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Abstract

Data from the 1995 National Health Interview Survey (NHIS) indicate that for adults with
chronic conditions, a significant change in prevalence of activity limitation typically occurs
between the ages of 40 years and 70 years (i.e., the proportion of young adults with activity
limitation is small and roughly constant with age and then it starts to change, roughly
constant again). We use a hierarchical Bayesian model to detect the change of prevalence of
a positive activity limitation status (ALS) for twelve domains formed by crossing education,
sex and race. We obtain weighted binomial counts using a regression analysis on the sample
weights which incorporate important survey features. Given the proportion of individuals in
the population with positive ALS, we assume that the number of individuals with positive
ALS at each age has a binomial probability mass function. The proportions across ages
are different, and have the same beta distribution up to the change point (unknown), and
the proportions after the change point have a different beta distribution. We consider two
different analyses. The first considers a model for each domain individually and the second
considers the twelve domains simultaneously in a single model to “borrow strength” as in
small area estimation. In the first analysis, we use the Gibbs sampler to fit the model, and a
computation of the marginal likelihoods, using an output analysis from the Gibbs sampler,
provides the posterior distribution of the change point. In the second analysis, we use the
Gibbs sampler to fit the joint posterior distribution of the twelve change points. This is
a difficult problem because the joint posterior density requires numerical computation of a
triple integral at each iteration. The other parameters of the process are obtained using data
augmentation by a Metropolis sampler and a Rao-Blackwellization. We found that overall
the age at which a significant change occurs is about 56 years, with some variation variation

with education, sex and race.
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1. Introduction

Data from the 1995 National Health Interview Survey indicate that for adults with chronic
conditions, a significant change of activity limitation typically occurs between the ages of 40
years and 70 years. This information is important to medical practitioners for planning pur-
poses. Important survey features are contained in the survey weights. The data we analyze
consist of weighted binomial counts, obtained by using a logistic regression to incorporate
the survey weights. We use a Bayesian methodology to detect the change point of a positive
activity limitation status across twelve domains, formed by crossing education, sex and race.
Each domain has its own change point, and there are two types of analysis. Although the
data are very sparse in each domain, our first analysis is on each individual domain. The
second analysis i1s on all domains simultaneously, permitting us to pool the data across the
domains.

The National Health Interview Survey (NHIS) is an important source of information
on the health of the U.S. population. One of the variables in NHIS is activity limitation
status (ALS). Activity limitation among adults due to chronic conditions is a major health
problem in United States. It may influence the quality of an individual’s life, and it can
cause socio-economic problems. Box plots of the proportions of adults with ALS by age
show that activity limitation status changes some where between ages 40 and 70. The main
1ssue we want to address in this study is to find the age that a significant change in ALS
occurs.

Zimmer and House (2003) and Burchardt (2003) indicate that characteristics such as race,
gender, and socioeconomic status (e.g., education and income) influence the probability of
having functional disorders. Education is determined early in life and influence psychosocial
mechanisms throughout life. It is highly correlated with income. However, education is more
strongly predictive of onset of functional health problem such as activity limitation, while

income is more predictive of course or progression. Activity limitation in our study is a



chronic health problem of adulthood, and is the outcome of a long process of development as
a function of exposure to a wide range of social, psychological, and biomedical risk factors.
Education indexes both the socio-economic position of individuals early in adulthood and a
stock of human capital available to them from that time on. All these influence long-term
patterns of exposure to and experience of major psychosocial and biomedical risk factors
that cause activity limitation. Income, on the other hand, is usually measured in years,
and thus reflects socioeconomic position and resources closer to the time of assessment of
activity limitation. It is more strongly related to the resources available for the treatment
or management of the health problem. Therefore, income more relates to the severity of
the problem while education more strongly relates to the onset or existence of the health
problem. So in our study, we also include variables like race, gender, and education.

Loss of activities of daily living will lead to disability. With activity limitation, an in-
dividual’s life may be influenced both physically and psychologically (see Burchardt 2003).
Because of the disability, they may encounter changes in paid and unpaid work, and there-
fore, have lower income and less benefit. On the other hand, they will need more help in
their daily living and the cost of living will increase. These will result in higher risk of
poverty. While they are having all these economical difficulties, they may also have social
problems. Disability may prevent people from enjoying normal social life and make them
socially excluded. The main issue in this study is activity limitation, which is different from
disability. However, knowing what impact of disability would make the onset of activity
limitation meaningful. Doctors can give their patients an indication about when they are
near the onset of activity limitation, therefore patients can prevent activity limitation or be
prepared for the consequence of it.

We have envisioned fitting two horizontal lines to the proportions of adults with ALS at
each age by domain. The first line starts at 30 years and goes to a age k, unknown, and the
other line some what higher and it goes from k to 80 years. We want to find the best pair

of horizontal lines over all possible values of & = 40,...,70. That is, the selected % is the
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value that best explains the data. Thus, our objective is to age k at which there is a change
in prevalence in ALS. This problem falls in the area of change point models.

A sequence of random variables, z = (z1,...,,) is said to have a single change-point
at kif z1,...,z% | k,6; ii‘fpl(a: | 6;) and zgy1,...,2n | k, 02 iiilpz(il? | 62), where p;(z | 6,)
and py(z | 05) are unknown probability ‘density’ functions in the same parametric family.
The problem of estimating the location of the change-point k& has been extensively studied
for the past several decades. Smith (1975) proposed a Bayesian approach to make inference
about the change-point based on the posterior probabilities of the possible change-points.
In this model the joint distribution of i, ..., z, conditional on 6,68, and the change-point
kE (1 <k <m)isgiven by p(z1,...,2, | k,01,05) = Hlepl(mi | 01) TT7 1 P2(2i | 62). With
6; and 65 unknown, assuming a prior distribution of k over the set of possible change points

po(k), Yp_; po(k) =1, and a prior density of 61, 0,, po(f1,62), Smith (1975) obtained

plk|z) x p(z1,...,2. | k)po(k), E=1,...,n,

p(alaaz | k:@) X p(mla- - Tn | k761792)p0(01702)7

where p(z1,...,2n | k) = Jo, Jo, P(®1,..., %0 | k,01,02)po(61,05)d0:1dB,. Smith (1975) made
inference about k by computing the posterior modes of k, §; and 6,. Carlin, Gelfand and
Smith (1992) explore the change-point problem using hierarchical Bayesian models further
via the Gibbs sampler. Girén, Ginebra and Riba (2005) has an application of this approach,
where they use a Bayesian multinomial change-point analysis to determine the authorship
of a book.

Given the proportion of individuals in the population with positive ALS, we assume that
the number of individuals with positive ALS at each age group has a binomial probability
mass function. The proportions across age are different, and have the same beta distribution
up to the change point (unknown), and the proportions after the change point have a different
beta distribution. This model applies to each domain separately. Because the data are very

sparse, the posterior probability of a change is roughly uniform over a large range of age,



making the results unreliable. In the second analysis, we use the Gibbs sampler to fit the
joint posterior distribution of the twelve change points. This is a difficult problem because
the joint density requires the numerical computation of a triple integral at each iteration.
In Section 2 we describe the data on ALS in the NHIS. In Section 3 we show how to use
a Bayesian model to estimate the change point for each domain separately. For many of the
domains, the change points are very different. Thus, in Section 4 we attempt to “borrow
strength” across the domains, using a procedure similar to the one in Section 3. However,
this procedure is slightly more complex, because we need to integrate out all parameters to

form a Gibbs sampler of the change points. Section 5 has a discussion.
2. Main Features of the Data

The National Health Interview Survey (NHIS) has been conducted every year since 1957
by the National Center for Health Statistics (NCHS) to measure an aspect of health status of
the U.S. population (Adams and Marano 1995). Through this sample survey, NCHS conducts
surveys on chronic and acute conditions, doctor visits, hospital episodes, disability, household
and personal information, and other special aspects of health of the U.S. population.

The questionnaire is divided up into two major sections, core and supplemental. The
core section includes items on household and personal information, basic health questions
on conditions, doctor visit, hospital discharge and other supplemental information. The
supplemental section includes questions about selected interests from the general public, en-
compassing a wide range of topics such as prescription medicine, hypertension, diabetes, high
blood pressure, and HIV. The core section is administered annually and the supplemental
section is administered as its need arises.

The data we used for this study comes from the 1995 National Health Interview Survey.
The interviewed sample was has 41,824 households containing 102,467 persons. The range of
age 1s from 0 to 99. Since we are only interested in the age at which a significant change in

activity limitation occurs among adults with chronic conditions, we only use the data from



those whose age 1s from 30 to 80. Respondents in NHIS were asked to provide their activity
limitation status during the interview; there are nonrespondents, but these are taken care of
using survey weights.

The degree of activity limitation is divided in four categories: 1. Unable to perform major
activity. 2. Limited in kind/amount of major activity. 3. Limited in other activities. 4.
Not limited (includes unknowns). Here, major activity refers to activities like going to work,
going to school, keeping house, etc. We have recoded the four levels of activity limitation
status (ALS) into two levels (i.e., binary data) in two scenarios. In the first scenario, we let
the binary variable be 1 if an adult is in the first category, and 0 otherwise; we will call this
variable CAT1. In the second scenario, we let the binary variable be 1 if an adult is in either
the first or the second category, and 0 otherwise; we will call this variable CAT2. We can
also create a third binary variable which is 1 if an adult is in either the first, second or third
category, and 0 otherwise; but this is similar to these two scenarios.

There are two levels of race (white and nonwhite). Gender also have two levels (male and
female). In the original data, there are seven levels of education, and we have recoded it into
three levels (pre-college, college and post-college). Each combination of race, gender, and
education is considered as a domain, therefore, the dataset is divided into twelve domains
and one can expect different change point for each domain. All data combined is considered
as the 13* domain. We will call these domains D1, D2, ..., D13 (e.g., D1: white males with
pre-college education, D2: white females with pre-college education etc.)

We have looked at the boxplots of the proportions of positive ALS for the 12 domains
by age for both scenarios, and we notice that there is a sudden drop of proportions of ALS
around age 70. We believe that this is because many people with positive ALS are of poor
health, and they passed away around age 70, therefore, the proportion of positive ALS drops.
We will correct this effect using the sample weights.

Since the NHIS uses a multistage sample designed to sample the population of the United

States, it 1s necessary to utilize a individual’s basic weight for accurate analysis of the data.



The weight for each sampled individual is the product of four components.

(a)

Probability of selection. The basic weight for each person is obtained by multiplying
the reciprocals of the probabilities of selection at each step in the design: PSU, segment,
and household.

Household nonresponse adjustment within segment. In the NHIS, interviews
are completed in about 94 percent of all eligible households. Because of household
nonresponse, a weighting adjustment is required. The nonresponse adjustment weight
is a ratio of the within-segment weighted number of sample households divided by the
within-segment weighted number of actually interviewed households, both numbers
exclusive of households with unknown black/Hispanic status. For segments with non-
responding households of unknown black/Hispanic status, the previously mentioned
factor was multiplied by the ratio of the number of segment households divided by the
number of known status households. This adjustment reduces bias in an estimate to
the extent that persons in the noninterviewed households have the same characteristics

as the persons in the interviewed households in the same segment.

First-stage ratio adjustment. The weight for persons in the nonself-representing
PSU’s is ratio adjusted to the 1990 population within four race-residence classes of the

nonself-representing strata within each geographic region.

Poststratification by age-sex-race-ethnicity. Within each of 88 age-sex-race-
ethnicity cells, a weight is constructed each quarter to ratio adjust the first-stage
population estimate based on the NHIS to an independent estimate of the population
of each cell. These independent estimates are prepared by the U.S. Bureau of the

Census and are updated quarterly.

In addition to the design and ratio adjustments included in the person basic weight, the

person weight is further modified depending on the variable selected, the length of the recall



period, and the period of time for which the estimate is to be made. For a review of weighting
methods, see Kalton and Florence-Cervantes (2003).

Let ;¢ denote a binary variable for the £** adult, j years old, in the i** domain; 7;;, = 1
if the individual has ALS, and y;;; = 0 if the individual does not. Also, let w;; denote
the corresponding sample weights. Then, we construct a weighted proportion of individuals
with ALS, pi; = Ysep,; wistije/ Yeep;; wise, 1=1,...,12, j=30,...,80, where D;; are
domains formed by race, sex, and education. We assume that the only variable discriminating
among the individuals within a domain is age. Letting X;; denote a vector that contains an
intercept and the value of sex, race, and education for each domain and each age, Next, we
fit a logistic regression to the p;;, log [pi;/{1 — pi;}] = Xi;B + €ij, where approximately the
€;; are independent with E(e;;) = 0 and Var(e;;) = YieD;; w?jl/ﬁij(l — Dij) (EleDﬁ 'wijl)z =

1/W;;. Thus, the least square estimator of 3 is

~1
8= {szj).(ij).ﬁj} > Wijlog [1fi;..] Xij-
i 7 i *

In the case in which p;; = 0 or 1, we add 1/2n;; to both p;; and 1 — p;;; see Cox (1970)
for a similar adjustment for the empirical logistic transform. Finally, the main variable we

analyze is the weighted binomial counts for each domain by age,
X3 X3
yij = e X {1 4 XY, (1)

where [ | is the nearest integer, and y;; = 0,1, ..., n;;.

In Table 1 we present in the first column the domains sex (male, female), race (white,
non-white), and education (low, medium, high) (e.g., domain 1 is white male with low
education). The second column is the total number of respondents. Thus, in the second and
fifth columns we have the number individuals with ALS among the respondents, and in the
third and sixth columns we have the weighted binomial counts. We have drawn boxplots
for the proportions of adults with positive ALS using the binomial weighted data, and we

notice that the plots are smoother than those using the unweighted data and the sudden



drop around age 70 is eliminated; see Figure 1. Henceforth, we study the weighted binomial
counts (1) for the two scenarios, CAT1 and CAT2, and the twelve domains of education, sex
and race.

To get a preliminary understanding of the change point for each domain, we have used the
expectation maximization (EM) algorithm; see Dempster, Laird and Rubin (1977). Letting
P; = Yij/ni; for domain 7 (note we drop the subscript ¢), we consider the simple model for

each domain 5 . )
ﬁj%iNormal(MlaM) J=30,....k

.o A~ n]h 2
By % Normal(a, BCEY) - j =k 41,80, .

where p; is the proportion of adults with positive ALS who are j years old. Before the
change point, the p; are independently and identically normally distributed with mean p,
and variance p;(1 — p;)/n;. After the change point, the p; are independently and identically
normally distributed with mean p; and variance p;(1 — p;)/n;.

p;’s follow the same distributions as before, except that the mean is . For the maxi-

mization step,

k k 80 80
fin =Y. nmp;/ > mi, fu= Y, nipi/ Y. n; (3)
7=30 7=30 j=k+1 j=k+1

and the expectation step

70
:&’17[1’27?) = Z kP(k

k=40

E(k

ﬂ17ﬂ27?) (4)

where

P(k

A A 1 Eni(b: — 11)2 80 o (5 _ )2
,Ul,,uz,p)ocexp [_5{2 M+ Z M} ,

=0 bi(l—p5) 53, Pi(1—5;)
k = 40,...,70. The EM algorithm proceeds by iterating between (3) and (4). Note that we

have the distribution of k as well.

In Table 1 we present the most plausible age where a significant change of prevalence
occurs, and its associated probability by domain in the fifth and eight columns. Note that the
probabilities are almost uniform over the 12 domains, with those corresponding to categories

1, 2 larger. Thus, these estimates for the age of change of prevalence are unreliable. Note
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also that when all the domains are put together (Domain 13), the change point is much more

certain at age 56 or 57.
3. Data Analysis for Each Domain Separately

In this section, we consider each domain separately. We describe a hierarchical Bayesian

model, and we discuss inference for the change points.
3.1 Model and Posterior Density

Let y; denote the number of adults with positive ALS who are j years old, and let n;

denote the total number of adults that are j years old in each domain. We assume that
y; | 6; * Binomial(n;,6;), j = 30,...,80, (5)
We assume that the prior distributions for all §; are conjugate Beta distributions, but

those before the onset and those after the onset have different parameters. Thus,

0; | p1,7 z%‘JiBeta(,ulT, (1 — p1)7) j=30,...,k
0; | pa, 7 “ Beta(pa, (1 — pa)7) j=k+1,...,80.

(6)

Note that for a parsimonious representation we have taken the same 7 before and after the
change point.
We believe that the change point occurs between the ages 40 and 70, so the range for &k

is from 40 to 70. A uniform prior distribution is assumed on k, such that

Pr(k=a,)=1/31, »r=40,...,70, a,=r. (7)

Finally, non-informative priors for the hyperparameters p;, us and 7,

Hi, K2 %1 Uniform(O, 1)7 p(T) = m: T > 0. (8)

Note that p, gs and 7 are independent.
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Then, using Bayes’ theorem, the joint posterior density of 8, u, 7, and k is

80

I 6¥ (16,
(e L, 0

ar 0#17' 1(1 _ gj)(l—ul)r—l 80 0;}27—1(1 _ Gj)(l_”Z)T_l

< I1 ~ I1

j=30 B(pir, (1 — pa)7) j=ar+1 B(par, (1 — p2)7)

P(O,p, 7k =a,ly)

(9)

r = 40,...,70. It is convenient to collapse over § and to condition on k. Thus, we can obtain

the joint posterior of p and 7 given k as

1 = [B(y;+mr, (nj —y;) + (1 — pa)7)
(1+7) jgol B(#lTa(l—Ml) ) ]

y = (yj + par, (nj — y;5) + (1 — pa)7)
11 [ B Cor (T )] ] 10

We use the griddy Gibbs sampler to draw samples from (10).

P(p1, p2, 7 |y, k= a,)

j:ar+1

The posterior distribution of k is

oyl Pl=a)P(ylk=a) _ Plylk=a)
P(k = 'r|y)_28 wPk=a)Pylk=a,) X7°,,Plylk=a,)’ (11)

r =40,...,70, where

Py k=a) = ( )Lty

" (y; + i, (nz y;) + (1 — p)7)
H[ B(MlTa(l—Ml)) ]

X B (y; + pat, (g — ;) + (1 — pa)7) i
I [ B (par, (1 — p2)7) ] dydr. (12)

We use Monte Carlo integration to perform the integration in (12). As an importance

j:ar+1

function, we take p;, ps and 7 to be independent with Beta distributions for g, and py and

a Gamma distribution for 7 as
s S Beta(v;éi, (1 — v3)¢s) 1=1,2, 7~ Gamma(a,S).

We obtain the parameters (v;, ¢;) and (a, §) using the method of moments on the output
of the Gibbs sampler H(h), ™ R =1,..., M ~ 1000. Thus, we take

1 f: R W f: w1 f: (B)\2
Vi= g7 2. K =V Bi = 35 2. M
Mh:l 1 Mh:l
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8 1 f: ® g 1 f: #)/g 1 f:( n _ 1 f: (M2}
a=p0r T = T TV — — T .
M ’ Mh:l M_]'hZI Mh:l

h=1

3.2 Data Analysis

In Tables 2 and 3 we present the distributions of k for the weighted binomial counts
by domain. For both scenarios it is difficult to tell where the change points are for the
domains because the probabilities are small, and they spread out almost uniformly. With
a few exceptions, the estimates are similar to those obtained for the EM algorithm on the
approximate model; see Table 1. These exceptions correspond to domains D8, D10, D12,
which correspond respectively to non-white females with college education, and females with
post-college education; these are most sparse domains.

When only one category is used to define positive ALS, there are differences in change
points for domains D8, D10, D12. For D8 the change point is at 61 years, probability
.055, compared with 53 years, probability .062, for the EM algorithm; for D10 the change
point is at 70 years, probability .058, compared with 52 years, probability .071, for the EM
algorithm; and for D12 the change point is at 69 years, probability .054, compared with 57
years, probability .054, for the EM algorithm.

When two categories are used to define positive ALS, there are differences in change
points for domains D10, D12. For D10 the change point is at 70 years, probability .048,
compared with 41 years, probability .045, for the EM algorithm; and for D12 the change
point is at 70 years, probability .054, compared with 54 years, probability .051, for the EM
algorithm.

However, when the data are collapsed over education, sex and race (domain D13), one
can have some confident in the change point. When only one category is used to define
positive ALS, the change point lies in the interval (53, 61) with probability .951. When two
categories are used to define positive ALS, the change point lies in the interval (53, 60) with

probability .972. These results are similar to those obtained for the EM algorithm on the
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approximate model; see Table 1. Thus, in both scenarios, there is reasonable confidence that
a change in prevalence of ALS occurs in the interval (55, 60).

Finally, we note that the computation is time consuming. One way to reduce the time
considerably is to use the reversible jump algorithm. When there are many competing models
with different parameter spaces (e.g., dimensions) and there is uncertainty about the model
itself creating a parameter which indexes the model, Green (1995) proposes a reversible
Markov chain sampler that jumps between parameter subspaces of different dimensionality.
We have experienced some difficulties using this algorithm. The estimates of the change
points are mostly larger than those in Tables 2, 3 with a few of domains similar. Also for
domain D13, when one category is used to define positive ALS, the change point lies in
(52, 60) with probability .959; and when two categories are used to define positive ALS, the
change point lies in (52, 60) with probability .957. These are similar to the results without
using the reversible jump sampler.

However, there are some domains where the reversible jump algorithm gets stuck. When
only one category is used to define positive ALS, the change points are at age 70 years with
probability 1 for domains D10 and D12. When two categories are used to define positive
ALS, the change points are at age 70 years for domain D10 and D12 with probabilities 1 and
.695 respectively. However, when one category is used to define positive ALS, for domain
D13 the change point lies in (52, 60) with probability .959; and when two categories are used
to define positive ALS, for domain D13 the change point lies in (52, 60) with probability
.957. These are similar to the results without using the reversible jump algorithm.

Can these conclusions change for the individual domains when the data are pooled? Here,
we mean that each domain is treated in its own right, but there is a common stochastic
process across these domains. We note that there is a problem in collapsing over education,
sex and race as in domain D13; this ignores the heterogeneity in the data. Thus, while the
answers for D13 seem reasonable, this heterogeneity in the data has not been taken into

account. Next, we want to take the heterogeneity into account; this analysis falls in the area
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of small domain estimation.
4. Adaptive Pooling of the Domains: Small Domain Analyses

In this section we model heterogeneity among the twelve domains. We assume that the
parameters of the Binomial distribution follow a common stochastic process. This allows us
to pool the domains adaptively (i.e., according to the sample size). This comes naturally
under small area estimation. There are two parts in this section. In the first part, we assume
that all domains have the same change point. Although this is an unrealistic assumption,
it is used to facilitate the second part which eliminates this assumption to have different

change points for the domains, a more realistic approach.
4.1 A Single Change Point for all Domains

As in the model in Section 2, the y;; follow a Binomial distribution with parameters n;;
and 6;;, and the 6;; have Beta distributions, but the parameters are different for those before

the change point and those after the change point. That is, forz =1,...,12,

yijwij ifzd Binomial(nij, 9”) ] = 30, e ,80 (13)
0i; | p, 7 % Beta(uir, (1 — pa)7) 7 =30,...,k

O | pa, 7 “ Beta(par, (1 — p2)7) j=k+1,...,80. (14)

A priori we take p;, gy and 7 to be independent with

i . 1
11, Pa " Uniform(0,1), p(r) = A1) (15)
Also, the prior distribution for k is uniform on (40, 70),
Pr(k)=1/31, k=40,...,70. (16)

Then the joint posterior distribution for all the parameters is

p(8, p1, pa, 7, kly) o H H {9911 1—6; nzj—yu'}

i=17=30

15



12 kg1l 6; (1-p)r—1 80 pgH27—1r{ 6, (1—p2)r—1
% H H ] ( .7) H 27 ( .7) (17)
j=30 B(pa7, (1 — pu)7) j=k+1 B(pat, (1 — pa)7)
As in Section 2, we have collapsed over the 8;; to fit this posterior density.
Finally, the posterior density of k is
Pr(k = a, | k= a, | k= a,
AP, (751115 MR . ILETS o)
Yte P(k = a,)Pr(y | k = a,) Ea_40Pr(y| =a,)’
a, =40,...,70, where
1 12 n; L B(yi; + mrng — i + (1 — )7
p(y|k)= (.7)/// H (.7 Bl .71.7 ( 1))
i= 1; 30 Yij j=30 (par, (1 — pa)7)
7 Bis + pat, mi; — yis + (1 — pa)7)
X : dpqdpadr. (19)
AL B i)

We present the distributions of k in Table 4. Age 57 is the same chage point for both
scenarios. When one category is used, the probability that change point occurs at 57 years
is .237, but when both categories are used the probability is much larger, .547; otherwise the
two distributions of k are very similar. For both scenarios most of the probability lies in the
interval (53, 59). It gives some confidence that these results are also very similar to those
obtained for domain D13 in Section 3. We extend this model to make inference about the

individual domains in the next section.
4.2 Different Change Points for Each Domain

Now, we assume that each domain has a different change point. Let k = (ki, ks, .. ., k12)
denote the vector of change points, where k;,2 = 1,...,12 denote the change point for the
i** domain and k(;) denotes the vector of change points for all the domains except the ith
domain. We assume that the k; are identical and independently distributed.

Given k, the joint posterior distribution for 8, u;, ps, and 7 1s

1 12 (80 .
p(8, p1, po, Ty, k) (S II { I1 6i7 (1 — 63)mi %

=1 | 7=30
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7=30 B(pa7, (1 — p)7) i—k;+1 B(pat, (1 — p2)7)

and collapsing over 8, we get

ki TerT-1(1 _ 9, (1—py)7—1 80 G211 _ 6, (1—p2)r—1
o H l ij ( i) ] H l i ( i) ] , (20)
j

p(:u’lnu‘% T|y7 ].?) &

yzj + BT, i — Yis + (1 — ,u1)7')
H{ H l B(par, (1 — p1)7) ]

y H [Byij‘|‘,U27',"Lij_yij‘|’(1_l1'2)7')]}' (21)

j=k;+1 B(IU’ZTa (1 - lu’z)T)

= 7=30

Thus, again we use the griddy Gibbs sampler to fit this posterior density for each value of k.

Now we need to compute the posterior distribution for k. Unfortunately, this is a difficult
problem, because our previous procedure is impractical as the computation is prohibitively
expensive. This is true because we have to, a) run 31'? Gibbs samplers, b) compute 31'?
marginal likelihoods, and c) as we have seen in Section 3 the reversible jump algorithm is
unreliable for very small domains. To solve this problem, we can draw p(k|y) using a Gibbs

sampler by drawing from p(k;|k.;,y). Here,

pikly ko) « [ [ [ ﬁ Blyis + par, mig — i + (1= p)7)
e 1 +7) j=30 B(u, (1 — pa)7)
80 . PR — .. —
X H Blyis + patymij — yig + (1 — o)1) dpy dpodr. (22)
j=ki+1 B(per, (1 — p2)7)

A more convenient form for computation of the posterior density in (22) is

p(kily, & / / / i B(yz’j‘|‘,ul7';nij_yij+(1_:u’l)T)
’ B(pir, (1 — p1)7)
y 18—0[ B(yij + pat,mij — yij + (1 — pa)7)
G=ks+1 B(:u‘27-7 (1 - ,11,2)7')
<11 ﬁ B(ye; + pa7,me5 — ye5 + (1 — pa)7)
t#i | j=30 B(pr, (1 — p)7)
80 DBly,. C L ary 1—
H (yl] + HaT, Tig; Yes + ( IU‘Z)T) d'ulldlulsz‘ (23)
G=ky+1 B(:u‘27-7 (1 - ,11,2)7')

Note then that in (23) one needs to compute a three-dimensional integral.
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Frist, set k(;) to the starting value which we obtained from the model in Section 4.1.
Using the importance function, obtained in Section 4.1, we can compute p(ki|k(),y) by
Monte Carlo integration and Gibbs sampler for each k£, = 40,...,70. Once we get this
conditional posterior ‘density’ of k;|k(:),y, we can draw a random value from it and fix
the k; in k() at this value. So in k(s), k; will be the sample drawn from p(k;|k(),y) and
ks, ..., k1o will still be the starting value we obtained from part 1. Now for the fixed k; and
k@), perform the Gibbs sample on p(, p1, p2, T|k1, k(1)) at each value of ky. At this point,
ky is the starting value as we obtained in part 1. Obtain p(k,|k(2),y) as in the previous step,
and draw a value for ky|k(s),y. Now we have updated k;,k;. We continue the process to
update ks, k4, ...,k in the same manner. Repeat the entire process until we get a large
sample Ig(l), ey @(M). This is a sample from the posterior density of p(k | y). Now we can
construct 95% credible interval for each component ki, ..., ki,.

In Tables 5,6 we see that the probabilities at the change points are much more elevated.
Domains D1, D2, D3, D6 and D8 have change points near to 40 years; Domains D4, D5 and
D7 have their change points somewhere in the middle of the age range; and Domains D9,
D10, D11 and D12 have their change points near 70 years. This is true for both scenarios,
CAT1 and CAT2. This suggests that the change points roughly increases with education
levels (i.e., adults with higher level of education tend to have a change in prevalence of ALS
much later than less educated adults).

Thus, we have collapsed over sex and race to produce one categorical variable education
with three levels (pre-college, college, post-college). We present the results in Table 7. Now,
for CAT1 (CAT2) we see that adults with pre-college education have change of prevalence
around age 51 (55) years, adults with college education have change of prevalence around
age 43 (49) years, and adults with post-college education have change of prevalence around
age 60 (54) years. The results for the two scenarios are somewhat different. What intervals
have a probability of .95 by education? First consider CAT1. For adults with pre-college

education it is (43, 57); for adults with college education it is (40, 56); and for adults with
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post-college education it is (54, 68). Second consider CAT2. For adults with pre-college
education it is (47, 61); for adults with college education it is (42, 61); and for adults
with post-college education it is (47, 63). Thus, when variation is taken into account, there

appears to be very little difference among the three levels of education.
5. Discussion

Our main contribution is in a hierarchical Bayesian model which includes all domains
with separate change points. The Gibbs sampler is used to fit the joint posterior distribution
of the twelve change points. This is a difficult problem because the joint posterior density
requires the numerical computation of a triple integral at each iteration. This model gives
better estimates of the change points (more confident in the estimates) than a model that
that fits each domain separately. This model that is fit separately to each domain does not
take care of the similarity among the domains (too much heterogeneity).

The two scenarios (different definitions of positive ALS) do not make a large difference in
terms of detection of the age at which there is a change in prevalence. There are differences
among the domains formed by crossing education, sex and race, but it is difficult to trust
these results. However. we have found that overall the age at which a significant change
occurs is about 56 years. This is similar to the answers when all the domains are treated as
a single one (i.e., education, race and sex are collapsed).

Although we did not present the results, the other parameters of the process are obtained
using data augmentation by a Metropolis sampler and a Rao-Blackwellization. Another piece
of work we did is that we also fit all our models with the unweighted binomial counts. While
the results are different, they are not too different.

One caveat to our work is that the weighted binomial counts are sums of correlated binary
variables. Thus, these counts do not really have binomial distributions. For simplicity, survey
samplers incorporate sampling weights using weighted averages, as we did; this is defective.

In future, we will look at this problem on correlated binomial counts.
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Table 1: Number of respondents (res), number of individuals with ALS, weighted binomial
counts (WBC), change point (CP) and its probability in parentheses by category (cat) and
domain (D)

CAT1 CAT2
Domain Res ALS WBC Cp ALS WBC Cp
D1 1361 242 257 51 (.104) 329 360 59 (.154)
D2 263 76 67 63 (.088) 96 82 58 (.093)
D3 1503 206 235 59 (.140) 366 398 54 (.135)
D4 322 67 72 56 (.084) 119 108 59 (.102)
D5 5814 494 559 53 (.156) 854 894 51 (.201)
D6 1129 162 167 51 (.069) 229 230 50 (.079)
D7 7023 450 577 54 (.135) 999 1117 54 (.190)
D8 1538 163 195 53 (.062) 304 316 52 (.085)
D9 6012 203 277 48 (.107) 463 522 51 (.162)
D10 934 48 63 52 (.071) 89 99 41 (.045)
D11 5969 236 211 59 (.072) 519 489 52 (.152)
D12 1236 57 61 57 (.054) 116 128 54 (.051)
D13 33104 2404 2741 56 (446) 4483 4473 57 (.794)

NOTE: CAT1: “Limited in major activity”; CAT2 : “Limited in major activity” and
“Limited in kind/amount of major activity” are added together. The domains are formed
by crossing education (low,medium, high), sex (male, female) and race (white, non-white).
The change points are obtained by an approximate model, and the EM algorithm is used

to fit it. Domain D13 is formed by collapsing over education, sex and race.
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Table 2: Distributions for the change point & for the 13 domains using the logistic weighted
data, where only “Limited in major activity” is considered as positive ALS.

Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

40 .008 .027 .001 .002 .001 .032 .000 .011 .015 .029 .014 .023 .000
41 .010 .021 .001 .002 .002 .030 .001 .013 .018 .027 .017 .023 .000
42 .011 .040 .002 .005 .003 .028 .001 .018 .021 .028 .019 .021 .000
43 .013 .082 .003 .011 .0056 .032 .002 .022 .026 .030 .020 .020 .000
44 018 .038 .004 .008 .008 .034 .005 .025 .031 .028 .023 .021 .000
45 .020 .060 .006 .011 .013 .029 .008 .026 .040 .025 .028 .021 .000
46 .025 .043 .008 .025 .018 .033 .012 .033 .048 .026 .029 .020 .000
47 029 027 .013 .038 .021 .034 .018 .037 .055 .024 .034 .020 .000
48 .029 .042 .019 .055 .031 .034 .023 .036 .061 .024 .038 .021 .000
49 036 .034 .028 .110 .035 .036 .028 .036 .056 .023 .035 .021 .002
50 .051 .029 .027 .069 .051 .042 .033 .040 .052 .025 .033 .022 .005
51 .073 .036 .023 .046 .071 .049 .036 .042 .053 .027 .036 .022 .012
52 .065 .031 .032 .049 .076 .043 .045 .040 .049 .030 .035 .023 .024
53 .056 .026 .046 .077 .091 .043 .065 .043 .051 .028 .032 .024 .053
54 .053 .034 .058 .068 .081 .044 .0v9 .043 .043 .026 .036 .025 .080
55 .050 .047 .057 .135 .094 .038 .0v7 .043 .036 .026 .033 .026 .079
56 .064 .044 062 .122 .076 .045 .084 .036 .038 .026 .040 .028 .125
57 .061 .051 .059 .057 .063 .041 .093 .036 .040 .027 .043 .031 .152
58 .061 .039 .066 .036 .050 .034 .106 .038 .041 .028 .050 .035 .135
59 .067 .037 .090 .029 .041 .037 .098 .047 .040 .028 .062 .042 .234
60 .054 .045 .091 .015 .047 .026 .079 .046 .028 .030 .051 .038 .067
61 .038 .031 .078 .009 .034 .028 .053 .055 .029 .032 .044 .047 .026
62 .028 .032 .054 .005 .027 .029 .026 .051 .028 .036 .032 .043 .005
63 .026 .033 .041 .003 .024 .022 .013 .041 .021 .041 .023 .040 .001
64 .025 .022 .036 .003 .015 .024 .007 .042 .018 .039 .027 .054 .000
65 .015 .012 .024 .002 .010 .024 .004 .031 .016 .039 .029 .050 .000
66 .008 .010 .023 .002 .006 .022 .003 .027 .012 .041 .028 .046 .000
67 .006 .008 .019 .002 .003 .023 .001 .017 .009 .048 .029 .043 .000
68 .005 .009 .014 .001 .001 .023 .001 .011 .009 .049 .026 .043 .000
69 .003 .006 .011 .001 .001 .021 .000 .007 .008 .053 .026 .055 .000
70 .002 .005 .005 .001 .000 .019 .000 .007 .006 .058 .028 .053 .000

NOTE: See note to table 1.
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Table 3: Distributions for the change point & for the 13 domains using the logistic weighted
data, where both “Limited in major activity” and “Limited in kind /amount of major activ-
ity” are considered as positive ALS.

Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

40 .001 .007 .001 .009 .000 .018 .000 .015 .004 .037 .004 .034 .000
41 .002 .007 .001 .007 .000 .022 .000 .021 .006 .040 .006 .031 .000
42 .003 .015 .002 .007 .001 .028 .000 .024 .009 .036 .009 .032 .000
43 .006 .034 .003 .007 .002 .027 .000 .028 .013 .033 .011 .032 .000
44 007 .027 .006 .010 .005 .025 .001 .037 .019 .030 .017 .034 .000
45 010 .046 .009 .011 .010 .027 .002 .043 .024 .029 .021 .035 .000
46 .015 .043 .013 .012 .016 .031 .004 .052 .030 .031 .028 .033 .000
47 .016 .040 .020 .020 .023 .040 .008 .050 .040 .030 .036 .031 .000
48 .023 .068 .025 .025 .033 .044 .016 .049 .042 .029 .045 .027 .000
49 025 .068 .032 .022 .043 .045 .029 .051 .041 .028 .047 .027 .000
50 .025 .068 .035 .025 .065 .054 .049 .048 .050 .030 .060 .027 .001
51 .034 .045 .056 .028 .096 .049 .066 .048 .062 .029 .065 .026 .003
52 .037 .047 059 .023 .098 .049 .079 .055 .062 .032 .073 .028 .008
53 .053 .055 .065 .039 .096 .040 .104 .057 .062 .028 .056 .027 .023
54 .069 .041 .086 .058 .093 .044 .111 .045 .060 .025 .051 .029 .057
55 .091 .032 .076 .053 .081 .042 .102 .047 .057 .023 .055 .028 .060
56 .075 .036 .081 .083 .081 .051 .131 .044 .059 .025 .051 .028 .142
57 .087 .052 .066 .093 .071 .065 .096 .040 .067 .028 .054 .028 .304
58 .087 .055 .061 .061 .055 .050 .071 .051 .069 .026 .044 .027 .168
59 .113 .034 .060 .075 .044 .038 .052 .050 .059 .028 .043 .028 .187
60 .073 .024 .045 .052 .036 .032 .032 .036 .042 .030 .046 .029 .031
61 .055 .022 .045 .065 .020 .033 .021 .032 .036 .033 .035 .030 .013
62 .032 .015 .043 .050 .012 .031 .013 .021 .029 .036 .037 .031 .002
63 .021 .019 .035 .032 .009 .023 .006 .015 .020 .034 .029 .032 .000
64 .019 .018 .034 .035 .005 .024 .004 .013 .012 .034 .025 .034 .000
65 .011 .014 .018 .031 .002 .016 .002 .010 .008 .034 .016 .036 .000
66 .006 .014 .011 .022 .001 .012 .001 .008 .006 .034 .013 .037 .000
67 .003 .015 .006 .019 .000 .012 .000 .004 .005 .036 .008 .039 .000
68 .002 .020 .003 .014 .000 .011 .000 .003 .004 .040 .007 .040 .000
69 .001 .011 .002 .007 .000 .010 .000 .001 .002 .043 .005 .045 .000
70 .001 .010 .001 .007 .000 .008 .000 .001 .001 .048 .004 .054 .000

NOTE: See note to Table 1.
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Table 4: Distributions for the change point k for the two scenarios, CAT1 and CAT2, using
weighted binomial counts with the same change point for all domains

k CAT1 CAT2
50 .001 .000

51 .004 .000

52 .012 .003

53 .049 .013

54 .086 .046

95 .095 .040

56 217 155

57  .237  .547

58 .098 102

59 181 .091

60 017 .003

61 .003 .001

NOTE: CAT1: Only “Limited in major activity” is considered as positive ALS; CAT2:
Both “Limited in major activity” and “Limited in kind/amount of major activity” are
considered as positive ALS.
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Table 5: Distributions for the change point &k for the 12 domains using the revised Bayesian
hierarchical model and weighted binomial counts for the first scenario, CAT1.

Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
40 .579 170 .252 .067 0 .644 0 .288 0 0 0 0
41 269 .131 .183 .064 0 .222 0 .174 0 0 0 0
42 107 .178 .164 .070 .002 .082 0 .195 0 0 0 0
43 026 .223 .112 .083 .005 .029 0 .147 0 .002 0 0
44 008 .086 .084 .063 .007 .020 0 .079 0 0 0 0
45 .004 .084 .072 .066 .011 .001 0 .048 0 0 0 0
46  .002 .054 .032 .084 .032 0 0 .029 0 0 0 0
47 .003 .014 .037 .091 .050 0 0 .021 0 0 0 0
48 0 .025 .026 .079 .071 0 0 .014 0 0 0 0
49 .001 .015 .025 .08 .092 .002 0 .003 0 0 0 0
50 .001 .008 .007 .057 .110 0 0 .001 0 .004 0 0
51 0 .006 .002 .048 .160 0 0 0 0 .006 0 0
52 0 .004 .001 .031 0.12 0 .001 .001 0 .012 0 0
53 0 .001 .002 .026 .125 0 .003 0 0 .016 0 0
54 0 .001 0 .032 .077 0 .004 0 0 .012 0 0
55 0 0 .001 .028 .068 0 .010 0 0 .005 0 0
56 0 0 0 .018 .033 0 .025 0 0 .009 0 .001
57 0 0 0 .005 .020 0 .049 0 0 .011 0 0
58 0 0 0 .002 .005 0 .102 0 0 .011 0 .001
59 0 0 0 0 .009 0 .133 0 0 .010 0 .002
60 0 0 0 0 .001 0 .132 0 0 .019 0 .007
61 0 0 0 0 .002 0 .147 0 0 .017 0 .008
62 0 0 0 0 0 0 .132 0 0 .017 0 .010
63 0 0 0 0 0 0 .119 0 0 .018 0 .019
64 0 0 0 0 0 0 .057 0 0 .039 0 .012
65 0 0 0 0 0 0 .032 0 0 .057 0 .036
66 0 0 0 0 0 0 .034 0 .008 .102 .003 .059
67 0 0 0 0 0 0 .010 0 .020 .147 015 .126
68 0 0 0 0 0 0 .006 0 .083 .141 .044 215
69 0 0 0 0 0 0 .004 0 .223 .179 225 .195
70 0 0 0 0 0 0 0 0 .666 .166 .713 .309
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Table 6: Distributions for the change point &k for the 12 domains using the revised Bayesian
hierarchical model and weighted binomial counts for the second scenario, CAT2.

Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
40 .432 076 .566 .318 0 .357 0 .426 0 0 0 0
41 306 .051 .212 .182 0 .270 0 .262 0 0 0 0
42 163 .110 .103 .119 0 .216 0 .152 0 0 0 0
43  .060 .183 .055 .076 0 .090 0 .084 0 0 0 0
44 015 .100 .036 .083 0 .036 0 .038 0 0 0 0
45 .010 .129 .017 .044 .001 .011 0 .022 0 0 0 0
46  .007 .105 .006 .038 .004 .011 0 .013 0 0 0 0
47 .002 .061 .002 .048 .007 .006 .001 .002 0 0 0 0
48  .003 .068 .002 .034 .013 0 .005 .001 0 0 0 0
49  .001 .050 .001 .019 .031 .001 .013 0 0 0 0 0
50 .001  .028 0 .010 .065 0 .039 0 0 .002 0 0
51 0 .018 0 .008 .108 0 .089 0 0 0 0 0
52 0 .010 0 .003 .140 .002 .109 0 0 0 0 0
53 0 .007 0 .008 .153 0 .152 0 0 0 0 0
54 0 0.002 0 .006 .128 0 .137 0 0 0 0 0
55 0 .001 0 .001 .105 0 .140 0 0 0 0 .001
56 0 .001 0 .003 .108 0 .161 0 0 .003 0 .001
57 0 0 0 0 .068 0 .076 0 0 .010 0 .006
58 0 0 0 0 .037 0 .045 0 0 .007 0 .005
59 0 0 0 0 .016 0 .020 0 0 .015 0 .006
60 0 0 0 0 .013 0 .009 0 0 .022 0 .007
61 0 0 0 0 .002 0 .004 0 0 .029 0 .010
62 0 0 0 0 .001 0 0 0 0 .065 0 .022
63 0 0 0 0 0 0 0 0 0 .076 0 .032
64 0 0 0 0 0 0 0 0 0 .082 0 .046
65 0 0 0 0 0 0 0 0 0 .072 0 .128
66 0 0 0 0 0 0 0 0 .002 .070 .003 .132
67 0 0 0 0 0 0 0 0 .024 .066 .005 .171
68 0 0 0 0 0 0 0 0 .091 .104 042 .171
69 0 0 0 0 0 0 0 0 .255 171 .204 0.132
70 0 0 0 0 0 0 0 0 .628 .206 .746 0.130

26



Table 7: Distributions for the change point k for the three domains (levels of education)
using the revised Bayesian hierarchical model and with weighted binomial counts.

Age CAT1 CAT2
Low Median High Low Median High

40 .010 .069 0 .001 0.180 0
41 .020 .061 0 0 .023 0
42 .020 .069 0 .002 024 .003
43 .029 .138 0 .004 034 0
44 .042 .084 0 .005 045 .005
45 .055 .104 0 .013 .046 .010
46 .058 .072 0 013 056 .013
47 .069 .048 0 .026 059 .030
48 .066 .061 0 .036 .082 .032
49 .066 .056  .002 .040 .082 .042
50 .090 .036  .002 .058 065 .059
51 .109 .043  .002 .055 059  .082
52 .088 024 .012 .059 051 .090
53 .064 016 .013 .082 065 .096
54 .048 029  .029 .091 047 .119
55 .050 015 .027 .094 .040 .090
56 .036 026 .038 .087 036 .094
57 .029 .023  .060 .082 045 .052
58 .024 010 .073 .089 036 .046
59 .009 .002  .106 .082 023  .046
60 .009 .009 .140 .050 021  .023
61 .005 003 128 .013 017 .023
62 .003 .001  .087 .010 .009 .014
63 0 .001  .068 .006 .004 .016
64 0 0 .047 .001 .004 .010
65 0 0 0.049 0 005 .003
66 0 0 .037 0 .003 0
67 0 0 .027 0 0 0
68 .001 0 .022 0 .001 .001
69 0 0 .023 .001 0 0
70 0 0 .008 0 0 0

NOTE: CAT1: Only “Limited in major activity” is considered as positive ALS. CAT2:
Both “Limited in major activity” and “Limited in kind/amount of major activity” are
considered as positive ALS.
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Figure 1: Boxplots of the proportions of positive ALS for the 12 domains by age using the
weighted binomial counts; Top panel: Unable to perform major activity; Middle panel:
Unable to perform major activity and Limited in major activity/amount of major activity;
Bottom panel: Unable to perform major activity, Limited in major activity/amount of
major activity and Limited in other activities
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