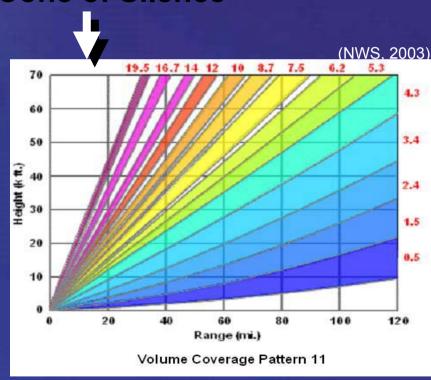


(WSR-88D Operational Support Facility, 1998)

Limitation 1: Too Far From the Radar

- Beams rise above low-level circulations because beams travel away from the radar at an angle
- Many NM spin-ups only extend up to about 3,000 ft
- Overshot by center of lowest beam at 40 sm from radar
- Overshot by center of second lowest beam at 29 sm, so spin-ups may only be detectable out to 29 sm (WSR-88D Operational Support Facility, 1997)
- New scan strategy coming
 - Adds 3 new angles at lowest levels
 - Better vertical display of low-level storm structure

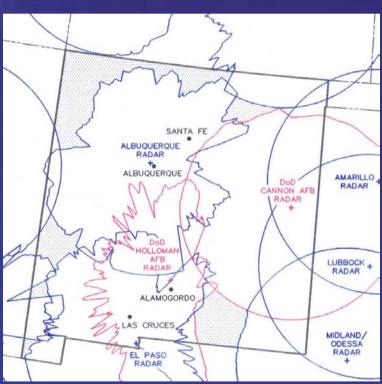
Cause 2: Overshooting



Angles used by the WSR-88D

Limitation 2: Too Close to the Radar

- Doppler radars don't sample the atmosphere directly above them
- Radars cannot detect circulations that move into the cone of silence
- WSR-88D's cone prevents detection of mid-level circulations within about 11.5 sm of the radar
- Neighboring radar beams overshoot the low levels and the lower portion of the mid levels over both the Albuquerque and Cannon AFB radars



Angles used by the WSR-88D

Limitation 3: Blocked From View

- Mountains can shield low-level circulations from view
- If not for mountains, we'd see perfect circles of coverage like those in TX
- Since lower elevation angles intercept more terrain, coverage decreases below 10,000 ft
- Since higher elevation angles intercept less terrain, coverage improves above 10,000 ft
- When implemented, the new scan strategy will slightly improve detection capabilities by increasing sampling of the atmosphere just beyond and above mountain tops

Radar Coverage at 10,000 Ft

Limitation 4: Dissipate Too Quickly

- Many spin-ups may last only a few minutes
- Complete atmosphere scan may take 5 or 6 minutes
- Forecaster analysis of images and dissemination of a tornado warning takes extra time
- Even when detected, spin-ups frequently dissipate before a warning can reach people
- New scan strategies will shrink scans to 4.1 minutes

Example 1: Spin-Up Below Cumulus Cloud

- March 2003, Torrance County, east of Manzano mtns.
- Not detected by forecasters for 3 reasons
 - Too far: 63 sm from Albuquerque radar and 128 sm from Cannon AFB radar
 - Manzanos blocked the lowest 1 1/2 beams from Albuquerque radar; radar sampled no lower than 6,000 ft above spin-up
 - No rain or thunderstorm activity on this day. Forecasters use the prominent returns from rain, hail and thunderstorm outflow boundaries to identify possible tornado locations.

Example 2: Spin-Up Below Thunderstorm

- May 2003, near Willard in Torrance County, east of Manzanos
- Storms nearly stationary this day
- Forecasters issued a severe thunderstorm warning about 40 minutes before this photo; this spin-up may have developed along the earlier storm's outflow boundary
- 59 sm from Albuquerque radar; this tornado may have been big enough to detect
- Manzanos blocked lowest 1 1/2 beams from Albuquerque radar; radar sampled no lower than about 5,000 feet above this spin-up

Other Tornado Detection Capabilities

- Storm Prediction Center guidance
- Weather models
- Satellites, profilers, soundings, upper-air data, surface obs
- Storm spotters
- News media, law enforcement and public reports
- Research collaboration
 - Testing new scan strategy
 - Will help confirm sonar's ability to detect tornadoes

Prepare & React Appropriately

- FEMA's tornado safety tips brochure: www.fema.gov/hazards/tornadoes/tornadof.shtm
- Watch for small tornadoes early with all thunderstorms; remember our first spin-up example
- Useful NOAA forecasts
 - U.S. hazards assessment
 - Severe weather outlook, mesoscale discussions, watches
 - Hazardous weather outlook & warnings
- Use NOAA weather radios
- Report tornadoes to NWS, if safely possible

Bottom Line

- WSR-88D's do a good job at what they're designed to do: detect strong mid-level circulations
- All weather radars have limitations
- Small tornadoes frequently exploit these limitations in New Mexico
- NWS forecasters use all available resources to overcome tornado detection limitations
- Weatherwise media & public can prepare for this dangerous threat and react appropriately when tornadoes strike

References

- NOAA, 1999: Thunderstorms...tornadoes...lightning... nature's most violent storms. A preparedness guide. NOAA/PA #99050, ARC 1122, 16 pp. Cited 2004. [Available online at http://www.nws.noaa.gov/om/brochures/ttl.pdf].
- NWS, cited 2003: NWS radar FAQs page. [Available online at http://weather.noaa.gov/radar/radarinfo/radarinfo.html].
- Wakimoto, R.M., and Wilson, J.W., 1988: Non-supercell tornadoes. Mon. Wea. Rev., 117, 1113-1140.
- WSR-88D Operational Support Facility, May 1997: WSR-88D operations course student guide. Version 9704.
- WSR-88D Operational Support Facility and Titan Systems Group, July 1998: WSR-88D Principal User Processor Operator Handbook. Volume II, Applications Terminal, Software Version 10.0, 267 pp.

Tornado Detection & Limitations*

April 2004 Media Workshop

Questions for David Craft?

David.Craft@noaa.gov

*Limitations common to all Doppler weather radars