Grain Quality and Structure Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: CHARACTERIZATION OF GRAIN BIOCHEMICAL COMPONENTS RESPONSIBLE FOR END-USE QUALITY

Location: Grain Quality and Structure Research

Project Number: 5430-44000-016-00
Project Type: Appropriated

Start Date: Oct 01, 2004
End Date: Sep 30, 2009

Objective:
Determine roles and interactions of the major biochemical components of cereals (starch, non-starch carbohydrates, storage proteins and enzymes) as they relate to food quality and functionality, while defining the environmental impact upon functional properties of biochemical components that affect end-use properties, then applying that information generated to the development and improvement of methods to rapidly predict grain quality.

Approach:
Isolate large quantities of starch, separate into size fractions for baking and chemical testing. Continue testing the correction model for starch size distributions on the LDS. Initiate bake studies using reconstituted gluten and starch fractions. Begin testing, amylose /amylopectin ratios, pasting profiles, DSC temperatures and lipids of A, B, and C-type starch fractions. Complete chemical analysis of the starch fractions. Correlation analysis comparing bake data, starch size distributions and chemical analysis. Identify wheat of different oxidation requirements and determine effect of oxidative enzymes and transglutaminase upon quality characteristics. Begin biochemical analysis on the effect of enzymes on protein interactions. Characterize enzyme effects on protein interactions between glutenin and albumins. Characterize effect of HMW-GS contribution of wheat on enzyme mediated crosslinking. Identify and begin to collect wheat samples to represent various growing environments. Begin isolating starch for analysis. Use LDS and our correction model to detect environmental differences in starch ratios. Isolate the starch fractions from different environments for chemical analysis. Compare starch size distributions and chemical analysis to different environments. Characterize by RP-HPLC and SEC-HPLC, the protein fractions of the various near- isogenic lines that are produced in year 1 study by our collaborators. Relate the period of formation and amount of particular glutenin (polymeric) and gliadin (monomeric) proteins to the HMW-GS in the various near-isogenic lines. Correlate information obtained in this year 1 and 2 study with the data on bread or tortilla quality characteristics, provided by the HWWQL. Characterize the protein fractions of the various near-isogenic lines that were produced by our collaborators. Determine the sizes of the polymeric fractions and the MW distributions of the polymeric proteins. Relate polymer sizes and molecular weight distributions to quality characteristics, provided by the HWWQL. Determine if particular proteins are markers for quality traits. Develop inexpensive lab-on-a-chip technology to extract and separate wheat gliadins in less than 1 min. Develop lab-on-a-chip system to extract, separate and identify wheat varieties in seconds. Develop a portable lab-on-a-chip system to extract, separate wheat proteins, and identify wheat varieties and/or the quality of wheat varieties or mixtures in seconds.

   

 
Project Team
Tilley, Michael - Mike
Wilson, Jeff
Bean, Scott
 
Project Annual Reports
  FY 2008
  FY 2007
  FY 2006
  FY 2005
 
Publications
   Publications
 
Related National Programs
  Quality and Utilization of Agricultural Products (306)
 
Related Projects
   EVALUATING CEREAL STARCH AND PROTEIN DIGESTIBILITY
 
 
Last Modified: 05/08/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House