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Abstract 
 
In this paper we use permanent random numbers (PRNs) for the maintenance of a single sample over a long period of time. 
The sample is stratified by industry and size levels and units are selected with equal probabilities within strata. Two types of 
updates are carried out:  (a) annual updates reflecting all changes in the frame during the preceding year and (b) intra-annual 
updates accounting for newborns during the year. A sequential PRN scheme is used for the annual sample and a Bernoulli 
scheme for the intra-annual samples. This design causes two problems. First, because of the differences between the 
sequential and Bernoulli schemes, the upper bound of PRNs of newborns may differ from that of the old units, thus resulting 
in different selection probabilities for the two types of units in the next annual sampling. Second, since generally the number 
of newborns in each update is small, the cumulative sample size over updates may have large deviations from its expected 
value. Here we propose adjusted PRNs for units included in the intra-annual frames that have a uniform distribution in the 
unit interval, and a maximal value for the sampled units that is approximately equal to that of the annual sample. We also 
suggest a sampling scheme that controls the overall sample size of the intra-annual updates, while keeping the expected 
weights unchanged over time. Finally, we illustrate the proposed method for data from the Israeli Manufacturing Indices 
Survey.  
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1. Introduction 

 
National Statistical Agencies (NSAs) publish time series of economic indicators based on periodic surveys of business 
establishments. While efficient estimation of periodic change requires maximal overlap between successive samples, samples 
should also be continuously updated to account for rapid changes in the business population (e.g. births, changes in size). 
Other common problems include the need to coordinate between several samples and between units within a single sample, to 
reduce response burden. Sampling schemes based on Permanent Random Numbers (PRNs) provide simple and flexible 
solutions to such problems. Ohlsson (1995) reviews the main schemes based on PRNs and describes their application in a 
number of NSAs. The basic idea is that each unit in the frame is assigned a random number in the interval (0,1) that is 
permanently associated with that unit. Within strata, units are ordered by their PRNs and the sampling is based on the ordered 
list. For example, in a “sequential” scheme for selecting a simple random sample without replacement (srswor) of n units 
from a population of size N the first n units in the ordered list are selected. In a Bernoulli scheme, with the same sampling 
rate, the sample comprises all units with a PRN not larger than n/N. 
 
Here we use PRNs for the maintenance of a single sample over a long period of time (e.g. a decade). The sample is stratified 
by industry and size levels and units are selected with equal probabilities within strata. Two types of updates are carried out:  
(a) an annual update reflecting all changes in the frame during the preceding year (e.g. deaths, splits, and changes in industry) 
and (b) intra-annual updates accounting for newborns during the year. The design of the annual update sample is guided by a 
requirement for a maximal overlap of successive annual samples. The design of the intra-annual samples is guided by the 
need to keep the selection probabilities within strata constant throughout the year. To attain the first requirement a sequential 
PRN scheme is applied each year to an updated frame. Uniformity of the probabilities over the year is achieved by using a 
Bernoulli scheme for the intra-annual updates.  This design causes two problems. First, because of the differences between 
the sequential and Bernoulli schemes, the upper bound of PRNs of newborns may differ from that of the old units 
(persistants) resulting in different selection probabilities for the two types of units in the next annual sampling. Second, since 
generally the number of newborns in each update is small, the cumulative sample size over updates may have a large 
deviation from its expected value.  
 



In this paper we address these problems analytically. In Section 2 we propose a method for combining two frames from 
which a sequential and a Bernoulli samples were selected, respectively, with the same probabilities. The combined frame is 
then used to select a new sequential sample that has a sizeable overlap with the two former samples. This problem is related 
to the issue of “birth bias” discussed by Ernst, Valliant and Casady (2000) and by Ohlsson (1995, p. 166). Both papers are 
concerned with bias in the selection probability of newborns under sample rotation when the newborns and persistants are 
sampled together. For specific situations these papers suggest solutions such as a correction factor for the selection 
probability of newborns, and an adjusted sampling scheme. In our problem, persistants and newborns are sampled separately 
and the two frames are then combined for a later sampling occasion. Our method is based on an adjustment of the newborns’ 
random numbers. The adjusted numbers have a uniform distribution in the unit interval, and the maximal value for the 
sampled units is approximately equal to that of the sequential sample. 
 
Section 3 deals with the problem of sample size variability over several intra-annual updates. The PRN literature considers 
the question of choosing between fixed sample sizes and fixed inclusion probabilities, particularly in the context of Poisson 
sampling. Brewer, Early and Hanif (1984) suggest collocation of the random numbers so that they are more evenly 
distributed in the unit interval and thus reduce, but not eliminate, the variation in sample size.  Ohlsson (1995) suggests a 
sequential Poisson scheme that ensures a fixed sample size but results in approximate selection probabilities. The 
approximation is improved by Saavedra (1995) but no solution is suggested for the calculation of the true selection 
probabilities. The problem of controlling the cumulative sample size of a sequence of Bernoulli samples imposes an 
additional challenge. We propose a constructive method that calculates the desired sample size for each update, and ensures 
that the cumulative sample size does not deviate from its expected value by more than one unit.  Furthermore, the selection 
probabilities are kept at their expected values. The method is based on collocation of the random numbers and on 
randomization of the conditional inclusion probabilities. In Section 4 we illustrate the suggested method for the Israeli 
Manufacturing Indices Survey. Finally, Section 5 contains some concluding remarks.  
 
2. A Single Intra-Annual Update 
 
We deal here with annual business samples that are stratified by industry and size levels. Generally there is a take-all stratum 
and several (e.g. one to five) take-some strata for each industry. To achieve statistical efficiency and reduce fieldwork burden 
the same base sample is used for several years. This sample is updated periodically (e.g. once in several months) for new 
establishments (newborns) and once a year for other changes in the frame, including merges and splits as well as changes in 
industry and size level. Formally, for each stratum h  we have a base frame list 0hL  comprising 0hN units. An annual 
sample 0hS of 0hn units is selected with equal probabilities ( 0 0h hn N= for the take-all strata). Units are selected using a 
sequential PRN scheme; that is, each unit i  in stratum h is assigned independently a permanent random number hix from a 
uniform distribution on (0,1). A random starting point 0hr  is selected, and we assume here without loss of generality that 

0 0hr = . Hence, units with the 0hn smallest random numbers are included in the sample. Let 
0( )hnx  be the largest random 

number in the sample. To abbreviate we drop hereinafter the index h.  
 
We begin with the simple case where the sample is updated for newborns once during a given year. A frame update 

1L comprising 1N newborn units is obtained, and a PRN is assigned to each unit in 1L . To simplify the estimation procedure it 
is required that the update selection probabilities are retained at the annual sample value 0 0 0n / Nπ = . A Bernoulli scheme 
may be used to select the intra-annual sample update 1S ; that is, all units with 0ix π≤  are included in the sample. The update 
sample size 1n  is thus random, with expected value 1 0N π  and variance 1 0 0(1 ).N π π−  Collocation of the random numbers 
may reduce the variability of 1n . For example, we can sort the units in 1L in a random order and assign to unit k a random 
number from a uniform distribution on ( 1 1( 1) / , /k N k N− ). As before, all units with PRN not greater than 0π are selected, but 
the sample size variability is reduced greatly because the random numbers are more equally spaced. In fact, 1n is equal to 

[ ]1 0N π or [ ]1 0 1N π + , with respective probabilities 1 01 N π−  and 1 0N π , where [ ]a and a  are the integer and fractional 
part of a, respectively. We refer to this modified scheme as a Bernoulli-Type (B-T) scheme. 
 
In preparation for the selection of the next annual sample, a new frame 2L is constructed combining living units in 0L and 1L , 
and units that were born in-between 1L  and 2L . Generally, a coordination of some degree is desired between subsequent 
annual samples, ranging from a complete overlap to no overlap. A sequential srswor PRN scheme is applied to the new 



frame, and the starting point 2r controls the degree of overlap. In our case, a maximal overlap is desired and we thus assume 

2 0r = . However, units in 1S  have generally different likelihood of being included in the new sample as compared to units 
in 0S , since generally 

0( ) 0nx π≠ . The reason is that the order statistic ( )kX  of a series of N uniform (0,1) random variables has 

a Beta( , 1)k N k− +  distribution (e.g. Stone, 1996, p. 178). In particular,
0( )nX  has a 0 0 0Beta( , 1)n N n− +  distribution with 

expectation 0 0/( 1)p n N= + and variance 0(1 ) /( 2)p p N− + . Thus, the scales of random numbers in 0L  and 1L  have to be 
coordinated before sampling from 2L .  
 
We construct now a transformation of the random numbers of units in 1L  so that the transformed numbers have two 
properties: (a) they have a uniform distribution on the unit interval and (b) the maximal value of the transformed numbers of 
units in 1S  is approximately equal to 

0( )nx . Let iX be the PRN assigned to unit 1i L∈  and define a rescaled random 

variable *
iX  by  
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For 1i S∈ , *
iX  maps iX from the interval 0(0, )π  to 
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 (For more details see the Appendix). Analysis of the first and second derivatives of * ( )
iXf t  indicates a minimum at 

0t π= and two turning points 1 0 20 1t tπ< < < < , between which the function is convex, and otherwise it is concave. Thus, 
*
iX  is not uniformly distributed on (0,1). Define the U(0,1) random variable *
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 (See the Appendix for details). The transformed variable iY  has a uniform (0,1) distribution by definition and therefore holds 
property (a).  
 
To verify property (b) we study empirically the relative deviation of ( )y p  from p, where p is the expected value 

0( )nX . Table 

1 shows the relative deviates RD ( ( ) ) /y p p p= −  and the relative standard deviation of 
0( )nX , 

0( )RSTD Var( ) /nX p= , for 

selected values of 0n and 0N .  It is seen that the values of RD are considerably smaller than the respective values of RSTD. 
For the least favorable row in the Table, 0 2n ,=  the ratio RSTD/RD is equal to 4.4, 4.9, and 7 for 0 20 50 and 100N ,= , 
respectively. We conclude that the differences between 

0( )nx and 0π  may be substantial and that as, on average, the maximal 

value of X* for units is 1S is p, and as the deviation of the CDF of X* from p is small, the adjusted PRNs satisfy property (b).  
 
3. Several Intra-Annual Updates 

 
In this section we deal with the more realistic case of several intra-annual updates of the frame (e.g. quarterly). We assume 
that for each update the number of new business units in a given stratum, if any, is small. As before, it is required that the 
selection probability in each stratum is kept at its annual sample value, and that the sample size variation for each update and             

(1)

(2)

(3)



Table 1. Expected values of 
0( )nx ( p), values of y(p), relative deviates of y(p) from p (RD), and relative standard deviation of 

0( )nX  (RSTD) for selected values of 0N and 0n . 

 N0 =20 N0 =50 N0 =100 
n0 p y(p) RD RSTD p y(p) RD RSTD p y(p) RD RSTD 

2 0.095 0.109 0.15 0.66 0.039 0.045 0.14 0.69 0.020 0.023 0.14 0.98 
5 0.238 0.256 0.08 0.38 0.098 0.105 0.07 0.42 0.050 0.053 0.07 0.61 

10 0.476 0.497 0.04 0.22 0.196 0.204 0.04 0.28 0.099 0.103 0.04 0.42 
15 0.714 0.738 0.03 0.13 0.294 0.302 0.03 0.21 0.149 0.153 0.03 0.33 
20     0.392 0.401 0.02 0.17 0.198 0.202 0.02 0.28 
25     0.490 0.499 0.02 0.14 0.248 0.252 0.02 0.24 
50         0.495 0.500 0.01 0.14 

 
 
over updates is minimal. We begin by explaining how to determine the size of the sample for each update and then show how 
to sample from the updates using PRNs. Finally we describe the adjusted PRNs for the annual update. 
 
3.1 Sample Size Determination 
For any take-some stratum let jN  be number of sampling units in the j-th update, 1j , ,J ,K=  jn the actual sample size in 

update j and 0π the desired inclusion probability. As before, denote by [ ]a  the integral part of a, that is [ ] [ ] 1,a a a≤ < +  and 

by a  the fractional part of a, so that [ ]a a a= + . The expected sample size for the first update (j=1) is E1 = N1π0. Thus, 

the actual sample size n1 is equal to [ ]1E  or [ ]1 1E + with respective probabilities 11 E− and 1E . For j>1, let 

1j jm n n= + +K , 0( )j j jE E n N π= = , and 1j jF E E= + +K be the actual and expected cumulative sample sizes after 
sampling from the j-th update, respectively. Assume that the cumulative sample size 1jm −  for update j−1 has the desired 
expected value with minimal variation, i.e. 
                                             ( ) ( )1 1 1 1 1 11  and  1j j j j j jP m F F P m F F .− − − − − −   = = − = + =                                              

Clearly ( )1 1j jE m F− −= . We show now how to determine jn so that jm  has the same optimal distribution as 1jm − , that is, 

with the index j replacing the index j−1 in (4). Consider first the case 1j jF F −   >    . Given 1jm − , jn  is selected at random 
from the following conditional distribution:  

( ) ( )
( ) ( )

1 1 1 1 1 1

1 1 1 1 1 1

1   1

1 , and  1 1 1

j j j j j j j j j j j j

j j j j j j j j j j j j

P n F F m F F , P n F F m F F ,

P n F F m F F P n F F | m F F .

| |

|

− − −

− − − −

− − − − − −

− − − − − −

           = + = = = = =           

           = = + = = = + =           

 

This ensures that the unconditional distribution of 1j j jm m n−= +  is the desired one.   If 1j jF F −   =     then 1jn =  with 
conditional probabilities 

( ) ( ) ( )1 1 1 1 11 1  and 1 1 0j j j j j j j jP n m F E F P n m F ,| |− − − − −   = = = − = = + =     

and 0jn = otherwise. The expectation of jn  is thus equal to Ej.   
 
3.2 Sampling for the Intra-Annual Updates 
Once the sample size is determined for each stratum within update we sample using the Bernoulli-Type method. For the first 
update, the units 11,...,N are randomly permuted and a random number between (i−1)/N1 and i/N1 is assigned to unit i in the 
permuted list. Units with numbers not greater than 0π  are sampled. The random numbers are U(0, 1) distributed and the 
sample size 1n  is as desired. 
 
For the j-th update we assign the random numbers as for the first update, with jN  replacing 1N . The sampling process 

depends, again, on the relationship between jF    and 1jF −   . If 1j jF F −   >     then for every value of 1jm −  we have 

(4)



( )1 1j j j jE n | m F m− −= − . Denote by ( )1j j j jF m / Nπ −= −  so that ( )1j j j jE n | m N π− = . Units with random numbers not 

greater than jπ are sampled. Note that here we have a sampling scheme with a random sampling probability and a fixed 
expected probability. The sample size variability is minimized, with a maximal deviation of one unit between the actual and 
expected cumulative sample sizes. The values of jπ are ( )1j j jF F N− −   and ( )1 1j j jF F N− − −   with probabilities 

1 j -1F− and j -1F , respectively. These values are non-negative, and in rare cases may be equal to zero, or be equal or 

greater than one. Such a case happens when 1 1 1j j jm F F− − = + =  , and then 0jπ =  and jn = 0. If 1jπ > , we truncate it to 

one and sample jn = jN units. If 1j jF F −   =     we basically proceed as before, except for the case 1 1 1j jm F− − = +   where 

we take 0jπ = and jn = 0, and the case when 1 1j jm F− − =    where we take ( ){ }11j j j jπ E N F −= − . We refer to this 

sampling scheme over updates as a conditional Bernoulli-Type (CB-T) scheme. 
 
3.3 Sampling for the Annual Update 
For the annual update a new frame based on 0 1, , , JL L LK and additional newborns is constructed. As in Section 2, in 

preparation for the next annual sampling we adjust the random numbers assigned to units in the update frames. First, let *
jiX  

be the random variable defined for the i-th unit in the j-th update frame as in (1), with jπ  and jS  replacing 0π  and 1S , 

respectively. The variable *
jiX  is well defined when 0 1jπ< < . When 0jπ = , no units are sampled for the j-th update and 

hence *
jiX is computed only for units ji S∉ . Similarly when 1jπ = , *

jiX is computed only for units ji S∈ . 
 
As we have seen in the single update scenario of Section 2, *

jiX does not have a U(0,1) distribution and thus we further adjust 

it using *
*( )

ji
ji jiXY F X= . To extract * ( )

jiXF t , we first note that the conditional distribution of *
)| ,

0ji (n jX X π  is, as before, a 

mixture of U(0, )0(nx ) and U( )0(nx , 1) distributions, but with respective probabilities jπ and 1 jπ− . Using the independence 

of jiX , jπ and )0(nX ,  we write their joint distribution   as a product of *
)| ,ji (n j0X X

f
π

 and the marginal distributions of )0(nX and 

jπ . Integrating over the values of jπ it is seen in the Appendix that the unconditional distribution of *
jiX  is as in (2), because 

0E( )jπ π= . Therefore, the CDF of *
jiX  is as in Equation (3). 

 
4. An Illustrative Example: The Manufacturing Indices Survey 
 
The proposed method is implemented for the monthly Manufacturing Indices Survey. The survey provides measurements of 
the development in manufacturing and in the economy of Israel in general by estimating the total number of employees, labor 
cost, turnover and other economic indicators, by industry and sector. 
 
The sampling frame is extracted from the Israeli Business Register (BR). Data for each sampling unit include the industry 
classification, the annual turnover (T) and the annual average number of employees (E). To determine the unit size, a 
regression model of T on E is fitted (in square root scale) for each industry. The unit size is equal to the observed annual 
turnover iT , except for cases with a negative Studentized residual with absolute value larger than a predefined value. In these 
cases the size is set to the model prediction plus a random noise. For the 2004 base sample, units were stratified by 77 
manufacturing industries and by 2 to 4 size strata. The number of size strata depends on the number of units in each industry, 
where the top size group is a take-all stratum. The Lavallée-Hidiroglou (1988) stratification algorithm with a uniform 
coefficient of variation (CV) across industries is used to set the strata boundaries and to allocate the sample to the take-some 
strata. The allocation may then be adjusted to meet additional methodological constraints, such as a minimal number of 
sampled cases in a stratum, a maximal sampling weight and a maximal CV of the estimated number of employees. In each 
take-some stratum a srswor is drawn using a sequential scheme. The total number of sampled units for the 2004 base sample 
was 2,200. The sample is updated for newborns once in two months, using the conditional B-T (CB-T) scheme described in 
Section 3.2. 



 
Table 2 compares the relative standard deviations 5 5RSTD Var( ) /m F= of the cumulative sample size obtained up to and 
including the fifth update, for selected industries and three sampling schemes: Bernoulli (B), Bernoulli-Type (B-T) and the 
proposed conditional B-T (CB-T) scheme. The variances of the cumulative sample size 5m  are computed as follows:  

( ) ( ) ( ) ( ) ( ) ( )
5

 B 5 0 0  B-T  CB-T 5 5 5
1

Var 1 ,  Var 1 ,  Var 1 .
5

j 5 j j
j j=1

m N m = E - E m F Fπ π
=

= − = −∑ ∑  

We present industries that had a substantial number of newborns throughout 2004. It is seen that on average using the 
Bernoulli scheme yields sample sizes with RSTDs ranging between about 50 to 120 percent for the selected industries, as 
compared to 10-85% for the CB-T method. Over all take-some strata, the B-T scheme reduces the RSTD by about 17 percent, 
and the CB-T by further 30 percent. Equality between values for the B-T and CB-T, as seen for industry 265 stratum 2, 
occurs when all newborn units are in the same update. Equality between the Bernoulli and B-T RSTD values (industry 360, 
stratum 3) occurs when there is at most one newborn unit per update.  
 
5. Concluding Remarks 

 
Revisions of monthly business surveys that account for new units are common practice. Frequently, however, it is desired 
that these sample revisions interfere as little as possible with the ongoing main sample. The technique suggested by Ohlsson 
(1995, Section 9.1.1) for coordination over time is based on recurring standard sequential sampling from an updated main 
frame. This scheme may affect persistants and change the selection probabilities. We have seen that it is possible to sample 
newborns separately from the main sample, while preserving fixed selection probabilities throughout the year as well as 
minimal sample size variability. We have also shown how to combine correctly sequential and Bernoulli samples to form a 
subsequent sample with a desired overlap. Once all units have random numbers that are U(0,1) and have a comparable scale 
for all previously sampled (and non sampled) units, we can continue with the standard sequential scheme.  
 
Ernst, Valliant and Casady (2000) discuss various PRN-based techniques in the context of births and deaths and argue that 

“Though the methods are in common use, there appears to be a limited literature on their properties, particularly 
regarding the treatment of population changes due to births and deaths”  

In this paper we have suggested a workable scheme that is based on exact distributional considerations. The deviate y(p)-p is 
not defined analytically and we leave this question for future work. It would also be interesting to study the bias induced by 
using X or *X for sampling, rather than using Y . 
 
 
Table 2. Relative standard deviations (RSTD) of the cumulative sample size for take-some strata in selected industries using 
the Bernoulli, Bernoulli-Type (B-T) and Conditional B-T (CB-T) schemes. Data from five updates, the Manufacturing 
Indices Survey 2004. 
 

RSTD Industry Stratum Cumulative 
number of 
newborns 

Expected 
cumulative 
sample size 

Bernoulli B-T CB-T 

1 59 2.91 0.57 0.34 0.10 180 
2 17 3.31 0.49 0.27 0.14 
1 24 0.85 1.06 0.96 0.41 202 
2 4 0.59 1.21 1.15 0.84 
1 34 0.93 1.02 0.88 0.28 265 
2 6 0.91 0.97 0.32 0.32 
1 135 1.94 0.71 0.51 0.13 
2 36 1.86 0.71 0.50 0.19 

360 

3 4 0.84 0.97 0.97 0.43 
All take-some strata      1144      67.68   0.12 0.10 0.07 

 



Appendix: Density and Cumulative Distribution Function of *X  
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The random variable *
jiX  has the same density. To see this, recall that the conditional density of 

0

*
ji ( n ) jX | X x,π π= =  is as 

in (5) with π  replacing 0π . Let ( )h π  denote the probability function of jπ . The joint distribution of *
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where IA(t) is the indicator function of a set A at t. Integrating the joint distribution over π  yields ( ) ( )*
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i
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since 0E( )jπ π= . To extract the CDF it is useful to recall that Pr{Beta( , 1) } Pr{Bin( , ) }k m k t m t k− + ≤ = ≥ . Hence, 
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