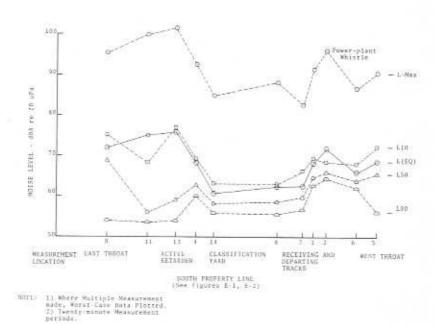
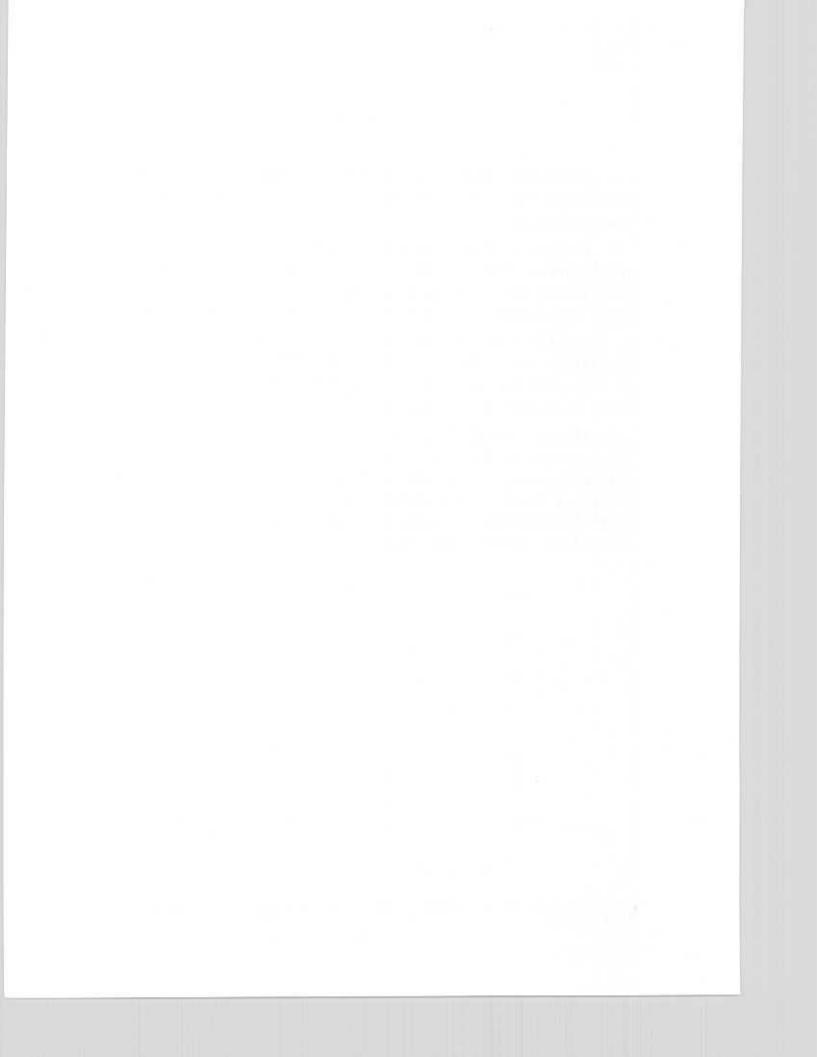

Technical Report Documentation Page

I. Report No.	2. Government Access	sion No.	3. Recipient's Cotalog N	o.
DOT-TSC-OST-73-46				
. Title and Subtitle			5, Report Date	
NOISE LEVEL MEASUREME	ENTS OF RAILRO	ADS:	May 1974	
REIGHT YARDS AND WAY			6. Performing Organization	nn Cade
			B. Performing Organization	n Report No.
Author's E.J. Rickley,	R.W. Quinn an	d	DOT-TSC-OST-	73-46
N.R. Sussan				
Performing Organization Name and Adi	dress		10. Work Unit No. (TRAIS R-4520/OS-40	
Department of Transportation System	ns Center		11. Contract or Grant No.	
Gendall Square	no control			
Cambridge MA + 02142			13. Type of Report and P	eriod Cavered
2. Spansaring Agency Name and Address			Final Rep	
partment of Transportati	on		Sep. 1972 - A	pr. 1973
fice of the Asst. Sec. f fice of Noise Abatement shington DC 20590	or Systems Devel	op, and Tech.	14. Sponsoring Agency Co	ode
5. Abstract				
Noise from railre from freight yard ope Yard of the Santa Fe scale in three facil Massachusetts. In a line-haul operations New Jersey and Massa This report cont time history level r	erations were Railroad in K ities of the B ddition, waysi were measured chusetts, and ains statistic	measured at (ansas City, loston and Made noise da lon the Penon the Sant	the Argentine Kansas and on Laine Railroad ta from passen n Central Rail e Fe Railroad noise data, g	a smaller in Boston ger and road in in Kansas. raphical
Noise from railre from freight yard ope Yard of the Santa Fe scale in three facil Massachusetts. In a line-haul operations New Jersey and Massae This report contains time history level re of selected data. 17. Key Words Noise, Railroad, Fre Ground Transportation	erations were Railroad in K ities of the B ddition, waysi were measured chusetts, and ains statistic ecordings, and	measured at (ansas City, loston and Made noise date on the Penon the Sant al temporal one-third	the Argentine Kansas and on aine Railroad ta from passen n Central Rail e Fe Railroad noise data, g octave frequen	PUBLIC
from freight yard operated of the Santa Fe scale in three facil Massachusetts. In adding the Jersey and Massachusetts and Massachusetts and Massachusetts and Massachusetts and Massachusetts and Massachusetts and Jersey and Je	erations were Railroad in K ities of the B ddition, waysi were measured chusetts, and ains statistic ecordings, and eight Yard, on, Passenger, Locomotive	measured at (ansas City, loston and Made noise da lon the Pen on the Sant al temporal lone-third	the Argentine Kansas and on laine Railroad ta from passen n Central Rail e Fe Railroad noise data, g octave frequen Tement NT IS AVAILABLE TO THE H THE NATIONAL TECHNIC LITON SERVICE, SPRINGFIE 22151.	Preight a smaller in Boston ger and road in in Kansas. raphical cy spectra
Noise from railre from freight yard operated of the Santa Fescale in three facil Massachusetts. In actions New Jersey and Massachusetts report continue history level report selected data. 7. Key Words Noise, Railroad, Fre	erations were Railroad in K ities of the B ddition, waysi were measured chusetts, and ains statistic ecordings, and	measured at (ansas City, loston and M de noise da l on the Pen on the Sant cal temporal l one-third 18. Distribution Stat DOCUMENT THROUGH INFORMA VIRGINIA	the Argentine Kansas and on laine Railroad ta from passen n Central Rail e Fe Railroad noise data, g octave frequen The National Technic Lition Service, Springfie	public

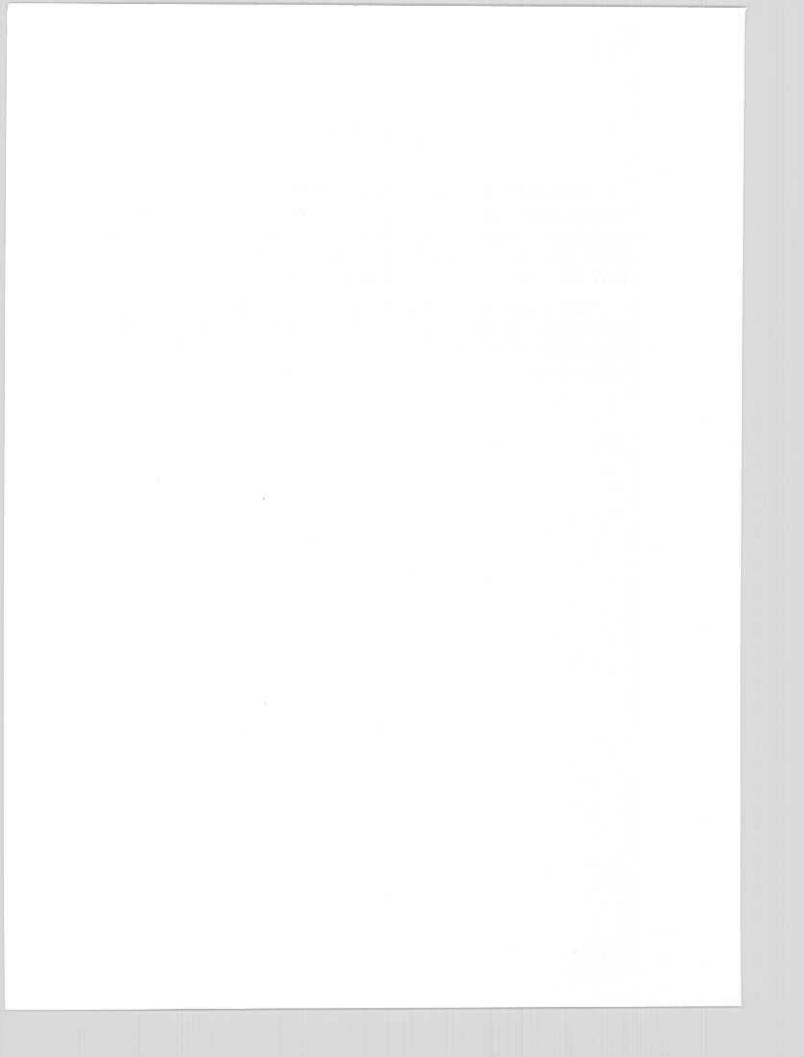

PREFACE

Measurements were made of noise emissions emanating from railroad freight yards and at the wayside from passenger and linehaul operations.

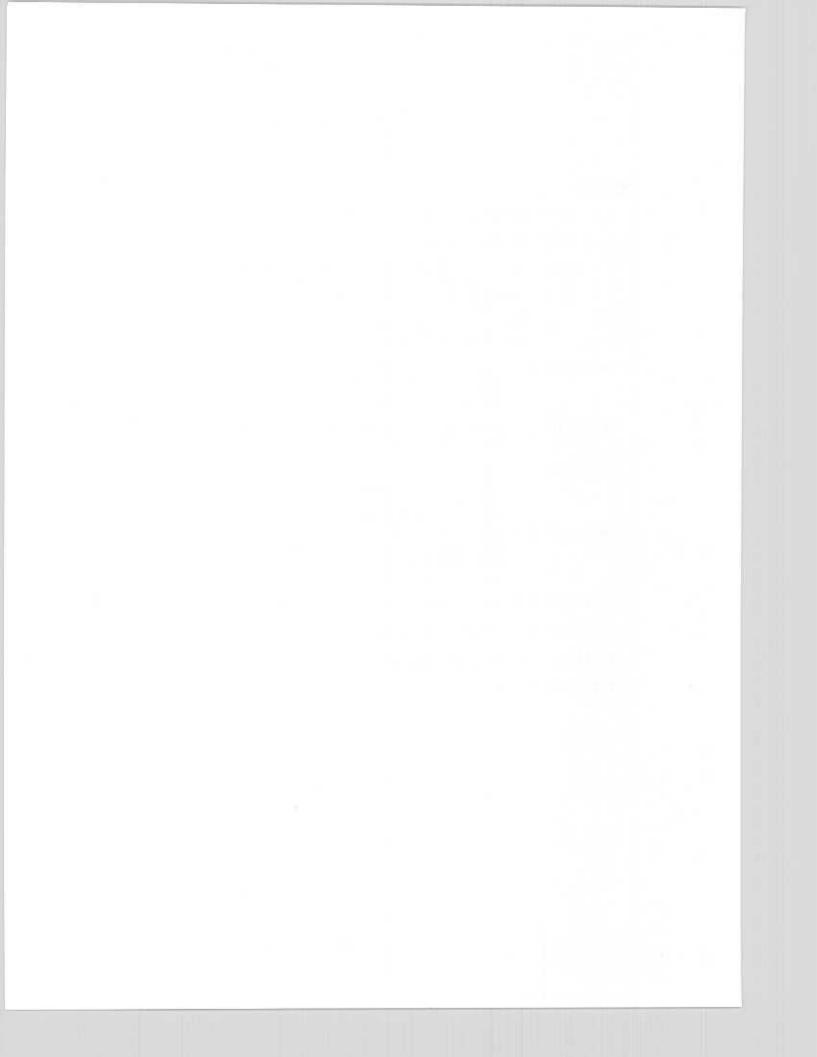

Freight yard measurements were made on 24-26 April 1973 at the Argentine Freight Yards of the Santa Fe Railroad in Kansas City KS and on a smaller scale on 21, 27, and 28 March 1973 at three facilities of the Boston and Maine Railroad in Boston MA.

Wayside passby noise emissions from passenger and line-haul operations were obtained on the Penn Central Railroad in NJ on 23 May, 1972 and in MA on 20 and 26 September 1972; and on the Santa Fe Railroad in KS on 24-26 April 1973.

Included in this report are statistical analyses of recorded data, graphic noise level time history recordings, and one-third octave frequency spectra of selected events. A summary is presented of the statistical data of measurements made along the south boundary of the Argentine yard during 20-minute sampling periods at the locations shown.


Property Line Noise Levels; Argentine Freight Yard, Santa Fe RR, 4/24-26/73

ACKNOWLEDGMENT


Appreciation is expressed to officials of the American Association of Railroads; officials and personnel of the Atchison, Topeka, and Santa Fe Railroad; officials and personnel of the Boston and Maine Railroad; and Cambridge Collabrative, Inc., for their assistance in this measurement program.

The following members of the Noise Measurement and Assessment Group, Transportation Systems Center, contributed to the preparation of this report: Messrs. H. Bessler, R. Harzbecker, and F. Sears.

TABLE OF CONTENTS

S	ection					Page
	1. INT	RO	ol)U(CTION	1
	2. DIS	Cl	JS	SS	ION	2
	2.1		NEW	lo: la: la:	ise Level Measurements - Argentine Freight rd, Santa Fe RR, Kansas City KS ise Level Measurement - Boston and Maine ilroad, Boston, MA yside Noise Level Measurements - Passenger d Line-haul Operations	2 26 32
	APPENDIX	I	4	3	Noise Level Data Measured at Twenty-one Locations at the Argentine Freight Yards, Santa Fe RR, Kansas City, KS	35
	APPENDIX	Ι	3	8	Noise Level Data Measured at Three Facilities of the Boston and Maine RR, Boston MA	115
	APPENDIX	(8.8	-	Passenger and Line-haul Noise Level Data Measured at Three Wayside Locations - Penn Central RR, New York-to-Washington Lines, Plainsboro NJ	131
	APPENDIX	Ι)	æ	Passenger and Line Haul Noise Level Data Measured at Three Wayside Locations - Penn Central RR, Boston-to-New York, West Mansfield MA	149
	APPENDIX	Ε	3	ē	Measuring Station Locations and Photographs	165
	APPENDIX	Ι		-	Noise Measurement and Data Reduction Systems	213
	APPENDIX	C	3		Meteorological Data	219
	APPENDIX	1	I	-	Definition of Terms and Calculated Values	221

TABLES

TABLE		Page
2-1.	SUMMARY TABULATION - STATISTICAL NOISE LEVEL DATA, ARGENTINE FREIGHT YARD, SANTA FE RR, KANSAS CITY KS. 4/24-26/73	6
2-2.	MICROPHONE POSITIONAL DATA, ARGENTINE FREIGHT YARD, SANTA FE RR, KANSAS CITY KS. 4/24-26/73	7
2-3.	WAYSIDE NOISE LEVELS GENERAL MOTORS LOCOMOTIVE MODEL GP-7 B&M RR, IRON HORSE PARK, BILLERICA MA (STATIC TESTS)	29

ILLUSTRATIONS

Figure		Page
	Property Line Noise Levels: Argentine Freight Yard, Santa Fe RR, 4/24-26/73	iii
A-1.	Coincident Time Histories - Noise Level Data - Locations No. 1 and No. 2, Argentine Freight Yard; Santa Fe RR, 4/24/73	35
A-2.	Time Histories - Noise Level Data - Location No. 1A, Argentine Freight Yard, Santa Fe RR, 4/24-26/73	36
A-3.	Time History - Wayside Noise Levels Offset 60 Feet from Track Centerline Location 1A - Argentine Freight Yard, Santa Fe RR; 4/25/73; 0005 Hr. Passenger Train, 4 Diesel Engine Plus 16 Cars; Westbound 60 mph	37
A-4.	Time History - Wayside Noise Levels Offset 60 Feet from Track Centerline Location 1A - Argentine Freight Yard, Santa Fe RR; 4/25/73; 0752 Hr. Passenger Train, 4 Diesel Engines Plus 8 Cars; Eastbound 45 mph	37
A-5.	Time History - Wayside Noise Levels Offset 60 Feet from Track Centerline Location 1A - Argentine Freight Yard, Sante Fe RR; 4/26/73; 0605 Hr.Passenger Train, 3 Diesel Engines Plus 14 Cars; Eastbound 40 mph	38
A-6.	Time History - Wayside Noise Levels Offset 60 Feet from Track Centerline Location 1A - Argentine Freight Yard, Santa Fe RR; 4/26/73; 0731 Hr. Passenger Train, 4 Diesel Engines Plus 8 Cars; Eastbound 45 mph	38
A-7.	Time History - Noise Level Data - Location No. 3 Argentine Freight Yard, Sante Fe RR; 4/24/73	39
A-8.	Time History - Noise Level Data - Location No. 4 Argentine Freight Yard, Santa Fe RR; 4/25/73	39
A-9.	Time History - Noise Level Data - Location No. 5 Argentine Freight Yard, Sante Fe RR; 4/25/73	40
A-10.	Time History - Noise Level Data - Location No. 6 Argentine Freight Yard, Sante Fe RR; 4/25/73	41
A-11.	Time History - Noise Level Data - Location No. 7 Argentine Freight Yard, Sante Fe RR; 4/25/73	41
A-12.	Time History - Noise Level Data - Location No. 8 Argentine Freight Yard, Santa Fe RR; 4/25/73	42

Figure		Page
A-13.	Time History - Noise Level Data - Location No. 9 Argentine Freight Yard, Sante Fe RR; 4/25/73	42
A-14.	Coincident Time Histories - Wayside Noise Levels at 63 and 113 Feet Location No. 10, Santa Fe RR, Zarah, Kansas; 4/26/73 Freight Train - 2 Diesel Engines Plus 76 Cars - Eastbound 31 mph	43
A-15.	Coincident Time Histories - Wayside Noise Levels at 63 and 113 reet, Location No. 10, Santa Fe RR, Zarah Kansas; 4/26/73 Freight Train - 6 Diesel Engines Plus 87 Cars, Eastbound 30 mph	44
A-16.	Coincident Time Histories - Wayside Noise Levels at 50 and 100 Feet, Location No. 10, Santa Fe RR, Zarah Kansas; 4/26/73 Freight Train - 3 Diesel Engines Plus 43 Cars - Westbound 36 mph	45
A-17.	Coincident Time Histories - Wayside Noise Levels at 50 and 100 Feet, Location No. 10, Santa Fe RR, Zarah Kansas; 4/26/73 Freight Train - 3 Diesel Engines Plus 31 Cars - Westbound 49 mph	46
A-18.	Time History - Noise Level Data - Location No. 11, Argentine Freight Yard, Santa Fe RR; 4/25/73	47
A-19.	Time History - Noise Level Data - Location No. 12, Argentine Freight Yard, Santa Fe RR; 4/24/73	48
A-20.	Time History - Noise Level Data - Location No. 13, Argentine Freight Yard, Santa Fe RR; 4/26/73	48
A-21.	Time History - Noise Level Data - Location No. 14, Argentine Freight Yard, Santa Fe RR; 4/26/73	49
A-22.	Time History - Noise Level Data - Location No. 15, East Hump, Argentine Freight Yard, Santa Fe RR; 4/25/73	49
A-23.	Frequency Spectra - Active Retarder Noise - Location No. 15, East Hump, Argentine Freight Yard, Santa Fe RR: 4/25/73	50

Figure		Page
A-24.	Time History - Noise Level Data - Location No. 16, West Hump, Argentine Freight Yard, Santa Fe RR, 4/24/73	. 51
A-25.	Time History - Noise Level Data - Location No. 17, Argentine Freight Yard, Santa Fe RR; 4/25/73	51
A-26.	Frequency Spectra - Active Retarder Noise - Location No. 16, West Hump, Argentine Freight Yard, Santa Fe RR; 4/24/73	52
A-27.	Time History - Noise Level Data - Drott Diesel Powered Hydraulic "Travel Lift" Lifting Trailer Box Location No. 18, Argentine Freight Yard, Santa Fe RR; 4/25/73	53
A-28	Frequency Spectra - Drott Diesel Powered Hydrolic "Travel Lift" Lifting Trailer Box Location No. 18, Argentine Freight Yard, Santa Fe RR; 4/25/73	5.3
A-29.	Noise Level Time Histories - (A-Weighted and Flat Unweighted)/ Impact Data - Location 19, Argentine Freight Yard, Santa Fe RR; 4/25/73	5 4
A-30.	Time History - Noise Level Data - Location No. 20, West Classification Yard, Argentine Freight Yard Santa Fe RR; 4/25/73(Spring Loaded Inert Retarder)	5.5
A-31.	Time History - Noise Level Data - Location No. 21, East Classification Yard, Argentine Freight Yard, Santa Fe RR; 4/25/73 (Weight Balanced Inert Retarder)	5.5
A-32.	Frequency Spectra - Inert Retarder Noise - Location No. 20, West Classification Yard, Argentine Freight Yard, Santa Fe RR; 4/25/73(Spring Loaded Inert Retarder	56
A-33.	Frequency Spectra - Inert Retarder Noise - Location No. 21, East Classification Yard, Argentine Freight Yard, Santa Fe RR; 4/25/73 (Weight Balanced Inert Retarder)	57
A-34.	Statistical Noise Data - Location No. 1, Argentine Freight Yard, Santa Fe RR; 4/24/73; 0950-1010 hours.	58
A-35.	Statistical Noise Data - Location No. 1, Argentine Freight Yard, Santa Fe RR: 4/24/73: 1050-1110 hours.	60

Figure		Page
A-36.	Statistical Noise Data - Location No. 1, Argentine Freight Yard, Santa Fe RR; 4/24/73;1151-1211 Hours	62
A-37.	Statistical Noise Data - Location No. 2, Argentine Freight Yard, Santa Fe RR; 4/24/73; 0950-1010 Hours	6.4
A-38.	Statistical Noise Data - Location No. 2, Argentine Freight Yard, Santa Fe RR; 4/24/73; 1050-1110 Hours	66
A-39.	Statistical Noise Data - Location No. 2, Argentine Freight Yard, Santa Fe RR; 4/24/73 1151-1211 Hours	68
A-40.	Statistical Noise Data - Location No. 1A, Argentine Freight Yard, Santa Fe RR; 4/24-25/73; 2345-0005 Hours	70
A-41.	Statistical Noise Data - Location No. 1A Argentine Freight Yard, Santa Fe RR; 4/26/73; 0845-0905 Hours	72
A-42.	Statistical Noise Data - Location 1A Argentine Freight Yard, Santa Fe RR; 4/26/73; 0905-0545 Hours	7.4
A-43.	Statistical Noise Data - Location No. 1A, Argentine Freight Yard, Santa Fe RR; 4/26/73;0725-0745	76
A-44.	Statistical Noise Data - Location No.3, Argentine Freight Yard, Santa Fe RR; 4/24/73;1527-1574	78
A-45.	Statistical Noise Data - Location No. 3 (Special), Argentine Freight Yard, Santa Fe RR; 4/24/73; 1528-1531 Hours	80
A-46.	Statistical Noise Data - Location No. 4, Argentine Freight Yard, Santa Fe RR; 4/25/73; 0936-0956 Hours	8.2
A-47.	Statistical Noise Data - Location No. 5, Argentine Freight Yard, Santa Fe RR; 4/25/73 1138-1158	84

Figure		Page
A-48.	Statistical Noise Data - Location No. 5 Argentine Freight Yard, Santa Fe RR; 4/25/73; 1216-1236 Hours	86
A-49.	Statistical Noise Data - Location No. 6 Argentine Freight Yard, Santa Fe RR; 4/25/73; 1500-1520 Hours	88
A-50.	Statistical Noise Data - Location No. 7 Argentine Freight Yard, Santa Fe RR; 4/25/73; 1547-1607 Hours	90
A-51.	Statistical Noise Data - Location No. 8 Argentine Freight Yard, Santa Fe RR; 4/25/73; 1648-1708 Hours	92
A-52.	Statistical Noise Data - Location No. 9 Argentine Freight Yard, Santa Fe RR; 4/25/73; 2251-2311 Hours	94
A-53.	Statistical Noise Data - Location No. 11 Argentine Freight Yard, Santa Fe RR; 4/25/73; 2232-2252 Hours	96
A-54.	Statistical Noise Data - Location No. 11 Argentine Freight Yard, Santa Fe RR; 4/25/73; 2302-2322 Hours	98
A-55.	Statistical Noise Data - Location No. 11 (Special) Argentine Freight Yard, Santa Fe RR; 4/25/73; 2306-2311 Hours	100
A-56.	Statistical Noise Data - Location No. 12 Argentine Freight Yard, Santa Fe RR; 4/24/73 1054-1114 Hours	102
A-57.	Statistical Noise Data Location No. 13 Argentine Freight Yard, Santa Fe RR/ 4/26/73; 0952-1012 Hours	104
A-58.	Statistical Noise Data - Location No. 14 Argentine Freight Yard, Santa Fe RR; 4/26/73; 1036-1056 Hours	106
A-59.	Statistical Noise Data - Location No. 15 Argentine Freight Yard, Santa Fe RR; 4/25/73; 0926-0943 Hours	108
A-60.	Statistical Noise Data - Location No. 16 Argentine Freight Yard, Santa Fe RR; 4/24/73; 1631-1646	110

Figure		Page
A-61.	Statistical Noise Data - Location No. 17 Argentine Freight Yard, Santa Fe RR; 4/25/73; 1630-1645	
	Hours	112
B-1.	Physical Dimensions and General Equipment Layout - General Motors Locomotive Model GP-7	115
B-2.	Coincident Time Histories - Wayside Noise Levels General Motors Locomotive GP-7, 1550 Horsepower BEM RR, Iron Horse Park Billerica MA. Locomotive Stationary and Unloaded	116
B-3.	Coincident Frequency Spectra - Wayside Noise Data General Motors Locomotive GP-7, 1550 Horsepower B&M RR, Iron Horse Park, Billerica MA. Locomotive Stationary, Unloaded at 8th Notch	117
B-4.	Coincident Time Histories - Wayside Noise Levels General Motors Locomotive GP-7, 1550 Horsepower B&M RR, Iron Horse Park, Billerica MA. Locomotive Stationary and Loaded	118
B-5.	Coincident Frequency Spectra - Wayside Noise Data General Motors Locomotive GP-7, 1550 Horsepower B&M RR, Iron Horse Park, Billerica MA. Locomotive Stationary and Loaded at 8th Notch	119
B-6.	Frequency Spectra - Wayside Noise Data General Motors Locomotive GP-7, 1550 Horsepower B&M RR, Iron Horse Park, Billerica MA. Locomotive Stationary and Loaded at the 2nd, 3rd and 4th Notches	120
B-7.	Frequency Spectra - Wayside Noise Data General Motors Locomotive GP-7, 1550 Horsepower B&M RR, Iron Horse Park, Billerica MA. Locomotive Stationary and Loaded at the 5th, 6th and 7th Notch	121
B-8.	Spectral Wayside Noise Level Data General Motors Locomotive GP-7, 1550 Horsepower B&M RR, Iron Horse Park, Billerica MA. Locomotive Stationary and Loaded at the 8th Notch	122
B-9.	Time History (A-Weighted and Flat Unweighted) - Impact Noise Levels. B&M RR Somerville Hump Yard Somerville MA	123
B-10.	Oscilloscope Display - Impact Noise (Flat-Unweighted) B&M RR Somerville Hump Yard Somerville MA	124

Figure		Page
B-11.	Time History - Impact Noise Levels B&M RR Somerville Hump Yard, Somerville MA	125
B-12.	Time History - Impact Noise Levels B&M RR Somerville Hump Yard, Somerville MA	125
B-13.	Time History - Impact Noise Levels B&M RR Somerville Hump Yard, Somerville MA	126
B-14.	Time History - Impact Noise Levels B&M RR Somerville Hump Yard, Somerville MA	126
B-15.	Noise Data - Master Retarder B&M RR Somerville Hump Yard, Somerville MA	127
B-16.	Noise Data - Diesel Engine, Mechanical Refrigeration Car. B&M RR Somerville Hump Yard, Somerville MA	128
B-17.	Time History - Noise Level Data Piggyback Packer, FWD Wagner Model P-70 B&M RR Yard No. 7, Charlestown MA	129
B-18.	Time History - Noise Level Data Piggyback Packer, FWD Wagner Model P-70 B&M RR Yard No. 7, Charlestown MA	129
C-1.	Coincident Time Histories - Wayside Noise Levels at 50, 75 and 125 Feet from Centerline of Track 4 Penn Central RR - Plainsboro NJ - 5/23/72 Single Electric Locomotive - Northbound 49 mph	131
C-2.	Coincident Time Histories - Wayside Noise Levels at 50, 75 and 125 Feet from Centerline of Track 4 Penn Central RR - Plainsboro NJ - 5/23/72 Passenger Train - Electric Locomotive Plus 5 Cars - 78 mph	132
C-3.	Coincident Time Histories - Wayside Noise Levels at 50, 75 and 125 Feet From Centerline of Track 4 Penn Central RR - Plainsboro NJ - 5/23/72 Passenger Train - Electric Locomotive Plus 8 Cars, 78 mph	133
C-4.	Coincident Time Histories - Wayside Noise Levels at 50, 75 and 125 Feet from Centerline of Track 4 Penn Central RR - Plainsboro NJ - 5/23/72 Passenger Train - Electric Locomotive Plus 11 Cars, 95 mph	134

Figure		Page
C-5.	Coincident Time Histories - Wayside Noise Levels at 25, 50 and 100 Feet from Centerline of Track 2 Penn Central RR - Plainsboro NJ - 5/23/72 Passenger Train - Electric Locomotive Plus 4 Cars, 73 mph	135
C-6.	Coincident Time Histories - Wayside Noise Levels at 25, 50 and 100 Feet from Centerline Track 2 Penn Central RR - Plainsboro NJ - 5/23/72 Passenger Train - Electric Locomotive Plus 10 Cars - 82 mph	136
C-7.	Coincident Time Histories - Wayside Noise Levels at 25, 50 and 100 Feet from Centerline of Track 2 Penn Central Railroad - Plainsboro NJ - 5/23/72 Passenger Train - Electric Locomotive plus 12 Cars - 40 mph	137
C-8.	Coincident Time Histories - Wayside Noise Levels at 25, 50 and 100 Feet from Centerline of Track 2 Penn Central RR - Plainsboro NJ - 5/23/72 Freight Train - 2 Diesel Locomotives Plus 33 Cars, 34 mph	138
C-9.	Coincident Time Histories - Wayside Noise Levels at 25, 50 and 100 Feet from Centerline of Track 2 Penn Central RR - Plainsboro NJ - 5/23/72 Freight Train - 2 Electric Locomotives Plus 58 Cars - 66 mph	139
C-10.	Coincident Time Histories - Wayside Noise Levels at 25, 50 and 100 Feet from Centerline of Track 2 Penn Central RR - Plainsboro NJ - 5/23/72 Freight Train - 2 Electric Locomotives Plus 48 Cars - 32 mph	140
C-11.	Coincident Time Histories - Wayside Noise Levels at 25, 50 and 100 Feet from Centerline of Track 2 Penn Central RR - Plainsboro NJ - 5/23/72 Freight Train - 2 Electric Locomotives plus 63 cars - 50 mph	141
C-12.	Coincident Time Histories - Wayside Noise Levels at at 25, 50 and 100 Feet from Centerline of Track 2 Penn Central RR - Plainsboro NJ - 5/23/72 Freight Train - 2 Electric Locomotives Plus 95 cars - 50 mph	
C-13.	Coincident Time Histories - Wayside Noise Levels at 50, 75 and 125 Feet from Centerline of Track 4 Penn Central RR - Plainsboro NJ - 5/23/72 Freight Train - 2 Electric Locomotives Plus 35 cars - 84 mph.	

Figure		Page
C-14.	Coincident Time Histories - Wayside Noise Levels at 50, 75 and 125 Feet from Centerline of Track 4 Penn Central RR - Plainsboro NJ - 5/23/72 Freight Train - 2 Electric Locomotives Plus 41 Cars - 35 mph	144
C-15.	Coincident Time Histories - Wayside Noise Levels at 50, 75 and 125 Feet from Centerline of Track 4 Penn Central RR - Plainsboro NJ - 5/23/72 Freight Train - 3 Electric Locomotives Plus 71 Cars - 40 mph	145
C-16.	Coincident Time Histories - Wayside Noise Levels at 50, 75 and 125 Feet From Centerline of Track 4 Penn Central RR - Plainsboro NJ - 5/23/72 Freight Train - 3 Electric Locomotives Plus 99 Cars - 48 mph	146
C-17.	Coincident Time Histories - Wayside Noise Levels at 13, 38 and 88 Feet from Centerline of Track 1 Penn Central RR - Plainsboro NJ - 5/23/72 Freight Train - 2 Electric Locomotives Plus 79 Cars - 31 mph	147
D-1.	Coincident Time Histories - Wayside Noise Levels at 12, 37 and 87 Feet from Centerline of Track 2 Penn Central RR - West Mansfield MA - 9/26/72 Single Budd Liner - 65 mph	149
D-2.	Coincident Time Histories - Wayside Noise Levels at 25, 50 and 100 Feet from Centerline of Track 1 Penn Central RR - West Mansfield MA - 9/26/72 Two Coupled Budd Liners - 63 mph	150
D-3.	Coincident Time Histories - Wayside Noise Levels at 12, 37 and 87 Feet from Centerline of Track 2 Penn Central RR - West Mansfield MA - 9/26/72 Passenger Train - Diesel Locomotive Plus 6 Cars - 66 mph	151
D-4.	Coincident Time Histories - Wayside Noise Levels at 12, 37 and 87 Feet from Centerline of Track 2 Penn Central RR - West Mansfield MA - 9/26/72 Passenger Train - 2 Diesel Locomotives Plus 6 Cars - 79 mph	. 152

Figure		Page
D-5.	Coincident Time Histories - Wayside Noise Levels at 12, 37 and 87 Feet from Centerline of Track 2 Penn Central RR - West Mansfield MA - 9/26/72 Passenger Train - Diesel Locomotive Plus 6 Cars - 57 mph	153
D-6.	Coincident Time Histories - Wayside Noise Levels at 12, 37 and 87 Feet from Centerline of Track 2 Penn Central RR - West Mansfield MA - 9/26/72 Passenger Train - Diesel Locomotive Plus 3 Cars - 78 mph	154
D-7.	Coincident Time Histories - Wayside Noise Levels at 12, 37 and 87 Feet from Centerline of Track 2 Penn Central RR - West Mansfield MA - 9/26/72 Passenger Train - Diesel Locomotive Plus 5 Cars - 74 mph	155
D-8.	Coincident Time Histories - Wayside Noise Levels at 12 and 87 Feet from Centerline of Track 2 Penn Central RR - West Mansfield MA - 9/26/72 Passenger Train - Diesel Locomotive Plus 2 Cars - 79 mph	156
D-9.	Coincident Time Histories - Wayside Noise Levels at 25 and 50 Feet from Centerline of Track 1 Penn Central RR - West Mansfield MA - 9/20/72 Passenger Train - Diesel Locomotive Plus 5 Cars - 78 mph	157
D-10.	Coincident Time Histories - Wayside Noise Levels at 12 and 37 Feet from Centerline of Track 2 Penn Central RR - West Mansfield MA - 9/20/72 Passenger Train - Diesel Locomotive Plus 3 Cars - 80 mph	158
D-11.	Coincident Time Histories - Wayside Noise Levels at 12 and 37 Feet from Centerline of Track 2 Penn Central RR - West Mansfield MA - 9/20/72 Passenger Train - Diesel Locomotive Plus 5 Cars - 72 mph	159
D-12.	Coincident Time Histories - Wayside Noise Levels at 12 and 37 Feet from Centerline of Track 2 Penn Central RR - West Mansfield MA - 9/20/72 Passenger Train - Diesel Locomotive Plus 3 Cars -	160

Figure		Page
D-13.	Coincident Time Histories - Wayside Noise Levels of 12 and 87 Feet from Centerline of Track 2 Penn Central RR - West Mansfield MA 9/26/72 Freight Train - 2 Diesel Locomotives Plus 47 Cars - 46 mph	161
D-14.	Coincident Time Histories - Wayside Noise Levels at 12 and 87 Feet from Centerline of Track 2 Penn Central RR - West Mansfield MA - 9/26/72 Freight Train - Diesel Locomotive Plus 18 Cars - 38 mph	162
D-15.	Coincident Time Histories - Wayside Noise Levels at 12 and 37 Feet from Centerline of Track 2 Penn Central RR - West Mansfield MA - 9/20/72 Freight Train - 2 Diesel Locomotives Plus 45 Cars - 40 mph	163
D-16.	Coincident Time Histories - Wayside Noise Levels at 12 and 37 Feet from Centerline of Track 2 Penn Central RR - West Mansfield MA - 9/20/72 Freight Train - 5 Diesel Locomotives Plus 57 Cars - 54 mph	164
E-1.	Schematic Layout (Measurement Locations) - Argentine Freight Yard, Santa Fe RR; Kansas City, Kansas	165
E-2.	Freight Yard Map - Argentine Freight Yard, Santa Fe RR; Kansas City, Kansas	167
E-3.	Photographs Measurement Location No. 1 Argentine Freight Yard, Santa Fe RR	185
E-4.	Photographs Measurement Location No. 2 Argentine Freight Yard, Santa Fe RR	186
E-5.	Photographs Measurement Location No. 3 Argentine Freight Yard, Santa Fe RR	187
E-6.	Photographs Measurement Location No. 4 Argentine Freight Yard, Santa Fe RR	188
E-7.	Photographs Measurement Location No. 5 Argentine Freight Yard, Santa Fe RR	189
E-8.	Photographs Measurement Location No. 6 Argentine Freight Yard, Santa Fe RR	190

Figure		Page
E-9.	Photographs Measurement Location No. 7 Argentine Freight Yard, Santa Fe RR	191
E-10.	Photographs Measurement Location No. 8 Argentine Freight Yard, Santa Fe RR	192
E-11.	Photographs Measurement Location No. 9 Argentine Freight Yard, Santa Fe RR	193
E-12.	Photographs Measurement Location No. 10 Argentine Freight Yard, Santa Fe RR	194
E-13.	Photographs Measurement Location No. 11 Argentine Freight Yard, Santa Fe RR	195
E-14.	Photographs Measurement Location No. 12 Argentine Freight Yard, Santa Fe RR	196
E-15.	Photographs Measurement Location No. 13 Argentine Freight Yard, Santa Fe RR	197
E-16.	Photographs Measurement Location No. 14 Argentine Freight Yard, Santa Fe RR	198
E-17.	Photographs Measurement Location No. 15 Argentine Freight Yard, Santa Fe RR	199
E-18.	Photographs Measurement Location No. 16 Argentine Freight Yard, Santa Fe RR	200
E-19.	Photographs Measurement Location No. 17 Argentine Freight Yard, Santa Fe RR	201
E-20.	Photographs Measurement Location No. 18 Argentine Freight Yard, Santa Fe RR	202
E-21.	Photographs Measurement Location No. 19 Argentine Freight Yard, Santa Fe RR	203
E-22.	Photographs Measurement Location No. 20 Argentine Freight Yard, Santa Fe RR	204
E-23.	Photographs Measurement Location No. 21 Argentine Freight Yard, Santa Fe RR	205
E-24.	Measuring System Locations - Static Locomotive Noise Level Measurements. B&M RR, Iron Horse Park, Billerica MA	206

Figure		Page
E-25.	Photographs - Measurement Site - Static Locomotive Measurements. B&M RR Locomotive Repair Facility, Iron Horse Park, Billerica MA	207
E-26.	Photograph - Somerville Hump Yard. B&M RR Somerville MA	208
E-27.	Photograph - FWD Wagner P-70 Fork Lift Truck. B&M RR Piggy-back Yard No. 7, Charlestown MA	208
E-28.	Measuring System Locations - Trackside Penn Central RR, New York-to-Washington Line, Plainsboro NJ, 2600 Feet North of Mile-Post No. 46 - 5/23/72	209
E-29.	Photograph Easterly View Measurement Site, Plainsboro NJ	210
E-30.	Photograph Westerly View of Measurement Site, Plainsboro NJ	210
E-31.	Measurement System Locations - Trackside Penn Central RR, Boston-to-New York Line, West Mansfield MA, 1310 Feet East of Mile-Post No. 201 - 9/20-26/72	211
E-32.	Photograph - Northerly View of Measurement Site West Mansfield MA	212
E-33.	Photograph - Southerly View of Measurement Site West Mansfield MA	212
F-1.	Block Diagram - Three-Microphone Noise-Measuring System	214
F-2.	Block Diagram - Portable Noise-Measuring System	215
F-3.	Block Diagram - Noise Data - Reduction System	217

1. INTRODUCTION

Noise level measurements were made by the U.S. Department of Transportation (DOT), Transportation Systems Center (TSC), Cambridge MA of railroad noise emissions to provide the DOT Office of Noise Abatement and the Environmental Protection Agency (EPA) with baseline data for use in developing railroad noise-emission standards pursuant to the Federal Noise Control Act of 1972.

The Noise Assessment Group at TSC measured both railroad freight yard noise levels, and wayside noise levels of passenger and line-haul (freight) operations. The major portion of the freight yard measurements were made at 21 locations in and around the Argentine Freight Yard of the Atchison, Topeka, and Santa Fe Railroad in Kansas City KS. Freight yard measurements were also made on a smaller scale at the Billerica, Somerville, and Charlestown yards of the Boston and Maine Railroad, Boston MA.

Wayside, passenger and line-haul, noise levels were measured on the Penn Central Railroad in both Plainsboro NJ, and West Mansfield MA, and on the Santa Fe Railroad in Kansas City and Zarah KS.

This report documents the noise level measurements made. Appendixes A and B contain data and analyses of noise level measurements made in the freight yards of the Santa Fe and Boston and Maine Railroads, respectively.

Wayside noise level data of passenger and line-haul service measured in Kansas City and Zarah KS, and in Plainboro NJ; and West Mansfield MA, are contained in appendixes A, C, and D, respectively. Appendixes E through H contain:

- E) Measuring station locations and photographs.
- F) Noise measurement and data-reduction systems.
- G) Meteorological data.
- H) Definition of terms and calculated values.

2. DISCUSSION

2.1 NOISE LEVEL MEASUREMENTS, ARGENTINE FREIGHT YARD, SANTA FE RAILROAD, KANSAS CITY, KS

Noise level measurements were made at 21 locations in and around the Argentine Freight Yard of the Santa Fe Railroad on 24-26 April 1973. A simple schematic which depicts the major centers of activity in the yard is shown in figure E-1. Figure E-2 is a reduced reproduction of a detailed map of the Argentine yard as supplied by Santa Fe officials. (Note: because of the overall size of the map (approximately 60 inches) figure E-2 has been cut into 10 contiguous sections for inclusion in this report. Each section has been keyed to facilitate the reconstruction of the map.)

The Argentine yard is one of the larger freight yards in the United States and is operated on a 24-hour, 7 days per week basis. It has a throughput of approximately 100,000 freight cars per month. The main line of the Santa Fe Railroad, which handles through traffic between Morris KS and Kansas City KS and MO, runs through the Argentine yard along the southerly border. Two freight car hump-type classification yards are operated, one fully computerized to handle eastbound traffic, the other manually operated to handle westbound traffic. These are designated as the east and west hump, respectively. A diesel locomotive repair facility is located in the northeast sector of the yard. Here, routine maintenance and the complete overhaul of diesel locomotives is performed. The circular track around the diesel facility (balloon track) is used in place of the now inoperative roundhouse to turn engines around.

Also shown in figures E-1 and E-2 is a 10-million bushel grain elevator and various other smaller car repair facilities.

The major activity in a freight yard is the receiving and rerouting of freight cars. The rerouting process consists of disengaging cars from incoming trains and reassembling them into outgoing trains bound for different destinations. This is

accomplished at the Argentine in the humping classification yards as follows: A switching engine pushes a string of cars up a manmade hill (or hump) on a single lead track. At the crest of the hump, the first car is manually uncoupled and allowed to roll by gravity down the opposite slope of the hump through a series of switches into one of the many tracks in the classification yard. Because railroad freight cars differ in their size, weight, rolling friction, etc., and because each car has a different distance to travel from the crest of the hump into the classification yard where it is to bump gently into and self-couple with a waiting car of its new train, some means must be employed to control its speed. This is accomplished by a mechanical braking device known as a retarder. A retarder is essentially two steel rails, attached to an actuating device, located astride each rail of a section of track. The retarder slows a moving car by squeezing the lower portion of the wheels of the car between the lengths of steel rail with a particular force. The friction between the rail brakes and the carwheel rims opposes the turning of the wheels, thus producing retardation of the forward velocity.

This braking action produces noise emissions known as retarder squeal (noise that is similar, if not identical, to that produced by a steel-wheeled car on steel track negotiating a tight turn at low speed and is common to subway systems).

In a manual-type humping operation such as the west hump of the Argentine Yard, an operator in a control tower has remote manual control of the track switches and the pressure exerted by the retarders. The operator visually observes a car's speed down the hump before its entry into the retarder. He varies the applied pressure to reach a mentally determined exit speed. This speed is determined by the operator's "feel" for the car's rollability and the distance into the classification yard that the car must travel.

A second type of retarder is built into each track at the far end of the west classification yard. These also provide retardation by squeezing the lower portion of the wheels between steel lengths of rail; however, unlike the actuated or "active" type retarder on the hump, the pressure applied by these "inert" or unactuated retarders is spring-loaded and preset and is not meant to be deactivated in use. The purpose of the inert retarders is to stop the first car down the track from rolling, under its own power, out of the classification yard onto the main section of the yard.

Succeeding cars down that particular track in the classification yard will then gently impact on, and become coupled to, the previous car. When a full train of cars is made up in this manner, a switching engine is coupled to the train and the line of cars is pulled through the inert retarder, with the full pressure of the inert retarder applied, out of the classification yard into one of the departure tracks in the main section of the yard. Since the braking pressure is applied and cannot be released, this forced pull also produces retarder squeal.

The east hump yard in the Argentine operates in essentially the same manner; however, its operations are computer-controlled as follows. The speed of the switch engine pushing the line of cars up the lead track to the hump is radio-controlled by the computer. At the crest of the hump, the first car is manually uncoupled and allowed to roll by gravity down the lead track on the opposite side of the hump where it is automatically weighed, and its rollability and speed measured. This information, coupled with route, yard-grade information, and distance to go into the classification yard, allows the computer to set the proper switches automatically and determine the required exit speed. The pressure exerted by the retarders is automatically set to achieve a speed which will allow the car to travel into the classification yard and gently couple there at a minimum impact velocity (approximately two mph). At the far end of the classification yard, inert retarders are positioned in each track to stop the cars from rolling out into the main yard. The inert retarders used in the east yard of the Argentine are of the weight-balanced variety wherein the amount of retarding pressure exerted on the wheels is a function of the weight of the car going through the retarder

(the heavier the car the more pressure applied). Here, as in the west yard, a line of cars in a newly formed train in the classification yard must be pulled through the inert retarders, with pressure applied according to the cars overall weight, to move the train from the classification yard onto one of the departure tracks in the main section of the yard. Thus here also, inert retarder squeal is produced.

The majority of the noise measurements made at the Argentine Yard were concentrated along the south border of the yard where non-railroad noise was minimal. In general, the land use to the north of the yard was zoned industrial while that to the south was zoned residential. No specific times of the day were deliberately chosen to make measurements because operations were on a 24-hour, 7 days per week basis. The sites measured are located and numbered in figures E-1 and E-2.

For logistical reasons, 20-minute continuous analog magnetic tape recordings were made of the noise data at each of the indicated locations. The reduction of these data included graphical noise level time history recordings with specific noise source information noted, and one-third octave spectral analyses of selected data. These are included in Appendix A, figures A-1 through A-33.

To obtain a statistical measure of the temporal nature of the noise measured at each site, the data were statistically analyzed for each 20-minute measurement period. Data recorded from non-railroad noise intrusions were excluded from the statistical analysis. However these data have not been deleted from the graphical time histories presented.

Table 2-1 is a summary tabulation of the statistical noise data. The complete probability distribution and histogram charts of the data are included in Appendix A, figures A-34 through A-61.

Table 2-2 briefly describes the measurement locations, gives microphone positions, and identifies appendixes where detailed data may be found.

TABLE 2-1. SUMMARY TABULATION: THE STATISTICAL NOISE LEVEL DATA ARGENTINE FREIGHT YARD SANTA FE RR, KANSAS CITY, KS, 4/24-26/73.

LOCATION	DATE PRIL 73	FROM	TO.	STD. DEV.	L(EQ)	NPL- d3	1.1 (13.),	110 dBA	1,50 48A	190 19A	184 18A	HANGE 4BA	MAX dba	REMARKS
1	71	0950	1010	7.0	68.3	18.4	70.7	\$\$.9	64.1	62.8	62.0	18	71	Activity on westbound receiving track shielded by standing line
1	14	1050	1110	2.5	61.3	70.7	72-1	87-1	65.5	61,4	59.2	25	82	Normal activity of receiving and
1	24	1151	1711	3.2	67.09	76.1	30.0	69,2	64,5	52-6	91/4	31	91	deporture tracks. Normal activity on receiving and deporture tracks. Man level
18	71	2341	0003	1.1	69.1	62.4	12.3	70.4	65.2	57.0	56.3	34	85	caused by moon whistle hornal activity on receiving and departure tracks including
TA:	25	0745	6805	4,5	687.9	30.2	85-2	52,7	58.4	56.5	55.3	31	87	passage of passenger train Normal activity on receiving and
1A	21.	0.545	0605	1.0	67.3	80.0	12.4	0.8 + 8	00.5	57.4	56.3	3.2	87	departure tracks localiding passage of passenger train Normal activity of receiving and departure tracks localiding
1.6	26	0725	0143	504	74,3	163	45.8	08.8	60.4	17.0	56.4	37	92	passage of passenger train Normal activity on receiving and Jenarture track including
2	24	1950	1010	1.3	8A+7	20,0	76.7	67.4	65.8	54.4	53.3	16	78	nastage of passenger train Activity on westbound receiving track shielded by standing line
2	21	1010	1110	2.2	6373	21:1	7208	87.7	65.4	02.9	60.3	20	78	of cars Normal activity on receiving and departure track
2	24	1111	1211	3.0	71-8	79.5	14.5	118.4	66.0	64.5	63.2	34	91	Normal activity on receiving and departure track, Max Invel
3	24	1127	1117	\$77	80.9	70.4	22.6	8218	37.0	55.1	53.79	30	BI	Caused by noun whistle Normal west classification yard activity plus 1 minutes on
3 Special	24	1178	1391	A-1	11.6	75.9	74.7	64.1	58.3	55.6	54.2	16	70	humping activity 3 minutes of humping activity in west busp
4	25	1777	0950 1138	2.0	55.5	79.3	50.1	03.1	52.8	56.7	37.9	- 1	92	in west humb Max levels from inert retarder East throat of yard very little
3	25	1238	1256	3.1	68.3	83.79	39.4	75.9	25-3	58.3	56.3	36	98	East throat of ward; slunst
	-23	1300	1520	2.7	65.7	72+6	14.9	67.5	53.8	97.1	nd.E	19	46	constant in and outbound activity
-	23	1547	1607	3.9	62.5	72.3	72.0	46.1	59.7	30.3	35.0	20	82	Normal activity of receiving and
	(35)	35.0		10/05	302511	2.50	2000	1200						departure tracks plus hump engine driving west hump
1	21	1148	1709	3.5	4216	71-6	71.0	45.1	18.0	55.0	54.1	.33	11	Standing line of freight cars west throat of yard, almost
)	23	1521	2311	7,4	72.8	30.7	80.8	79.4	44.7	24.1	3119	+3	95	constant activity
14	20	1045	1105	7.83			nn.1	88.8		18	5	1	204	Approx. 10 miles west of freight yard. Outs includes passby of I- 1-engine 76-car train. 50 feet offset. Light activity; no activity
11	23	2222	7252	1.11	56.8	60.9	01:1	39.0	3.6.9	35.0	33.9	15	#1	Light activity no activity
11	25	2362	2322	TiT	74.6	94.3	89.19	68.0	55.1	53.5	52.2	13	100	on east hump Normal east classification yard scitivity plus 5 minutes of humping activity
11 Special	35	2300	2511	115.0	10.4	101.6	93.3	13.9	62.1	5571	35,8	47	300	A minutes of humbing activity
12	24	1054	3119	1.11	111.5	74.1	75.9	71.1	18.0	97.5	00.5	23	ab	in east hump Marmal Activity outside Alexal result than
13	2h	8952	1012	#15	75.0	97.6	89.0	76.5	20.0	55.8	34.0	49	101	Siesel remain shop Max east classification yard. Approx. 50 cars temped
14	76	1036	1056	3.1	32.7	68.2	68,8	12.1	3811	3518	34.5	-71	11	Normal activity shiplded by:
1.5	25	1976	0943	15.8	39.5	150.9	113.0	102.0	72-9	90.0	18.1	+9	125	line un standing freight cars East hump microphone offset 25 ft from group retarder 2.
16	21	1631	1646	12.4	97.4	129.1	113.0	87.5	67.1	39,7	38-1	. 63	121	Approx. 40 cars humped West hump microphysic offset 15 ft from intermediate retarder 1. Approx. 35 cars
3.7	7.25	1630	1643	3.4	72.1	34.9	11.1	55.9	55.1	11.0	31.0	40	98	humped One, three engine unit around halloon track
11	25	1+00	-	-	-		-		1	-	-	-	93	Figgreack operation. Drott diesel-powered hydraulic
3.9	- 15	1500	-		*		-	-	20	85	1.00	12	93	Impact noise from grain hopper cars (peak impulse 125
20	- 15	1100	-	1.5	-	-	-		-	-	100	-	124	dB) Nest classification yard.
11	- 11	1000	-		-	-	-	+	-	- 1	1.5	1	116	Spring loaded nert retarders Last classification yard. Weight halanced inert retarder

Specials are statistical data from a selected portion of the measurement period See table I for microphone positional data

MICROPHONE POSITIONAL DATA: ARGENTINE FREIGHT YARD, SANTA FE RR, KANSAS CITY KS, 4/24-26/73. TABLE 2-2.

Location	General	Specific	Photographs in Appendix	Noise-Level Time History in Appendix	Statistical Analyses in Appendix
4	South border, 2400 feet east of milepost 5, southwest of diesel shop	25 feet offset from mainline track, 5 feet above level grade	п-3	A-Ia	A-34, A-35, A-36
1A	Same location 1	60 feet offset from mainline track, 5 feet above level grade	a.	A-2 A-3 through A-6	A-40, A-41, A-42, A-43
2	South border, 500 feet east of measurement location 1	25 feet offset from mainline track, 5 feet above level grade	4	A-1b	A-37, A-38,
м	North border, east of west classification yard, 1200 feet northwest of measure- ment location 16	500 feet offset from center of west classi- fication yard, 4.5 feet above level grade	50. 1 22	A-7	A-44, A-45
77	South border, at milepost 6 next to east classifica- tion yard	On enbankment, 75 feet offset from mainline track, 30 feet above level of rails	E-6	A-8	A-46
ь	South border, 625 feet cast of milepost 4, at east throat of yard	On enbankment, 64 feet offset from rear track, 15 feet above level of rails	H-7	A-9	A-47, A-48
9	South border, 340 feet west of 18th street expressway overpass	50 feet offset from mainline track, 4.5 feet above level grade	39 - 13	A-10	A-49
10-	South border, 360 feet west of Goddard Ave. overpass	31 feet offset from mainline track, 4 feet above level of rails	о #	A-111	A-50
80	South border, 400 feet west of milepost 5	50 fect offset from mainline track, 4.5 feet above level grade	E-10	A-12	A-51
6.	South border, 500 feet west of milepost 7	25 feet offset from mainline track, 4 feet above level of rails	E-T	A-13	A-52

TABLE 2-2. (Cont.)

Location	General.	Specific	Photographs in Appendix	Noise-Level Time History in Appendix	Statistical Analyses in Appendix
10	Mainline track, Zarah, KS 1150 feet west of milepost 16	Two microphones offset 50 and 100 feet from westbound track, 5 feet above level grade	H-12	A-14, A-15, A-16, A-17	
п	South border, southwest of east hump, 950 feet southwest of measurement location 15	Offset 775 feet from center of master retarder, 4.5 feet above level grade	E-13	A-18	A-53, A-54
12	Northeast border, 325 feet from rear doors of diesel shop	On enbunkment, 25 feet offset from near track, 25 feet above level of rails	E-14	Α-19	A-56
13	South border, southeast of east hump, 1100 feet west of milepost 6	On enbankment, 70 feet offset from mainline track, 20 feet above level of rails	E-15	A-28	A-57
14	South border, opposite ladder track at far end of east classification yard, 1100 feet east of milepost 6	100 feet offset from mainline track, 4.5 feet above level grade	E-16	A-21	A-58
15	On down slope of east hump within set of six "group retarders"	25 feet offset from center of group retarder 2, 4.5 feet above level grade and 1.5 feet above level of rails of retarder 2	E-17	A-22, A-23*	۸-59
16	On down slope of west hump within set of three "intermediate retarder"	25 feet offset from center of returder 1, 4.5 feet above level grade and 2.5 feet above level of rails of retarder 1	E-18	A-24, A-26*	A-60
17	Within "balloon track" 200 feet from front of diesel shop	60 feet offset from track, 4.5 feet off level grade	E-19	A-25	A-61
18	North border (piggyback operation)	50 feet offset from flat- car, 4.5 feet off level grade	E-20	A-27, A-28*	Ü

Location	General	Specific	Photographs in Appendix	Noise-Level Time History in Appendix	Statistical Analyses in Appendix
19	Center of yard near grain elevator	40 feet offset from track, 4 feet above level of rails	E-21	A-29	,
2.0	Far end of west classifi- cation yard near spring- loaded inert retarder	45 feet offset from center of retarder, 4 feet above level of rails	E-22	A-30, A-32*	8.
21	Far end of east classifi- cation yard near weight- balanced inert retarder	55 feet offset from center of retarder, 4 feet above level of rails	E-23	A-31, A-33*	EM

*One-third octave frequency spectra of selected events.

2.1.1 Locations 1, 1A, and 2

Measurement location 1 was situated on the south boundary of the Argentine Yard, southwest of the diesel shop area, 2400 feet east of milepost 5. The microphone was offset 25 feet from the near mainline track and placed at a height of 5 feet off the level grade. Figure E-3 contains photographs of four views of the measurement site.

Because of its close proximity to the surrounding residential district, this area was selected for measurements during seven different 20-minute time periods. Measurements were made at 1000,1100, and 1200 hours on 24 April 1973. During these periods, no through traffic was expected on the mainline track. In addition, measurements were made at 2400, 0800, 0600, and 0730 hours on 24, 25 and 26 April 1973 when through traffic was expected on the mainline track. For these measurements, the microphone was offset 60 feet from the near mainline track. This location was designated 1A.

Measurement location 2 was situated 500 feet east of location 1 with the microphone offset 25 feet from the near mainline track at a height of 5 feet above the level grade (see photographs figure E-4). Measurements were made at this location simultaneously with those made at 1000,1100, and 1200 hours on 24 April 1973 at location 1.

Figure A-1 contains coincident noise level time histories of the data measured simultaneously at locations 1 and 2 on 24 April 1973 between 1151 and 1211 hours. The bulk of the activity occurred on the far tracks from the microphones which were shielded by a line of freight cars standing on the seventh track over from the microphone. The maximum sound recorded was the noon whistle from the railroad yard powerplant and the whistle from a local steel company located on the south boundary of the yard to the east of locations 1 and 2. Activity on the receiving and departure tracks in this area was similar during the above measurement period and the 1000- and 1100-hour period (except for the noon whistle). Time history recordings during the latter two

periods have not been presented. In general, the background noise at locations 1 and 2 during the above three measurement periods was dominated by engine noise including noise from diesel engines used in mechanical refrigeration cars which were intermingled in the line of standing freight cars. The northerly photograph in figure E-4 of location 2 shows the first of three consecutive refrigeration cars in the upper left-hand corner of the picture. The proximity of these three cars to the microphone at location 2 raised the ambient noise level at location 2 by approximately 2dBA over the level measured at location 1 during the periods measured, see figure A-1.

Figure A-2 contains time histories of data measured during two time periods at location 1A beginning at 2345 hours on 24 April 1973 and 0725 hours on 26 April 1973. Note the passage of through passenger trains on the mainline and the unshielded general activity on the receiving and departure tracks during both measurement periods. Activity of a similar nature occurred during the measurements at 0600 and 0800 hours at this location. Time history recordings for these two periods are not presented.

Figures A-34 through A-43 contain probability distributions and histograms of the measured data for each of the 20-minute measurements made at locations 1, 1A, and 2. The statistical data are summarized in Table 2-1 for these and for all the measurement locations.

Figures A-3 through A-6 contain wayside noise level time histories on an expanded time scale of the passby on the main line through the yard of four passenger trains as measured at location 1A. See section 2.3 for comparison with passenger train noise level signatures recorded in NJ and MA on the Penn Central Railroad.

2.1.2 Location 3

Measurement location 3 was situated on the northern boundary of the Argentine Yard to the east of the west classification yard, 1200 feet northwest of measurement location 16 which was situated on the down slope of the west hump (see paragraph 2.1.15). The microphone was placed 4.5 feet off the level grade and offset approximately 500 feet from the centerline of the west classification yard. Figure E-5 contains photographs of four views of the measurement site.

Figure A-7 is a noise level time history of data recorded on 24 April 1973 from 1527 to 1547 hours. It shows the noise emissions from operations within the classification yard and a period of approximately three minutes of noise intrusions from the humping operation (retarder squeal). The background noise at this boundary location was equally contributed to by railroad operations and by the local industrial facility to the north of the microphone.

Figure A-44 contains a probability distribution and histogram of the data for the 20-minute measurement period. To obtain a statistical measure of the temporal noise in this area from the retarders, the three-minute period during which the west hump was active was analyzed separately. The probability distribution and histogram of the three minutes of data are contained in figure A-45. Summary data for the 20-minute and special 3-minute periods are contained in Table 2-1.

2.1.3 Location 4

Measurement location 4 was situated on the south boundary of the Argentine Yard at milepost 6 next to the east classification yard. The microphone was placed at the crest of an embankment 75 feet offset from the near mainline track and 30 feet above the level of the rails. Figure E-6 contains photographs of four views of the measurement site.

Figure A-8 is a noise level time history of the data recorded on 25 April 1973 from 0936 to 0956 hours. It shows the noise emission from classification yard operations, active retarder noise (squeal) from the east hump operations, train movements on the receiving tracks, movement within the classification yard, and inert retarder squeal resulting from a line of cars being pulled through the inert-type retarders in the east classification yard.

(see discussion location 21, paragraph 2.1.17).

Figure A-46 contains a probability distribution and histogram of the noise data for the 20-minute measurement period. The statistical results are summarized in Table 2-1.

2.1.4 Location 5

Measurement location 5 was situated on the south boundary at the east throat of the Argentine Yard, 625 feet east of milepost 4. The microphone was placed on an embankment offset 64 feet from the near track and 15 feet above the level of the rails. Figure E-7 contains photographs of four views of the measurement site.

Measurements were made over two consecutive 20-minute periods at this location on 25 April 1973. Figure A-9 contains graphic recordings of the noise level time histories of both periods measured. During the first period beginning at 1138 (lunch time) (figure A-9a), note light railroad activity in the area. Traffic noise to the south of the microphone was clearly audible. The measurement period beginning at 1216 (figure A-9b) shows a marked increase in railroad activity with the resultant increase in the measured noise levels.

Figures A-47 through A-48 contain probability distributions and histograms for each of the two 20-minute measurement periods individually. The statistical results are summarized in Table 2-1.

2.1.5 Location 6

Measurement location 6 was situated on the south boundary of the Argentine Yard 340 feet west of the 18th Street expressway which runs on an overpass over the yard. The microphone was placed 4.5 feet off the level grade and offset 50 feet from the near mainline track. Figure E-8 contains photographs of four views of the measurement site.

Figure A-10 is a graphic time history recording of the noise levels recorded on 25 April 1973 from 1500 to 1520 hours. Light

freight yard activity was noted during the period. Background noise was mainly from diesel locomotive engines idling in the diesel shop area to the north and in line of sight with the microphone. High-level intrusive sounds recorded and identified on the level-history recording were caused by the local steel company's switching equipment moving in close proximity to the microphone on the spur track approximately 25 feet south of the microphone. Since these intrusions were not freight-yard-generated noise emissions, the data were excluded from the 20-minute analysis period for which statistical data are presented in figure A-49 and summarized in Table 2-1.

2.1.6 Location 7

Measurement location 7 was situated on the south border of the Argentine Yard, 360 feet west of the Goddard Avenue overpass. The microphone was placed 31 feet offset from the near mainline track at a height of 4 feet above the level of the rails. Figure E-9 contains photographs of four views of the measurement site.

Figure A-11 is a noise level time history of the data recorded on 25 April 1973 from 1547 to 1607 hours. Major activity in this area at this time was a result of humping operations on the west hump. In this case, the noise generated was not retarder squeal because of distance and shielding from the retarders but resulted from a single switching locomotive with booster engine which steadily pushed a line of 56 freight cars on the lead track in question.

Automobile and truck passby noise noted on the time history were movements in the freight yard, and these data are included in the statistical data.

Figure A-50 contains a probability distribution and histogram of the noise data for the 20-minute measurement period. The statistical results are summarized in Table 2-1.

2.1.7 Location 8

Measurement location 8 was situated on the south border of the Argentine Yard, 400 feet west of milepost 5. The microphone was placed 4.5 feet above the level grade and offset 50 feet from the near mainline track. Figure E-10 contains photographs of four views of the measurement site.

Figure A-12 is a noise level time history of the data recorded on 25 April 1973 from 1648 to 1708. A 39-car freight train was being moved into position on a receiving track 130 feet offset from the microphone at the start of the measurement period. It stopped and remained there for the entire measurement period along with a second line of standing cars one track over. Both lines of cars provided shielding to the microphone from activity occurring on the west hump.

A two-minute period of switching activity on a spur track leading to a local transportation company, and noise data from an aircraft flyover were not included in the statistical analysis of the data presented in figure A-51 since the intrusions were not freight yard noise emissions.

Table 2-1 contains a summary of the statistical noise data.

2.1.8 Location 9

Measurement location 9 was situated on the south border at the west throat of the Argentine Yard, 500 feet west of milepost 7. The microphone was located 25 feet offset from the near mainline track at a height of 4 feet above the level of the rails. Measurements were made in the late evening on 25 April 1973 to avoid noise generated by construction equipment in the area. Photographs of the measurement site shown in figure E-11 were taken after the fact and shows this equipment.

Figure A-13 contains a noise level time history of the data recorded on 25 April 1973 from 2251 to 2311. Activity in the area during the period included slowly moving freight trains arriving and departing, movement of diesel locomotives back and forth,

distant squealing sounds from the direction of the east hump, and distant truck noise from Key Road to the west of the microphone.

Figure A-52 contains a probability distribution and histogram of the noise data for the 20-minute measurement period. The statistical results are summarized in Table 2-1.

2.1.9 Location 10

Measurement location 10 was situated 9 miles west of the Argentine Yard in Zarah KS, 1150 feet west of milepost 16. Two microphone systems were set up 5 feet off the level grade at offset distances of 50 and 100 feet from the centerline of the westbound track. The centerline of the eastbound track was offset 63 and 113 feet from the microphone. Figure E-12 contains four views of the measurement site.

The two tracks in this area were made up of a combination of welded and jointed rail construction with wood ties in stone ballast. The welded sections of rail were approximately 1500 feet in length with each section being joined with standard jointed construction. The closest joints to the microphone were 80 feet to the west of the microphones.

Figures A-14 through A-17 contain time histories of the wayside noise levels, recorded on 26 April 1973, of the passby of four freight trains driven by multiple diesel locomotives. Note in each case the train whistle which was sounded as the train approached the unattended crossroad.

No statistical data are presented since data were recorded only during the four periods of line-haul activity on the rail line.

See section 2.3 for comparison with line-haul noise level signatures recorded in NJ and MA on the Penn Central Rail-road.

2.1.10 Location 11

Measurement location 11 was located on the south border of the Argentine Yard to the southwest of the east hump. The microphone was set up at a height of 4.5 feet off the level grade and offset approximately 775 feet from the master retarder and 950 feet from measurement location 15 which was situated within the area of the group retarders on the east hump (see paragraph 2.1.14). Measurements were made in the late evening of 25 April 1973, and photographs of the site, shown in figure E-13, were taken after the fact.

Figure A-18 contains noise level time histories of two consecutive 20-minute measurement periods. The first measurement, started at 2032 hours, figure A-18a, shows little intrusive activity from the freight yard operations. General background sounds were of idling diesel engines, an occasional locomotive passby, and distant squealing sounds.

A second recording was started at 2102 hours when it was noted that a line of freight cars was about to be driven up the hump for processing in the classification yard. Figure A-18b shows 5 minutes of retarder squeal intrusions resulting from approximately 15 freight cars being processed over the hump. It also shows classification yard emissions, including impact sounds from the self-coupling of cars being processed and impact sounds from the trimming operation. (Trimming is similar to flat-switching, in that those cars which fail to self-couple as a result of not rolling far enough into the classification yard, or impact too gently, are pushed into position by the switch engine after all the cars being processed have been driven over the hump.) Background noise, as in the previous measurement period, included idling diesel engines.

Figures A-53 through A-54 contain probability distributions and histograms of both 20-minute measurement periods individually. To obtain a statistical measure of the temporal noise from the retarder operation during the processing period recorded, the five-minute period of activity of the east hump was analyzed separately. These special statistical data are contained in figure A-55 and are summarized in Table 2-1 along with the summary data of the two full 20-minute periods.

2.1.11 Location 12

Measurement location 12 was situated on the northeast border of the Argentine Yard to the east of the diesel shop. The microphone was set up on an embankment 25 feet above the level of the rails and offset 25 feet from the centerline of the near track and 325 feet back from the diesel shop building. Figure E-14 contains photographs of three views of the measurement site.

Figure A-19 is a noise level time history of the data recorded on 24 April 1973 from 1054 to 1114 hours. The background noise in this area, was in general, from the diesel locomotives (approximately 12) which were parked with their engines idling in the area behind the diesel shop. Two rebuilt locomotives were tied into load boxes just outside the diesel shop; however, these engines were not run up for testing during the measurement period.

A histogram and probability distribution of the 20-minute measurement period are included in figure A-56 with summary statistical data included in Table 2-1.

2.1.12 Location 13

Measurement site 13 was situated on the south border of the Argentine Yard to the south of the east hump. The microphone was set up on an embankment 20 feet above the level of the rails and offset 70 feet from the centerline of the near mainline track and 1100 feet west of milepost 6. Figure E-15 contains photographs of four views of the measurement site. These were taken after the fact since the original photographs were of poor quality and not reproducible.

Figure A-20 is a noise level time history of the data measured on 26 April 1973 from 0952 to 1012 hours. During the entire measurement period, the computerized east hump was operational with approximately 50 cars being processed over the hump during the 20-minute measurement period.

The maximum levels recorded were retarder squeal intrusions from both the master and group retarders on the east hump. These

were in line of sight and approximately 1300 and 1000 feet, respectively, from the microphone. In addition, impact sounds from the self-coupling of cars in the classification yard were recorded.

Figure A-57 contains a probability distribution and histogram of the 20 minutes of noise data. Summary statistical data are included in Table 2-1.

2.1.13 Location 14

Measurement location 14 was situated on the south border of the Argentine Yard opposite the ladder tracks at the far end of the east classification yard, 1100 feet east of milepost 6. The microphone was placed 4.5 feet above the level grade 100 feet offset from the centerline of the near mainline track. Figure E-16 contains photographs of four views of the measurement site taken after the fact.

Figure A-21 contains a noise-level time history of the data recorded on 26 April 1973 from 1036 to 1056 hours. At the beginning of the measurement period, a long inbound train at 4 to 5 mph was received on track 2 (one track beyond the mainline). It stopped in front of the microphone and its full line of cars provided shielding from classification yard activity for the entire measurement period. Note the coupling impacts caused by the braking action. Noise emission noted included whistle blasts from a locomotive on the balloon track in the diesel shop area (see paragraph 2.1.16, location 17), and retarder squeal from cars being pulled through the inert retarders from both the east and west classification yards. (See paragraph 2.1.17 for measurements made on inert retarders at locations 20 and 21 in the west and east classification yards). The new highway over the freight yard 400 feet east of the microphone although completed at this point was unused and did not contribute to the measured noise levels.

Figure A-58 contains a probability distribution and histogram of the data measured. Table 2-1 contains a summary of the statistical data.

2.1.14 Location 15

Measurement location 15 was situated on the down slope of the computerized east hump in the Argentine Yard. In this humping operation, the first retarder down the slope of the hump on the lead track is termed the "master retarder." The lead track then fans out through switches into six tracks, each of which is equipped with retarders termed "group retarders." These six tracks in turn fan out through switches to 8 tracks each and make up a 48-track classification yard. The microphone was placed within the set of 6 group retarders between retarders 2 and 3 (numbered from south to north) at a height of 4.5 feet above the level grade, 1.5 feet above the level of the rails of retarder no. 2. The microphone was positioned midway down the length and offset 25 feet from the centerline of retarder 2. Approximate distances to the midpoint of the 5 remaining retarders were 65, 65, 95, 106, and 150 feet from retarders 1, 3, 4, 5, and 6, respectively, and 525 feet from the centerline of the master retarder.

Photographs of the measurement site and the computer display are included in figure E-17.

Figure A-22 is a noise level time history of data recorded on 25 April 1973 from 0926 to 0943 hours. The maximum levels noted occurred during retardation of the cars by the group retarders. The time history has been labeled to indicate the retarder in question and, as obtained from the computer console, the weight of the car and the computer-controlled exit speed. The noise level generated as a result of retardation by the master retarder was at a lower level primarily because of its distance from the microphone. The computer-controlled exit speed from the master retarder was 10 mph for each of the cars measured. Forty-two cars were processed over the hump during the 17-minute measurement period.

Also identified on the time history (notes 1, 2, and 3) are noise emissions from three freight cars for which one-third octave spectral analyses are presented in figure A-23. Note the

high-pitched tonal quality (squealing) of the retardation emission.

A probability distribution and histogram of the 17-minute measurement period are included in figure A-59. Summary statistical data are included in Table 2-1.

2.1.15 Location 16

Measurement location 16 was situated on the down slope of the manually operated west hump in the Argentine Yard. In this humping operation, the master retarder is also the first retarder in the lead track on the down slope of the hump. The lead track fans out through switches into three tracks each with retarders which are termed "intermediate retarders". These three tracks in turn fan out through switches into eight tracks, each with a retarder; these are known in this yard as the "group retarders." The 8 tracks finally fan through switches into a 56-track classification yard. The microphone was placed within the group of three intermediate retarders between retarders 1 and 2 (numbered from south to north) at a height of 4.5 feet above the level grade and 2.5 feet above the level of the rails of retarder 1. The microphone was positioned midway down the length and offset 25 feet from the centerline of retarder 1. Approximate distances to the remaining retarder were 100 and 125 from intermediate retarders 2 and 3 and 350 feet from the master retarder. The nearest group of group retarders was 175 feet from the microphone.

Figure E-18 contains photographs of the measurement site.

Figure A-24 is a noise level time history of data recorded on 24 April 1973 from 1631 to 1646 hours. The time history has been labeled to indicate the retarder from which the noise emanated and the estimated entrance and exit speed of the car through the retarder. Unlike the computerized humping operation where cars are processed on an individual basis, in a manual operation, consecutive cars in a string bound for the same destination are processed in tandem without uncoupling. One such three-car tandem of grain cars is identified going through intermediate retarder 1 and then through one of the group retarders (see also photograph, figure E-18b).

Also identified in figure A-24 (Notes 1, 2, 3) are the emissions from three freight cars for which one-third octave spectral analyses are presented in figure A-26. Note that the high-pitched tonal quality (squealing) of the retardation emissions are similar to those measured in the east hump yard (figure A-23).

A probability distribution and histogram of the 15-minute measuring period are contained in figure A-60. Table 2-1 contains summarized statistical data.

2.1.16 Location 17

Measurement location 17 was situated within the balloon track at the front of the diesel shop.

The balloon track around the diesel shop building is used in place of the no longer used "roundhouse" to turn locomotive engines around. As the locomotive comes from behind the diesel shop, the engineer is required to sound warning blasts of the locomotive horn as he negotiates the balloon track because of pedestrian and vehicular traffic in the area.

The microphone was set up inside the balloon track, 200 feet from the diesel shop building and 60 feet offset from the center of the track at a height of 4.5 feet off the level grade. Figure E-19 contains photographs of two views of the measurement site.

Figure A-25 contains a noise level time history of the data recorded on 25 April 1973 from 1630 to 1645. A three-engine Amtrak locomotive negotiated the balloon during the measurement period at approximately four to six mph. Little if any vehicular traffic was noted on the nearby roadways during the measurement period.

Figure A-61 contains a histogram and probability distribution of the temporal noise measured during the 15-minute measurement period. Note that the noise intrusion from the aircraft noted in figure A-25 was excluded from this statistical description.

Summary statistical data are included in Table 2-1.

2.1.17 Locations 18, 19, 20, and 21

Measurements were made of singular noise sources at locations 18, 19, 20, and 21 in the Argentine yard.

At site 18 (north border), measurements were made of a "Drott" diesel-powered hydraulic travel-lift used in the railroad "piggy back" operation. The travel-lift was recorded lifting a loaded trailer box and placing it on a railroad flat car. See photographs in figure E-20 of travel-lift moving into position and lifting the box.

The microphone, placed at a height of 4.5 feet, was centered on the travel-lift and offset 50 feet from the centerline of the flat car on which the box was to be placed.

Figures A-27 and A-28 contain a time history of the noise level data recorded and a one-third octave spectral analysis of noise emissions recorded of an eight-second period during the lifting of the trailer box.

At site 19 (center of yard near 10-million-bushel grain elevator), measurements were made of several coupling impacts of loaded grain carriers (200,000 pounds). After loading of the grain cars, the car is pushed out of the dumper shed and allowed to roll under its own power down the gently sloped track until it impacts and couples with the other cars on the track.

The microphone was offset 40 feet from the centerline of the track at a height of 4 feet above the level of the rails and placed directly opposite the point of impending impact. Figure A-29 contains noise level time histories of three impacts recorded. Presented are both the A-weighted and flat-unweighted level histories for each event. The graphic recorder was adjusted for a writing speed of 200 dB per second for these recordings. Included on the time histories is the unweighted peak impulse measurement value for each recorded impact.

The first impact recorded (figure A-29a) is of a loaded grain car impacting on a long line of loaded cars at approximately eight mph. Point of impact was shielded from the microphone by a standing line of empty freight cars 13 feet closer to the microphone. The second impact at seven mph (figure A-29b) was of a single grain carrier impacting on a single standing grain carrier with no obstruction between point of impact and microphone. The third impact at two or three mph (figure A-29c) (brakeman riding car) was of a single grain carrier impacting on two standing carriers. All three cars were loaded, and there was no obstruction between point of impact and the microphone.

Photographs of the measurement area are included in figure E-21.

At site 20 (far end of the west classification yard), measurements were made of the noise emissions resulting from a "pull" through the inert retarders. Photographs of the retarder and of the site are contained in figure E-22.

The inert retarders (braking system) built into the tracks at the far end of the west classification yard are of the spring-loaded variety. Their purpose is to stop the first car in the train being assembled from rolling under its own power out of the classification yard into the freight yard proper. Unlike the active retarders on the hump whose braking pressure is controlled either by computer or by an operator and can be completely disengaged, the braking pressure exerted by these spring-loaded inert retarders is preset to a specific pressure and cannot be disengaged. To move a train of cars out of the classification yard, a switching engine must physically "pull" the entire line of cars through an inert retarder which has its braking pressure applied. This results in the characteristic high level tonal noise emissions from the retarder braking action.

Figure A-30 is a noise level time history recorded on 25 April 1973 of a line of cars being pulled through the spring-loaded inert retarders. The microphone was offset 45 feet from the centerline of the track midway between the ends of the retarder at a height of 4.5 feet of the level grade and 4 feet above the level of the rails.

Figure A-32 contains one-third octave spectral analyses of the recorded emissions of three different-type railroad cars being pulled through the retarder; i.e., a grain carrier, a tank car, and an empty autoveyor. As with the active retarders a highpitch tonal characteristic of the emissions (squealing) is noted.

At site 21 (far end of the east classification yard), measurements were made of the noise emissions resulting from a "pull" through the weight-balanced-type inert retarders built into the tracks. Photographs of the retarder and the measuring site are included in figure E-23.

The purpose of the weight-balanced inert retarder is the same as the spring-loaded type used in the west classification yard; however, its operation is different in that the braking pressure exerted is variable and is a function of the weight of the car impinging upon the retarder mechanism; therefore, the heavier the car, the greater is the pressure exerted. As with the spring-loaded inert retarders, these also cannot be disengaged, and a switching engine must physically pull the made-up train through the retarder with the braking pressure applied to get the train of cars into the yard proper.

Figure A-31 is a noise level time history recorded on 25 April 1973 of a line of cars being pulled through the weight-balanced inert retarder in the east classification yard. The microphone was placed at a height of 4 feet above the level of the rails, and centered on an offset 55 feet from the centerline of the retarder.

Figure A-33 contains one-third octave spectral analyses of the noise emissions generated as two heavy tank cars and a mechanical refrigeration car were pulled through the weight-balanced inert retarder. Note here, also, the high-pitch tonal characteristic of the emission. It was noted during the measurement that lightweight cars generated lower noise levels on the weight-balanced inert retarder than did the heavier cars. The reverse was noted of the spring-loaded variety of inert retarder found in the west classification yard.

Also noted on site, but not recorded on magnetic tape, was that, as the switching engine moved through the inert retarder, little if any squealing resulted despite the heavy weight of the engine. This was perhaps caused by the buildup of grease and oil on the wheels of the locomotive which in turn lubricated the retarder (braking) mechanism. As succeeding cars were pulled through the retarder, they also benefited from the lubrication (squealing far less) until the lubricants were finally worn away. This effect was also noted with the spring-loaded retarders in the west hump.

2.2 NOISE LEVEL MEASUREMENTS, BOSTON AND MAINE RAILROAD, BOSTON $_{\mbox{\scriptsize MA}}$

Noise measurements were made on 21, 27, and 28 March 1973 at three facilities of the Boston and Maine (B&M) Railroad, Boston MA: The diesel locomotive repair facility at Iron Horse Park, Billerica MA; the Somerville Hump Yard, Somerville MA; and Piggyback Yard Seven, Charlestown MA.

Data were obtained of individual noise sources at these facilities. No data were obtained to statistically characterize the temporal noise of any of the areas as had been done at the Argentine Yard of the Santa Fe Railroad (see section 2.1).

Included in Appendix B are graphic noise level time history recordings and one-third octave spectral analyses, where applicable, of the data recorded.

2.2.1 Diesel Locomotive Static Measurements

Measurements were made on 21 March 1973 in Iron Horse Park, Billerica MA at the B&M diesel locomotive repair facility on Locomotive 1563. This is a 1550-horsepower General Motors locomotive Model GP-7 with a Model 16-567B engine. See figure B-1 for physical dimensions and general equipment layout of the locomotive.

The locomotive was completely overhauled (rebuilt) at the facility, and was in the process of being "run in" under static

conditions. In actual operation of the locomotive, the diesel engine drives an electric generator which in turn supplies power to the traction motors. The speed or throttle setting is variable through eight fixed steps from the idle setting (notch 1) to full throttle (notch 8). When static-tested, the electric power generated (normally furnished to the traction motors) is dissipated in an external resistive load (known as a load box).

The measurements made were of static conditions with simulated load as above, and also under unloaded conditions, wherein the electrical circuit to the load box was opened and, although the generator was being driven, no power was being generated and the loading on the engine was minimal.

Three microphones centered on the locomotive and offset 25, 50, and 100 feet from its center-line, were set up at a height of 5- 1/2 feet above the level grade (see figure E-24). In addition to recording data with the microphones thus placed, microphone 1 at 25 feet was moved to 12 additional locations in and around the locomotive and data were recorded. The position of microphones 2 and 3 (50 and 100 feet, respectively) were unchanged for all the measurements conducted. Figure E-25 contains photographs showing: (a) the initial microphone locations at 25, 50, and 100 feet; (b) the movable microphone at a point 55 feet to the left-hand side of its initial position (note the load box in the background); and (c) the movable microphone at one of its positions on the catwalk platform six inches from the skin of the engine body.

Figure B-2 contains coincident time histories of the wayside noise level data recorded at the initial three-microphone locations (25, 50, and 100 feet). Approximately 30 seconds of data are presented at each throttle setting from notch 1 to notch 8. For this test, the engine was in the unloaded condition. A one-second period of the data from each microphone, recorded at the eighth notch setting, was spectrally analyzed. The coincident one-third octave spectral analyses of the data for the three

microphone locations are presented in figure B-3.

Figure B-4 contains coincident time histories of the noise level data recorded at the wayside under loaded conditions from notch 2 to notch 8 for the above locomotive.

Figure B-5 contains one-third octave spectral analyses of a coincident one-second period of data measured at the three offset microphone locations. The engine was fully loaded at 1550-horsepower running at the eighth notch.

Figures B-6 and B-7 contain one-third octave spectral analyses of a one-second period of data measured at the initial 25-foot offset location at each notch setting from 2 to 7.

A summary tabulation of the wayside noise levels measured for both loaded and unloaded conditions are included in Table 2-3.

To obtain a more complete picture of the spatial distribution of the noise levels in and around the locomotive, microphone 1 (25 feet offset) was moved to an additional 12 locations (7 positions along a centerline offset 25 feet from the centerline of the locomotive; 3 positions along the catwalk platform 6 inches from the skin of the engine; 1 position in the engineer's cab; and 1 position in the engine compartment). The microphone in the cab was set at a height of 4- 1/2 feet (at ear level to a seated engineer), all the others were at a height of 5- 1/2 feet. For these tests, microphones 2 and 3 (50 and 100 feet respectively) were not moved, and the engine was fully loaded at 1550 horsepower and held at the eighth notch (1900 amperes at 600 volts into the load box). Spatial noise level data are included in figure B-8. Note the position of the 40-foot high brick diesel shop building which was the only major obstruction in the test area.

2.2.2 Freight Yard Data

Measurements were made of specific noise sources at the B&M Somerville Hump Yard, Somerville MA, and Piggyback Yard Seven, Charlestown MA on 27 and 28 March 1973.

WAYSIDE NOISE LEVELS: GM LOCOMOTIVE MODEL GP-7. BEM RR, IRON HORSE PARK, BILLERICA, MA. (STATIC TESTS) TABLE 2-3.

REMARKS Microphones 5.5 feet above grade level			All fans 6 compressor						Fans 3 and 4 ON	Fan 1 on	Fan 2 on	Fan 3 on	Fan 4 on	All four fans on	Compressor on	Horn (104 dBA inside of cab)	All four fans on	Compressor on
	Feet	Ť	7.0	7.5	80	81	86	8.7	8.8								68	80
	Unloaded	99	89	7.2	7.4	7.8	8.1	81	81	67	67	67	99	29	67	101		
	Loaded	i.	7.4	8.0	8.2	8.6	0.6	90	26								16	91
		7.0	7.3	7.6	8.2	8.2	8.3	8.4	90	71	7.1	7.1	71 +	7.1	7.1	106		
	Loaded	T	7.9	8.6	8.7	0.6	91	94	97								- 62	97
	Unloaded	7.8	7.8	8.5	8.5	9.8	9.0	16	94	7.8	7.8	7.8	7.8	7.8	7.8	107		
THROTTLE		1	6-2	33	ধ	9	9	7	8	1	1	1	П	1	1	1	8	8

Figure E-26 is a photograph from the control tower of the Somerville Hump Yard facing the classification yard. On the left-hand side of the photograph is the master retarder. The group retarders can be seen further down the lead track. The series of tracks to the right-hand side of the photograph are the receiving and departure tracks.

This humping operation is manually controlled, wherein operators in the control towers (one by the master retarder, and one each by the intermediate and group retarders) control the track switches and the amount of pressure exerted by the retarders on the wheels of cars passing through. Inert retarders were not used in this yard. To prevent the first car down the classification yard from rolling under its own power out of the yard, a brakeman rides the car down the hump into the classification yard and manually sets the brakes at the far end of the classification yard. This stops the first car. Succeeding cars down that track couple to it, and are in turn prevented from rolling out of the classification yard.

The noise advantage here over the Argentine operation which uses inert retarders to stop the cars at the end of the track is that when a line of cars is moved out of the yard no retarder noise is generated.

Measurements were made in the classification yard of selfcoupling impact sounds. For these tests, a microphone was set up directly opposite the point of impending impact at offset distances as dictated to insure the safety of the measurement team.

Figure B-9 contains graphic time histories (A-weighted and flat-unweighted) of the impact noise emissions recorded when two empty cement cars estimated to be travelling at approximately four mph impacted (point A) upon two standing box cars (also empty). The standing two cars had not traveled far enough on their own into the classification yard to couple with the line of 30 cars standing approximately 50 feet further down the track. Upon impact of the two cement cars the two standing box cars were set into motion by the impact and in turn impacted into the standing line of cars 50

feet away (point B). The two cement cars followed and impacted again at point C.

Also shown on the history are the impact sounds from the secondary impacts and the wave that moved through the full length of the line of cars in the train. For this measurement, the microphone was 3 feet above the level of the rails in line of sight with, and offset 88 feet from the initial point of impact (point A). Remaining impacts were not in line-of-sight with the microphone but were shielded from the microphone by the cars themselves. Included on the history are unweighted peak impulse levels for each impact as measured with a sound level meter in the peak hold mode.

The unweighted sound levels of the impact events above (A, B, and C were also measured with an appropriately calibrated memory oscilloscope. The scope display was photographed and the results included in figure B-10.

Figures B-11 through B-14 are data from four additional impacts. In each case, the microphone was directly opposite and in line-of-sight with the point of impact.

Figure B-15 contains a noise level history and frequency spectra of retarder noise as measured 50 feet offset from the master retarder. The first event in the time history is the noise emission at the master retarder of a single freight car equipped with roller bearings being slowed from an estimated eight to four mph. Note the level of the unmuffled air-release blast from the retarder actuator. A one-half second interval during the period of retarder squeal was analyzed and the one-third octave spectra are included in figure B-15b. Note the tonal characteristics of the squeal.

The second and third events in figure B-15b are of two coupled freight cars moving through the retarder and being slowed from an estimated six to four mph. The first car was equipped with roller bearings, and the second with journal boxes. The retarder squeal can be seen to be equal to the noise from the air-release blast for the first car retarded, and no squeal

emissions were generated with retardation pressure applied to the second car of the set.

Figure B-16 is a time history level recording and one-third octave spectral analysis of data recorded of noise emissions of the diesel engine on a mechanical refrigeration freight car. The microphone was set up at a height of 5 feet above the level of the rails and offset 50 feet from the car's centerline. The microphone was set up directly opposite to the open grille behind which the diesel engine was located.

Figure E-27 is a photograph of an FWD Wagner Model P-70 Piggyback Packer (fork-lift truck) lifting a 56,000-pound trailer box and placing it on a railroad flatcar in the B&M Piggyback Yard Seven, Charlestown MA.

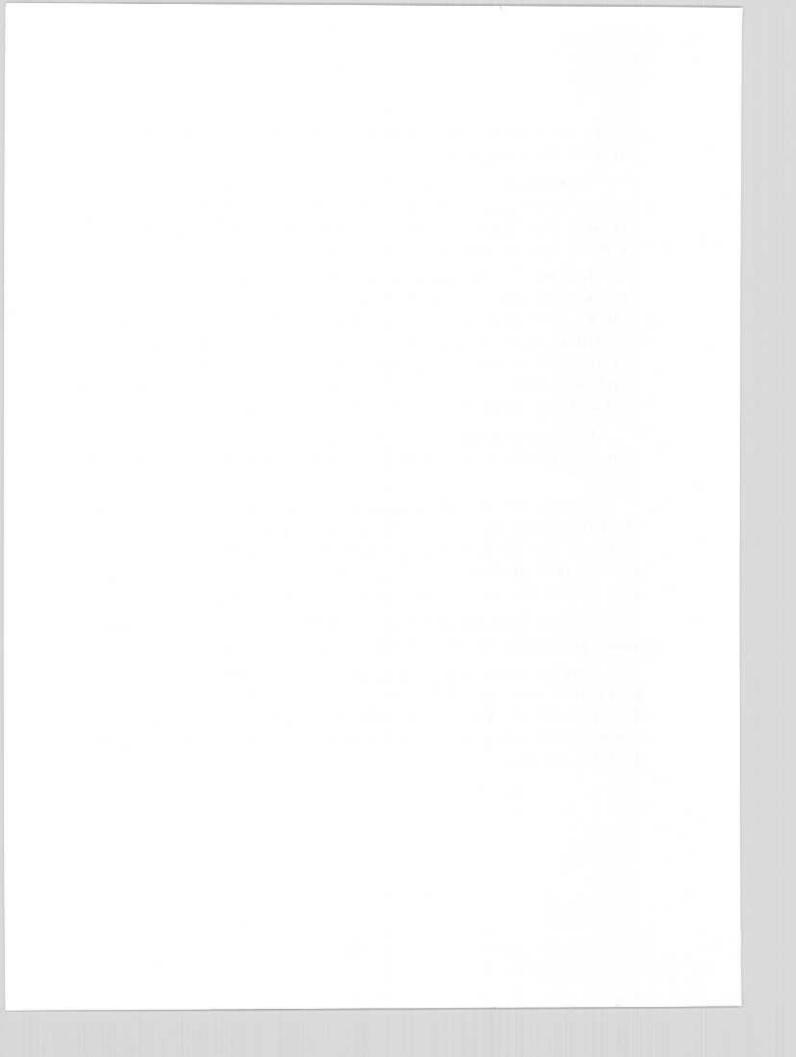
Measurements were made in this yard on 28 March 1973. Figures B-17 and B-18 are time histories of the noise measured during two operations of this model fork-lift truck. In the two cases recorded, the microphone was set up at a height of 5.5 feet above the level grade. For the data in figure B-17, the microphone was offset 50 feet from the right-hand side of the Model P-70. For the data in figure B-18, the microphone was placed 50 feet to the rear of Model P-70.

2.3 WAYSIDE NOISE LEVEL MEASUREMENTS, PASSENGER AND LINE-HAUL OPERATIONS

Wayside noise level measurements were made next to the tracks of the Penn Central Railroad (PCRR), New York-to-Washington Line in Plainsboro NJ, 2600 feet north of milepost 46 on 23 May 1972; and next to the Boston -to- New York Line in West Mansfield MA, 1310 feet east of mile post 201 on 4 November 1971 and 20 and 26 September 1972.

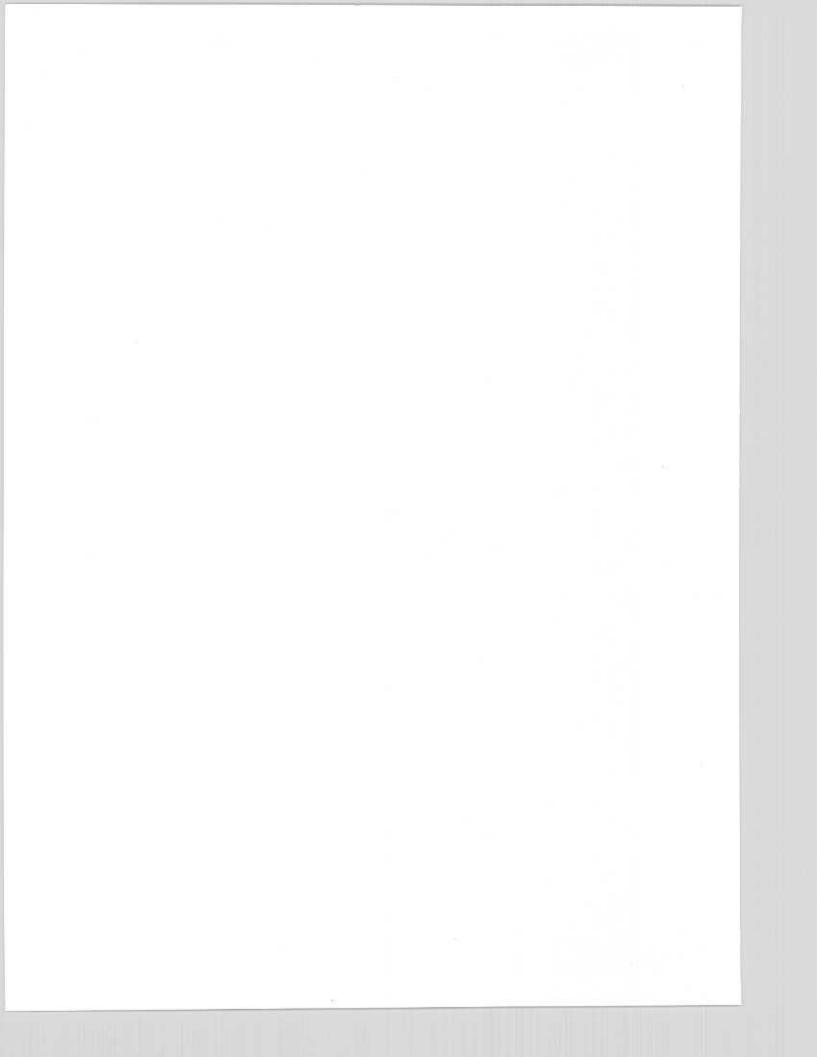
Data were recorded at that time of the noise generated during the passby of the high-speed Metroliner and Turbotrains. (See the authors' report DOT-TSC-OST-73-18, "Wayside Noise and Vibration Signatures of High-Speed Trains in the Northeast Corridor", September 1973). Also recorded and included in the report as a summary tabulation was passby noise data of passenger and line-haul operations.

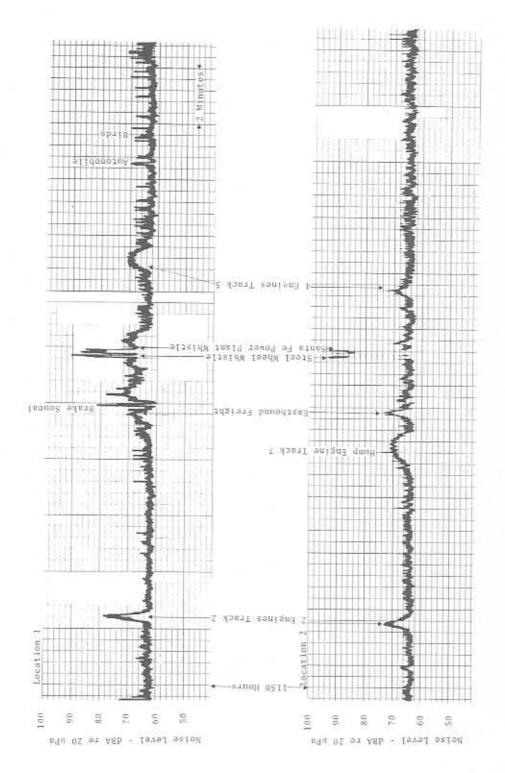
Because of the present interest in railroad operations, graphic level signatures of both passenger and line-haul data measured then but not included in the earlier report, have been prepared and are presented in this report as Appendixes C and D.

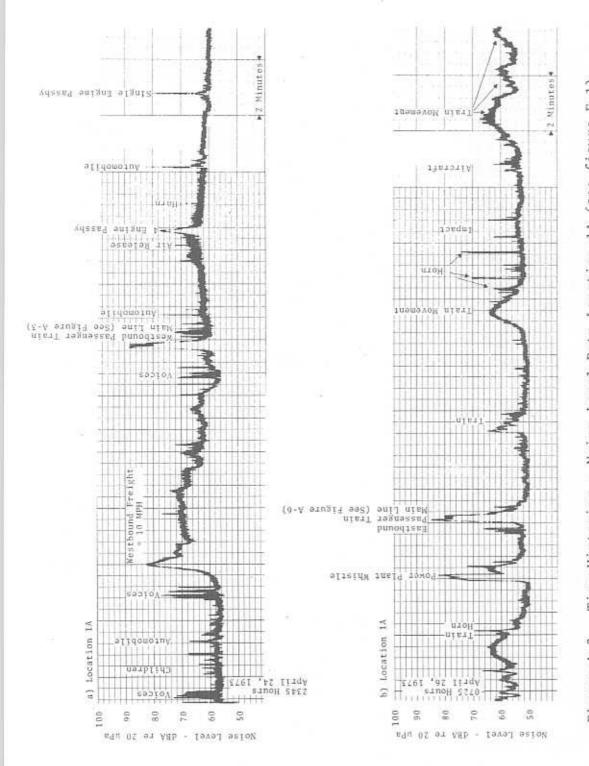

Figures C-1 through C-17 are wayside noise level signatures of trains measured in Plainsboro NJ. The Penn Central Railroad line at this location consists of four tracks with welded rail construction, wood ties and stone ballast. All trains measured obtained power from an overhead catenary system through a pantograph with the exception of a 33-car freight train which was driven by two diesel-powered locomotives, see figure C-8.

Figures E-28 through E-30 contain a schematic of the microphone locations and photographs of the Plainsboro NJ measurement site.

Figures D-1 through D-16 are wayside noise level signatures of trains measured in West Mansfield MA. The Penn Central Railroad line in thsi area consists of two track with standard jointed rail construction, wood ties on stone ballast. Trains were driven by one or more diesel-powered locomotives.


Figures E-31 through E-33 contain a schematic of the microphone locations and photographs of the measurement site.


Wayside noise level signatures of passenger and line-haul operations measured in Kansas City and Zarah KS on the Santa Fe Railroad are included in Appendix A: figures A-4 through A-6 are of passenger trains, and figures A-14 through A-17 are for freight trains.


APPENDIX A

NOISE LEVEL DATA MEASURED AT TWENTY-ONE LOCATIONS OF THE ARGENTINE FREIGHT YARDS, SANTA FE RR, KANSAS CITY KS

0.1 Coincident Time Histories - Noise-Level Data-Locations 1 and (see figure E-1). Argentine Freight Yard, Santa Fe RR, 4/24/73. Microphone Offset 25 Feet from Mainline Track at a Height of 5 Feet Above Level Grade. Figure A-1.

Time Histories - Noise Level Data Location 1A (see figure E-1). Argentine Freight Yard, Santa Fe RR, 4/24 - 26/73. Microphone Offset 60 Feet from Mainline Track at a Height of 5 Feet Above a) Measurement Period Beginning 2345 Hours b) Measurement Period Beginning 0725 Hours Level Grade Figure A-2.

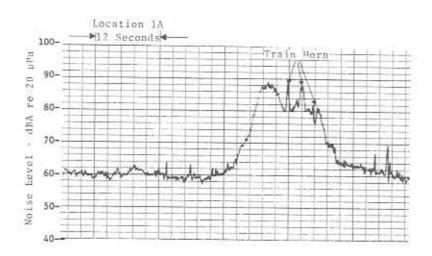


Figure A-3. Time History - Wayside Noise Levels Offset 60
Feet from Track Centerline, Location 1A,
Argentine Freight Yards, Santa Fe RR, 4/25/73,
0005 Hours, Passenger Train, 4 Diesel Engines
Plus 16 Cars, Westbound 60 mph (see figure A-2a)

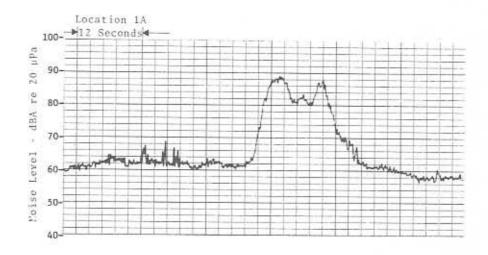


Figure A-4. Time History - Wayside Noise Levels Offset 60
Feet from Track Centerline, Location 1A,
Argentine Freight Yards, Santa Fe RR, 4/25/73,
0752 Hours, Passenger Train, 4 Diesel Engines
Plus 8 Cars, Eastbound 45 mph

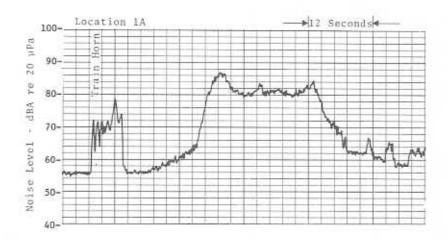
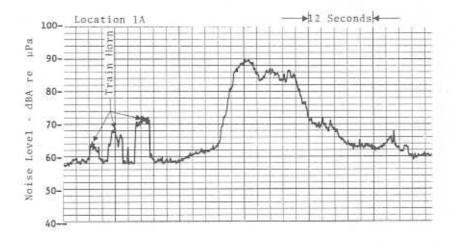
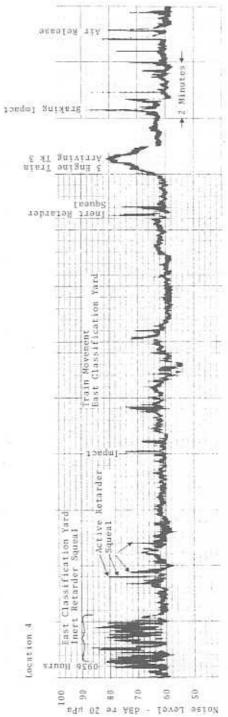
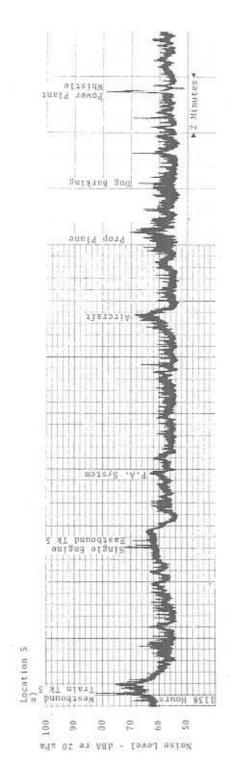
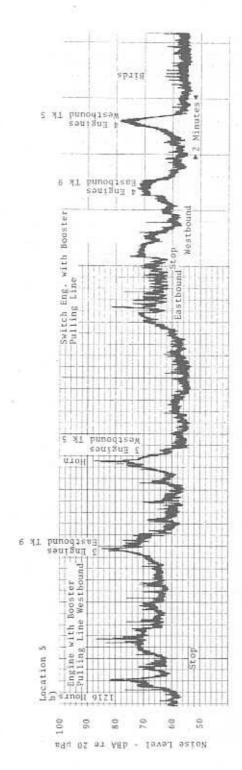


Figure A-5. Time History - Wayside Noise Levels Offset 60
Feet from Track Centerline, Location 1A, Argentine
Freight Yard Santa Fe RR, 4/26/73, 0605 Hours,
Passenger Train, 3 Diesel Engines Plus 14 Cars,
Eastbound 40 mph

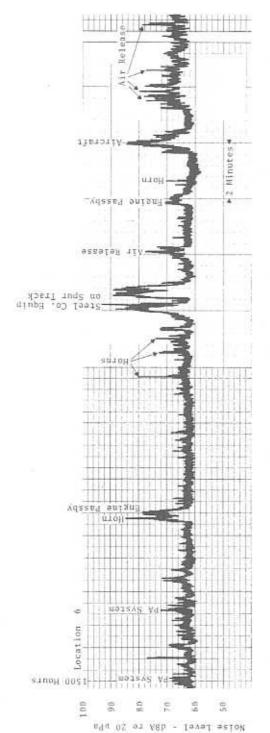




Figure A-6. Time History - Wayside Noise Levels Offset 60
Feet from Track Centerline, Location 1A,
Argentine Freight Yard, Santa Fe RR, 4/26/73,
0731 Hours, Passenger Train, 4 Diesel Engines
Plus & Cars, Eastbound 45 mph (see figure A-26)

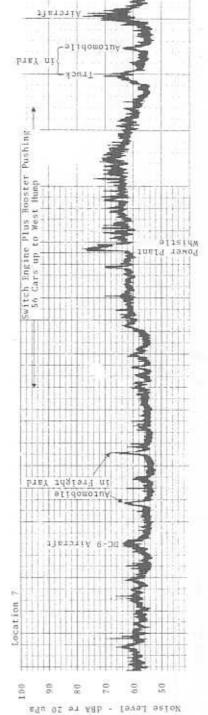

edu oz or Amb

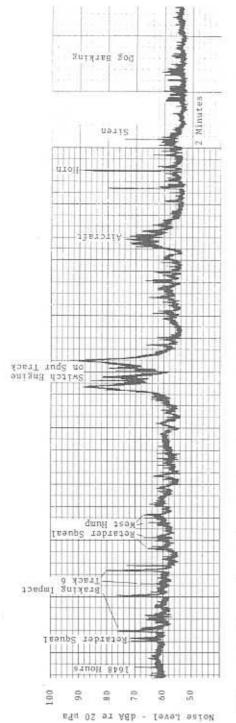

Noise Level

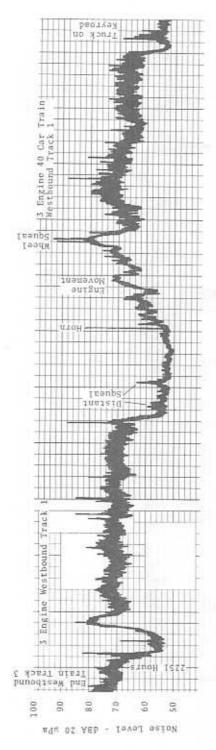
Time History - Noise Level Data, Location 3 (see figure E-1), Argentine Freight Yard Santa Fe RR, 4/24/73, Microphone Offset approximately 500 feet from the Center of West Classification Yard 4.5 feet above the Level Grade Figure A-7.



Time History - Noise Level Data, Location 4 (see Figure E-1), Argentine Freight Yard, Santa Fe RR, 4/25/73, Microphone on Embankment 75 Feet Offset from Mainline Track and 30 Feet Above the Level of the Rails Figure A-8




Time History - Noise Level Data, Location 5 (see figure E-1), Argentine Freight Yard, Santa Fe RR, 4/25/73, Microphone on Embankment 64 Feet Offset from Near Track and 15 Feet Above Level Measurement Period Beginning 1138 Hours Measurement Period Beginning 1216 Hours of Rails ъ. Figure A-9.


Time History - Noise Level Data, Location 6 (see figure E-1), Argentine Freight Yard, Santa Fe RR, 4/25/73, Microphone Offset 50 Feet from Mainline Track and 4.5 Feet Above the Level Grade Figure A-10.

Time History - Noise Level Data, Location 7 (see figure E-1), Argentine Freight Yard, Santa Fe RR, 4/25/73, Microphone Offset 31 Feet from Mainline Track and 4 Feet Above the Level of the Rails Figure A-11.

Time History - Noise Level Data, Location 8 (see figure E-1), Argentine Freight Yard, Santa Fe RR, 4/25/73, Microphone Offset 50 Feet from Mainline Track and 4.5 Feet Above the Level Grade Figure A-12.

Time History - Noise Level Data, Location 9 (see figure E-1) Argentine Freight Yard, Santa Fe RR, 4/25/73, Microphone Offset 25 Feet from Mainline Track and 4 Feet Above Level of Rails Figure A-13.

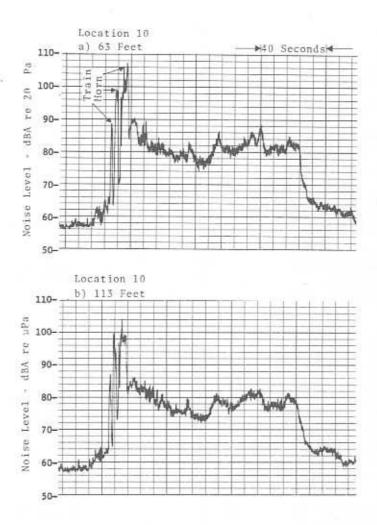


Figure A-14. Coincident Time Histories - Wayside Noise Levels at 63 and 113 Feet, Location 10, Santa Fe RR, Zarah KS, 4/26/73, Freight Train - 2 Diesel Engines Plus 76 Cars, Eastbound 31 mph

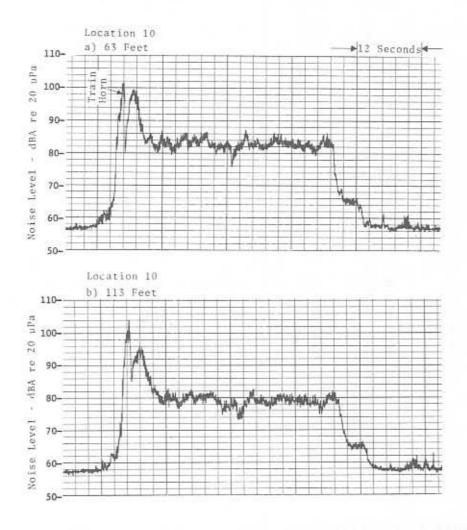


Figure A-15. Coincident Time Histories - Wayside Noise Levels at 63 and 113 Feet, Location 10, Santa Fe RR, Zarah KS, 4/26/73, Freight Train - 6 Diesel Engines Plus 87 Cars, Eastbound 30 mph

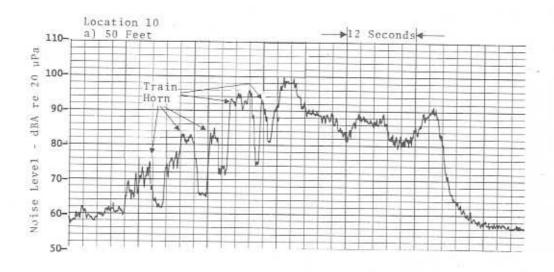



Figure A-16. Coincident Time Histories - Wayside Noise Levels at 50 and 100 Feet, Location 10, Santa Fe RR, Zarah KS, 4/26/73, Freight Train - 3 Diesel Engines Plus 43 Cars, Westbound 36 mph

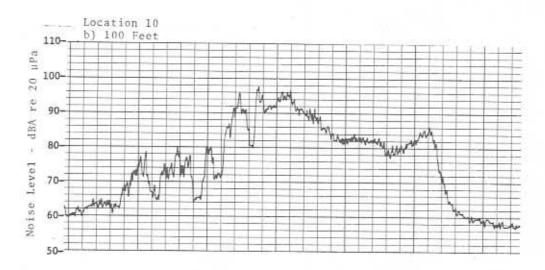
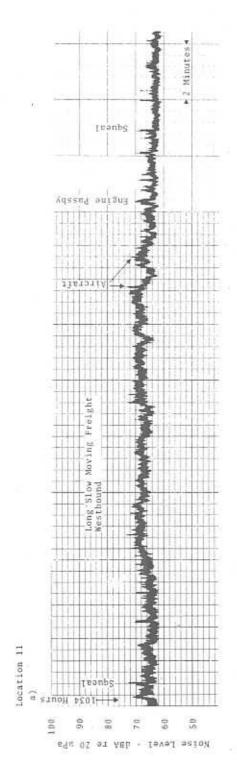
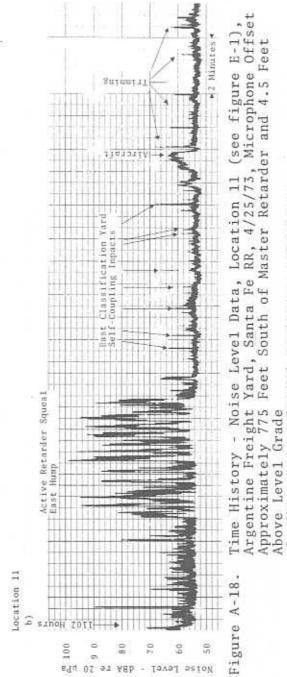
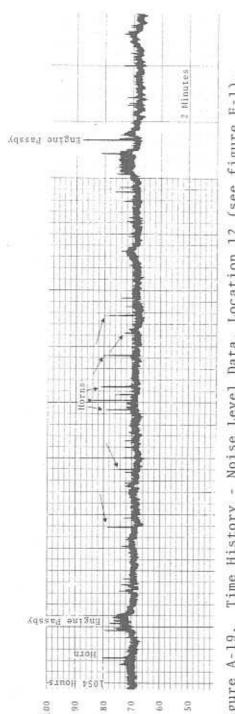
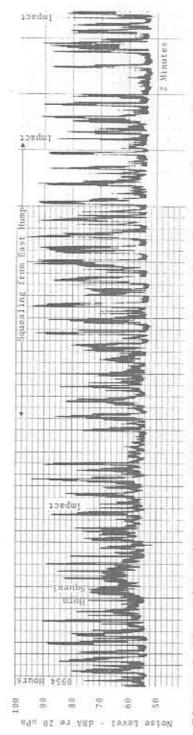
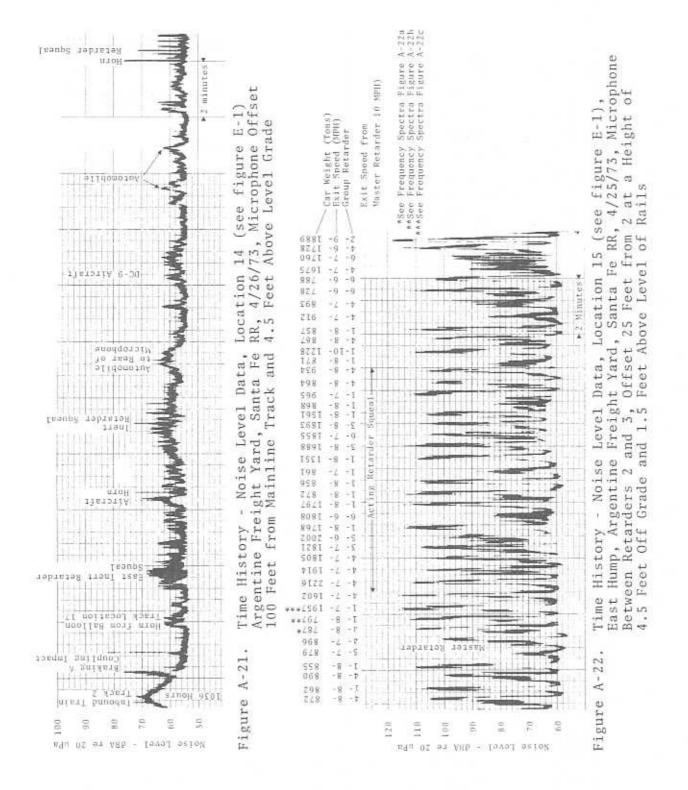





Figure A-17. Coincident Time Histories - Wayside Noise Levels at 50 and 100 Feet, Location 10, Santa Fe RR, Zarah, KS, 4/26/73, Freight Train -3 Diesel Engines Plus 31 Cars, Westbound 49 mph



Measurement Period Beginning 1034 Hours Measurement Period Beginning 1102 Hours



Noise Level - dBA re 20 uPa

Time History - Noise Level Data, Location 12 (see figure E-1), Argentine Freight Yard, Santa Fe RR, 4/24/73, Microphone on Embankment Offset 25 Feet from Near Track and 25 Feet Above Level of Rails A-19. Figure

Time History - Noise Level Data, Location 13 (see figure E-1), Argentine Freight Yard, Santa Fe RR, 4/26/73, Microphone on Embankment Offset 70 Feet From Mainline Track and 20 Feet Above Level of Rails Figure A-20.

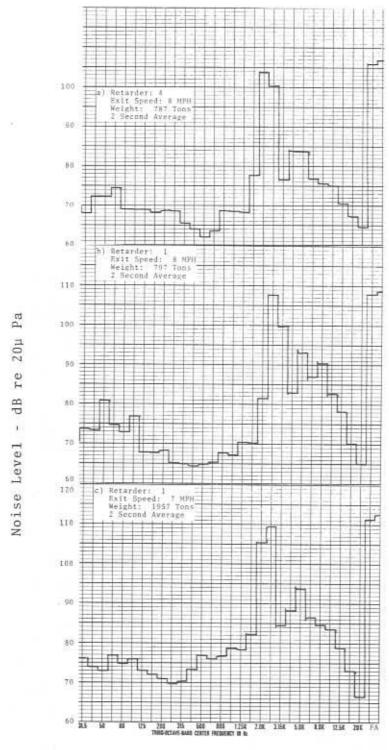
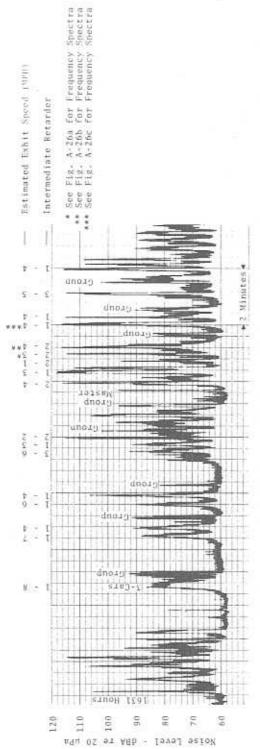
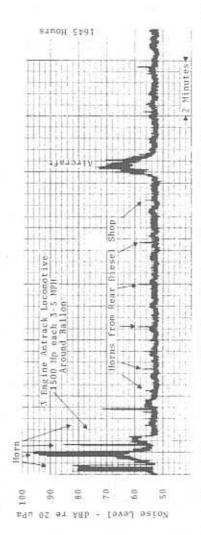




Figure A-23. Frequency Spectra - Active Retarder Noise, Location 15, East Hump, Argentine Freight Yard, Santa Fe RR, 4/25/73 (see figure A-22 for noise level time history)

Time History - Noise Level Data, Location 16 (see figure E-1), West Hump, Argentine Freight Yard, Santa Fe RR, 4/24/73, Microphone Between Retarders 1 and 2, Offset 25 Feet from 1 at a Height of 4.5 Feet Off Grade and 2.5 Feet Above Level of Rails Figure A-24.

Time History - Noise Level Data, Location 17 (see figure E-1), Argentine Freight Yard, Santa Fe RR, 4/25/73, Microphone Offset 60 Feet on Inside of Balloon Track at a Height of 4.5 Feet Above the Level Grade Figure A-25.

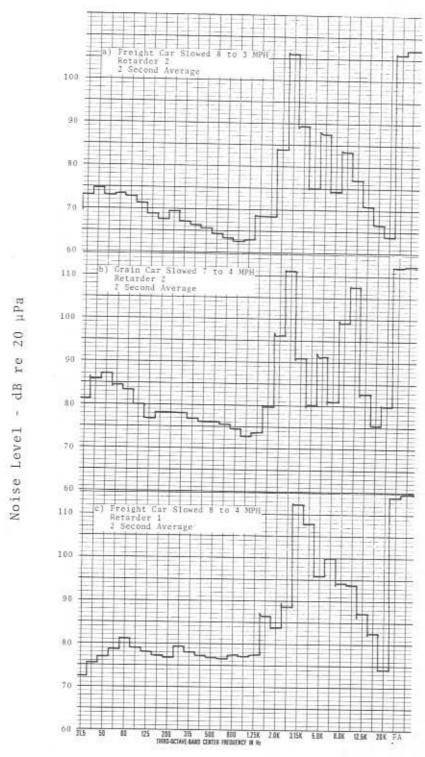


Figure A-26. Frequency Spectra - Active Retarder Noise, Location 16, West Hump, Argentine Freight Yard, Santa Fe RR, 4/24/73 (see figure A-24 for Noise Level Time History)

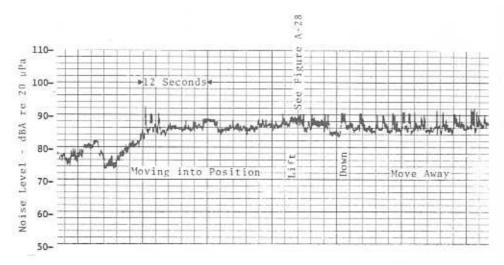


Figure A-27. Time History - Noise Level Data, Drott Diesel-Powered Hydraulic "Travel Lift" Lifting Trailer Box, Location 18, Argentine Freight Yard, Santa Fe RR, 4/25/73, Microphone Offset 50 Feet from Centerline of Flatcar at a Height of 4.5 Feet

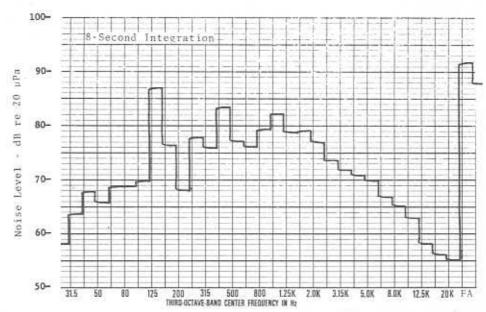


Figure A-28. Frequency Spectra - Drott Diesel-Powered Hydraulic "Travel Lift" Lifting Trailer Box, Location 18, Argentine Freight Yard, Santa Fe RR, 4/25/73 (see figure A-27)

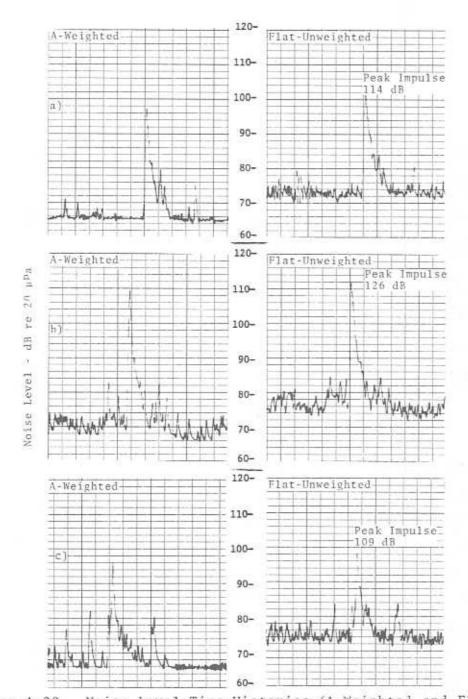
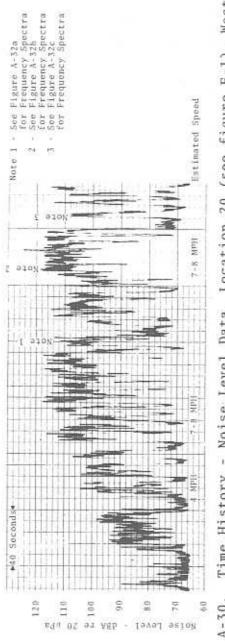
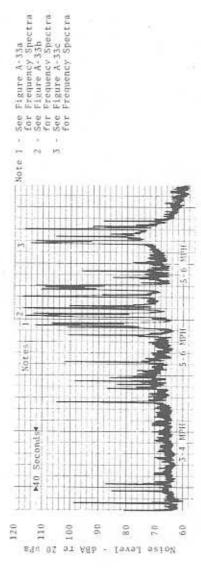




Figure A-29. Noise Level Time Histories (A-Weighted and Flat-Unweighted) Impact Data, Location 19, Microphone Offset 40 Feet from and Directly Opposite Point of Impact at a Height of 4 Feet Above Level of Rails a) Loaded Grain Carrier at 8-mph Impacting Line of Cars. Impact Shielded by Empty Freight Car b) Loaded Grain Carrier at 7-mph Impacting on Single Loaded Grain Carrier. No Shielding c) Loaded Grain Carrier at 2 to 3-mph Impacting on Two Loaded Grain Carriers. No Shielding Argentine Freight Yard, Santa Fe RR, 4/25/73

Time History - Noise Level Data, Location 20 (see figure E-1), Wes Classification Yard, Argentine Freight Yard, Santa Fe RR, 4/25/73, Microphone Offset 45 Feet from Inert Retarder, 4 Feet Above Rails (Spring-loaded Inert Retarder) Figure A-30.

Time History - Noise Level Data, Location 21 (see figure E-1), East Classification Yard, Argentine Freight Yard, Santa Fe RR, 4/25/73, Microphone Offset 55 Feet from Inert Retarder, 4 Feet Above Rails (Weight-balanced Inert Retarder) Figure A-31.

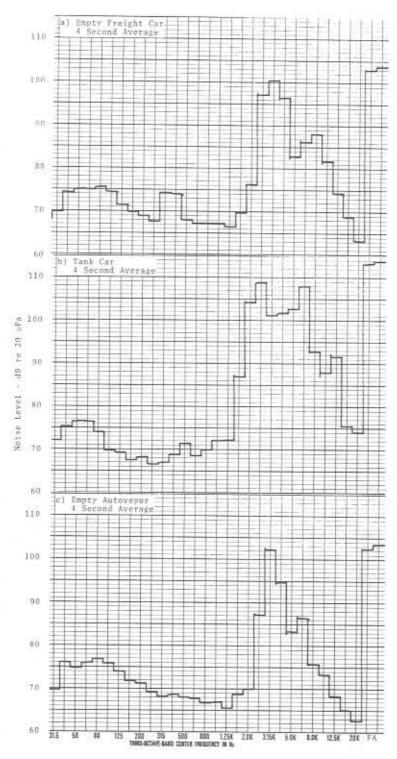


Figure A-32. Frequency Spectra - Inert Retarder Noise, Location 20, West Classification Yard, Argentine Freight Yard, Santa Fe RR, 4/25/73 (Spring-loaded Inert Retarder) (see figure A-30 for Noise Level Time History)

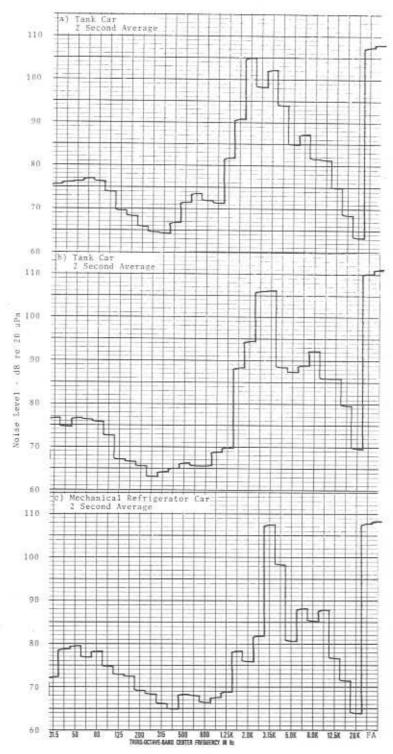


Figure A-33. Frequency Spectra - Inert Retarder Noise, Location 21, East Classification Yard, Argentine Freight Yard, Santa Fe RR, 4/25/73 (Weight-balanced Inert Retarder) (see figure A-31 for noise level time history)

1/8 SECOND SAMPLES, 8 PER SECOND) L 99.5 = 61.6 L 99. = 62 L 95. = 62.4 L 90. = 62.8 L 80. = 63.2 L 68. = 63.6 L 52. = 64 L 48. = 64.2 L 32. = 64.7 L 20. = 65.1 L 10. = 65.9 L 5. = 67.3 L 1. = 70.7 L .5 = 71.9 60 65 70

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

LEVEL DBA

Figure A-34. Statistical Noise Data, Location I, Argentine Freight Yard, Santa Fe RR, 4/24/73, 0950 to 1010 Hours

1	77	0	SAMPLES=	9600				
2	76	0	AVERAGE=	63.9	DBA			
	75	0	STANDARD DEVIATION=)BA			
4	74	0	L(EQ)=	64.3	DBA*			
10	73	0	NOISE POLLUTION LEVEL=	68 • 4	DB			
50	72	0	L 1 =	70.7	DBA**			
34	71	00	L 10 =	65.9	DBA			
65	70	00	L 50 =	64.1	DBA			
94	69	000	L 90 =	62.8	DBA			
130	68	000	L 99 =	62 DB				
156	67	2000	WALSH HEALEY EXP. =	0 %				
308	66	000000	RANGE=	18 DB				
1172	65	000000000000000000000000000000000000000	0	The same of the sa				
3107	6.4	000000000000000000000000000000000000000						
3354	63	000000000000000000000000000000000000000						
1053	62	00000000000000000000						
79	61	00						
2	60	0						
1	59	0 10						
DIST.	DBA		20 URRENCE (PERCENT)	30				

Figure A-34a. Histogram, Location 1, Argentine Freight Yard, Santa Fe RR, 4/24/73, 0950 to 1010 Hours

1/8 SECOND SAMPLES, 8 PER SECOND) L 99.5 = 58.7 L 99. = 59.2 L 95. = 60.7 L 90. = 61.4 T 80. = 65.5 L 68. = 62.6 L 52. = 63.2 L 48. = 63.4 L 32. = 64 L 20. = 64.9 L 10. = 67.1 L 5. = 69.1 L 1. = 72.1 L .5 = 74 50 55 60 65 70 LEVEL DBA

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-35. Statistical Noise Data, Location 1, Argentine Freight Yard, Santa Fe RR, 4/24/73, 1050 to 1110 Hours

```
9 600
                              SAMPLES=
2
       82 0
                                                   63.3
                                                        DBA
0
                              AVERAGE=
       81 0
       80
          0
                              STANDARD DEVIATION=
                                                   2.5 DBA
                                                   64.3 DBA*
O
       79
          0
                              L(FQ) =
       78 0
                              NOISE POLLUTION LEVEL= 70.7
                                                         DB
4
                                                         DBA**
                                                   72.1
3
       77
          0
                              L 1 =
                                                   67.1
 6
       76
           0
                              L 10 =
                                                         DBA
                              L 50 =
                                                   63.3
                                                         DBA
          0
16
       75
                                                   61 - 4
                              L 90 =
                                                         DBA
16
       74 0
                              L 99 =
                                                   59.2
                                                         DBA
23
       73
          0
                                                   0 %
                              WALSH HEALEY EXP. =
28
       72
           00
49
       71
           00
                              RANGE=
                                                   25 DB
122
       70
           000
223
       69
           00000
           00000
248
       68
231
       67
           00000
265
           00000
       66
 521
       65
           000000000
1210
           0000000000000000000000
       64
           2603
       63
2519
           62
           0000000000000000
943
       61
           000000
341
       60
       59
           0000
 158
62
       58
           0.0
       57
           0
                                                    30
DIST. DBA
                         10
                                      20
             FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-35a. Histogram, Location 1, Argentine Freight Yard, Santa Fe RR, 4/24/73, 1050 to 1110 Hours

L 99.5 = 61.2 L 99. = 61.4 L 95. = 62.2 L 90. = 62.6 1. 80. = 63.2 L 48. = 63.7 L 52. = 64.4 L 48. = 64.6 L 32. = 65.5 L 20. = 66.9 L 10. = 69.2 L 5. = 70.8 L 1. = 80.6 L .5 = 83.3 60 65 70 75 80 LEVEL DEA

(1/8 SECOND SAMPLES, 8 PER SECOND)

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-36. Statistical Noise Data, Location 1, Argentine Freight Yard, Santa Fe RR, 4/24/73, 1151 to 1211 Hours

```
9600
      91 0
                              SAMPLES=
0
      90 0
                              AVERAGE=
                                                   64.8
                                                       DBA
                              STANDARD DEVIATION=
                                                   3.2 DBA
       89 0
1
       88
          0
                              L(EQ)=
                                                   67.9
                                                        DBA*
1
                              NOISE POLLUTION LEVEL= 76-1
       87
          0
                                                        DB
5
3
       86 0
                              L 1 =
                                                   80.6
                                                        DBA**
9
       85
          0
                              1. 10 =
                                                   69.2
                                                        DBA
                             L 50 =
16
       64 0
                                                   64.5
                                                        DBA
18
       83 0
                              L 90 =
                                                   62 - 6
                              L 99 =
                                                   61.4 DBA
23
       82 0
14
       81
          0
                              WALSH HEALEY EXP. =
                                                   0 %
       80 0
                                                   31 DB
18
                              RANGE=
5
       79 0
9
       78 0
17
       77
         0
       76 0
20
25
       75 0
       74 00
29
38
       73 00
       72 00
55
136
       71 000
       70
          00000
225
          0000000
354
       69
       68 00000000
431
       67 0000000
401
          00000000000
655
       66
1238
          000000000000000000000
       65
       2091
2370
          63
1191
       62
          00000000000000000000
       61
          0000
500
       60
          0
                        10
                                      20
                                                    30
DIST. DBA
            FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-36a. Histogram, Location 1, Argentine Freight Yard, Santa Fe RR, 4/24/73, 1151 to 1211 Hours

1/8 SECOND SAMPLES, 8 PER SECOND) L 99.5 = 63.1 L 99. = 63.3 L 95. = 64.1 L 90. = 64.4 L 80. = 65 L 68. = 65.3 L 52. = 65.8 L 48. = 65.9 L 32. = 66.4 L 20. = 66.8 L 10. = 67.4 L 5. = 67.9 L 1. = 70.7 L .5 = 72.2 60 65 70 LEVEL DBA

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-37. Statistical Noise Data, Location 2, Argentine Freight Yard, Santa Fe RR, 4/24/73, 0950 to 1010 Hours

1	78	0	SAMPLES=	9 600				
1	77	0	AVERAGE=	65.4	DBA			
4	7.6	O	STANDARD DEVIATION=		DBA			
5	75	0	L(EQ)=	65.7	DEA*			
4 5 8	74	٥	NOISE POLLUTION LEVEL=	69 D	Commence of the contract of th			
13	73	0	1. 1 =	110000000000000000000000000000000000000				
20	72	0	L 10 =	70 - 7	DBA**			
33	71	00	L 50 =	67.4	DBA			
39	70	00	L 90 =	65.8	DBA			
92	69	999	L 99 =	64.4	DBA			
211	68	0000		63.3	DBA			
852	67	000000000000000	WALSH HEALEY EXP.=	0 %				
2833			RANGE=	16 DB				
3647	65	000000000000000000000000000000000000000						
1527	64	000000000000000000000000000000000000000						
0.0000000000000000000000000000000000000	1,25,01		30000000					
535	63	000000						
22	62	0						
DIST.	DBA	0 10	20	30				
FREQUENCY OF OCCURRENCE (PERCENT)								

Figure A-37a. Histogram, Location 2, Argentine Freight Yard, Santa Fe RR, 4/24/73, 0950 to 1010 Hours

1/8 SECOND SAMPLES, 8 PER SECOND) L 99.5 = 60 L 99. = 60.3 L 95. = 61.8 L 90. = 62.9 L 80. = 64.1 L 68. = 64.6 L 52. = 65.3 L 48 . = 65 . 4 L 32. = 66 L 20. = 66.6 L 10. = 67.7 L 5. = 69.4 L 1. = 72.3 L .5 = 73.2 70 50 55 60 65 LEVEL DBA

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-38. Statistical Noise Data, Location 2, Argentine Freight Yard, Santa Fe RR, 4/24/73, 1050 to 1110 Hours

```
3
      78 0
                            SAMPLES=
                                                9600
0
      77
         0
                            AVERAGE=
                                                64.9 DBA
 3
       76
         0
                            STANDARD DEVIATION=
                                                2.2 DBA
       75 0
14
                            L(EQ)=
                                                65 - 5
                                                     DBA*
 11
       74 0
                            NOISE POLLUTION LEVEL= 71.1
       73 0
22
                            L 1 =
                                                72.3
                                                     DBA**
 64
       72
          00
                            L 10 =
                                                67.7
                                                     DBA
92
       71
          000
                            L 50 =
                                                65.4
                                                     DBA
          000
                            L 90 =
                                                62.9
152
       70
                                                     DBA
215
          0000
                            L 99 =
                                                60.3
                                                     DBA
       69
251
       68
          00000
                            WALSH HEALEY EXP .=
                                                0 %
 530
       67
          000000000
                            RANGE=
                                                20 DB
       1608
          2876
       65
          1950
       64
802
          000000000000000
       63
          00000000
449
       62
347
       61
          0000000
168
          0000
       60
40
       59
          00
       58
3
          0
DIST. DBA
                       10
                                    20
                                                 30
            FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-38a. Histogram, Location 2, Argentine Freight Yard, Santa Fe RR, 4/24/73, 1050 to 1110 Hours

(1/8 SECOND SAMPLES, 8 PER SECOND L 99.5 = 63.1 L 99. = 63.2 L 95. = 64.1 1, 90. = 64.5 L 80. = 65.1 L 68. = 65.4 L 52. = 65.9 L 48. = 66 L 32. = 66.6 L 20. = 67.2 L 10. = 68.4 L 5. = 70 L 1. = 84.8 1. •5 = 90 • 4 50 60 70 80 90 LEVEL DBA

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-39. Statistical Noise Data, Location 2, Argentine Freight Yard, Santa Fe RR, 4/24/73, 1151 to 1211 Hours

```
96 0
                           SAMPLES=
                                               9600
 0
      95 0
                            AVERAGE=
                                               66 DBA
 4
      94
          0
                            STANDARD DEVIATION=
                                               3 DBA
      93 0
                            L(EQ)=
                                               71.8 DBA*
 15
      92 0
                           NOISE POLLUTION LEVEL= 79.5
                                                    DB
 12
      91
         0
                           L 1 =
                                               84.8 DBA**
      90 0
 12
                           L 10 =
                                               68 · 4 DBA
 6
      89 0
                           L 50 =
                                               66 DBA
 7
      56 0
                                               64.5 DBA
                           L 90 =
 12
      87
          0
                           L 99 =
                                               63.2 DBA
      86 0
 6
                            WALSH HEALEY EXP.=
                                               .9 %
 10
      85 0
                           RANGE=
                                               34 DB
 10
      84 0
 5
      83
          0
      82 0
 1
 1
      81 0
 0
      80 0
 1
      79
          0
      78 0
 1
 0
      77 0
 3
      76 0
 5
      75
         0
 12
      74 0
 28
      73 00
 56
      72 00
 105
      71
         000
 152
      70 000
259
      69 00000
 358
      68 0000000
997
      67 000000000000000000
2593
      3265
      00
1364
      64 0000000000000000000000
565
      63 00000
      62
         00
31
DIST. DBA
         0
                      10
                                               30
           FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-39a. Histogram, Location 2, Argentine Freight Yard, Santa Fe RR, 4/24/73, 1151 to 1211 Hours

(1/8 SECOND SAMPLES, 8 PER SECOND) L 99.5 = 56.2 L 99. = 56.3 L 95. = 57.3 L 90. = 57.9 L 80. = 59.6 L 68. = 61.6 L 52. = 63 L 48. = 63.4 L 32. = 65.3 L 20. = 68 L 10. = 70.4 L 5. = 72.8 L 1. = 82.3 L .5 = 84.5 40 50 60 70 80 LEVEL DBA

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-40. Statistical Noise Data, Location 1A, Argentine Freight Yard, Santa Fe RR, 4/24-25/73, 2345 to 0005 Hours

```
9600
                                  SAMPLES=
        89
            0
 14
        88
            0
                                  AVERAGE=
                                                           63.5 DBA
        87
                                  STANDARD DEVIATION=
            0
 12
                                                           5.2 DBA
8
        86
            0
                                  L(EQ)=
                                                           69 . 1
                                                                 DBA*
        85
            0
                                  NOISE POLLUTION LEVEL= 82.4
                                                                 DB
 6
 11
        84
            0
                                  L 1 =
                                                           82.3
                                                                 DBA**
        83
            0
                                  L 10 =
                                                           70.4
                                                                 DBA
 16
                                  L 50 =
                                                           63.2
                                                                 DBA
 36
        85
            00
 32
        81
            00
                                  L 90 =
                                                           57.9
                                                                 DBA
                                  L 99 =
 20
        80
                                                           56+3
                                                                 DBA
            0
 23
        79
            0
                                  WALSH HEALEY EXP. =
                                                           0 %
                                                           34 DB
 23
        78
                                  RANGE=
           0
 34
        77
            00
           00
 51
        76
 44
        75 00
        74 00
 55
            00
 65
        73
            000
 122
        72
 217
        71 0000
        70 000000
 294
            0000000
 402
        69
        68 00000000
 417
 336
        67 000000
            0000000
 384
        66
        65 000000000000
 610
 773
        64 0000000000000
        63 000000000000000000
 1027
 1172
        62
            0000000000000000000
811
            00000000000000
        61
481
        60
           000000000
 425
        59
            00000000
 638
        58
            00000000000
 772
        57
            00000000000000
258
        56 00000
        55
            O
DIST. DBA
                            10
                                            20
                                                            30
              FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-40a. Histogram, Location 1A, Argentine Freight Yard Santa Fe RR, 4/24-25/73, 2345 to 0005 Hours

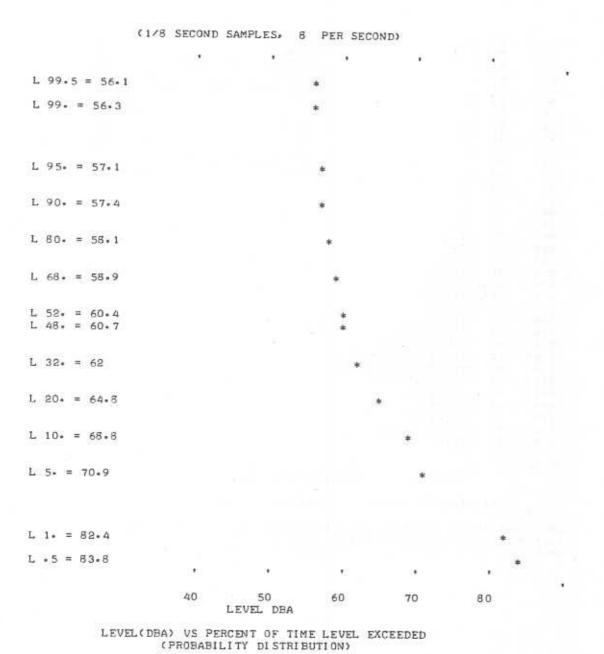
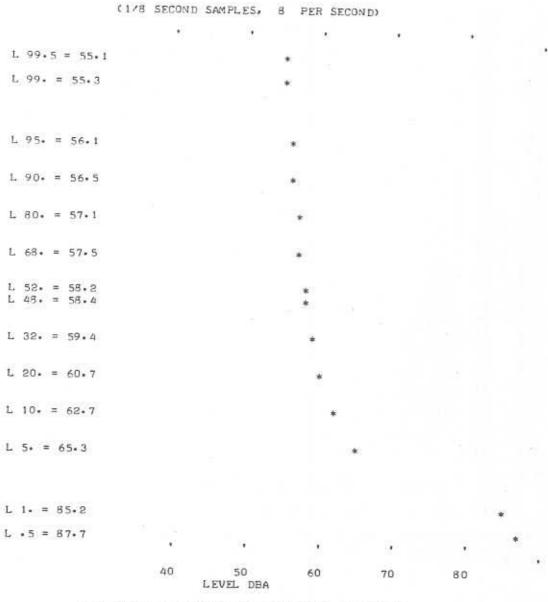


Figure A-41. Statistical Noise Data, Location 1A, Argentine Freight Yard, Santa Fe RR, 4/26/73 0545 to 0605 Hours

```
5
       87 0
                                                     9600
                               SAMPLES=
 8
       86 0
                               AVERAGE=
                                                     61.3 DBA
 12
       85 0
                               STANDARD DEVIATION=
                                                     4.9 DBA
 18
       84 0
                               L(EQ)=
                                                     67.5 DBA*
 38
       83
           00
                               NOISE POLLUTION LEVEL= 80 DB
       85 00
 36
                                                     82.4 DBA**
                               L 1 =
 30
       81 00
                               L 10 =
                                                     68 . B DBA
                               L 50 =
                                                     60.6 DBA
 25
       80 0
 6
       79
           0
                               L 90 =
                                                     57.4
                                                          DBA
       78
          0
                               L 99 =
                                                     56.3 DBA
 4
 7
          0
                               WALSH HEALEY EXP.=
       77
                                                     0 %
 7
       76 0
                               RANGE=
                                                     32 DB
 9
       75 0
 9
       74 0
 27
       73 00
 72
       72
           00
          000
 141
       71
 227
       70
           00000
 243
       69
           00000
 269
           00000
       68
 207
       67
           0000
 211
           0000
       65
 252
          00000
 293
       64
           000000
           0000000
 382
       63
       62 0000000000
 539
 1172
       61
           00000000000000000000
           1299
       60
       59 000000000000000
 886
 1330
       58 000000000000000000000
       57
           1512
          000000
 318
       56
12
       55
          0
DIST. DBA
          0
                         10
                                       20
                                                      30
             FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-41a. Histogram, Location 1A, Argentine Freight Yard, Santa Fe RR, 4/26/73, 0545 to 0605 Hours


1/8 SECOND SAMPLES, 8 PER SECOND) L 99.5 = 56.2 L 99. = 56.4 L 95. = 57.2 L 90. = 57.6 L 80. = 58.3 L 68 = 59 L 52. = 60.2 L 48. = 60.6 L 32. = 63 L 20. = 65.6 L 10. = 68.8 L 5. = 71.2 L 1. = 85.8 L .5 = 87.7 40 50 60 70 80 LEVEL DBA

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-42. Statistical Noise Data, Location 1A, Argentine Freight Yard, Santa Fe RR, 4/26/73, 0725 to 0745 Hours

```
SAMPLES=
                                                      9600
       92
2
          0
6
       91
           0
                                AVERAGE=
                                                       61.7 DBA
                                                       5.4 DBA
       90
                                STANDARD DEVIATION=
           0
12
                                                       70 - 5
                                                            DBA*
9
       89
                                L(EQ)=
                                NOISE POLLUTION LEVEL= 84.3
                                                            DB
       88
           0
13
                                                            DBA**
                                                       85.8
       87
           0
                                L 1 =
18
                                L 10 =
                                                       68 . 8
33
       86
           00
                                                       60.4
                                                            DBA
19
       85
           0
                                L 50 =
                                L 90 =
                                                       57 . 6
                                                            DBA
       84
           00
31
                                L 99 =
                                                       56.4
                                                            DBA
21
       63
           0
                                WALSH HEALEY EXP .=
                                                       . 3 %
18
       82
           0
                                                       37 DB
                                RANGE=
15
       81
           0
       80
           0
11
7
       79
           0
8
       78
           0
           0
12
       77
 14
       76
           0
       75
           0
10
       74
           0
11
       73
           0
20
 54
       72
           00
 170
       71
           0000
       70 0000
205
 199
        69
           0000
 219
        68
           00000
        67 00000
 236
       66 0000000
355
       65 00000000
 465
        64 000000000
 481
 393
        63 0000000
       62 000000000
 483
 689
        61
           000000000000
        60 00000000000000000
951
           1362
        59
        58
           1578
 1216
       57
           000000000000000000000
251
        56
           00000
3
       55 0
DIST. DBA
           0
                          10
                                                        30
             FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-42a. Histogram, Location 1A, Argentine Freight Yard, Santa Fe RR, 4/26/73, 0725 to 0745 Hours

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-43. Statistical Noise Data, Location 1A, Argentine Freight Yard, Santa Fe RR, 4/26/73, 0745 to 0805 Hours

```
16
      89 0
                              SAMPLES=
                                                   9600
       88 0
24
                              AVERAGE=
                                                   58 . 9
                                                        DBA
 29
       87 00
                              STANDARD DEVIATION=
                                                   4.5 DBA
 17
       86 0
                              L(EQ)=
                                                   68.9
                                                        DBA*
 13
       85
          0
                              NOISE POLLUTION LEVEL= 80.4
                                                        DB
10
       84
          0
                              L 1 =
                                                   85.2
                                                        DBA**
18
       83 0
                              L 10 =
                                                   62.7
                                                        DBA
                              L 50 =
L 90 =
                                                   58 - 3
                                                        DBA
       82
          0
23
                                                   56+5
 11
       81
          0
                                                        DBA
                              L 99 =
                                                   55.3 DBA
3
       80 0
                              WALSH HEALEY EXP.=
                                                   0 %
2
       79 0
3
       78
          0
                              RANGE=
                                                   35 DB
9
       77
          0
 6
       76 0
 10
      75 0
 11
       74
          D
       73
          0
 15
 12
       72 0
 17
       71
          0
       70 0
 23
 28
       69 00
       68 00
 3.6
       67
          00
 45
       66 00
38
86
       65 00
 136
       64 000
 214
       63
          0000
       62 0000000
367
       61 000000000
478
       60 00000000000
 651
 1185
       59
          000000000000000000000
          1893
       58
2401
       1487
       56 00000000000000000000000
271
       55
          00000
12
       54 0
DIST. DBA
                        10
                                      20
                                                    30
          0
            FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-43a. Histogram, Location 1A, Argentine Freight Yard, Santa Fe RR, 4/25/73, 0745 to 0805 Hours

1/8 SECOND SAMPLES, 8 PER SECOND) L 99.5 = 53.4 L 99. = 53.9 L 95. = 54.6 L 90. = 55.1 L 80. = 55.7 L 68. = 56.3 L 52. = 56.9 L 48. = 57.1 L 32. = 58 L 20. = 59.3 L 10. = 62.8 L 5. = 67.4 L 1. = 72 L . 5 = 74 50 55 60 65 70 LEVEL DBA

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-44. Statistical Noise Data, Location 3, Argentine Freight Yard, Santa Fe RR, 4/24/73, 1527 to 1547 Hours

```
82
                             SAMPLES=
                                                 9600
 3
       81
          0
                             AVERAGE=
                                                 57.6 DBA
 3
       80 0
                             STANDARD DEVIATION=
                                                 3.7 DBA
60.9 DBA*
       79
          0
                             L(EQ)=
 3
       78
          -
                             NOISE POLLUTION LEVEL= 70.4 DB
 3
      77
          0
                             L 1 =
                                                  72 DEA**
 6
       76
          0
                             L 10 =
                                                 62.8 DEA
      75
          0
                             L 50 =
                                                 57 DBA
 18
       74
          9
                             L 90 =
                                                 55-1 DEA
 19
       73
          0
                             L 99 =
                                                 53.9 DHA
 28
       72
          00
                             WALSH HEALEY EXP.=
                                                 0 %
 35
       71
          00
                             RANGE=
                                                 30 DB
 53
       70 00
 89
       69
          nn
 131
       68
          000
 127
          000
       67
98
       66 000
 78
       65 00
 104
       64
          000
 119
          000
       63
 146
       68 000
200
       61 0000
294
       60 000000
530
       59 000000000
997
       58 90000000000000000
1755
       57
          2342
       56
          1699
          599
       54
          0000000000
105
       53
          000
4
      52
          0
DIST. DBA
                       10
                                     20
                                                  30
            FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-44a. Histogram, Location 3, Argentine Freight Yard, Santa Fe RR, 4/24/73, 1527 to 1547 Hours

1/8 SECOND SAMPLES, 8 PER SECOND L 99.5 = 54.1 L 99. = 54.2 L 95. = 55.2 L 90. = 55.6 L 80. = 56.4 L 68. = 57.2 L 52. = 58.1 L 48. = 58.4 L 32. = 60.3 L 20. = 63.8 L 10. = 68.1 L 5. = 70.4 L 1. = 74.7 L .5 = 75.8 55 60 65 70 75 LEVEL DBA

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-45. Statistical Noise Data, Location 3 (Special)
Argentine Freight Yard, Santa Fe RR, 4/24/73,
1528 to 1531 Hours
(Three Minute Period of Humping Activity on
West Hump, See Figure A-7)

```
2
       79 0
                               SAMPLES=
                                                    1440
                               AVERAGE=
3
       78 0
                                                    59 - 6 DBA
 0
       77 0
                               STANDARD DEVIATION=
                                                    4.8 DBA
       76 0
                               L(EQ)=
                                                    63 - 6
1
                                                          DBA*
 6
       75 00
                              NOISE POLLUTION LEVEL= 75.9
                                                          DB
9
       74 00
                              L 1 =
                                                    74.7
                                                          DBA**
 7
                              L 10 =
                                                    68 • 1
       73
          00
                                                          DBA
                              L 50 =
L 90 =
 16
       72
           000
                                                    58 - 3
                                                          DBA
                                                    55 • 6
 18
       71
           000
                                                          DBA
       70 000
                              L 99 =
                                                    54-2
 23
       69
          000
                               WALSH HEALEY EXP.=
                                                    0 %
           000000
 49
       68
                               RANGE=
                                                    26 DB
 28
       67 0000
       66 0000
 28
 34
       65 00000
 40
       64 00000
       63 00000
 36
       62 000000
 51
       61 0000000
 53
 56
118
       59 0000000000000
       58 0000000000000000000
172
258
       57
           218
       56
          149
       55 00000000000000000
46
       54 000000
3
       53
          0
DIST. DBA
                         10
                                       50
                                                     30
             FREQUENCY OF OCCURRENCE (PERCENT)
```

DBA - A-WEIGHTED DECIBELS RE- 20 MICRONEWTONS PER SQUARE METER *-L(EQ) - MEAN-SQUARE A-WEIGHTED SOUND LEVEL. **-L(X) - LEVEL EXCEEDED (X) PERCENT OF THE TIME.

Figure A-45a. Histogram, Location 3 (Special), Argentine Freight Yard, Santa Fe RR, 4/24/73, 1528 to 1531 Hours (Three Minute Period of Humping Activity on West Hump, See Figure A-7)

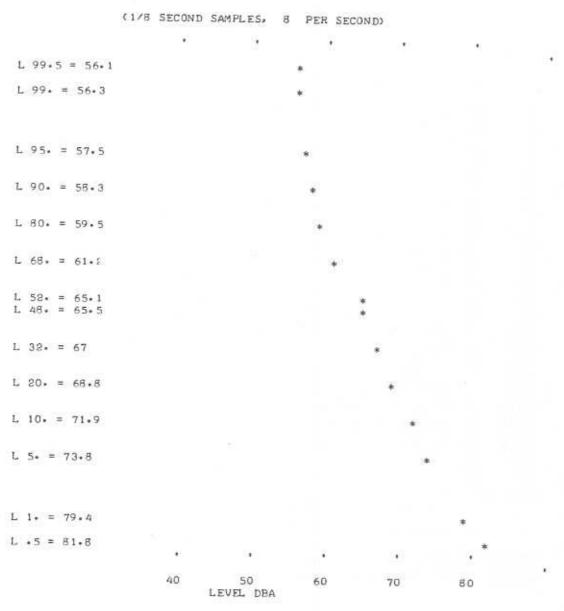
(1/8 SECOND SAMPLES, 8 PER SECOND) L 99.5 = 57.2 L 99. = 57.9 L 95. = 59.4 L 90. = 60 L 80. = 60.8 L 68. = 61.6 L 52. = 62.6 L 48. = 62.9 L 32. = 64.3 L 20. = 65.7 L 10. = 69.1 L 5. = 73.8 L 1. = 80.1 L .5 = 82 60 65 70 75 80 LEVEL DBA

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-46. Statistical Noise Data, Location 4, Argentine Freight Yard, Santa Fe RR, 4/25/73, 0936 to 0956 Hours

```
92
                                                         9600
           0
                                 SAMPLES=
 1
       91
           0
                                 AVERAGE=
                                                         63 · 4 DBA
        90 0
                                 STANDARD DEVIATION=
                                                         4.4 DBA
 1
2
        39
                                 L(EQ)=
                                                         69.2 DBA*
           0
 4
        88
           0
                                 NOISE POLLUTION LEVEL= 79.5
                                                               DB
2
       87
           0
                                 L 1 =
                                                         80.1
                                                               DBA**
 2
       86
           0
                                 L 10 =
                                                         69 - 1
 5
       85
           0
                                 L 50 =
                                                         62.8
                                                              DBA
9
       84
           0
                                 L 90 =
                                                         60 DBA
        83
                                 L 99 =
                                                         57.9 DBA
13
           0
                                 WALSH HEALEY EXP .=
8
       82 0
                                                         0 %
 24
        81
            0
                                 RANGE=
                                                         38 DB
           00
27
        80
 52
        79
           00
 61
        78
           0.0
 61
        77
           00
 62
        76 00
 61
        75 00
        74 00
 69
80
        73
           00
           000
 102
        72
90
        71
           000
94
        70
           000
 138
        69
           000
        68 0000
 155
551
        67 00000
 327
        66 000000
        65 000000000000
713
937
        64 0000000000000000
1125
        63 0000000000000000000
 1529
        62 000000000000000000000000
        61 000000000000000000000000
1411
1299
        60 0000000000000000000000
        59 000000000000
693
121
        58
           000
        57 00
65
28
        56 00
5
        55
           0
2
        54
           0
                           10
                                                          30
DIST. DBA
              FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-46a. Histogram, Location 4, Argentine Freight Yard, Santa Fe RR, 4/25/73, 0936 to 0956 Hours

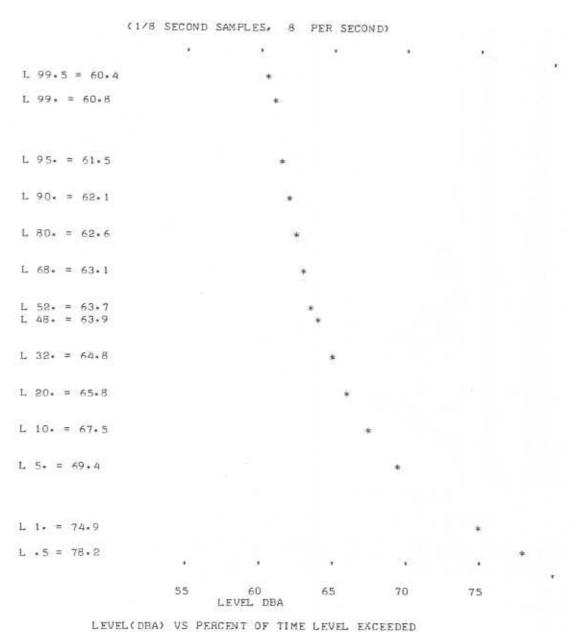

(1/8 SECOND SAMPLES, 8 PER SECOND) L 99.5 = 55.2 L 99. = 55.4 L 95. = 56.2 L 90. = 56.7 L 80. = 57.3 L 68. = 57.8 L 52. = 58.6 L 48. = 58.8 L 32. = 59.8 L 20. = 61.1 L 10. = 63.3 L 5. = 65.3 L 1. = 69.9 1. .5 = 71.9 50 55 60 65 70 LEVEL DBA

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-47. Statistical Noise Data, Location 5, Argentine Freight Yard, Santa Fe RR, 4/25/73, 1138 to 1158 Hours

```
84 0
                              SAMPLES=
                                                   9600
1
                              AVERAGE=
                                                   59 DBA
       83 0
 1
                              STANDARD DEVIATION=
                                                    2.9 DBA
       82
0
       81
          0
                              L(EQ)=
                                                    60.8
                                                         DBA*
 1
                              NOISE POLLUTION LEVEL= 68.2
 1
       80
          0
                                                         DB
                                                    69.9
                                                         DBA**
0
       79
          0
                              L 1 =
       78
                                                         DBA
          0
                              L 10 =
                                                    63.3
 5
0
       77
          0
                              L 50 =
                                                    58 - 7
                                                         DBA
                              L 90 =
                                                    56.7
          0
                                                         DBA
 5
       76
 8
       75
                              L 99 =
                                                    55.4
          0
                              WALSH HEALEY EXP .=
                                                   0 %
7
          0
       74
 10
          0
                              RANGE=
                                                   31 DB
       73
       72
          0
 11
 18
       71
       70
          00
 27
 37
       69
           00
          00
 65
       68
99
          000
          000
 111
       66
          000
 110
       65
          0000
 209
       64
          000000
 329
       63
 388
       62
          0000000
          000000000
 515
       61
906
          0000000000000000
       60
          1395
       59
 1891
       58
          2153
       57
 1084
       56
          0000000000000000000
205
          0000
       55
 10
       54
          0
       53
1
                                                    30
DIST- DBA
                         10
                                       20
             FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-47a. Histogram, Location 5, Argentine Freight Yard, Santa Fe RR, 4/25/73, 1138 to 1158 Hours



LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-48. Statistical Noise Data, Location 5, Argentine Freight Yard, Santa Fe RR, 4/25/73, 1216 to 1236 Hours

```
90 0
                                  SAMPLES=
                                                         9600
 0
        89 0
                                  AVERAGE=
                                                          64.4
                                                               DBA
 S
        88
            0
                                  STANDARD DEVIATION=
                                                          5.3 DBA
 1
        87
            0
                                  L(E0)=
                                                          68 • 3
                                                               DBA*
 2
        86 0
                                  NOISE POLLUTION LEVEL= 81.9
                                                                DB
 3
        85 0
                                  L 1 =
                                                          79 . 4
                                                               DBA**
 5
        84
            0
                                  L 10 =
                                                         71.9
 10
        83
            0
                                  L 50 =
                                                          65.3
                                                               DBA
 18
        85 0
                                  L 90 =
                                                         58 . 3
                                                               DBA
 25
        81
            0
                                  L 99 =
                                                         56.3
                                                               DBA
 19
        80 0
                                  WALSH HEALEY EXP.=
                                                         0 %
        79
 17
            0
                                  RANGE=
                                                         36 DB
 23
        78 0
 38
        77 00
 75
        76 00
 81
        75 00
        74 000
 106
 224
        73
            00000
 288
        72 000000
 264
        71
           00000
 259
        70 00000
 359
        69
           0000000
        68 000000000
 532
 706
        67 0000000000000
 1109
        66 000000000000000000
 955
        65 0000000000000000
 438
        64 00000000
 304
        63 000000
 308
        62
            000000
 426
        61 000000000
 682
        60 000000000000
 881
        59 000000000000000
 709
        58
            000000000000
 469
        57 00000000
 232
        56 00000
        55 00
27
        54
            0
DIST. DBA
                           10
                                           50
                                                          30
              FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-48a. Histogram, Location 5, Argentine Freight Yard, Santa Fe RR, 4/25/73, 1216 to 1236 Hours

(PROBABILITY DISTRIBUTION)

Figure A-49. Statistical Noise Data, Location 6, Argentine Freight Yard, Santa Fe RR, 4/25/73, 1500 to 1520 Hours

```
86 D
                            SAMPLES=
                                                9600
      85 0
1
                            AVERAGE=
                                                64 DBA
5
      84
          0
                            STANDARD DEVIATION=
                                                2.7
                                                    DBA
                                                65.7
3
      83
         0
                            L(EQ)=
                                                     DBA*
4
      82 0
                            NOISE POLLUTION LEVEL= 72.6
10
      81
          0
                            L 1 =
                                                74.9
                                                     DBA**
      80
          0
10
                            L 10 =
                                                67.5
                                                      DBA
3
       79
         0
                            L 50 =
                                                     DBA
                                                63.8
      78 0
14
                            L 90 =
                                                62.1
                                                     DBA
9
      77
          0
                            L 99 =
                                                60.8
                                                     DBA
12
       76
          0
                            WALSH HEALEY EXP.=
                                                0 1
      75
         0
                            RANGE=
                                                27 DB
22
29
      74 00
43
      73 00
75
       72
          00
99
       71
          000
55
      70 00
130
       69
          000
229
       68 00000
380
      67 0000000
 58.7
      66 0000000000
1051
          0000000000000000000
       65
1621
      2355
      2063
      62
          661
      61
          00000000000
108
      60
          000
      59
10
         0
DIST. DBA
                       10
                                                 30
            FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-49a. Histogram, Location 6, Argentine Freight Yard, Santa Fe RR, 4/25/73, 1500 to 1520 Hours

(1/8 SECOND SAMPLES, 8 PER SECOND) L 99.5 = 54.5 L 99. = 55 L 95. = 56 L 90. = 56.5 L 80. = 57.3 L 68. = 58.2 L 52. = 59.5 L 48. = 59.9 L 32. = 62.2 L 20. = 64.2 L 10. = 66.1 L 5. = 67.7 L 1. = 72 L • 5 = 74 50 55 60 65 70 LEVEL DBA

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-50. Statistical Noise Data, Location 7, Argentine Freight Yard, Santa Fe RR, 4/25/73, 1547 to 1607 Hours

```
82
                                 SAMPLES=
                                                         9600
 0
        81
           0
                                 AVERAGE=
                                                         60.2 DBA
 0
        80
            0
                                  STANDARD DEVIATION=
                                                         3.9 DBA
 0
        79
           0
                                 L(EQ) =
                                                          62.5 DBA*
 2
                                 NOISE POLLUTION LEVEL= 72.5 DB
        78 0
 3
        77
            0
                                 L 1 =
                                                          72 DBA**
 7
        76
            0
                                 L 10 =
                                                          66.1 DBA
 50
        75 0
                                 L 50 =
                                                         59.7 DBA
 15
       74 0
                                 L 90 =
                                                         56.5 DBA
                                                         55 DBA
0 %
            0
                                 L 99 =
 23
        73
           0
                                 WALSH HEALEY EXP.=
 25
        72
        71
           00
                                 RANGE=
                                                         29 DB
 35
        70 00
 40
 87
        69
            00
        68 0000
 154
 227
        67 00000
 351
        66
            0000000
        65 0000000000
 542
 504
        64 000000000
 533
        63 000000000
 663
        62
            000000000000
 612
            00000000000
        61
 676
        60 000000000000
984
        59 0000000000000000
 1280
        58
           0000000000000000000000
        57 00000000000000000000000
 1364
997
        56 00000000000000000
371
        55 0000000
79
        54
            00
        53
            0
 5
DIST. DBA
                           10
                                           20
                                                          30
              FREQUENCY OF OCCURRENCE (PERCENT)
```

DBA - A-WEIGHTED DECIBELS RE- 20 MICRONEWTONS PER SQUARE METER *-L(EQ) - MEAN-SQUARE A-WEIGHTED SOUND LEVEL. **-L(X) - LEVEL EXCEEDED (X) PERCENT OF THE TIME.

TNI = 64.9 PNL(A) = 70.9457 PNL - PNL(A) = 1.55429

Figure A-50a. Histogram, Location 7, Argentine Freight Yard, Santa Fe RR, 4/25/73, 1547 to 1607 Hours

1/8 SECOND SAMPLES, 8 PER SECOND) L 99.5 = 53.6 L 99. = 54.1 L 95. = 54.9 L 90. = 55.6 L 80. = 56.6 L 68. = 57.5 L 52. = 58.5 L 48. = 58.8 L 32. = 59.9 L 20. = 61.2 L 10. = 63.1 L 5. = 65.3 L 1. = 71.9 L .5 = 75.6 55 60 65 70 75 LEVEL DBA

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-51. Statistical Noise Data, Location 8, Argentine Freight Yard, Santa Fe RR, 4/25/73, 1648 to 1708 Hours

```
9600
       88 0
                                SAMPLES=
3
                                                      58 . 7
                                                           DBA
2
       87 0
                                AVERAGE=
1
       86 0
                                STANDARD DEVIATION=
                                                      3.5 DBA
                               L(EQ) =
                                                      62.6 DBA*
4
       85
           0
       84
           0
                               NOISE POLLUTION LEVEL= 71-6
                                                            DB
1
                                                      71.9
                                                            DBA**
1
       83
           0
                               L 1 =
2
       82
           0
                               L 10 =
                                                      63-1
                                                            DBA
4
                               L 50 =
                                                      58 • 6
       81
           0
                                                            DBA
 S
       8.0
           0
                               L 90 =
                                                      55 • 6
                                                            DBA
                               L 99 =
                                                      54 1
       79
           0
                                                            DBA
 4
                                WALSH HEALEY EXP.=
 3
       78
           0
                                                      0 %
                                                      35 DB
           0
                               RANGE=
 7
       77
11
       76
       75
           0
8
 14
       74
           0
           0
13
       73
       72
           0
       71
           0
 18
       7.0
           0
 23
 30
       69
           00
       68 00
 56
 73
       67
           00
           000
99
       66
118
       65 000
       64 0000
 179
 285
       63
           000000
 460
       65 00000000
 602
       61 00000000000
911
       60 0000000000000000
1323
          59
 1478
       58 0000000000000000000000000
 1472
       57
           1080
       56
           0000000000000000000
796
       55
           000000000000000
          00000000
429
       54
       53 00
74
                          10
                                                       30
DIST. DBA
             FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-51a. Histogram, Location 8, Argentine Freight Yard, Santa Fe RR, 4/25/73, 1648 to 1708 Hours

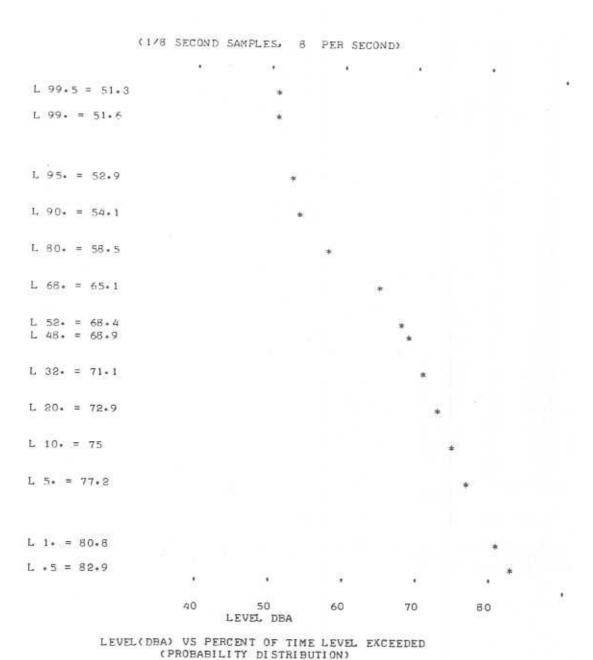


Figure A-52. Statistical Noise Data, Location 9, Argentine Freight Yard, Santa Fe RR, 4/25/73, 2251 to 2311 Hours

```
95 0
                                   SAMPLES=
                                                            9600
 0
        94
                                   AVERAGE=
                                                            66.4
                                                                  DBA
 0
        93
                                   STANDARD DEVIATION=
                                                            7.6 DBA
        92 0
 5
                                                            71.8 DBA*
                                   L(EQ)=
 0
        91
             0
                                   NOISE POLLUTION LEVEL= 91.3
                                                                  DB
 0
        90
            0
                                   L 1 =
                                                            80.8
                                                                  DEA**
 3
        89
            0
                                   L 10 =
                                                            75 DBA
 2
        88
            0
                                   L 50 =
                                                            68 + 7
                                                                  DBA
 3
        87
            0
                                   L 90 =
                                                            54-1
                                                                  DBA
 7
        86
                                   L 99 =
            0
                                                            51 . 6
                                                                  DBA
 6
        85 0
                                   WALSH HEALEY EXP.=
                                                            .2 %
 9
        84
            0
                                   RANGE=
                                                            45 DB
 В
        83
            0
            0
 11
        88
 24
        81
            0
 71
        80
            00
        79
 99
            000
 120
        78
            000
 130
        77
            200
 170
        76
            0000
 280
        75
            00000
 373
        74
            0000000
 545
        73
            0000000000
 608
        72
            0000000000
 699
        71
            000000000000
 663
            00000000000
        70
 734
        69
            00000000000000
 709
            000000000000
        68
 513
        67
            0000000000
 447
        66
            00000000
 341
        65
            000000
 276
            00000
        64
 172
        63
            0000
            000
 139
        62
 103
        61
            000
 139
        60
            000
 164
        59
            0000
 225
        58
            00000
 238
        57
            00000
 207
        56
            0000
 192
        55 0000
 239
        54
            00000
 428
        53
            00000000
 358
        52
            0000000
 129
        51
            000
 13
        50
            0
DIST. DBA
                            10
                                             20
                                                             30
               FREQUENCY OF OCCURRENCE (PERCENT)
```

DBA - A-WEIGHTED DECIBELS RE- 20 MICRONEWTONS PER SQUARE METER *-L(EQ) - MEAN-SQUARE A-WEIGHTED SOUND LEVEL.
**-L(X) - LEVEL EXCEEDED (X) PERCENT OF THE TIME.

Figure A-52a. Histogram, Location 9, Argentine Freight Yard, Santa Fe RR, 4/25/73, 2251 to 2311 Hours

L 99.5 = 53.2 L 99. = 53.5 L 95. = 54.4 L 90. = 55 L 80. = 55.5 L 68. = 56.2 L 52. = 56.9 L 48. = 57 L 32. = 57.7 L 20. = 58.4 L 10. = 59 L 5. = 59.8 L 1. = 61.1 L .5 = 61.8 50 55 60 LEVEL DBA

(1/8 SECOND SAMPLES, 8 PER SECOND)

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-53. Statistical Noise Data, Location 11, Argentine Freight Yard, Santa Fe RR, 4/25/73, 2232 to 2252 Hours

			S. 3	SAMPLES=		9600	
			3	AVERAGE=		56.5	DBA*
				STANDARD DEVIAT	ION=	1 . 6 I	DBA#
21	67	0		ENERGY MEAN=		56·8	DB**
1 0 1	66	0	- 2	NOISE POLLUTION	LEVEL=	60.9	
1	65	0		1% PERCENTILE=		61 - 1	DBA*
6	64	0		10% DECILE=		59 DE	BA*
10	63	0	- 1	MEDIAN=		56.9	DBA*
17	62	0	3	90% DECILE=		55 DI	
68	61	00	9	99% PERCENTILE=		53 - 5	DBA*
555	60	00000		WALSH HEALEY EX	P.=	0 %	
640	59	00000000000		+RANGE=		16 DI	В
1550	58	000000000000000000000000000000000000000	00000000	0000			
2147	57	000000000000000000000000000000000000000					
2202	56	000000000000000000000000000000000000000					
1759	55	000000000000000000000000000000000000000					
78.5	54	00000000000000)				
179	53	0000					
12	52	0					
1	51	0					
DIST.	DRA*	0	10	50		30	
		FREQUENCY OF	OCCURREN	ICE (PERCENT)			

Figure A-53a. Histogram, Location 11, Argentine Freight Yard, Santa Fe RR, 4/25/73, 2232 to 2252 Hours

(1/8 SECOND SAMPLES, 8 PER SECOND) L 99.5 = 52.1 L 99. = 52.2 L 95. = 53.1 L 90. = 53.5 L 80. = 54.2 L 68. = 54.9 L 52. = 55.9 L 48. = 56.2 L 32. = 57.8 L 20. = 60.1 L 10. = 68 L 5. = 78.3 L 1. = 89.2 L .5 = 91.5 50 60 70 80 90 LEVEL DBA

LEVEL(DRA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-54. Statistical Noise Data, Location 11, Argentine Freight Yard, Santa Fe RR, 4/25/73, 2302 to 2322 Hours

```
2
       100 0
                                 SAMPLES=
                                                        9600
 2
       99 0
                                                        58 • 2 DBA
                                 AVERAGE=
 0
       98 0
                                 STANDARD DEVIATION=
                                                        7.7 DBA
        97
            n
                                 L(EQ)=
                                                        74.6 DBA*
 1
        96
            0
                                 NOISE POLLUTION LEVEL= 94.3
                                                              DB
 5
        9.5
            0
                                 L 1 =
                                                        89.2
                                                              DBA**
 7
        94
                                 L 10 =
                                                        68 DBA
                                 L 50 =
 7
       93
            0
                                                        56+1
                                                              DRA
            0
                                 L 90 =
 11
        92
                                                        53.5
                                                              DBA
        91
                                 L 99 =
                                                        52 . 2
 22
            0
                                                              DBA
                                 WALSH HEALEY EXP. =
       90
            0
                                                        1.5 %
 21
 22
        89
            0
                                 RANGE=
                                                        49 DE
 19
        88
 32
        87
            00
 33
        86
            00
 29
        85
            00
 35
        84
            00
 40
        83
           0.0
 37
        82
            00
 45
        81
            00
 40
        80
            22
 40
        79
            00
 39
        78
            00
 51
        77
            00
 56
        76
            00
 46
        75
            00
 45
        74
            00
35
        73
            00
 46
        72
            00
 48
        71
            00
45
        70
            00
 44
        69
            00
 55
        68
            00
 54
        67
            00
 54
        66
            00
 64
        65
            00
 83
        64
            20
 130
        63
            000
 159
            0000
        62
 198
        61
            0000
 249
        60
            00000
 407
            0000000
        59
 557
        58
            00000000000
            000000000000000
 837
        57
 1136
        56
            0000000000000000000
            1420
        55
            1723
        54
 1243
        53
            0000000000000000000000
297
        52
            000000
27
        51
            00
DIST- DBA
                                                         30
              FREQUENCY OF OCCURRENCE (PERCENT)
```

DBA - A-WEIGHTED DECIBELS RE- 20 MICHONEWIONS PER SQUARE METER *-L(EQ) - MEAN-SQUARE A-WEIGHTED SOUND LEVEL. **-L(X) - LEVEL EXCEEDED (X) PERCENT OF THE TIME.

Figure A-54a. Histogram, Location 11, Argentine Freight Yard, Santa Fe RR, 4/25/73, 2302 to 2322 Hours

1/8 SECOND SAMPLES, 8 PER SECOND) L 99.5 = 53.4 L 99. = 53.8 L 95. = 55 L 90. = 55.8 L 80. = 57 L 68. = 58.4 L 52. = 61.5 L 48. = 62.9 L 32. = 71.4 L 20. = 77.8 L 10. = 83.9 L 5. = 88.1 L 1. = 93.3 L .5 = 94.7 50 60 70 80 90 LEVEL DBA

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-55. Statistical Noise Data, Location 11 (Special), Argentine Freight Yard, Santa Fe RR, 4/25/73, 2306 to 2311 Hours (Five Minute Period of Humping Activity on East Hump, See Figure A-18b)

```
2400
2
        100 0
                                  SAMPLES=
                                                           66.2
                                                                DBA
        99 0
                                  AVERAGE=
1
        98
           0
                                  STANDARD DEVIATION=
                                                           11 DBA
1
                                                          80-4 DBA*
        97
            0
                                  L(EQ)=
                                  NOISE POLLUTION LEVEL= 108.6
        96 0
1
DB
        95 0
                                  L 1 =
                                                          93.3
                                                                DBA**
4
                                  L 10 =
                                                          83.9
                                                                 DBA
6
        94
           0
        93 00
                                  L 50 =
                                                           62.1
                                                                 DBA
12
                                  L 90 =
                                                           55.8
                                                                 DBA
6
        92 0
20
        91
            00
                                  L 99 =
                                                           53+8
                                                                 DBA
        90
                                  WALSH HEALEY EXP .=
                                                           5.8 %
            00
22
                                                           47 DB
24
        89
           000
                                  RANGE=
        88
            0.0
22
        87
            000
24
        86
            000
28
        85
           000
26
           000
        84
38
38
        83
            000
39
        82
            0000
42
        81
            0000
        80
            000
32
        79
            0000
41
42
        78
            0000
        77
            0000
41
 45
        76
 56
        75
            00000
 42
        74
            0000
            0000
41
        73
43
        72
            0000
44
        71
            0000
 38
        70
            000
 44
        69
            0000
 52
        68
            0000
        67
            0000
40
34
        66
           000
            0000
40
        65
            0000
 54
        64
 58
        63
            00000
 65
        62
           00000
        61
            000000
 71
           00000000
 105
        60
 130
        59
           000000000
        58
            000000000000000
 188
 216
        57
            00000000000000000
            000000000000000
219
        56
141
        55
            0000000000
        54
            0000000
91
 30
        53
            000
                                                            30
DIST. DBA
                                            20
              FREQUENCY OF OCCURRENCE (PERCENT)
```

DBA - A-WEIGHTED DECIBELS RE- 20 MICRONEWTONS PER SQUARE METER *-L(EQ) - MEAN-SQUARE A-WEIGHTED SOUND LEVEL. **-L(X) - LEVEL EXCEEDED (X) PERCENT OF THE TIME.

Figure A-55a. Histogram, Location 11 (Special), Argentine Freight Yard, Santa Fe RR, 4/25/73, 2306 to 2311 Hours (Five Minute Period of Humping Activity on East Hump, See Figure A-18b)

(1/8 SECOND SAMPLES, 8 PER SECOND) L 99.5 = 66.2 L 99. = 66.5 L 95. = 67.2 L 90. = 67.5 L 80. = 68.1 L 68. = 68.4 L 52. = 68.8 L 48. = 68.9 1 32 = 69 - 5 L 20. = 70.1 L 10. = 71.3 L 5. = 72.6 L 1. = 75.9 L +5 = 77+8

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

70

LEVEL DBA

Figure A-56. Statistical Noise Data, Location 12, Argentine Freight Yard, Santa Fe RR, 4/24/73, 1054 to 1114 Hours

75

```
5
      9.0
         0
                            SAMPLES=
                                               9600
1
      89
          0
                            AVERAGE=
                                               68 . 8
                                                    DBA
0
      88
         0
                            STANDARD DEVIATION=
                                                1.8
                                                   DBA
0
      87
          0
                            L(EQ)=
                                                69 . 5
                                                    DBA*
0
      86
         0
                            NOISE POLLUTION LEVEL= 74.1
                                                    DB
2
      85
          0
                                                    DBA**
                            L 1 =
                                               75.9
0
      84
          0
                            L 10 =
                                               71.3
                                                    DBA
6
      83
          0
                            L 50 =
                                               68.9
                                                    DBA
4
                            L 90 =
      82
         0
                                               67.5
                                                    DBA
5
      81
          0
                            L 99 =
                                               66.5
                                                    DBA
6
                            WALSH HEALEY EXP. =
      80
         0
                                               0 %
9
      79
         0
                            RANGE=
                                               25 DB
10
      78
         0
16
      77
         0
29
      76
         00
75
      75
         00
92
         000
      74
143
      73
         000
224
      72 00000
471
      71
         00000000
895
      70
         000000000000000
2379
      69
          3626
      68
1411
      67
          188
      66
         0000
      65 0
DIST. DBA
                       10
                                   30
                                                30
           FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-56a. Histogram, Location 12, Argentine Freight Yard, Santa Fe RR, 4/24/73, 1054 to 1114 Hours

(1/8 SECOND SAMPLES, B PER SECOND) L 99.5 = 53.5 L 99. = 54 L 95. = 55.1 L 90. = 55.8 L 80. = 56.6 L 68. = 57.5 L 52. = 58.8 L 48. = 59.3 L 32. = 63.4 L 20. = 69 L 10. = 76.5 L 5. = 82.2 L 1. = 89.6 L *5 = 91 *350 60 70 80 90 LEVEL DBA

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-57. Statistical Noise Data, Location 13, Argentine Freight Yard, Santa Fe RR, 4/26/73, 0952 to 1012 Hours

```
1
       101 0
                                 SAMPLES=
                                                        9.600
        100 0
                                 AVERAGE=
                                                        62.3
                                                              DBA
0
       99
                                 STANDARD DEVIATION=
                                                        8.6 DBA
       9.8
                                                        75.6 DBA*
                                 L(EQ)=
2
       97
           O
                                 NOISE POLLUTION LEVEL= 97.6 DB
 0
       96
           0
                                 1, 1 =
                                                        89.6
                                                              DBA**
                                 L 10 =
                                                        76-5 DBA
       95 0
 3
 3
       94 0
                                 L 50 =
                                                        59 DBA
       93
                                 L 90 =
 11
           0
                                                        55.8
                                                              DBA
                                 1 99 =
 16
       92
           0
                                                        54 DBA
16
       91
           0
                                 WALSH HEALEY EXP. =
                                                        1.6 %
                                                        49 DB
33
       90 00
                                 RANGE=
       89
           0
23
 30
        88
           00
42
       87
           00
 54
       86
           0.0
        85
            00
 65
           00
       84
 64
 54
       83
           20
82
       82
           00
 74
       81
            00
 75
        80
           00
BK
        79
           00
90
        78
           000
84
        77
           00
98
        76
           000
95
           000
       75
 104
        74
           000
 126
        73
           000
 147
        72
           000
 142
        71
           000
 127
        70
           000
           0000
 167
        69
199
           0000
        68
 168
        67
           0000
           0000
 213
        66
           00000
243
        65
207
        64
           0000
 204
           0000
        63
273
        62
           00000
288
           000000
        61
398
        60
           0000000
 718
       59
           0000000000000
        58
           00000000000000000
1012
 1282
        57 000000000000000000000
 1372
        56
           696
        55
           0000000000000
           000000
321
        54
88
        53 00
        52 0
3
DIST- DBA
                           10
                                                         30
              FREQUENCY OF OCCURRENCE (PERCENT)
```

DBA - A-WEIGHTED DECIBELS RE- 20 MICRONEWTONS PER SQUARE METER +-L(EQ) - MEAN-SQUARE A-WEIGHTED SOUND LEVEL. +*-L(X) - LEVEL EXCEEDED (X) PERCENT OF THE TIME.

Figure A-57a. Histogram, Location 13, Argentine Freight Yard, Santa Fe RR, 4/26/73, 0952 to 1012 Hours

(1/8 SECOND SAMPLES, 8 PER SECOND) 1. 99.5 = 54.2 L 99. = 54.5 L 95. = 55.3 1, 90. = 55.8 L 80. = 56.4 L 69. = 57.1 L 52. = 57.9 L 48. = 58.2 L 32. = 59.3 L 20. = 60.6 L 10. = 62.8 L 5. = 65.3 L 1. = 68.8 L . 5 = 70 · 5 50 55 60 65 70 LEVEL DBA

LFVFL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROPABILITY DISTRIBUTION)

Figure A-58. Statistical Noise Data, Location 14, Argentine Freight Yard, Santa Fe RR, 4/26/73, 1036 to 1056 Hours

```
84 0
 1
                              SAMPLES=
                                                   9600
       83 0
 1
                              AVERAGE=
                                                   58 - 3 DBA
 0
       82
          0
                              STANDARD DEVIATION=
                                                   3.1 DBA
       81 0
 5
                              L(EQ) =
                                                   60+3
                                                        DBA*
 1
       80 0
                              NOISE POLLUTION LEVEL= 68.2
                                                        DB
0
       79 0
                              L 1 =
                                                   68 . 8
                                                        DBA**
 3
       78
          0
                              L 10 =
                                                   62.8
                                                        DBA
3
       77
          0
                              L 50 =
                                                   58 - 1
                                                        DBA
 2
       76 0
                              L 90 =
                                                   55.8
                                                        DBA
 8
          0
                              L 99 =
       75
                                                   54.5 DBA
 5
       74
          0
                              WALSH HEALEY EXP.=
                                                   0 %
 8
       73
          0
                              RANGE=
                                                   31 DB
8
       72
          9
 6
       71
          0
12
       70
          0
 31
          00
       69
       68
 73
          00
 107
       57
          000
119
          000
       FF
 146
          200
 154
       64
          0000
 196
       63
          0000
          000000
329
       62
 414
       61 00000000
 68.6
       60
          000000000000
 1168
       59
          00000000000000000000
1394
          58
 1759
       57
          1852
       56
          00000000000000000
923
       55
          0000
182
       54
13
       53
          0
                        10
DIST. DBA
          0
                                      20
                                                   30
            FREQUENCY OF OCCURRENCE (PERCENT)
```

DRA - A-WEIGHTED DECIPELS RE- 20 MICHONEWIONS PER SQUAKE METER *-L(FQ) - MEAN-SQUARE A-WEIGHTED SOUND LEVEL. **-L(X) - LEVEL EXCEEDED (X) PERCENT OF THE TIME.

TNI = 53.8 PNL(A) = 65.975 PNL - PNL(A) = 2.225

Figure A-58a. Histogram, Location 14, Argentine Freight Yard, Santa Fe RR, 4/26/73, 1036 to 1056 Hours

1/8 SECOND SAMPLES, 8 PER SECOND L 99.5 = 58.1 * L 99. = 58.5 * L 95. = 59.9 * L 90. = 60.6 * L 80. = 62.3 * L 68. = 65 L 52. = 71 L 48. = 72.9 L 32. = 82.8 L 20. = 94.6 L 10. = 102 L 5. = 106.5 L 1. = 113 L .5 = 116.4 70 80 90 100 110 LEVEL DBA

LEVEL (DBA) US PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-59. Statistical Noise Data, Location 15, Argentine Freight Yard, Santa Fe RR, 4/25/73, 0926 to 0943 Hours

```
125 0
        124 0
4550
        183 0
        121 0
                                                               8159
                                     SAMPLES=
4359
        119 0
                                     AVERAGE=
                                                               76.5 DEA
        118 0
117 0
                                     STANDARD DEVIATION=
                                                               15.8
                                                                      DBA
                                                                      DBA.
        116 0
                                     1.CFG)=
                                     NOISE POLLUTION LEVEL: 139.9 DB
        115 0
13
        114 0
                                                               113 DBA++
18
        113 0
                                                               102 DBA
                                     1. 10 =
        112 0
31
                                     L SO =
                                                                72 DBA
        111 0
                                                               60.6 DBA
58.5 DBA
                                     t. 90 =
46
        110 0
                                     L 99 =
56
53
        0 801
                                     WALSH HEALEY EXP+=
                                                               197.3 1
67
91
75
        107 0
106 000
                                     HANGE=
                                                               69 DB
        105 00
58
96
         103 000
        102 000
117
         101 000
104
        100 000
117
        99
98
             000
             000
126
118
        97
             000
104
        96
             000
101
        95
             000
        94
             000
94
104
        93
             000
        92
             00
102
        91
             000
        90
             000
50
             00
58
        89
        88
             000
             00
64
        87
74
        8.6
8.5
             000
             000
80
        53
             000
110
        82
             000
        81
80
             000
113
             000
112
         79
             000
121
        78
77
76
             000
110
             000
 127
             0000
 176
             0000
 166
         73
72
161
             0000
 169
         71
             0000
 164
             0000
             0000
 179
         69
217
         68
 191
         67
             00000
288
             000000
252
         65
             000000
             0000000
29.7
         64
376
         63
             000000000
         62
414
             0000000000
506
         61
 574
             000000000000
             0000000
311
         59
             000
         58
105
             00
         57
24
         56
             0
                                                20
                                                                 30
DIST- DBA
             0
                               10
               FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-59a. Histogram, Location 15, Argentine Freight Yard, Santa Fe RR, 4/25/73, 0926 to 0943 Hours

(1/8 SECOND SAMPLES, 8 PER SECOND) L 99.5 = 58 * 1, 99. = 58.1 * L 95. = 59 * L 90. = 59.7 * 1. 80. = 60.8 * L 68. = 62.4 * L 52. = 66.6 L 48. = 67.7 L 32. = 74.2 L 20. = 80.7 1. 10. = 87.5 L 5. = 97.1 1, 1. = 113.4 L .5 = 115.7

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

80

LEVEL DBA

90

100

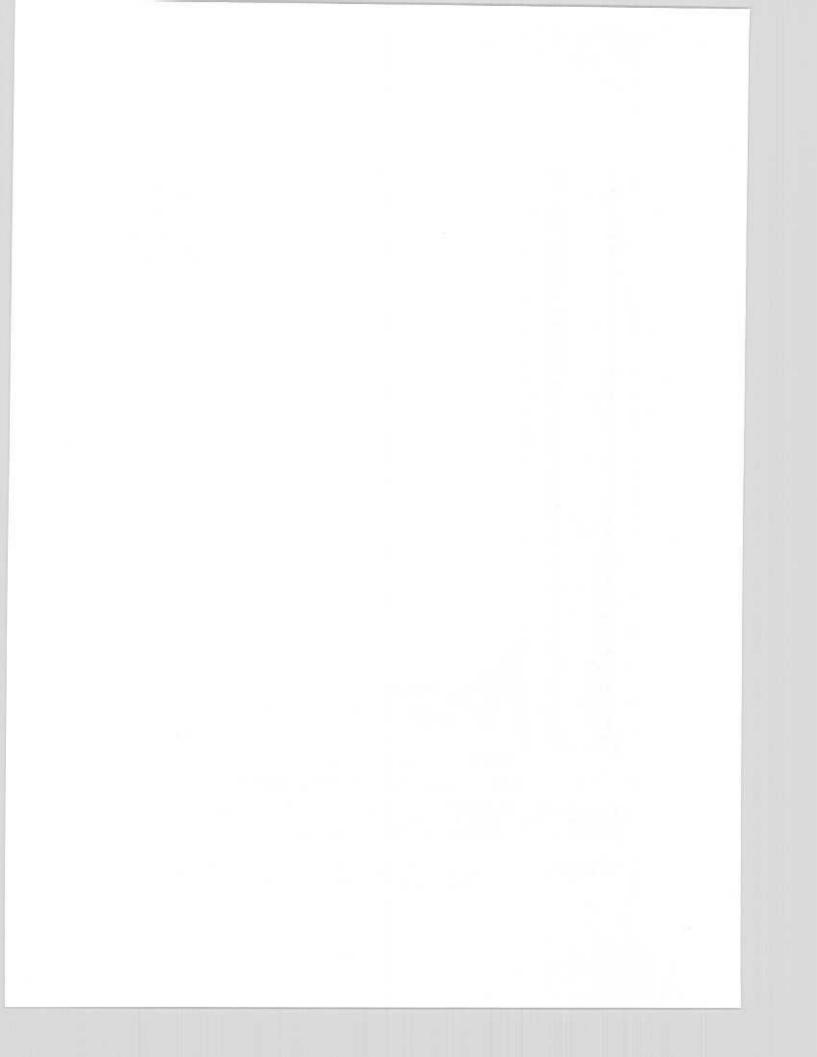
110

70

Figure A-60. Statistical Noise Data, Location 16, Argentine Freight Yard, Santa Fe RR, 4/24/73, 1631 to 1646 Hours

```
121 0
  47
         120 0
          119 0
         118 0
117 0
                                       SAMPLES=
                                                                   7176
 11
7
PO
         115 0
                                        AVFRAGE=
                                                                   70.6 DFA
                                       STANDARD DEVIATION=
                                                                          TPA
                                                                   12.4
         114 00
                                       LCEQ1=
                                                                   97.4
                                                                          DPA*
 18
                                       NOISE POLLUTION LEVEL= 129.1
         113 0
 15
          112 7
                                                                   113 DEA**
         111 7
                                       L 10 =
L 50 =
L 90 =
                                                                   97+5 DEA
                                                                   57-1 DFA
59-7 DFA
         109 7
104 7
  14
 15
                                         99 =
                                                                   55 - 1
                                                                          DEA
          107.3
 19
                                       WALSH IFALFY FXF.=
                                                                   73+1 # V
          106 0
                                       HANGE:
                                                                   65 DE
 22
          105 00
         104 22
103 2
 22
 14
         102 30
 13
         101 0
 26
         100 00
 21
         99
         94
 11
15
         97
 21
              00
         95
         95
94
              77
              00
 25
         93
 86
         92
              99
99
99
99
 40
         91
         90
 40
 62
         49
 43
57
78
         84
         97
 95
         85
              000
 84
              000
         84
              0000
         63
 140
         81
 142
         4.0
              0000
 122
              0000
         79
         74
              7777
 129
              0000
 134
 120
              2222
         74
73
72
              2222
 120
 133
 163
              nonna
 140
         71
              0000
 182
         70
              00000
              000000
 213
 219
         45
              000000
         67
66
 240
              000000
 273
              0000000
 280
         64
              2000000
 279
         63
              0000000
         62
              000000000
 352
 408
 695
         60
              000000000000000000
              000000000000
 517
         59
 302
         58
              2000000
35
         57
              00
         56
              0
DIST. DPA
                                1.0
                                                                    30
                FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-60a. Histogram, Location 16, Argentine Freight Yard, Santa Fe RR, 4/24/73, 1631 to 1646 Hours


(1/8 SECOND SAMPLES, B PER SECOND) 1. 99.5 = 50.6 L 99. = 51 L 95. = 51.4 1. 90. = 51.8 L 80. = 52.2 1 68. = 52.6 L 52. = 53.1 L 48. = 53.2 L 32. = 53.7 L 20. = 54.4 L 10. = 55.9 L 5. = 59.4 L 1. = 81.1 L .5 = 91.7 50 60 70 80 90 LEVEL DBA

LEVEL(DBA) VS PERCENT OF TIME LEVEL EXCEEDED (PROBABILITY DISTRIBUTION)

Figure A-61. Statistical Noise Data, Location 17, Argentine Freight Yard, Santa Fe RR, 4/25/73, 1630 to 1645 Hours

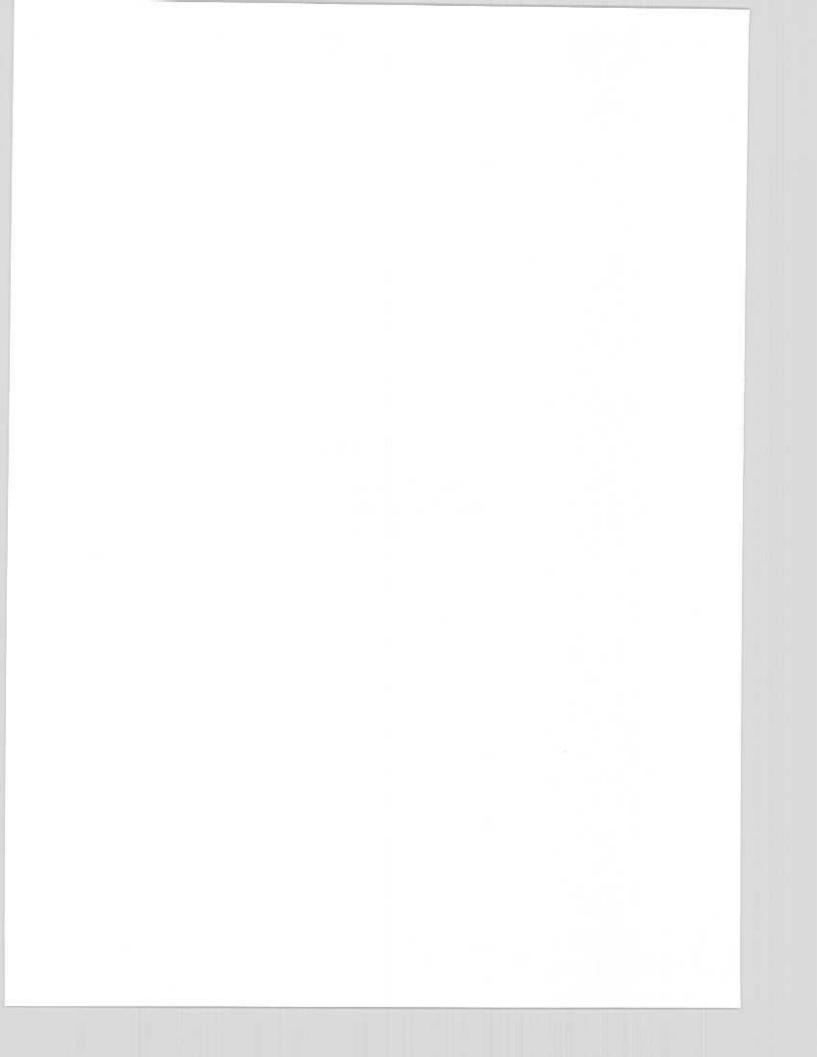

```
1
       96
                               SAMPLES=
                                                     7200
 8
       95
           0
                               AVERAGE=
                                                     53-7
                                                          DBA
 13
                               STANDARD DEVIATION=
       94
           0
                                                     5 DBA
 7
       93
           0
                               L(EC)=
                                                     72.1
                                                          DBA*
                               NOISE POLLUTION LEVEL= 84.9
 5
       92
           0
                                                          DB
 7
       91
           n
                               L 1 =
                                                     81.1
                                                          DBA**
 8
       90
                               L 10 =
                                                     55.9
                                                          DBA
 5
       89
           0
                               L 50 =
                                                     53 . 1
                                                          DBA
                               L 90 =
L 99 =
 2
       88
                                                     51.8 DBA
 1
       87
           0
                                                     51 DBA
 1
       86
           0
                               WALSH HEALEY EXP. =
                                                     1.3 %
 0
       85
           0
                               RANGE=
                                                     46 DB
 1
       84
           0
 2
       83
 4
       82
           0
 B
       81
           0
 15
       80
           0
 18
       79
           0
 14
       78
           0
 7
       77
           0
 10
       76
           0
 5
       75
           0
 4
       74
           0
 3
       73
           0
 3
       72
           0
 1
       71
           0
           0
 5
       70
 7
       69
           0
 5
       68
           0
 8
       67
           0
           0
 11
       66
       65
           0
 12
 10
       64
           0
 14
       63
           0
 15
       62
           0
 17
       61
          0
 56.
       60 00
 82
       59
           000
 52
       58
           00
 86
       57
           200
 155
       56 0000
 274
       55
           0000000
 818
           0000000000000000000
       54
 2069
           53
 2436
       52
           857
       51
           000000000000000000000
 58
       50
           00
DIST. DBA
           0
                         10
                                       20
            FREQUENCY OF OCCURRENCE (PERCENT)
```

Figure A-61a. Histogram, Location 17, Argentine Freight Yard, Santa Fe RR, 4/25/73, 1630 to 1645 Hours

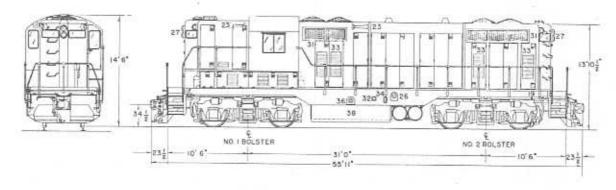
APPENDIX B

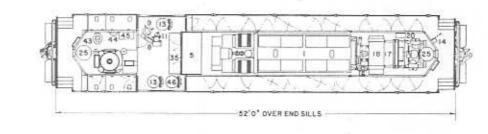
NOISE LEVEL DATA MEASURED AT THREE FACILITIES OF THE BOSTON AND MAINE RR, BOSTON MA

CHART 1 - GENERAL ARRANGEMENT, DRAINS AND FILLERS

- 1. Engine Model 16-567B.
- 2. Main Gen. Model D12-D14. 13, Seat.
- 3. Generator Blower.
- 4. Auxiliary Generator, 5: Control Cabinet.
- 6, Air Compressor.
- 7. Traction Motor Blower. 18. Engine Water Tank. 30. Main Air Reservoir. 8. Control Panel & Instrument 19. Engine Water Filler. 31. Air Intake & Shutters. 7. Traction Motor Blower. Board.
- 9, Control Stand.
- 10. Speed Recorder.
- 11, Air Brake Valve.

- 12. Cab Heater.
- 14. Hand Brake, 15. Gauge Panel,
- 16. Lub, Oil Filler.
- 17. Lub. Oil Cooler.


- 20. Load Regulator.
- 21, 36" Fan & Motor, 22, Radiator,
- 23. Horn.


- 24. Exhaust Manifold,
- 25, Sand Box 9 Cu. Ft.
- 26, Fuel Filler.
- 27. Headlight Twin Sealed Beam, 39. Boiler,
- 28. Batterles.
- 29. Fuel Tank

- 32, Emergency Fuel Cut-Off. 33. Air Intake For Engine Room, 45, Clothes Locker,
- 34. Fuel Tank Gauge,
- 35. Trap Door.

- 36. Boiler Water Filler.
- 37, Boiler Water Softener, 38, Boiler Water Tanks

- 40. Lub. Oil Filter.
- 41. Dual Fuel Filter.
- 42. Engine Air Intake Silencer,
- 43. Toilet.
- 44. Wash Stand,
- 46, Third Cab Seat.

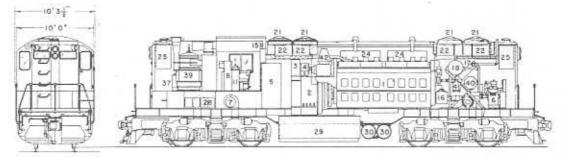
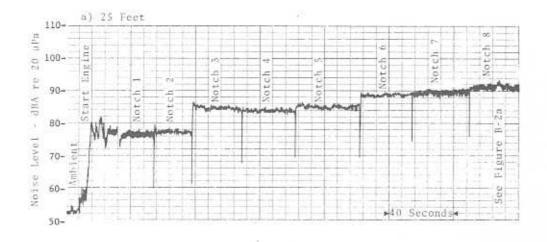
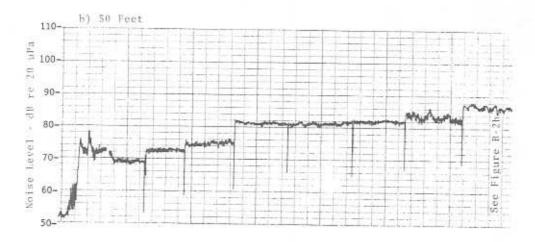




Figure B-1. Physical Dimension and General Equipment Layout, General Motors Locomotive Model GP-7

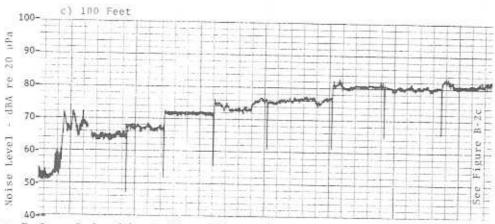


Figure B-2. Coincident Time Histories - Wayside Levels,
General Motors Locomotive GP-7, 1550 Horsepower,
B&M RR, Iron Horse Park, Billerica MA, 3/21/73
Locomotive Stationary and Unloaded. Microphones
5.5 Feet above Grade Level and Offset 25, 50,
and 100 Feet from Track Center-line.

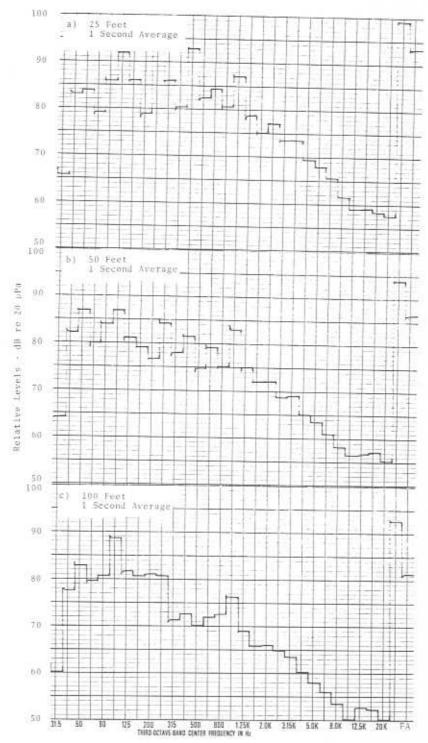
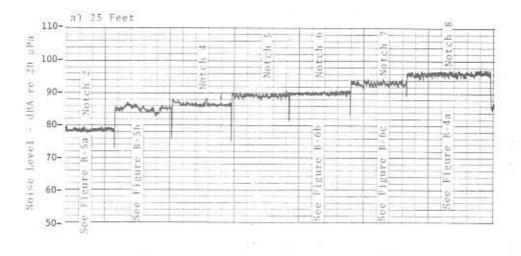
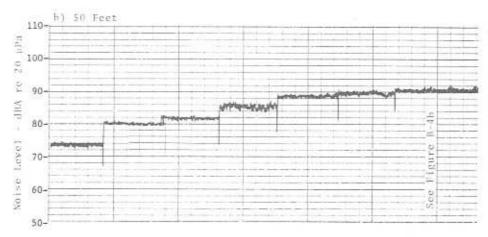




Figure B-3. Coincident Frequency Spectra - Wayside Noise Data, General Motors Locomotive GP-7, 1550 Horsepower, B&M RR, Iron Horse Park Billerica MA, 3/21/73 Locomotive Stationary, and unloaded at Eighth Notch. See figure B-2 for noise-level time history

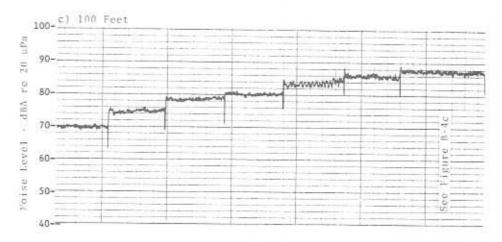


Figure B-4. Coincident Time Histories - Wayside Noise Levels, General Motors Locomotive GP-7, B&M RR, Locomotive Stationary and Loaded. Iron Horse Park, Billerica MA, 3/21/73, Microphones 5.5 Feet above Grade Level and Offset 25, 50, and 100 Feet from Track Centerline.

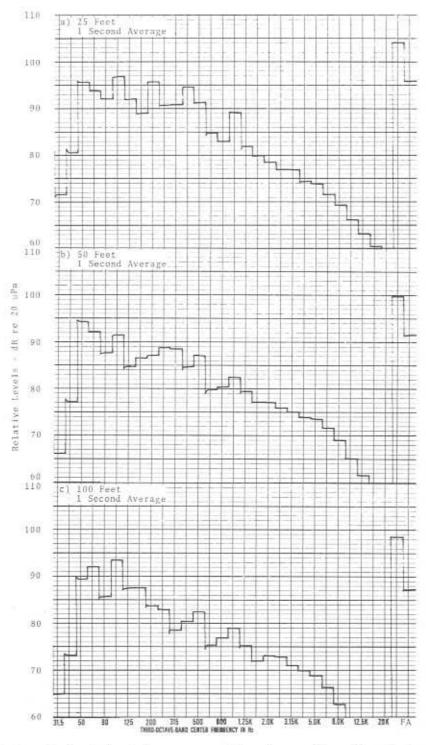


Figure B-5. Coincident Frequency Spectra - Wayside Noise Data, General Motors Locomotive GP-7, 1550 Horsepower, Ser. No. 1563. B&M RR, Iron Horse Park, Billerica MA, 3/21/73, Locomotive Stationary and Loaded at Eighth Notch. See figure B-4 for noise-level time history.

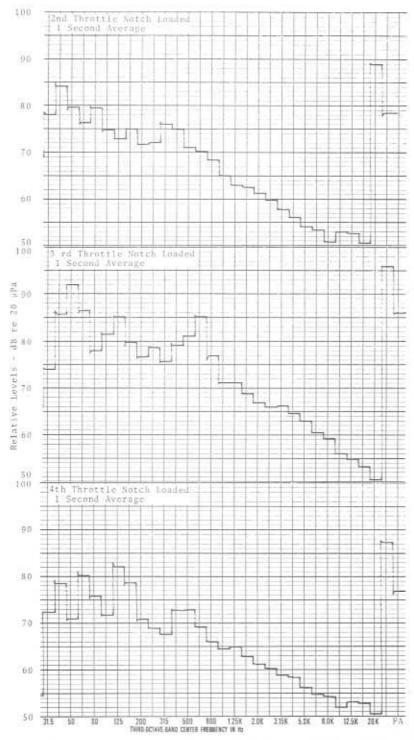


Figure B-6. Frequency Spectra - Wayside Noise Data, General Motors Locomotive GP-7, B&M RR, Iron Horse Park, Billerica MA, 3/26/73 Locomotive Stationary and Loaded at Second, Third, and Fourth Notches. Microphone 5.5 Feet High and Offset 25 Feet from Track Center-line. (See Figure B-1 for Noise Level Time Histories.)(155 HP).

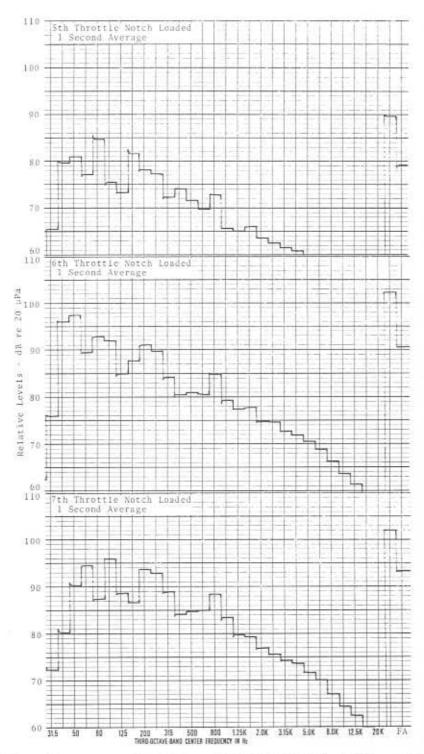
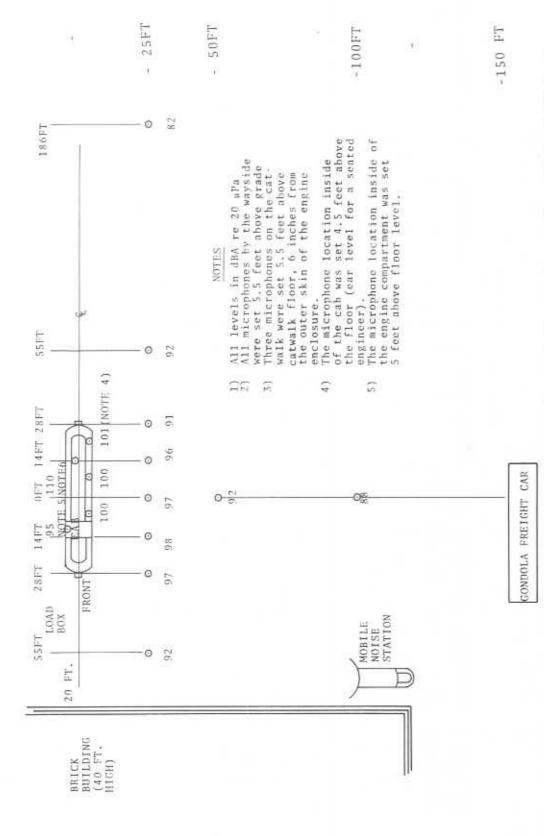
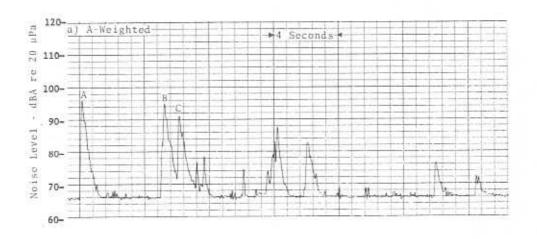




Figure B-7. Frequency Spectra - Wayside Noise Data, General Motors Locomotive GP-7, B&M RR, Iron Horse Park Billerica MA 3/21/73. Locomotive Stationary. Loaded at Fifth, Sixth, and Seventh Notches. Microphone 5.5 Feet High and Offset 25 Feet from Track Center-line. See Figure B-4 for Noise Level Time History. (1550 HP)

Spatial Wayside Noise-Level Data, General Motors Locomotive GP-7, 1550 Horse-power, B&M RR, Iron Horse Park, Billerica, MA 3/21/73 Locomotive Stationary and Loaded at Eighth Notch. Figure B-8.

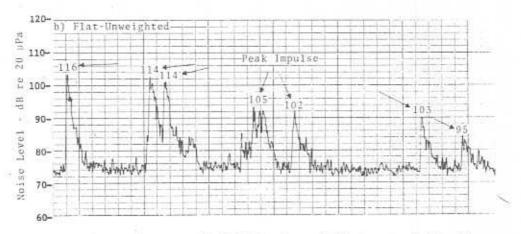
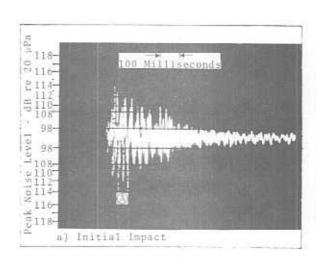



Figure B-9. Time History (A-Weighted and Flat-unweighted), Impact Noise Levels, B&M RR, Somerville Hump Yard, Somerville MA, 3/27/73.

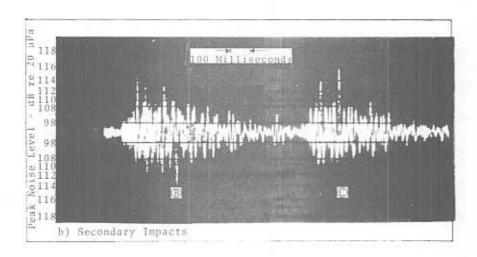


Figure B-10. Oscilloscope Display, Impact Noise (Flat-unweighted), B&M RR, Somerville Hump Yard Somerville MA. See Time History B-9b

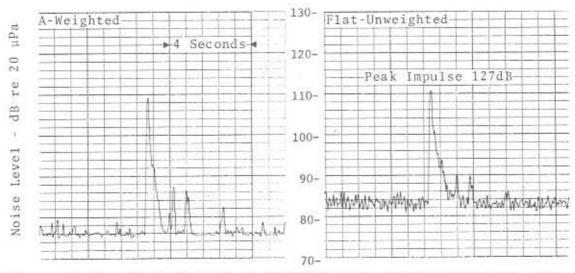


Figure B-11. Time History (A-weighted and Flat-unweighted), Impact Noise Levels, B&M RR, Somerville Hump Yard, Somerville MA, 3/27/73. Two Freight Cars at 8 mph Impacting Standing Line of Cars. Microphone 5 Feet above Level at Rails and Offset 50 Feet from Track Center-line.

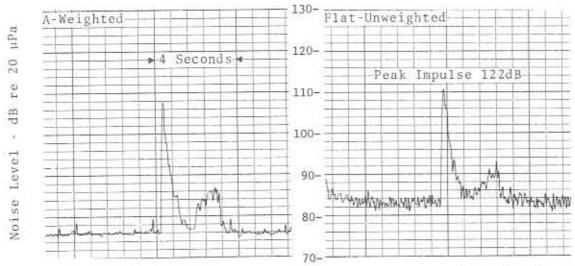


Figure B-12. Time History (A-weighted and Flat-unweighted), Impact Noise Levels, B&M RR Somerville Hump Yard, Somerville MA, 3/27/73. Three Empty Freight Cars at 8 mph Impacting Line of Standing Cars. Microphone 5 Feet above the Level of the Rails and 50 Feet Offset from Track Center-line.

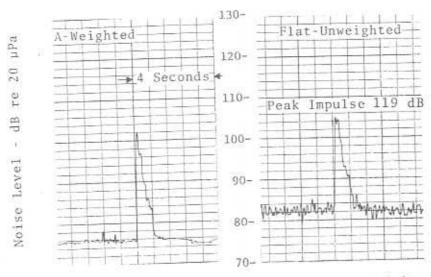
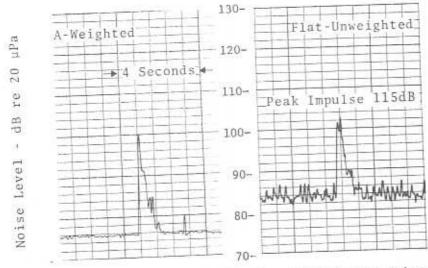
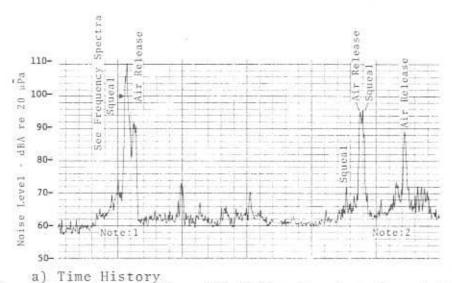
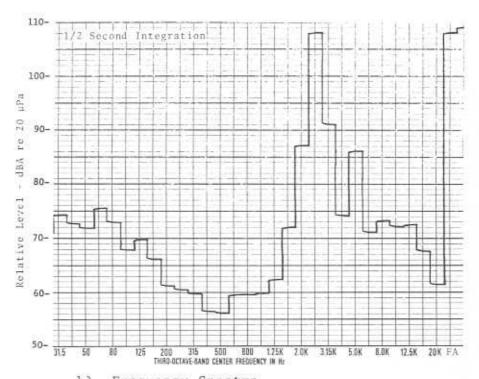
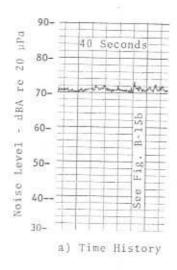


Figure B-13. Time History (A-weighted and Flat-unweighted) Impact Noise Levels, B&M RR, Somerville Hump Yard, Somerville MA, 3/27/73. Single Empty Freight Car at 8 mph Impacting Single Empty Standing Freight Car. Microphone 5 Feet above Level of Rails and Offset 50 Feet from Track Center-line.


Figure B-14. Time History (A-weighted and Flat-unweighted) Impact Noise Levels, B&M RR, Somerville Hump Yard, Somerville MA, 3/27/73. Single Loaded Freight Car (150,000 pounds) at 4 mph Impacting Standing Line of 20 to 30 Freight Cars. Microphone 3 Feet above Level of Rails and Offset 50 Feet from Track Centerline.


Note 1: Single Freight Car with Roller Bearings Slowed from

8 to 4 mph (Estimated)

Note 2: Two Coupled Cars: First with Roller Bearing, Second with Journal Box: Slowed from 6 to 4 mph.

b) Frequency Spectra
Figure B-15. Noise Data, Master Retarder, B&M RR Somerville
Hump Yard, Somerville MA, 3/27/73. Microphone
Centered on Master Retarder at a Height of 5 Feet
Above the Rails and Offset 50 Feet from Track
Center-line.

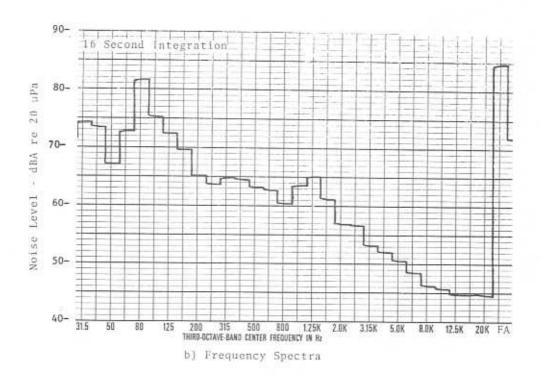


Figure B-16. Noise Data, Diesel Engine, Mechanical Refrigeration Car, B&M RR, Somerville Hump Yard, Somerville MA, 3/27/73. Microphone Offset 50 Feet from Track Center-line at a Height of 5 Feet above the Level of Rails, Directly Opposite Open Grille.

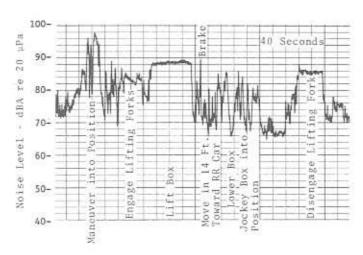
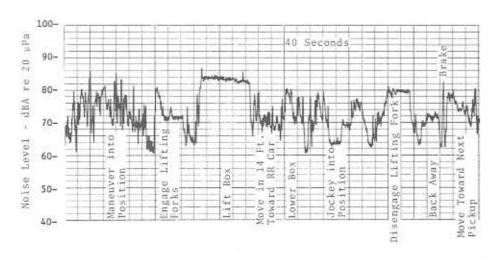
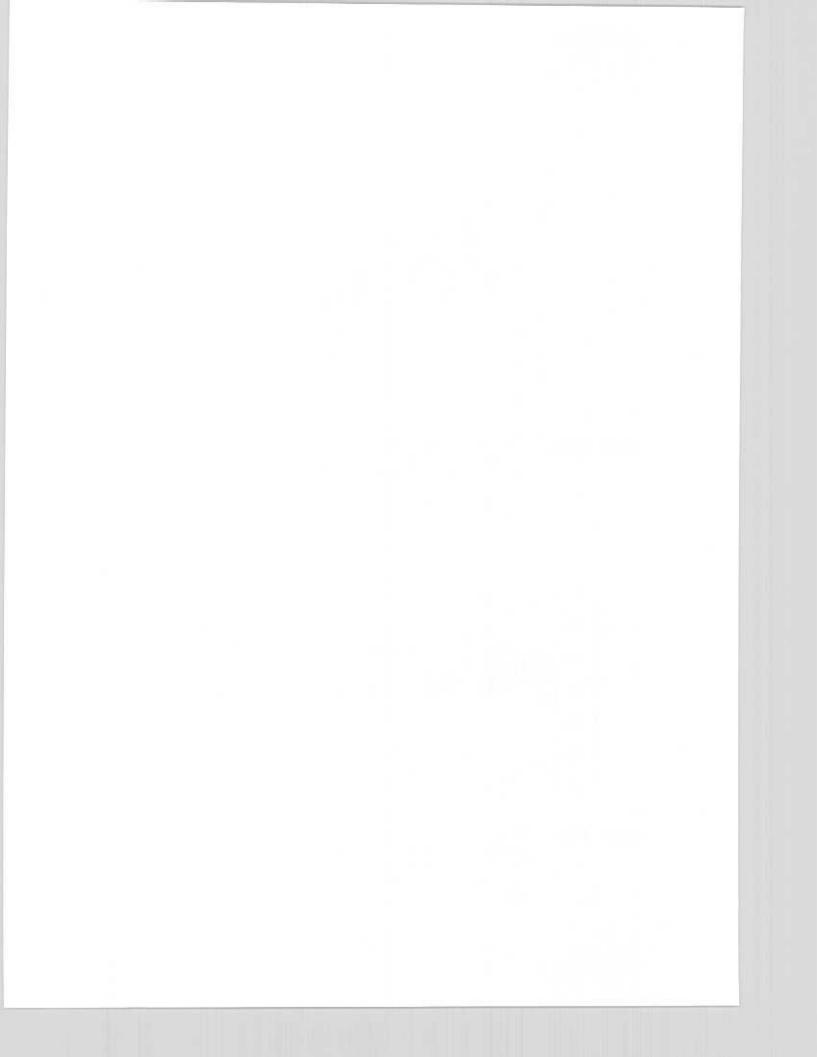
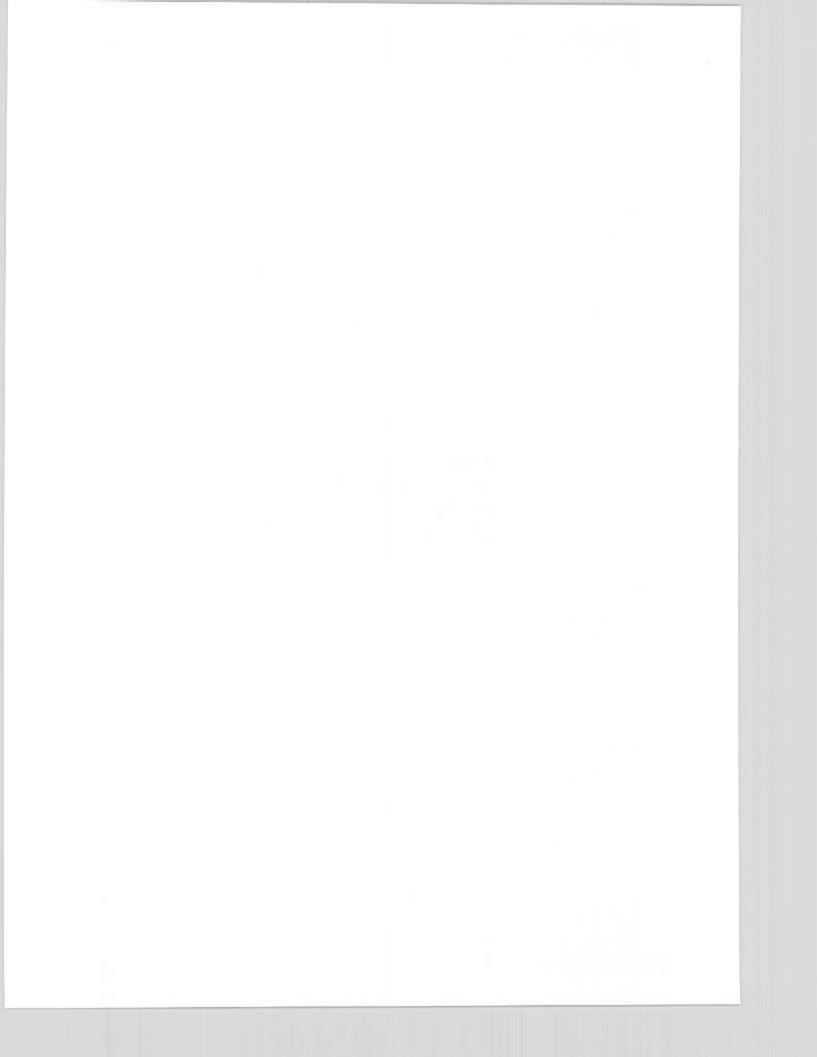
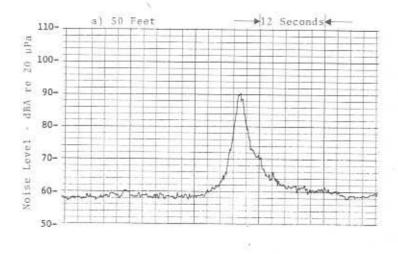


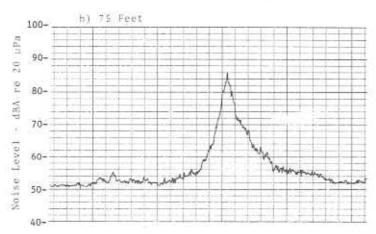
Figure B-17. Time History, Noise Level Data, Piggyback Packer, (Fork-Lift Truck) FWD Wagner Model P-70, B&M RR, Yard 7, Charlestown MA, 3/28/73

Microphone 5.5 ft. High and 50 ft. Offset to the Right Side of Packer


Figure B-18. Time History, Noise Level Data, Piggyback Packer, (Fork-Lift Truck) FWD Wagner Model P-70, B&M RR, Yard 7, Charlestown MA, 3/28/73


Microphone 5.5 ft. High and Offset 50 ft. to the Rear of Packer



APPENDIX C

PASSENGER AND LINE-HAUL NOISE
LEVEL DATA MEASURED AT THREE
WAYSIDE LOCATIONS OF THE PENN CENTRAL
RR, NEW YORK-TO-WASHINGTON
LINES, PLAINSBORO NJ

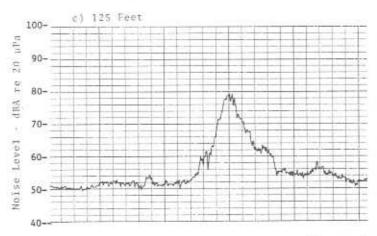


Figure C-1. Coincident Time Histories - Wayside Noise Levels at 50, 75, and 125 feet from Center-line of Track 4, Penn Central RR, Plainsboro NJ, 5/23/72, Single Electric Locomotive, Northbound 49 mph.

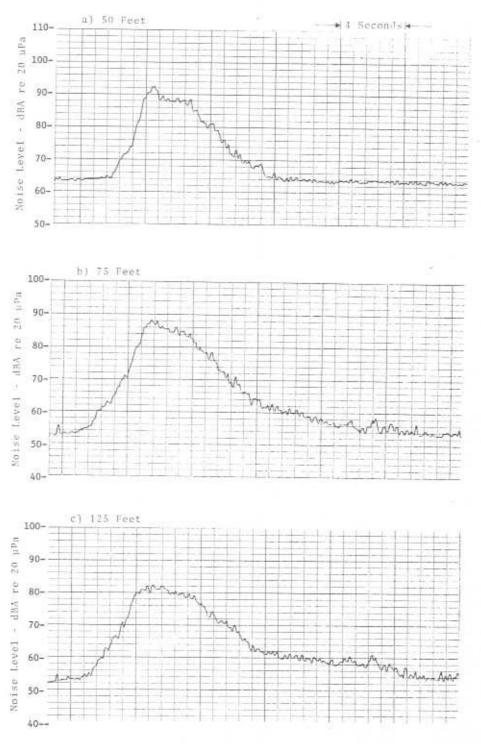


Figure C-2. Coincident Time Histories - Wayside Noise Levels at 50, 75, and 125 Feet from Center-line of Track 4, Penn Central RR, Plainsboro NJ, 5/23/72, Passenger Train, Electric Locomotive Plus 5 Cars, 78 mph.

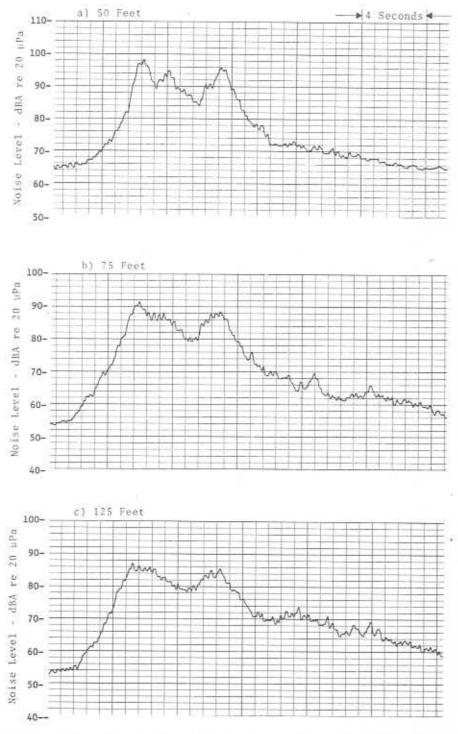


Figure C-3. Coincident Time Histories - Wayside Noise Levels at 50, 75, and 125 Feet from Center-line of Track 4, Penn Central RR, Plainsboro NJ, 5/23/72, Passenger Train, Electric Locomotive Plus 8 Cars, 78 mph.

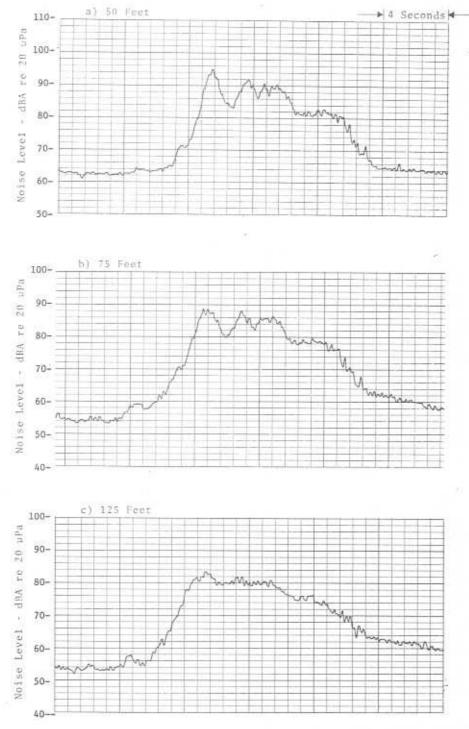


Figure C-4. Coincident Time Histories - Wayside Noise Levels at 50, 75, and 125 Feet from Center-line of Track 4 Penn Central RR, Plainsboro NJ, 5/23/72, Passenger Train, Electric Locomotive Plus 11 Cars, 95 mph.

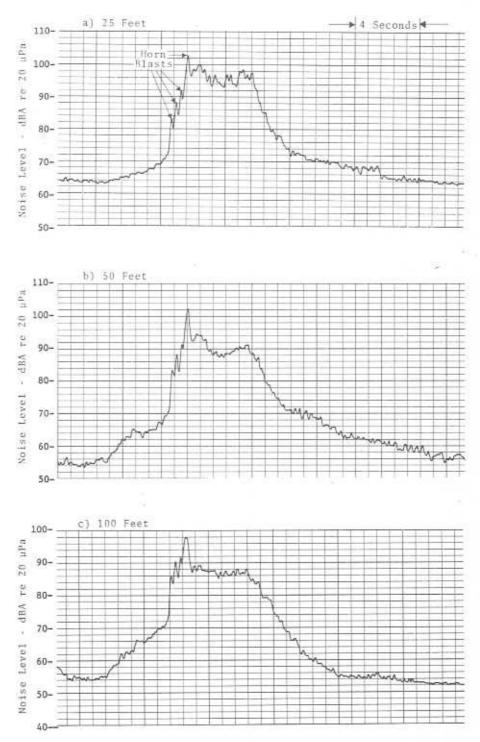


Figure C-5. Coincident Time Histories - Wayside Noise Levels at 25, 50, and 100 Feet from Center-line of Track 2, Penn Central RR, Plainsboro NJ, 5/23/72, Passenger Train, Electric Locomotive Plus 4 Cars, 73 mph.

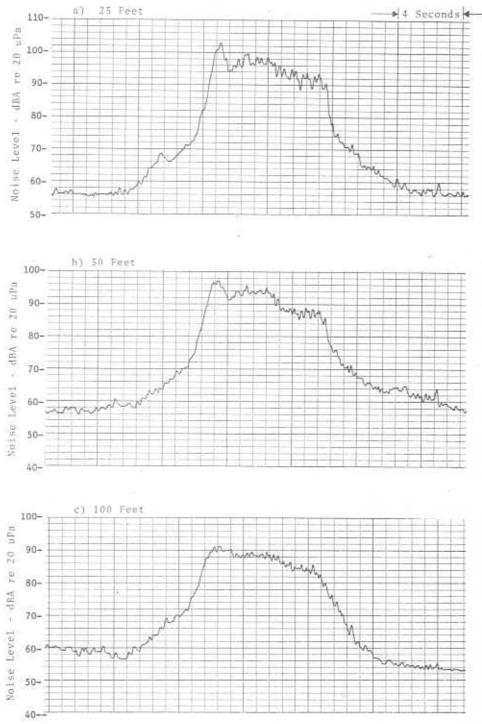


Figure C-6. Coincident Time Histories - Wayside Noise Levels at 25, 50, and 100 Feet from Center-line of Track 2, Penn Central RR, Plainsboro NJ, 5/23/72, Passenger Train, Electric Locomotive Plus 10 Cars, 82 mph.

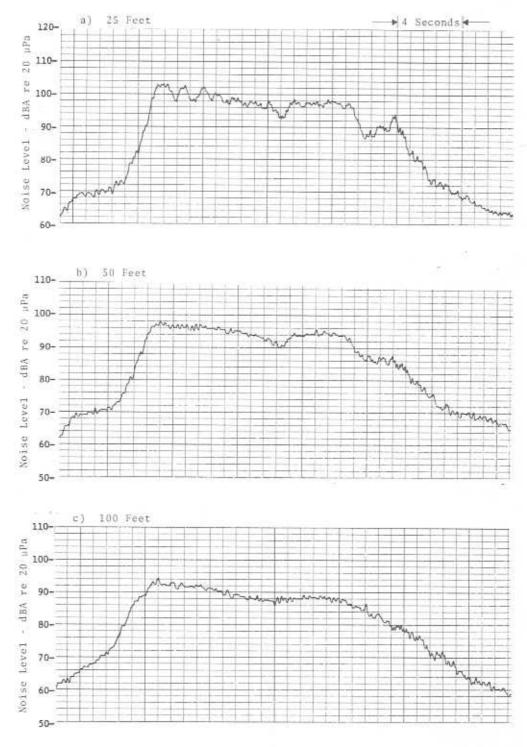


Figure C-7. Coincident Time Histories - Wayside Noise Levels at 25, 50, and 100 Feet from Center-line of Track 2, Penn Central RR, Plainsboro NJ, 5/23/72, Passenger Train, Electric Locomotive Plus 12 Cars, 40 mph.

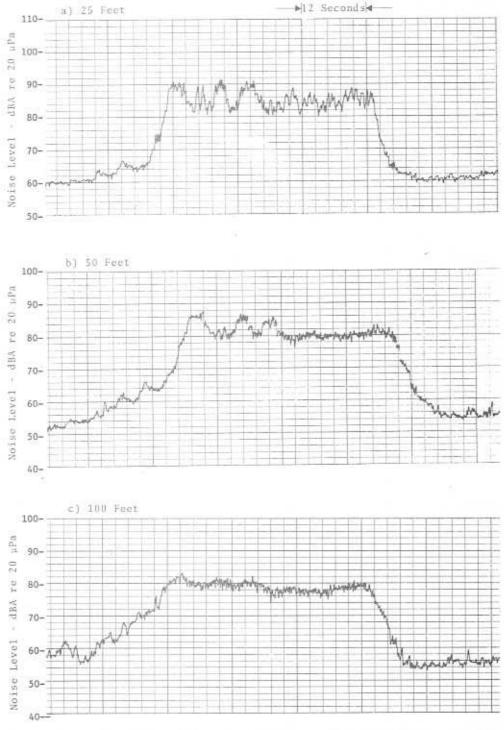


Figure C-8. Coincident Time Histories - Wayside Noise Levels at 25, 50, and 100 Feet from Center-line of Track 2, Penn Central RR, Plainsboro NJ, 5/23/72, Freight Train, 2 Diesel Locomotives Plus 33 Cars, 34 mph.

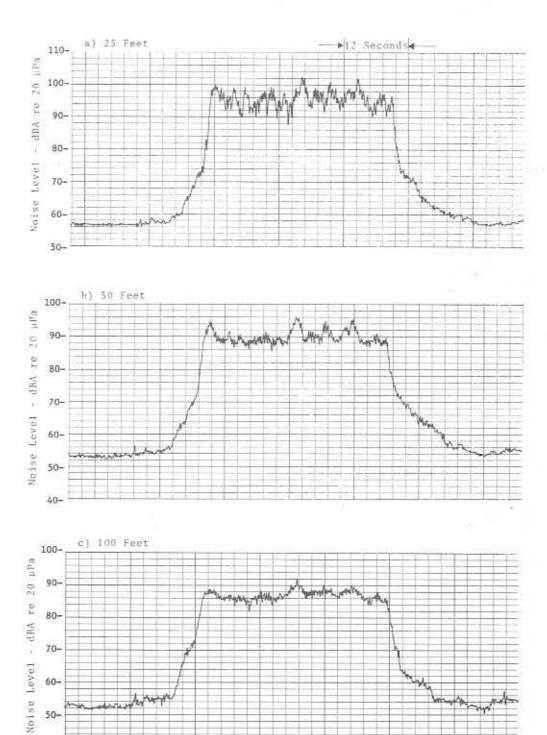
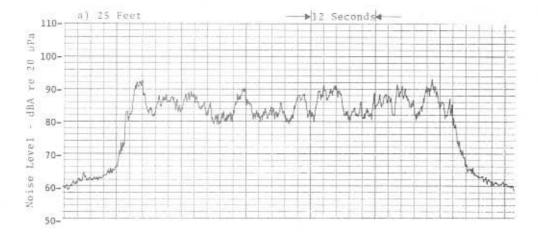
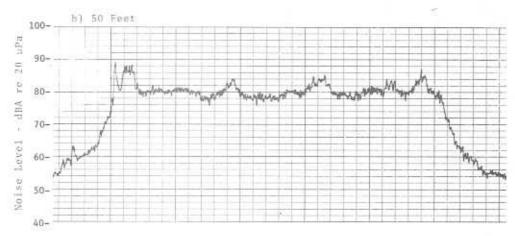




Figure G-9. Coincident Time Histories - Wayside Noise Levels at 25, 50, and 100 Feet from Center-line of Track 2, Penn Central RR, Plainsboro NJ, 5/23/72, Freight Train, 2 Electric Locomotives Plus 58 Cars, 66 mph.

40-

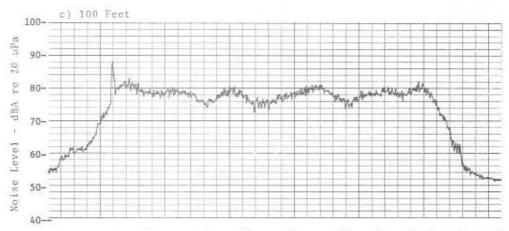


Figure C-10. Coincident Time Histories - Wayside Noise Levels at 25, 50, and 100 Feet from Center-line of Track 2, Penn Central RR, Plainsboro NJ, 5/23/72, Freight Train, 2 Electric Locomotives Plus 48 Cars, 32 mph.

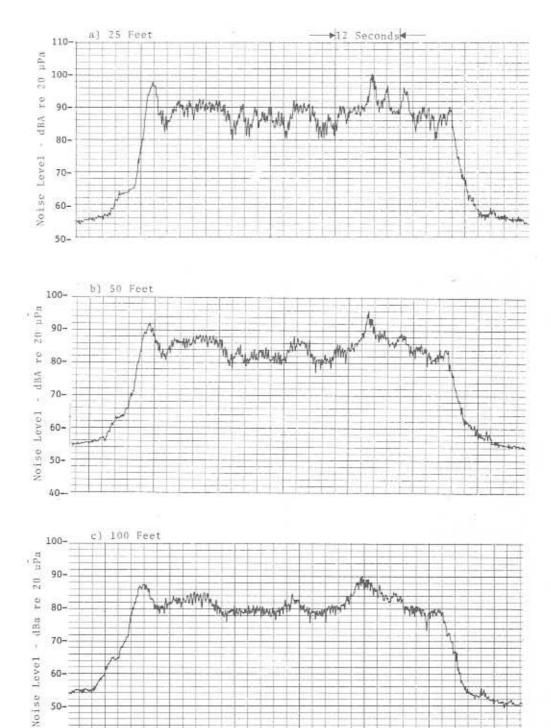


Figure C-11. Coincident Time Histories - Wayside Noise Levels at 25, 50, and 100 Feet from Centerline of Track 2, Penn Central RR, Plainsboro NJ, 5/23/72, Freight Train, 2 Electric Locomotives Plus 63 Cars, 50 mph.

40-

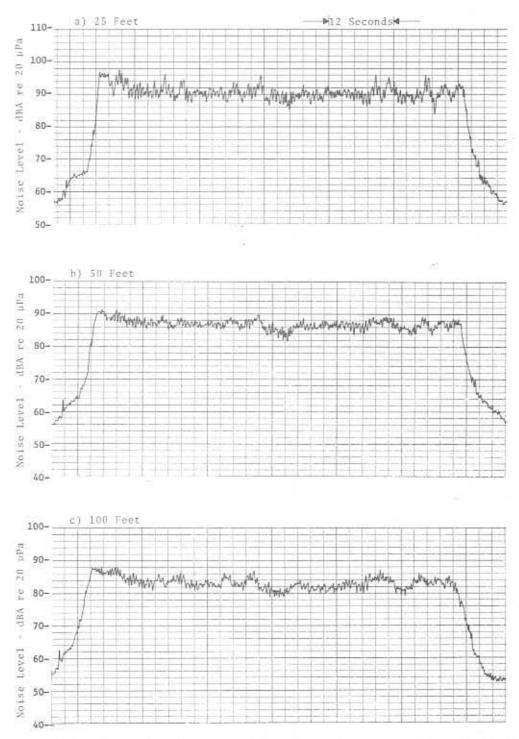
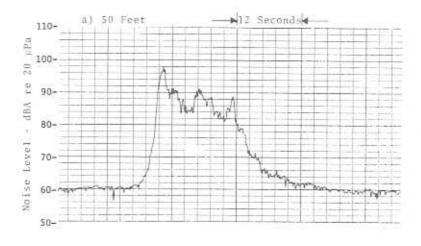
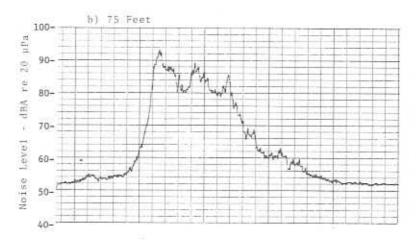




Figure C-12. Coincident Time Histories - Wayside Noise Levels at 25, 50, and 100 Feet from Center-line of Track 2, Penn Central RR, Plainsboro NJ, 5/23/72, Freight Train, 2 Electric Locomotives Plus 95 Cars, 50 mph.

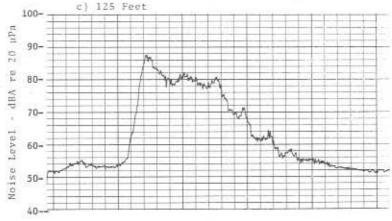


Figure C-13. Coincident Time Histories - Wayside Noise Levels at 50, 75, and 125 Feet from Center-line of Track 4, Penn Central RR, Plainsboro NJ, 5/23/72, Freight Train, 2 Electric Locomotives, Plus 35 Cars, 84 mph.

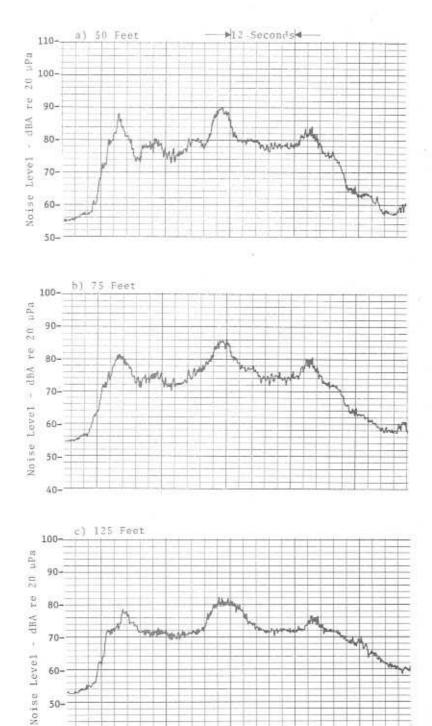
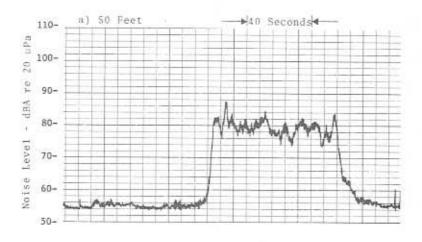
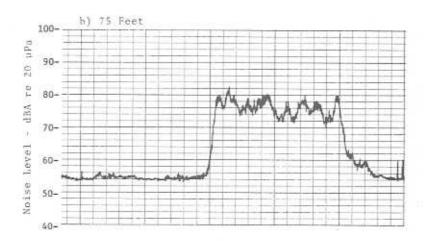




Figure C-14. Coincident Time Histories - Wayside Noise Levels at 50, 75, and 125 Feet from Center-line of Track 4.
Penn Central RR, Plainsboro NJ, 5/23/72,
Freight Train, 2 Electric Locomotives Plus 41 Cars, 35 mph.

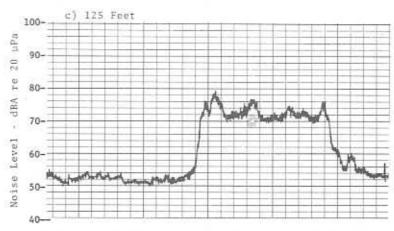
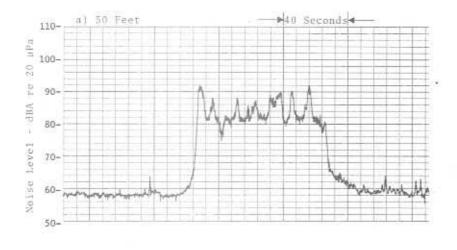
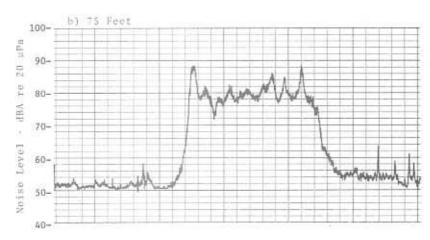




Figure C-15. Coincident Time Histories - Wayside noise Levels at 50, 75, and 125 Feet from Center-line of Track 4.
Penn Central RR, Plainsboro NJ, 5/23/72,
Freight Train, 3 Electric Locomotives Plus 71 Cars, 40 mph.

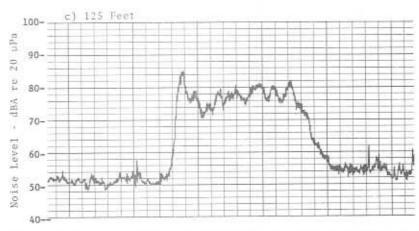


Figure C-16. Coincident Time Histories - Wayside Noise Levels at 50, 75, and 125 Feet from Center-line of Track 4. Penn Central RR, Plainsboro NJ, 5/23/72, Freight Train, 3 Electric Locomotives Plus 99 Cars, 48 mph.

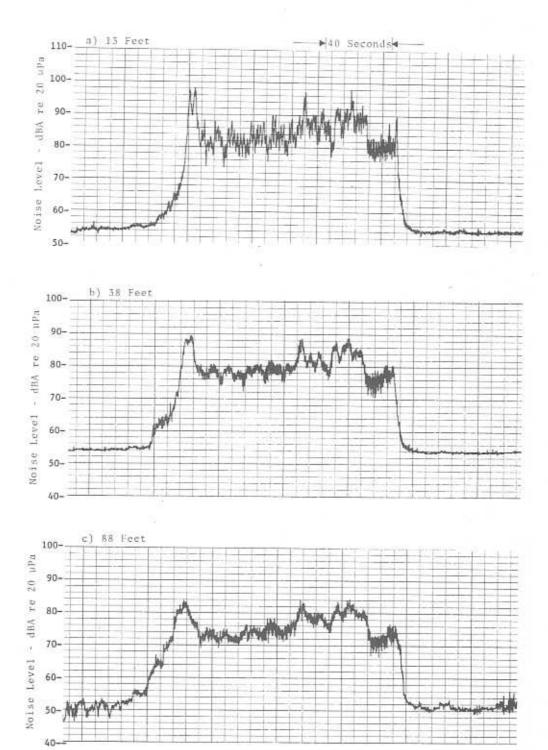
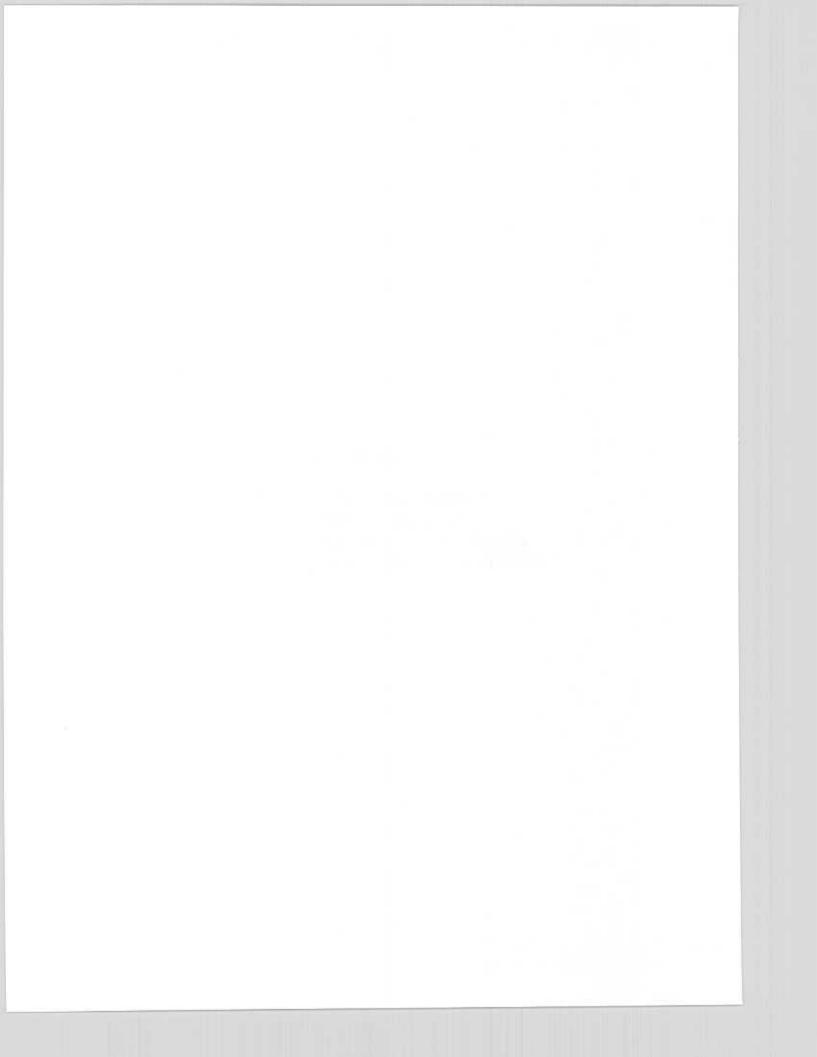



Figure C-17. Coincident Time Histories - Wayside Noise Levels at 13, 38, and 88 Feet from Center-line of Track 1, Penn Central RR, Plainsboro NJ, 5/23/72, Freight Train, 2 Electric Locomotives Plus 79 Cars, 31 mph.

APPENDIX D

PASSENGER AND LINE-HAUL NOISE
LEVEL DATA MEASURED AT THREE
WAYSIDE LOCATIONS OF THE PENN CENTRAL RR,
BOSTON-TO-NEW YORK LINE, WEST MANSFIELD MA

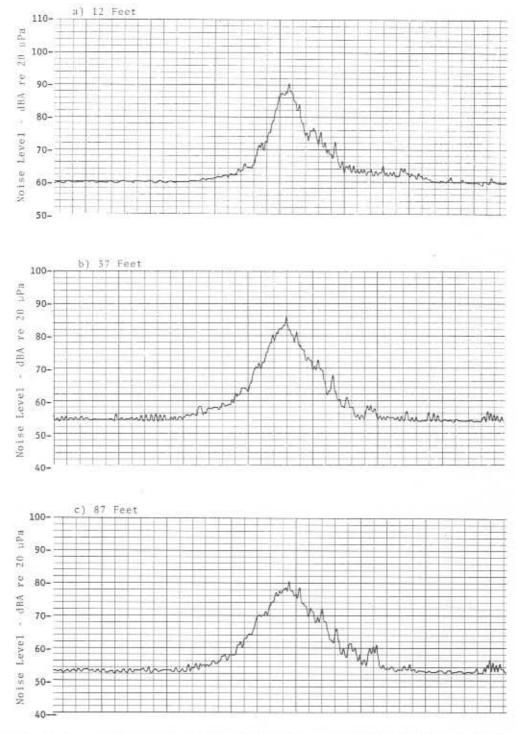


Figure D-1. Coincident Time Histories - Wayside Noise Levels at 12, 37, and 87 Feet from Center-line of Track 2, Penn Central RR, West Mansfield MA. 9/26/72, Single Budd Liner, 65 mph

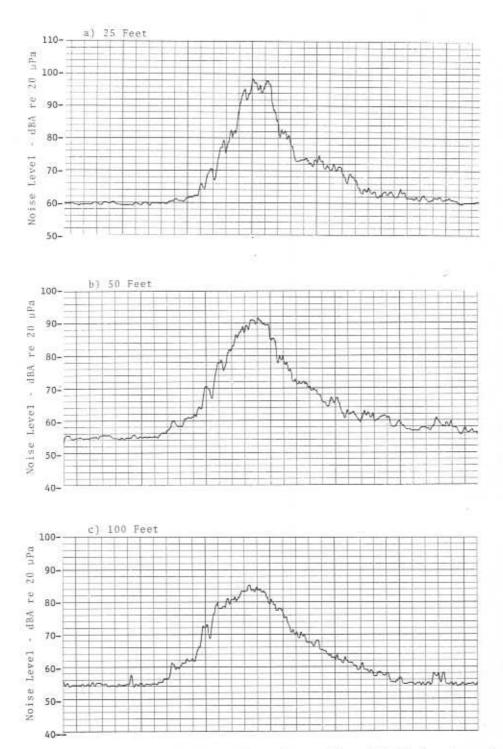


Figure D-2. Coincident Time Histories - Wayside Noise Levels at 25, 50, and 100 Feet from Center-line of Track 1.
Penn Central RR, West Mansfield MA, 9/26/72
Two Coupled Budd Liners, 63 mph

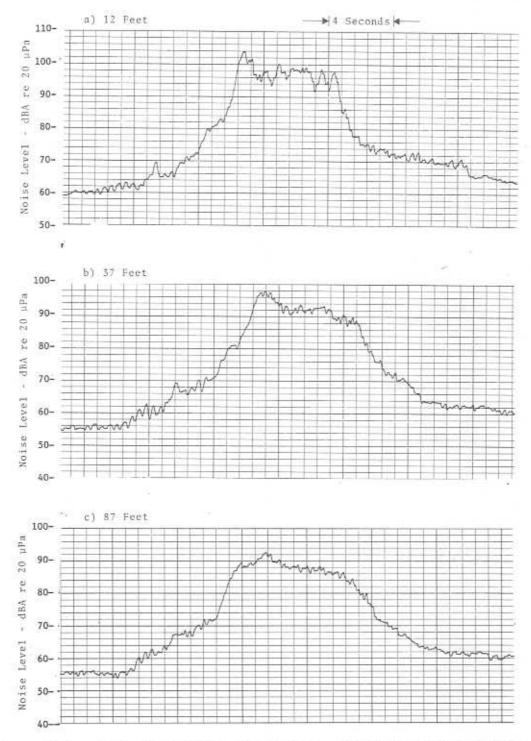


Figure D-3. Coincident Time Histories - Wayside Noise Levels at 12, 37, and 87 Feet from Center-line of Track 2, Penn Central RR, in West Mansfield MA, 9/26/72, Passenger Train, Diesel Locomotive Plus 6 Cars, 66 mph

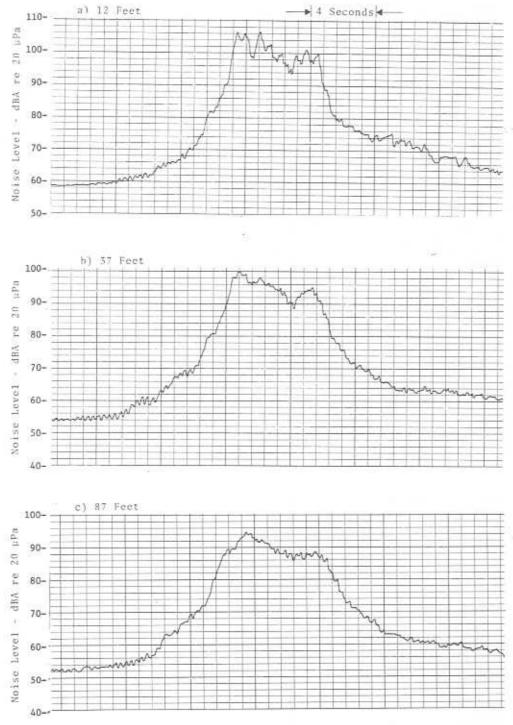


Figure D-4. Coincident Time Histories - Wayside Noise Levels at 12, 37, and 87 Feet from Center-line of Track 2, Penn Central RR, West Mansfield MA, 9/26/72, Passenger Train, 2 Diesel Locomotives, Plus 6 Cars, 79 mph

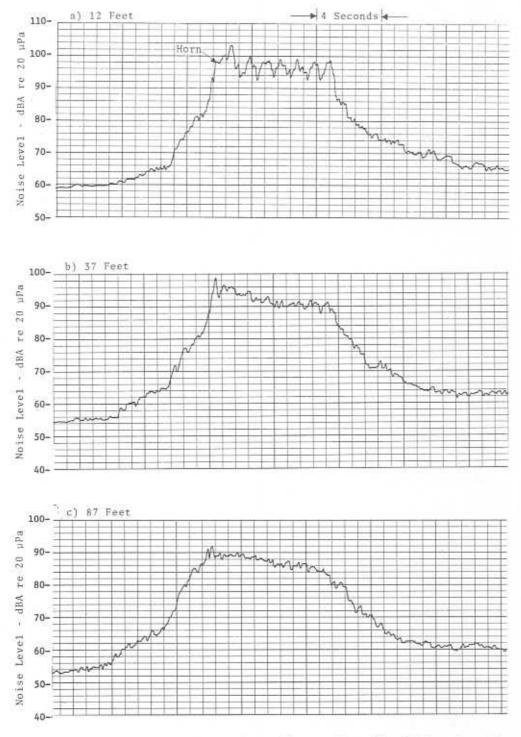


Figure D-5. Coincident Time Histories - Wayside Noise Levels at 12, 37, and 87 Feet from Center-line of Track 2, Penn Central RR, West Mansfield MA, 9/26/72, Passenger Train, Diesel Locomotive Plus 6 Cars, 57 mph

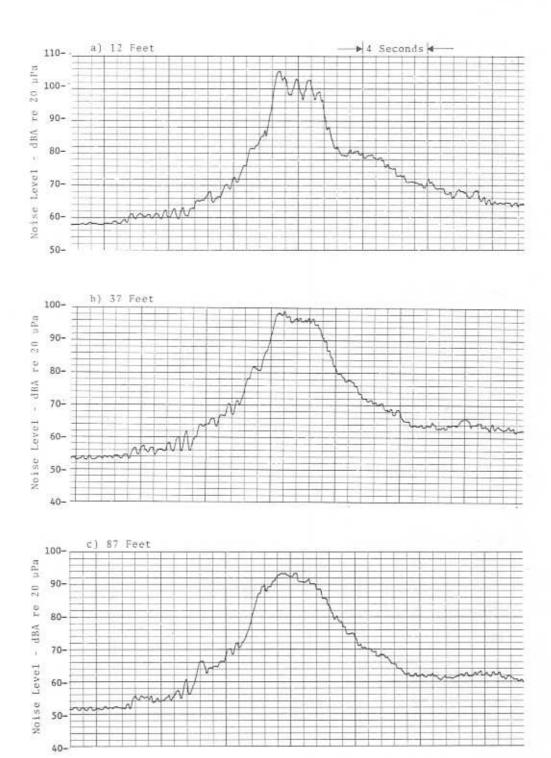


Figure D-6. Coincident Time Histories - Wayside Noise Levels at 12, 37, and 87 feet from Center-line of Track 2, Penn Central RR, West Mansfield MA, 9/26/72, Passenger Train, Diesel Locomotive Plus 3 Cars, 78 mph

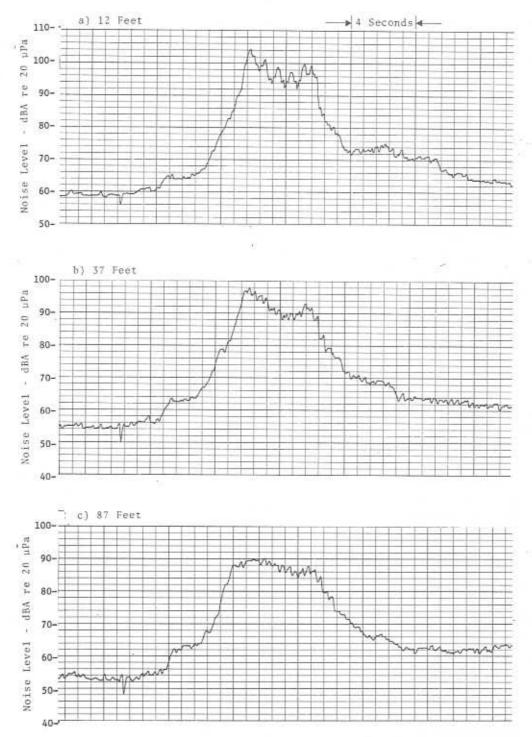
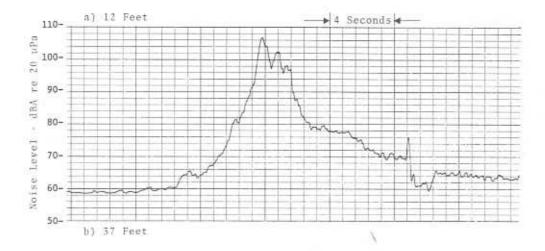
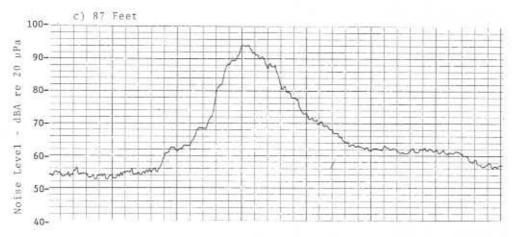
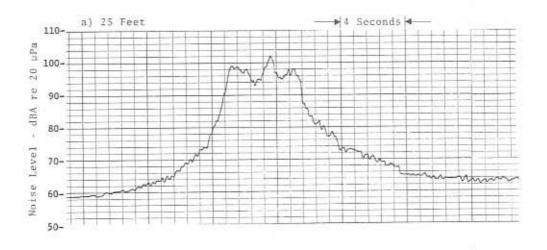
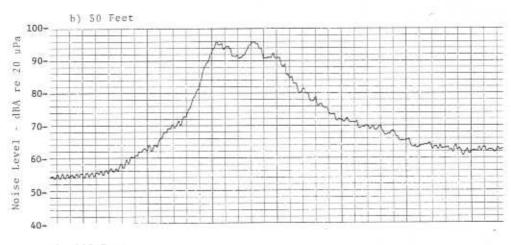
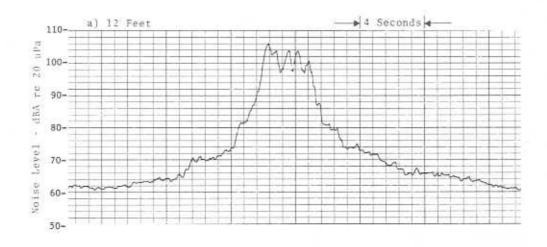



Figure D-7. Coincident Time Histories - Wayside Noise Levels at 12, 37 and 87 Feet from Center-line of Track 2, Penn Central RR, West Mansfield MA, 9/26/72 Passenger Train, Diesel Locomotive Plus 5 Cars, 74 mph


Figure D-8. Coincident Time Histories - Wayside Noise Levels at 12 and 87 Feet from Center-line of Track 2, Penn: Central RR, West Mansfield MA, 9/26/72, Passenger Train, Diesel Locomotive Plus 2 Cars, 79 mph

c) 100 Feet

Figure D-9. Coincident Time Histories - Wayside Noise Levels at 25 and 50 Feet from Center-line of Track 1, Penn Central RR, West Mansfield MA, 9/20/72, Passenger Train, Diesel Locomotive Plus 5 Cars, 78 mph

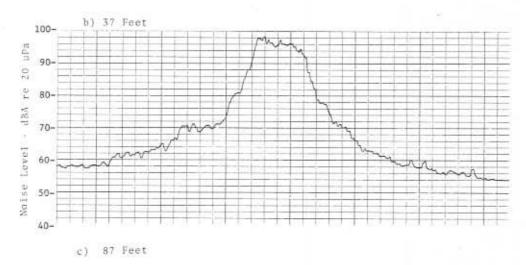
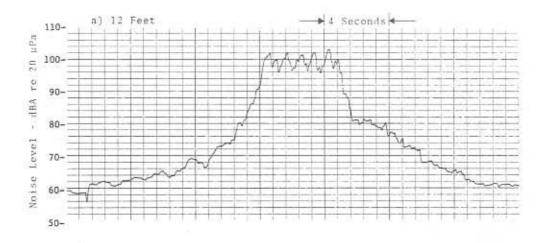



Figure D-10. Coincident Time Histories - Wayside Noise Levels at 12 and 37 Feet from Center-line of Track 2, Penn Central RR, West Mansfield MA, 9/20/72, Passenger Train Diesel Locomotive Plus 3 Cars, 80 mph

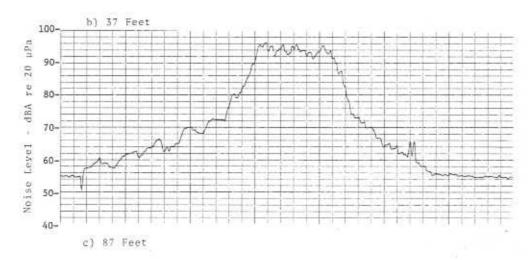
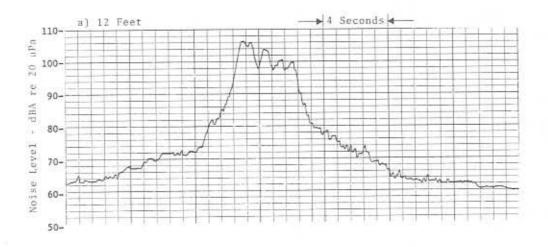



Figure D-11. Coincident Time Histories - Wayside Noise Levels at 12 and 37 Feet from Center-line of Track 2, Penn Central RR, West Mansfield MA, 9/20/72, Passenger Train, Diesel Locomotive Plus 5 Cars, 72 mph

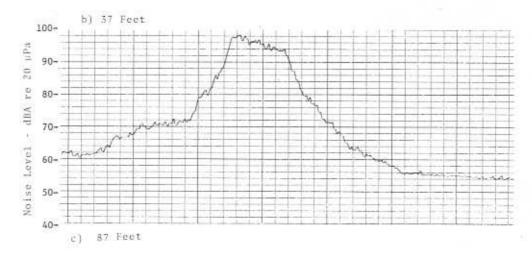
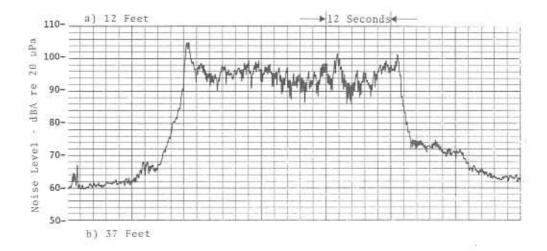



Figure D-12. Coincident Time Histories - Wayside Noise Levels at 12 and 37 Feet from Center-line of Track 2, Penn Central RR, West Mansfield MA, 9/20/72, Passenger Train, Diesel Locomotive Plus 3 Cars, 61 mph

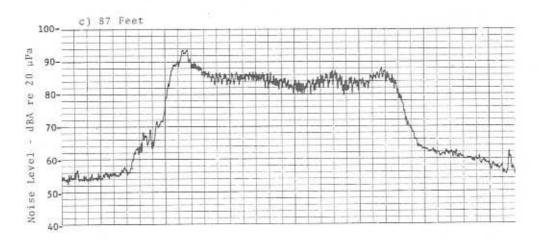
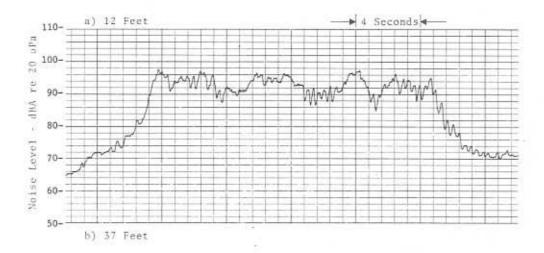



Figure D-13. Coincident Time Histories - Wayside Noise Levels at 12 and 87 Feet from Center-line of Track 2, Penn. Central RR, West Mansfield MA, 9/26/72, Freight Train, 2 Diesel Locomotives Plus 47 Cars, 46 mph

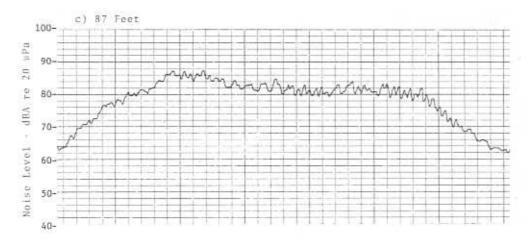
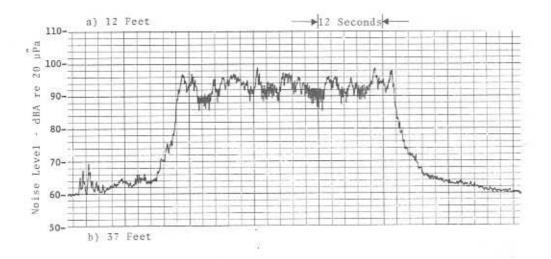



Figure D-14. Coincident Time Histories - Wayside Noise Levels at 12 and 87 Feet from Center-line of Track 2, Penn Central RR, West Mansfield MA, 9/26/72, Freight Train, Diesel Locomotive Plus 18 Cars, 38 mph

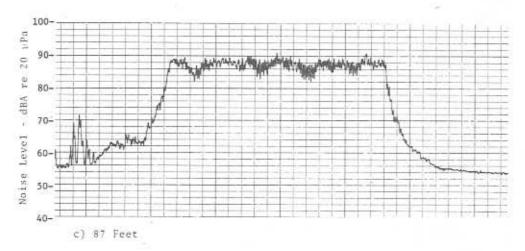
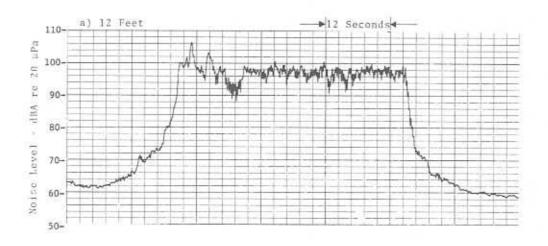



Figure D-15. Coincident Time Histories - Wayside Noise Levels at 12 and 37 Feet from Center-line of Track 2, Penn Central RR, West Mansfield MA, 9/20/72, Freight Train, 2 Diesel Locomotives Plus 45 Cars, 40 mph

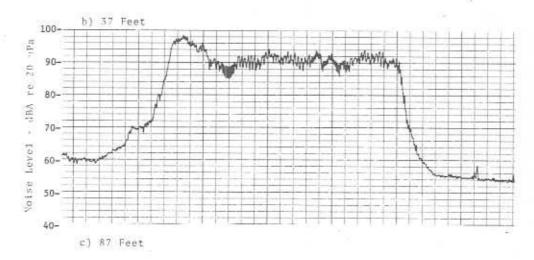
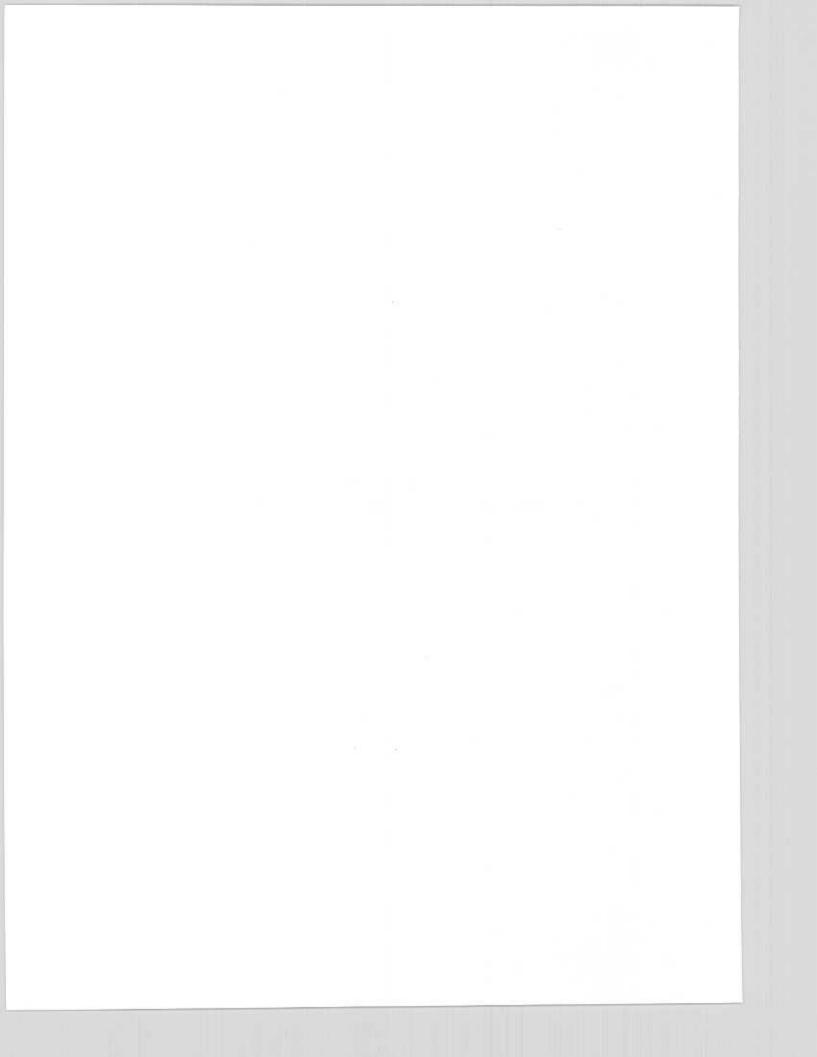



Figure D-16. Coincident Time Histories - Wayside Noise Levels at 12 and 37 Feet from Center-line of Track 2, Penn Central RR, West Mansfield MA, 9/20/72, Freight Train, 5 Diesel Locomotives Plus 57 Cars, 54 mph

APPENDIX E
MEASURING STATION LOCATIONS AND PHOTOGRAPHS

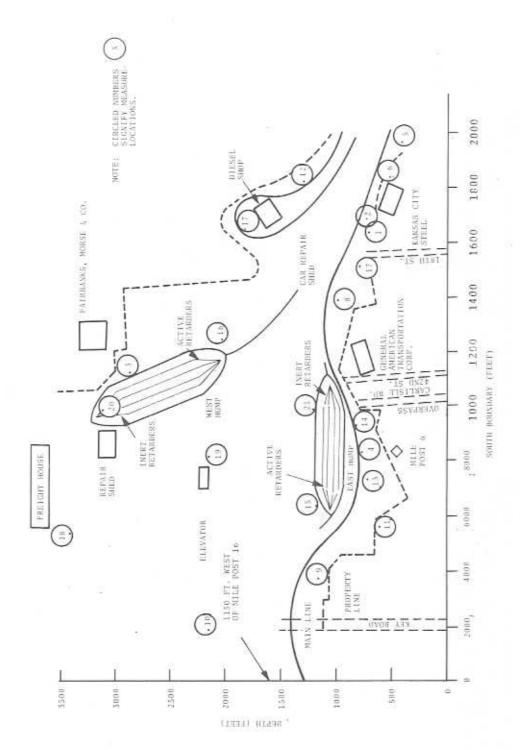
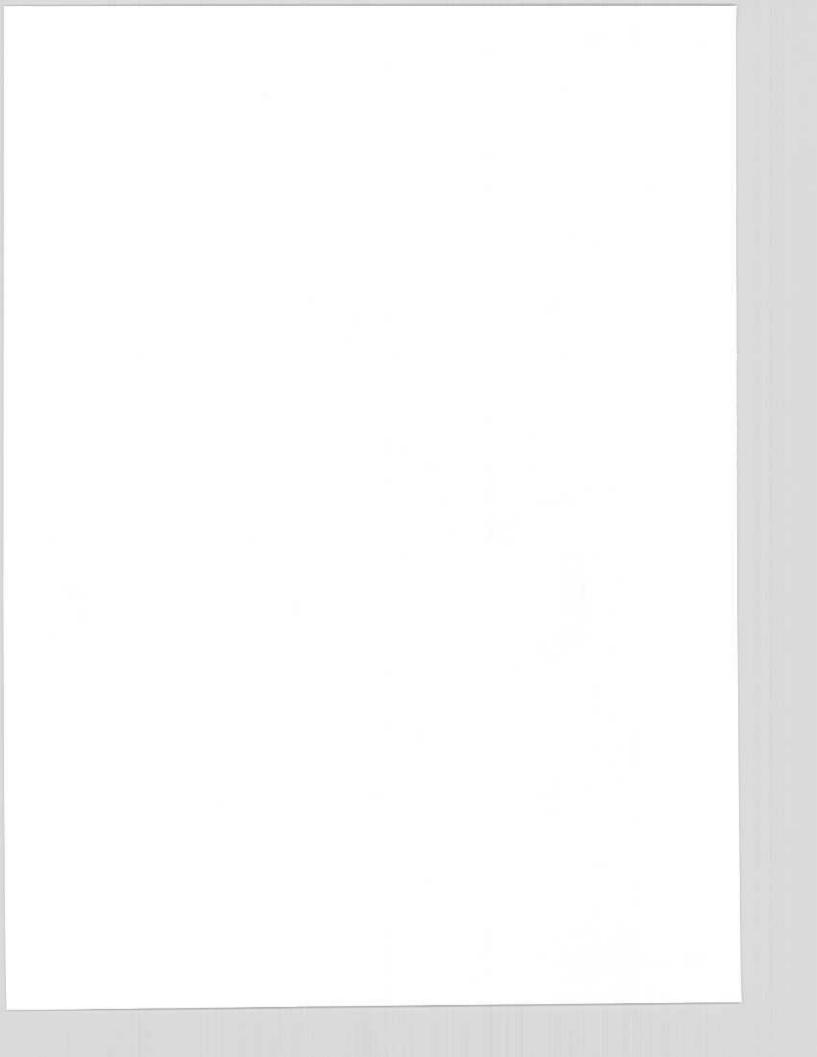



Figure E-1. Schematic Layout (Measurement Locations), Argentine Freight Yard, Santa Fe RR Kansas City KS

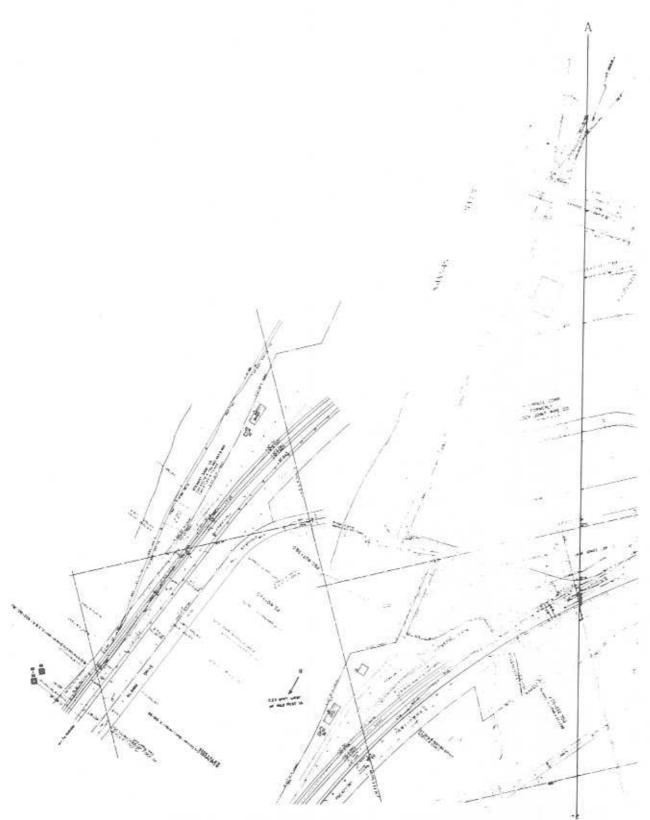


Figure E-2. Freight Yard Map, Argentine Freight Yard, Santa Fe RR Kansas City KS

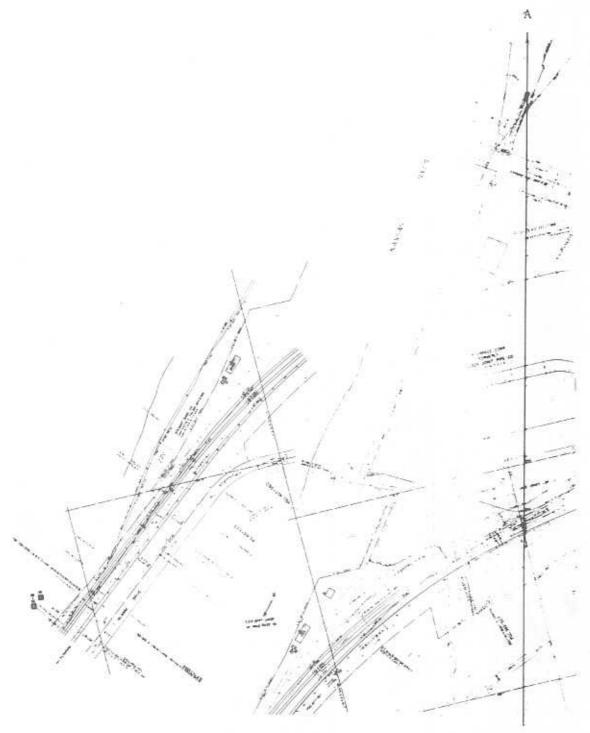


Figure E-2. (Continued) Freight Yard Map, Argentine Freight Yard, Santa Fe RR Kansas City KS

Figure E-2 (Continued). Freight Yard Map, Argentine Freight Yard, Santa Fe RR, Kansas City KS

Figure E-2 (Continued). Freight Yard Map, Argentine Freight Yard, Santa Fe RR, Kansas City KS

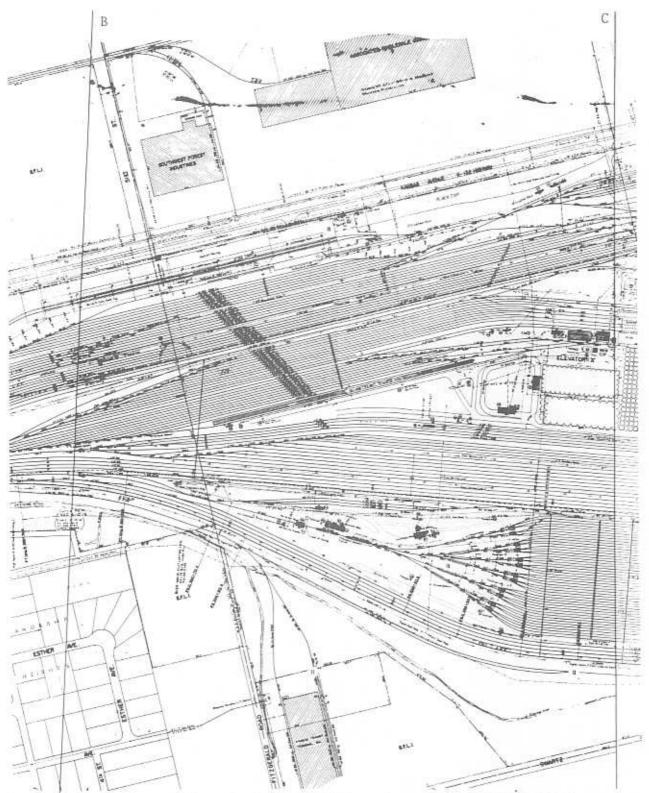


Figure E-2 (Continued). Freight Yard Map, Argentine Freight Yard, Santa Fe RR, Kansas City KS

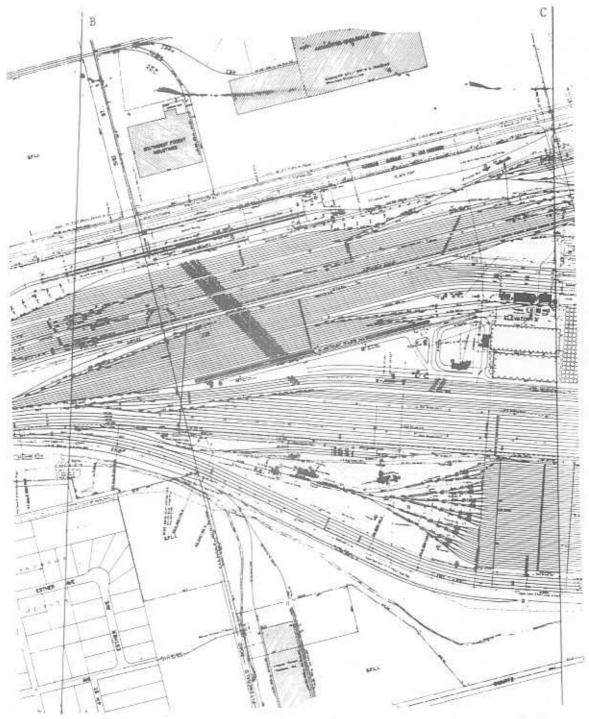


Figure E-2 (Continued). Freight Yard Map, Argentine Freight Yard, Santa Fe RR, Kansas City KS

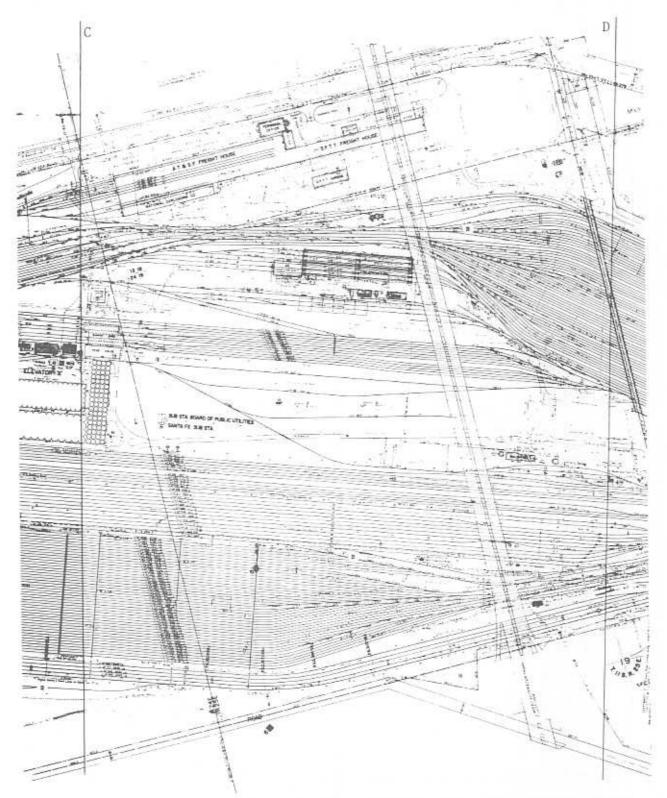


Figure E-2 (Continued). Freight Yard Map, Argentine Freight Yard, Santa Fe RR, Kansas City KS

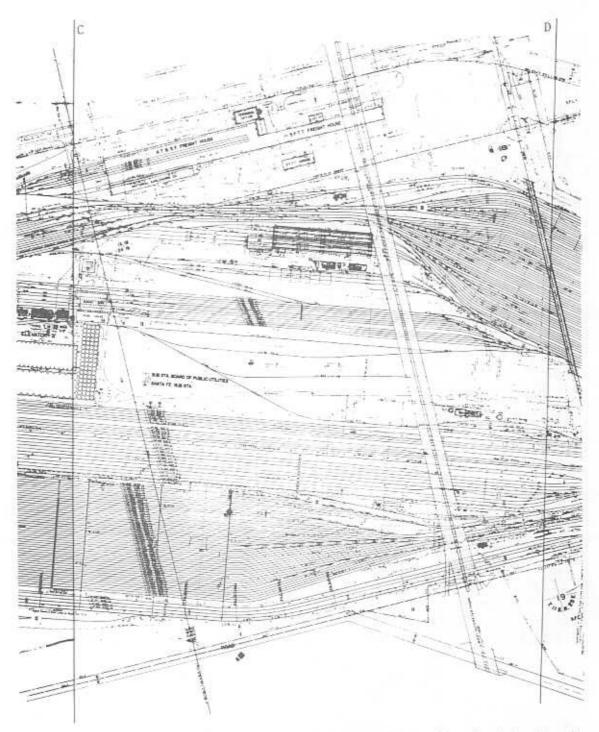


Figure E-2 (Continued). Freight Yard Map, Argentine Freight Yard, Santa Fe RR, Kansas City KS

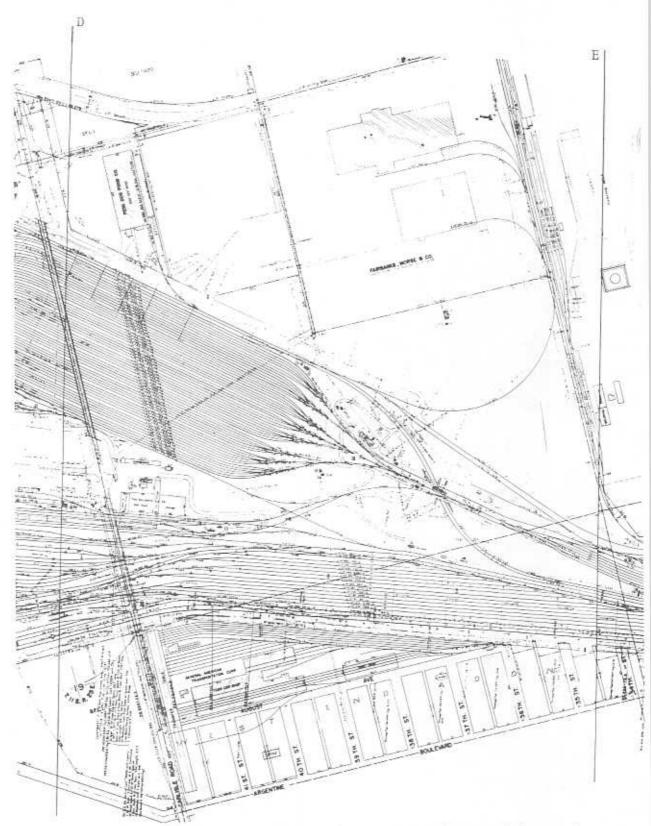


Figure E-2 (Continued). Freight Yard Map, Argentine Freight Yard, Santa Fe RR, Kansas City KS

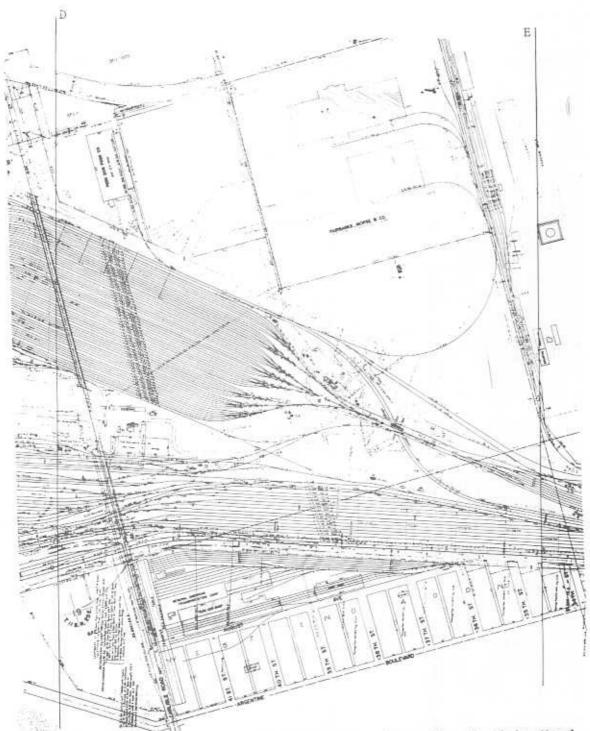


Figure E-2 (Continued). Freight Yard Map, Argentine Freight Yard, Santa Fe RR, Kansas City KS

Figure E-2 (Continued). Freight Yard Map, Argentine Freight Yard, Santa Fe RR, Kansas City KS

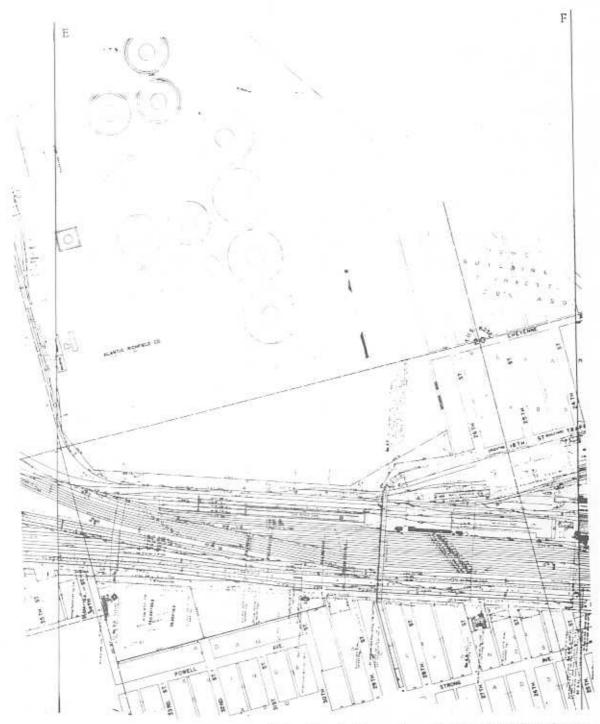


Figure E-2 (Continued). Freight Yard Map, Argentine Freight Yard, Santa Fe RR, Kansas City KS

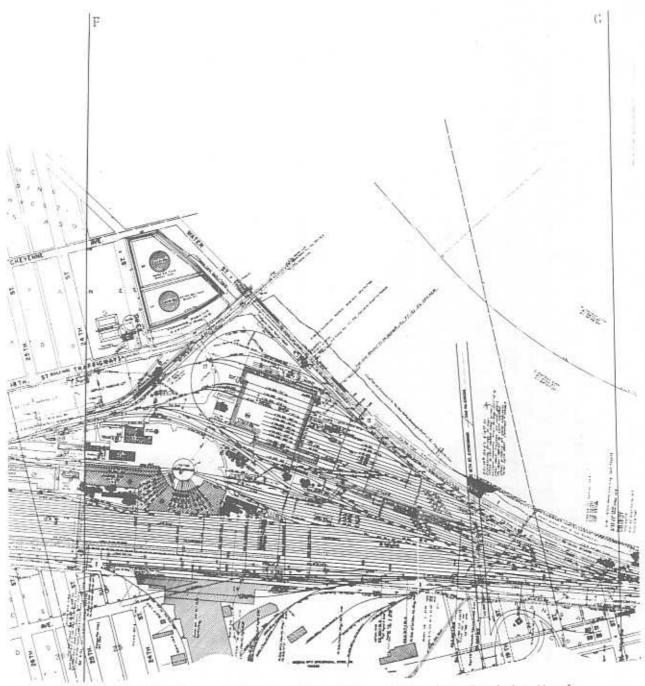


Figure E-2 (Continued). Freight Yard Map, Argentine Freight Yard, Santa Fe RR, Kansas City KS

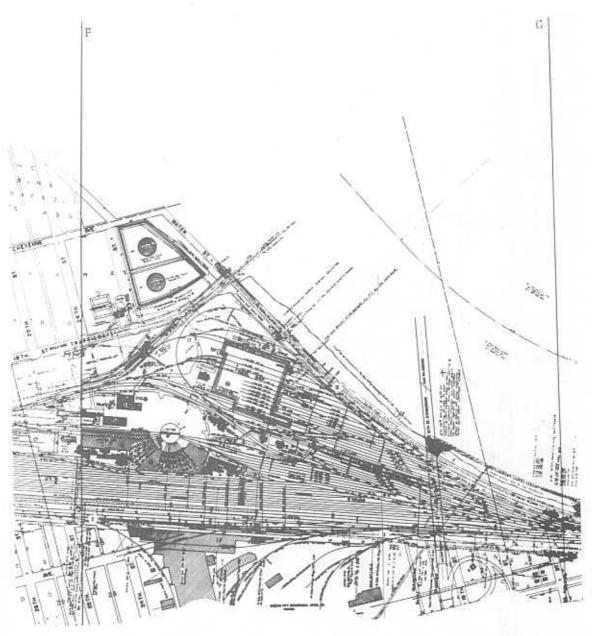


Figure E-2 (Continued). Freight Yard Map, Argentine Freight Yard, Santa Fe RR, Kansas City KS

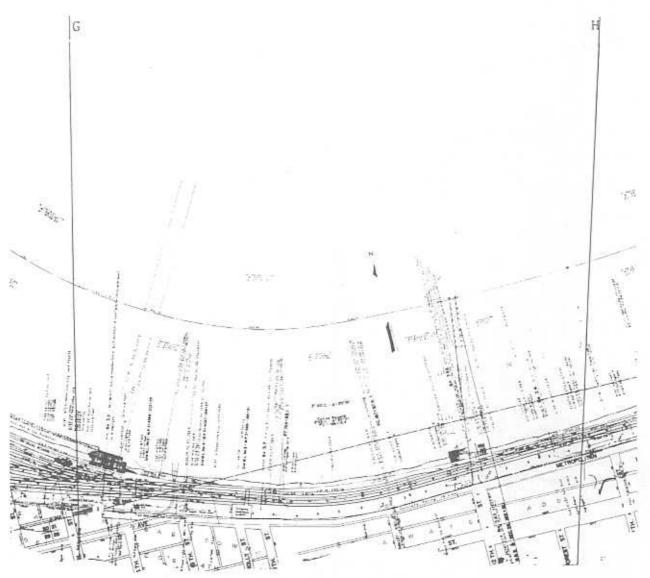


Figure E-2 (Continued). Freight Yard Map, Argentine Freight Yard, Santa Fe RR, Kansas City KS

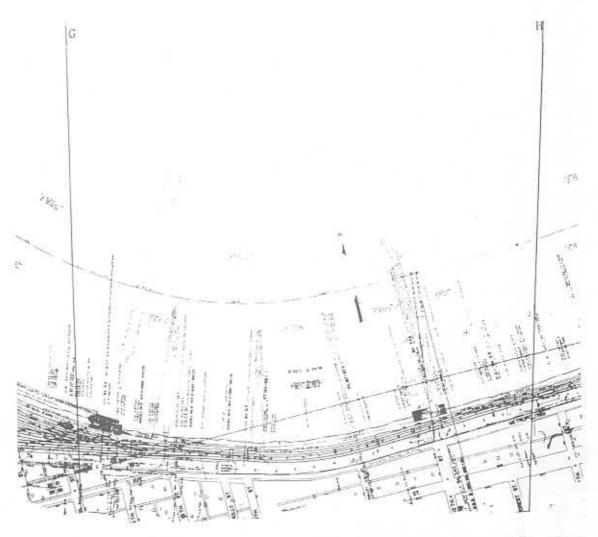


Figure E-2. (Continued) Freight Yard Map, Argentine Freight Yard, Santa Fe RR Kansas City KS

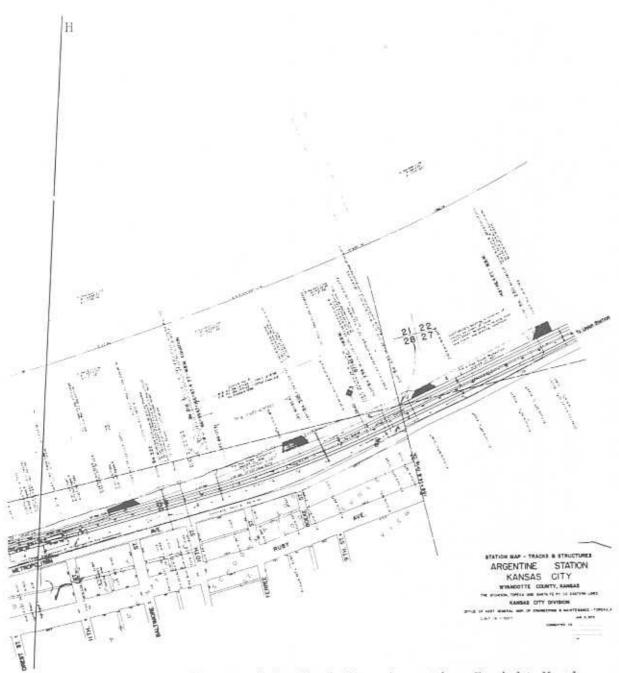
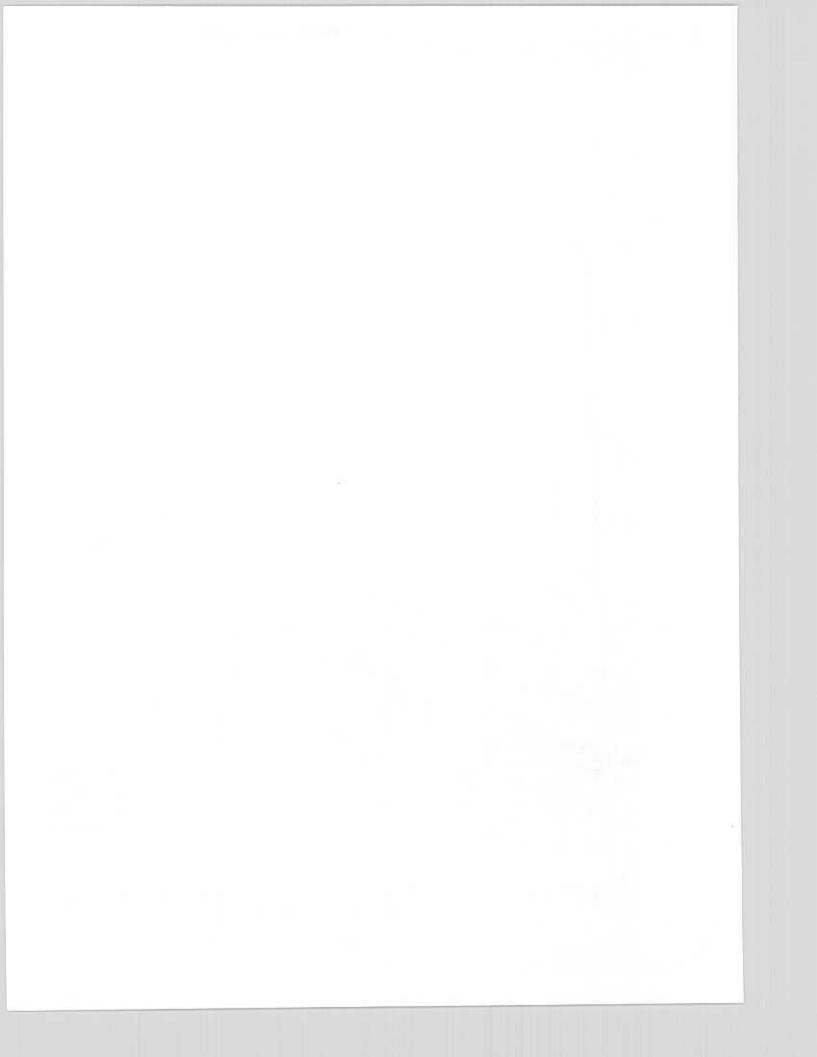
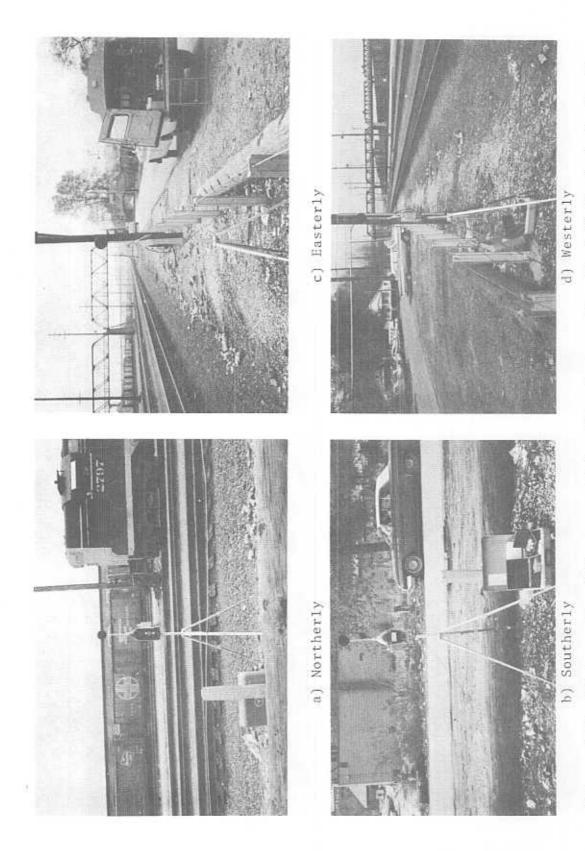
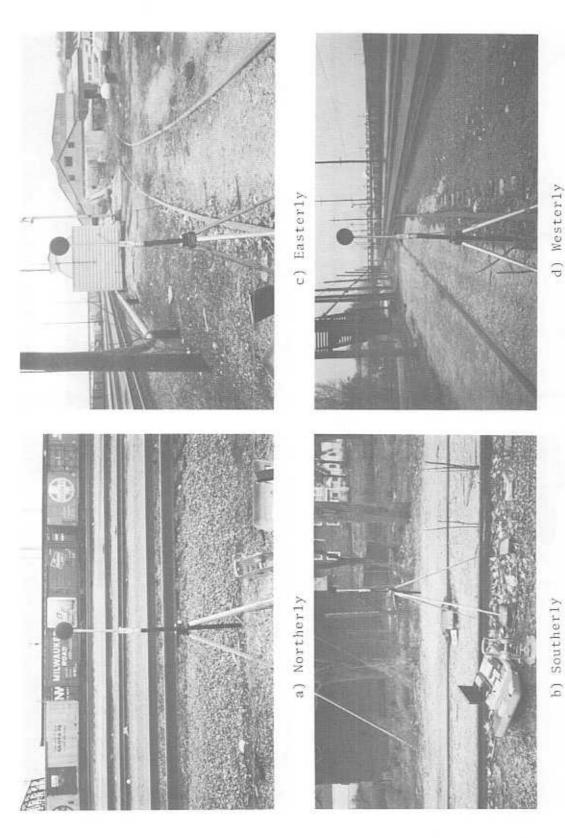
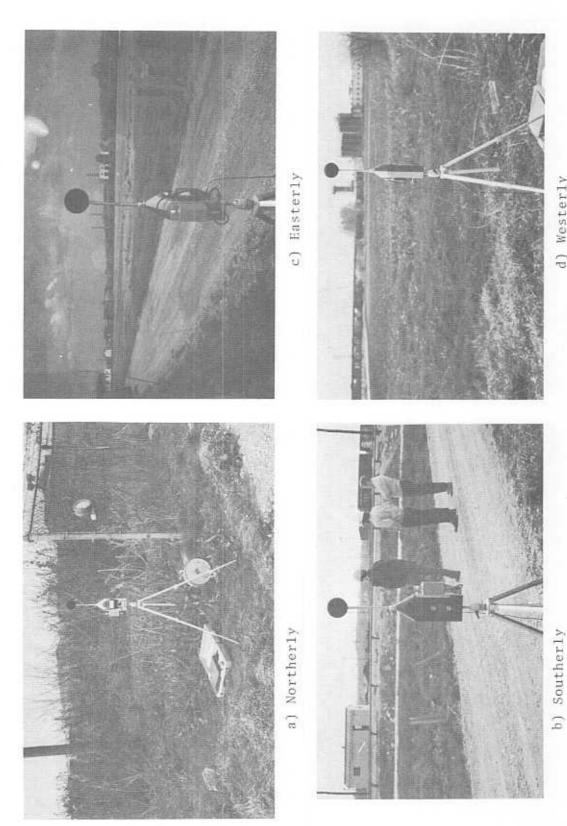
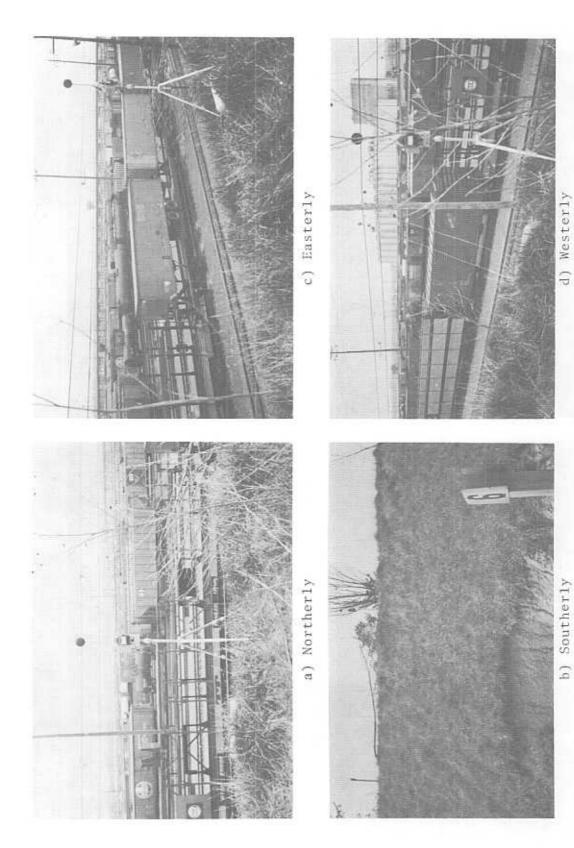
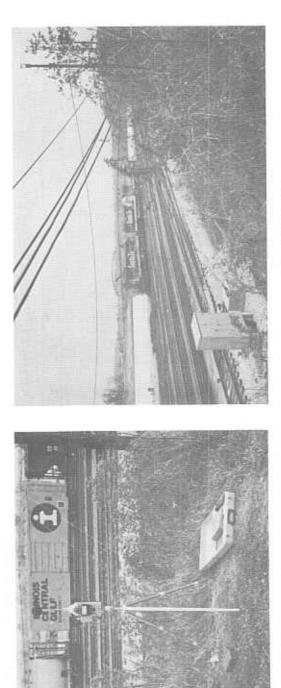




Figure E-2 (Continued). Freight Yard Map, Argentine Freight Yard, Santa Fe RR, Kansas City KS

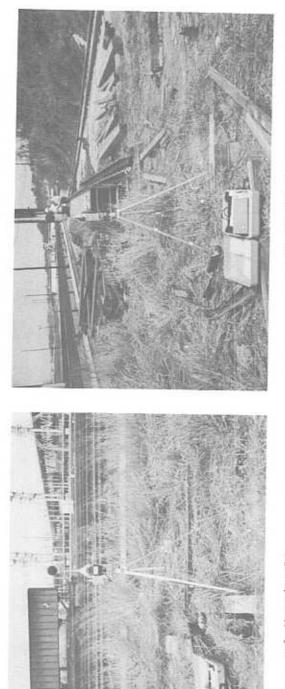
Photographs of Measurement Location 1, Argentine Freight Yard, Sante Fe RR Figure E-3.

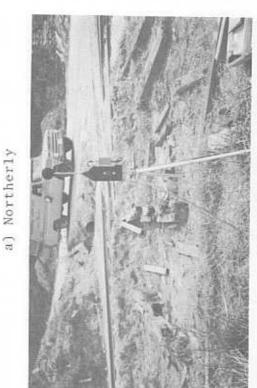





Figure E-4. Photographs of Measurement Location 2, Argentine Freight Yard, Santa Fe RR

Photographs of Measurement Location 3, Argentine Freight Yard, Santa Fe RR d) Westerly Figure E-5.

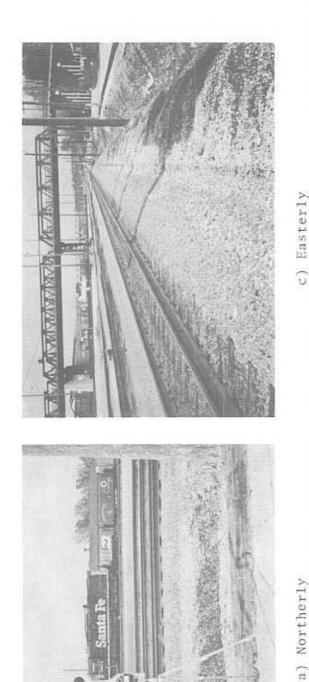
Photographs of Measurement Location 4, Argentine Freight Yard, Santa Fe RR Figure E-6.

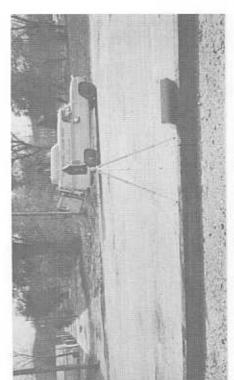


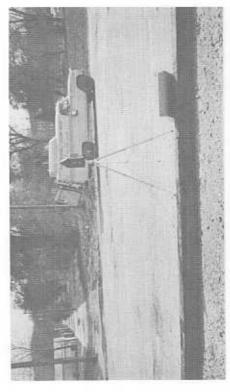

c) Easterly

d) Westerly

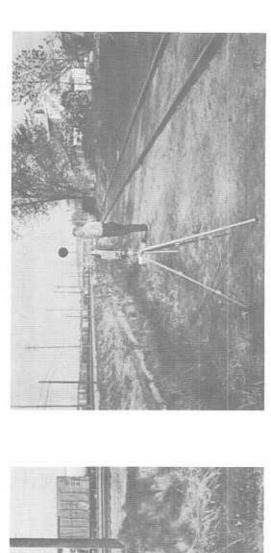
Photographs of Measurement Location 5, Argentine Freight Yard, Santa Fe RR Figure E-7.



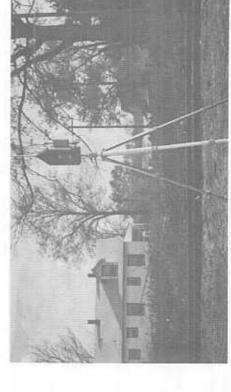

c) Easterly

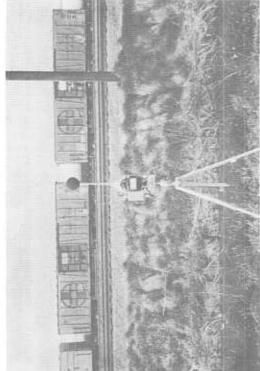


Photographs of Measurement Location 6, Argentine Freight Yard, Santa Fe RR d) Westerly b) Southerly Figure E-8.

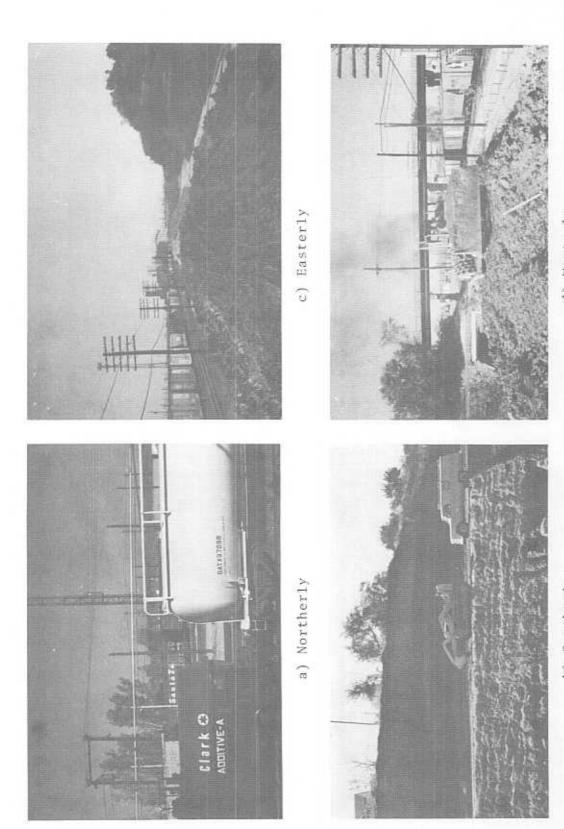


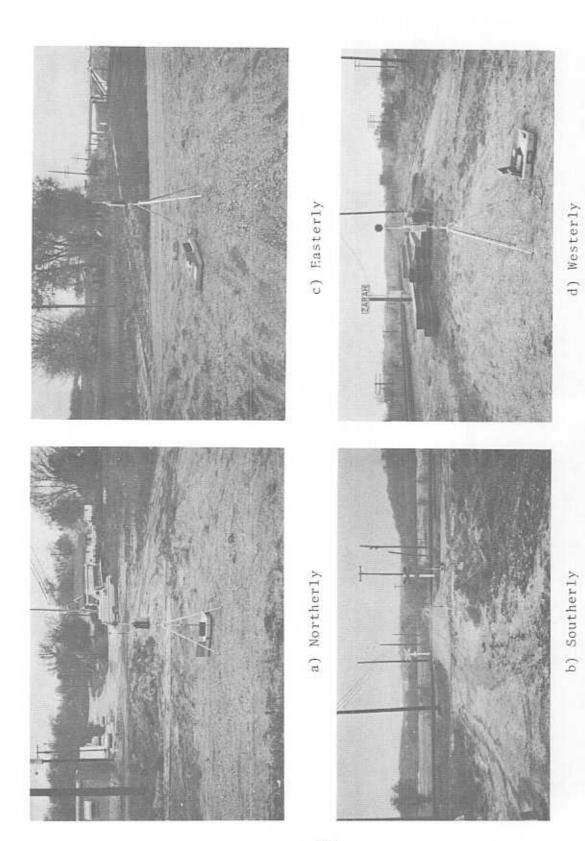
c) Easterly




Photographs of Measurement Location 7, Argentine Freight Yard, Santa Fe RR d) Westerly b) Southerly Figure E-9.

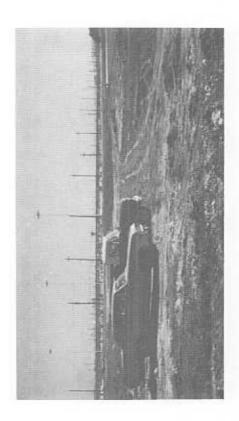
c) Easterly

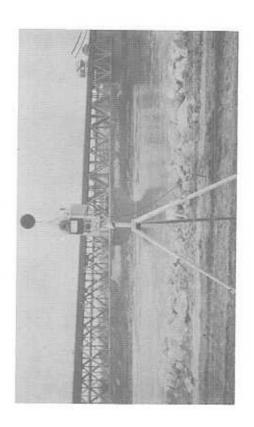

d) Westerly


b) Southerly

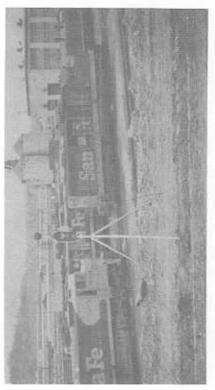
Photographs of Measurement Location 8, Argentine Freight Yard, Santa Fe RR Figure E-10.

a) Northerly

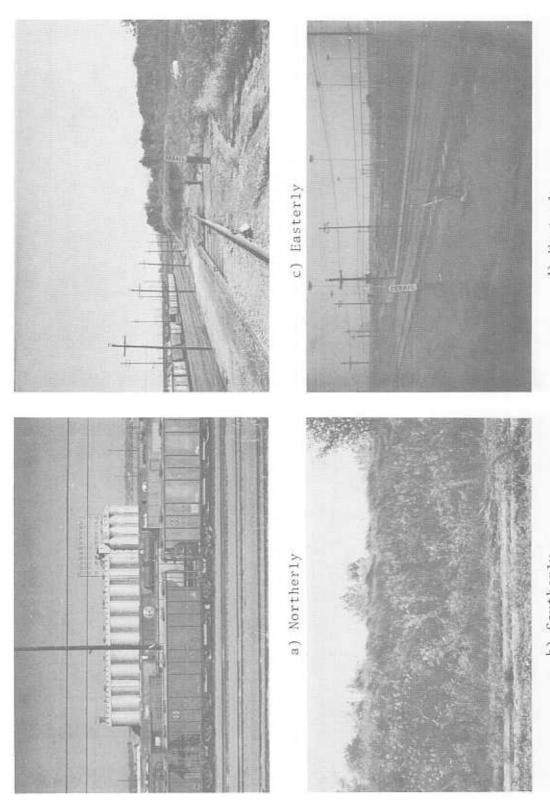

Photographs of Measurement Location 9, Argentine Freight Yard, Santa Fe RR d) Westerly b) Southerly Figure E-11.


Photographs of Measurement Location 10, Argentine Freight Yard, Santa Fe RR Figure E-12.

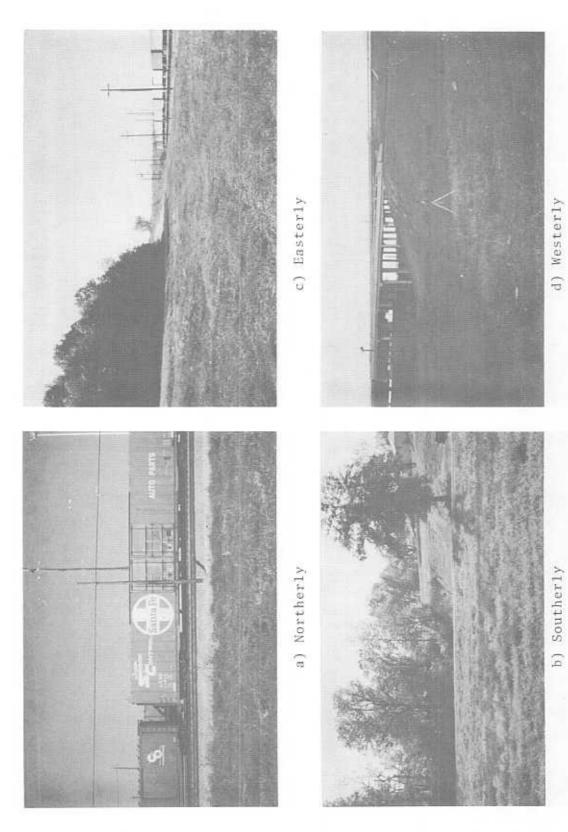
Northeasterly

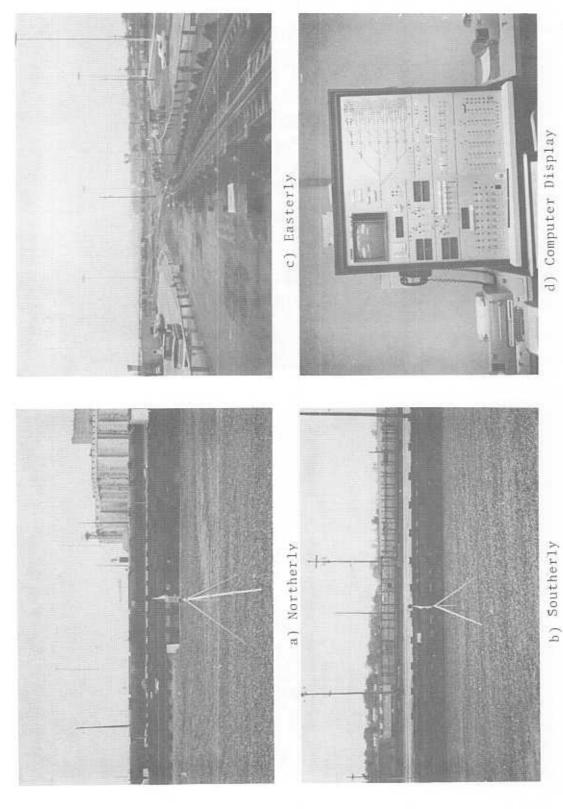


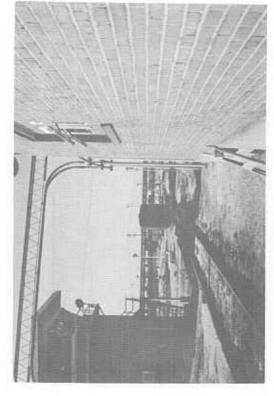
Photographs of Measurement Location 11, Argentine Freight Yard, Santa Fe RR Northwesterly Figure E-13.

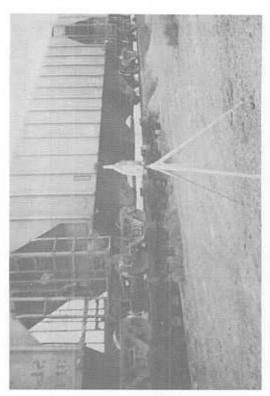


b) Easterly

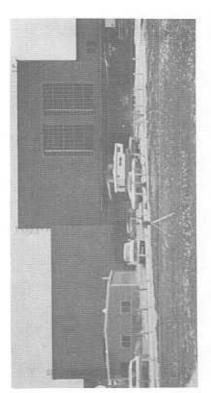



a) Southerly Photographs of Measurement Location 12, Argentine Freight Yard, Santa Fe RR Figure E-14.

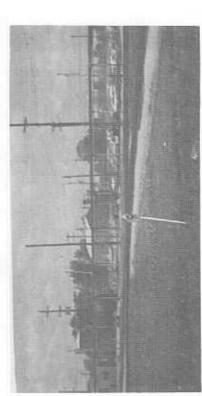

Photographs of Measurement Location 13, Argentine Freight Yard, Sante Fe RR d) Westerly b) Southerly Figure E-15.



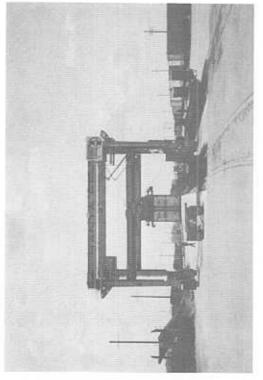
Photographs of Measurement Location 14, Argentine Freight Yard, Santa Fe RR Figure E-16.



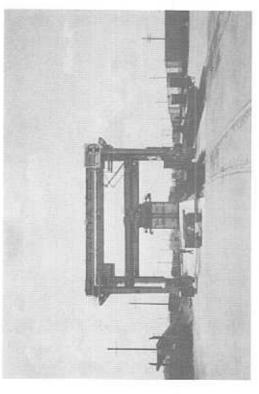
Photographs of Measurement Location 15, Argentine Freight Yard, Santa Fe RR Figure E-17.



Photograph of Measurement Location 16, Argentine Freight Yard, Santa Fe RR d) Westerly b) Southerly Figure E-18.



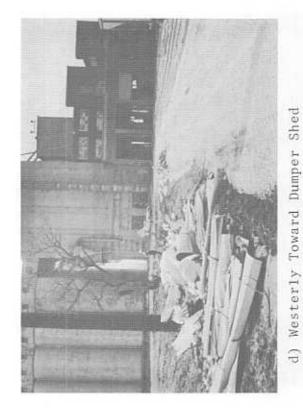
a) Northerly



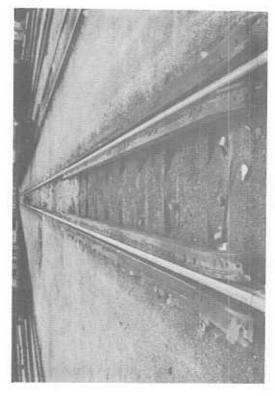
b) Southerly

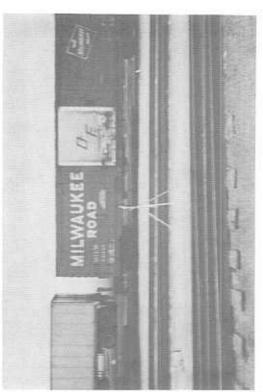
Photographs of Measurement Location 17, Argentine Freight Yard, Santa Fe RR Figure E-19.

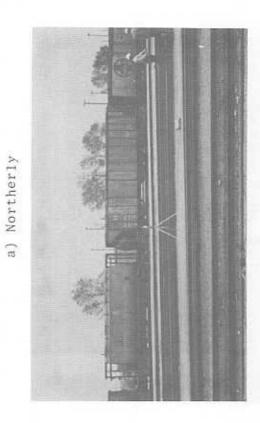
a) Moving into Position



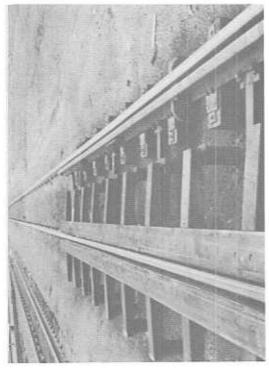
b) Lifting Box Off Trailer



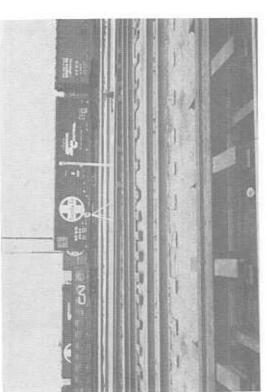

a) Northerly - Point of Impact

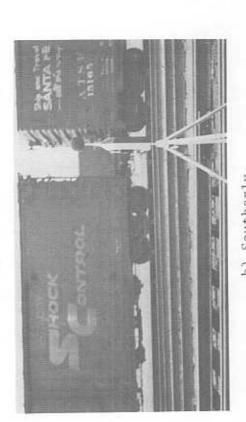


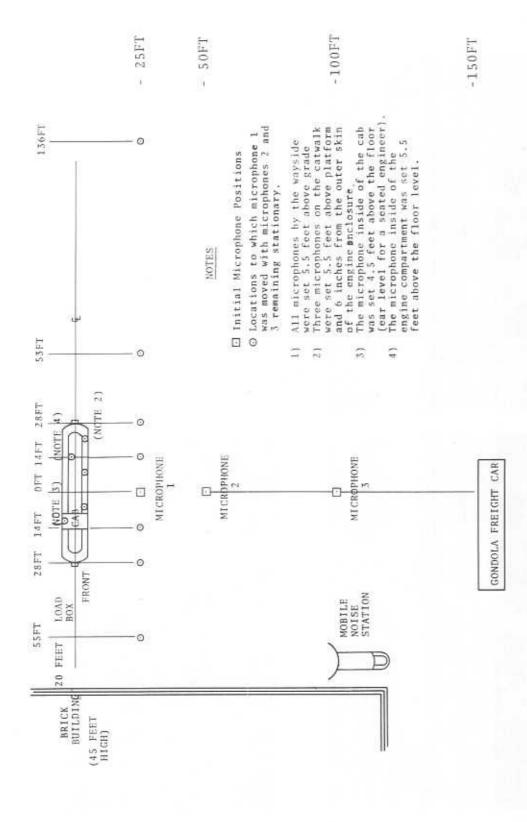
Photographs of Measurement Location 19, Argentine Freight Yard, Santa Fe RR Figure E-21.

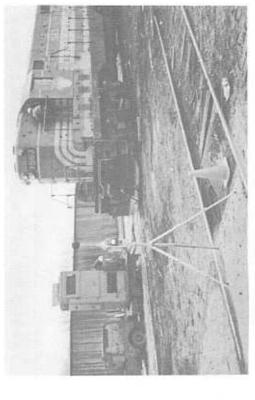


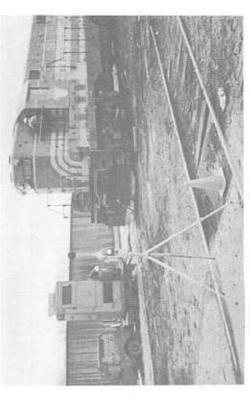
c) Spring-loaded Inert Retarder




Photographs of Measurement Location 20, Argentine Freight Yard, Sante Fe RR b) Southerly Figure E-22.


c) Weight-Balanced Inert Retarder


a) Northerly


Photographs of Measurement Location 21, Argentine Freight Yard, Santa Fe RR b) Southerly Figure E-23.

Measuring System Locations, Static-Locomotive Noise-Level Measurements, BEMRR, Iron Horse Park, Billerica MA, 3/21/73 Figure E-24.

Three Microphones Offset 25, 50, and 100 Feet a)

b) Moveable Microphone 55 Feet to Left of its Position


Photographs of Measurement Site, Static-Locomotive Measurements, B&MRR, Locomotive-Repair Facility, Iron Horse Park, Billerica MA c) Moveable Microphone on Catwalk Platform Figure E-25.

Figure E-26. Photograph of Somerville Hump Yard, BAMRR, Somerville MA, View from Control Tower

Figure E-27. Photograph of FWD Wagner Model P-70, Fork-Lift Truck, B&MRR, Piggyback Yard 7, Charlestown MA

Measuring System Locations Trackside, Penn Central RR, New York-to-Washington Line, Plainsboro NJ, 2600 feet North of Milepost 46, 5/23/72 Figure E-28.

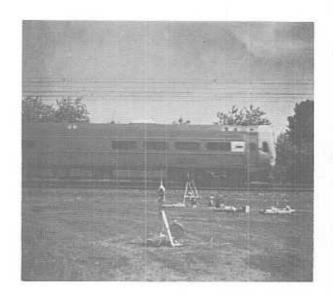


Figure E-29. Photograph of Easterly View of Measurement Site, Plainsboro NJ.

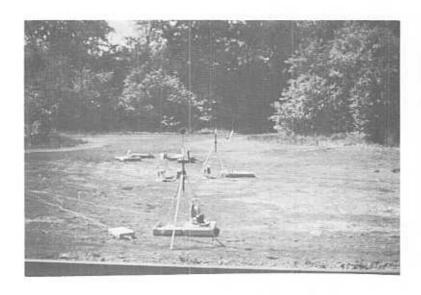


Figure E-30. Photograph of Westerly View of Measurement Site, Plainsboro NJ

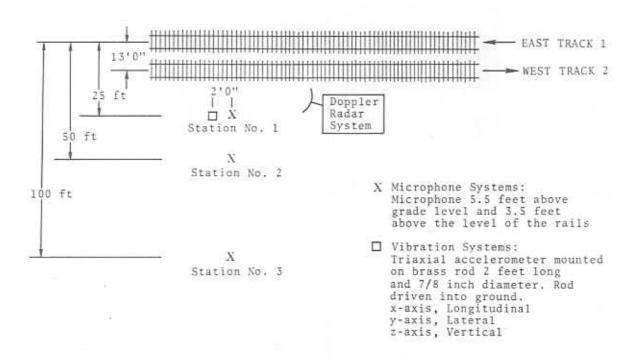


Figure E-31. Measurement System Locations, Trackside, Penn Central RR, Boston-to-New York Line, West Mansfield MA, 1310 feet East of Milepost 201, 9/20-26/72

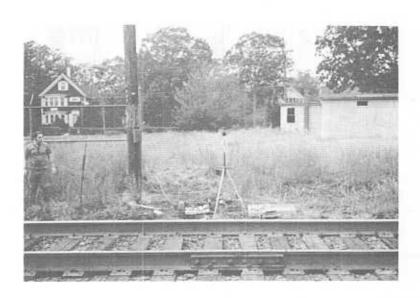



Figure E-32. Photograph of Northerly View of Measurement Site, West Mansfield MA

Figure E-33. Photograph of Southerly View of Measurement Site, West Mansfield MA

APPENDIX F
NOISE MEASUREMENT AND DATA-REDUCTION SYSTEMS

NOISE-MEASURING SYSTEM

Figure F-1 depicts the noise data-gathering equipment used at the wayside measuring stations in Plainsboro NJ, and West Mansfield and Billerica MA.

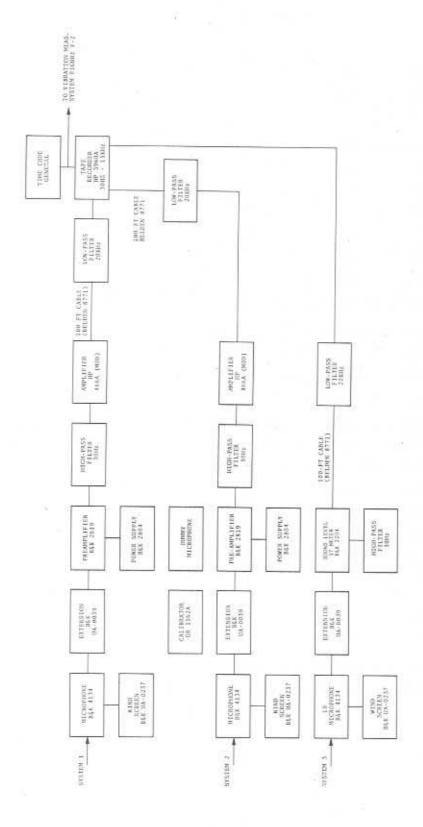

A 4-channel magnetic tape recorder, capable of essentially flat recordings from 30 Hz to 15 KHz, was used. The recorder was operated in the direct mode at a tape speed of 3-3/4 inches per second. The dynamic range of the recorder and measuring system was 50 dB.

Figure F-2 depicts the portable measuring systems used in all other areas. In this case, a 2-channel recorder was used operating at 7-1/2 inches per second in the direct mode.

Before each run, a short verbal annotation was recorded on tape giving the following: date, time, location, tape number, tape recorder channels used, and gain setting for each channel.

A calibration signal of 1000 Hz at a level of 114 dB re 20 microPascal was recorded on tape before and after each run to provide a reference level for the data reduction instrumentation and to detect any system instability. The calibrator used was a General Radio Model 1562A. In this calibrator, the signal is generated by a solid state oscillator driving a small magnetic loudspeaker. The calibrator is placed on the microphone, and the resultant signal at the specified sound pressure level is fed through the system and recorded on tape. In addition, a passive microphone simulator was substituted for the microphone to determine the minimum discernible sound pressure level (noise floor) for the system. This signal was also preserved on tape.

The measuring and analysis systems conforms to Society of Automotive Engineers' Standard SAE J184.

Block Diagram - Three-Microphone Noise-Measuring System Figure F-1.

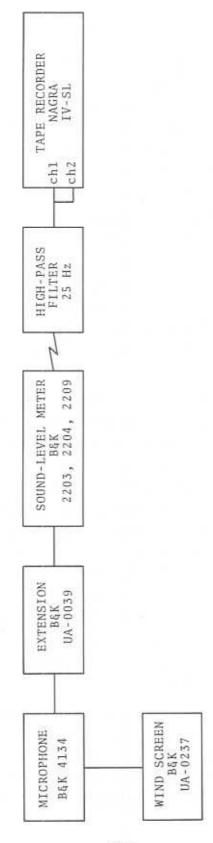


Figure F-2. Block Diagram - Portable Noise-Measuring System

Noise-Data Reduction

The configuration of the noise data reduction system is shown in figure F-3. The noise data plus the calibration signal recorded on magnetic tape at the test site were reproduced and fed to a General Radio (GR) 1921 Real Time Analyzing System made up of a GR 1925 Multifilter and a GR 1926 Multichannel RMS Detector. The necessary gain adjustments were made in the multifilter and graphic level recorder with the calibration signals.

The GR 1921 multifilter contains a set of 30 parallel one-third octave band filter channels ranging from 25 Hz to 20 kHz, plus additional channels with standard "A," "B," and "C" sound level meter weighting networks and an unfiltered channel with a flat frequency response "F." The output of the "A" weighted channel was selected and fed to the graphic level recorder to produce a chart of noise level versus time (time history) of all recorded data.

All 34 outputs from the multifilter are fed into the multichannel detector. The multichannel detector simultaneously computes the root-mean-square (rms) level for each channel and converts this level to a digital output. Single integration or measurement periods are adjustable from 1/8 to 32 seconds. A statistical analysis of the measured noise was obtained by programming the detector to integrate for one eighth second, compute the dB value of the "A" weighted filter output, and provide a binary-coded decimal signal to the Wang Computing Calculator eight times every second. This computer counted and totaled the number of samples at each sound level for a selected time period, and a punched tape was produced. These data were subsequently entered into a time-shared computer to produce statistical analysis printouts contained in Appendix A.

The statistical analyses contain a histogram presentation of dBA value versus frequency of occurrence and a probability distribution of level versus probability of exceedance. Selected indexes were also calculated and tabulated; e.g., average noiselevel dBA, standard deviation, energy mean, range of values

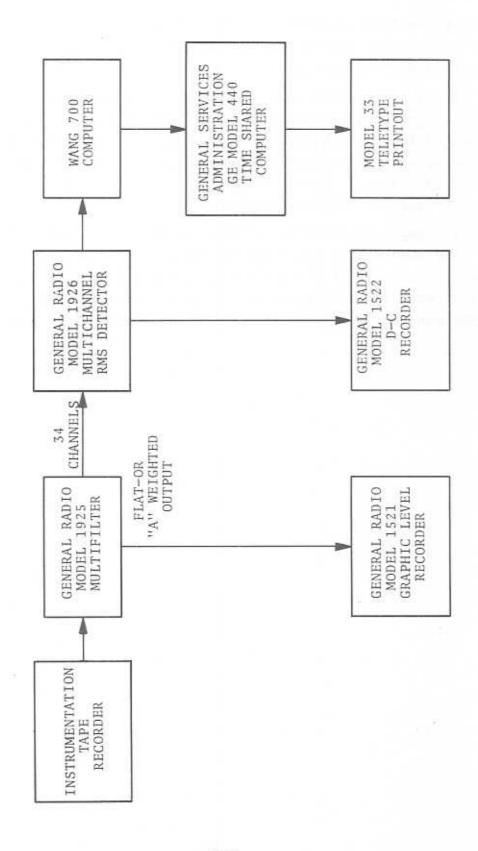
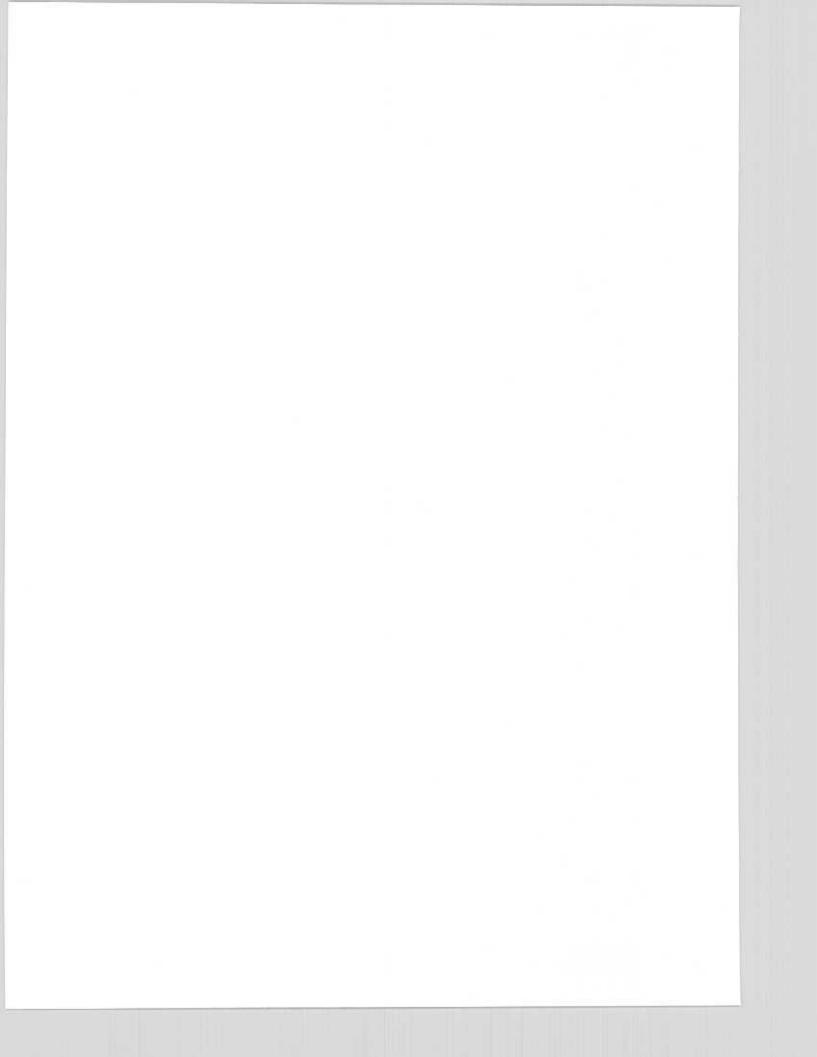
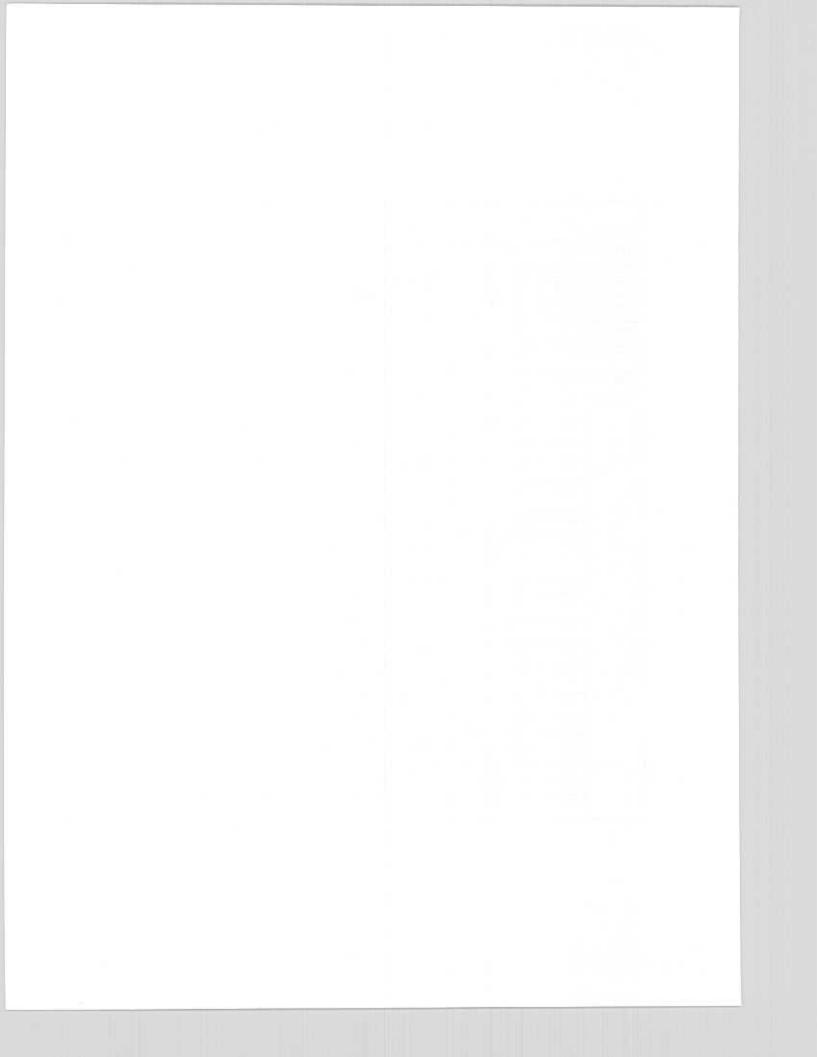



Figure F-3. Block Diagram - Noise Data-Reduction System

measured, median, selected percentiles and deciles, the noise pollution level, and the Walsh-Healey Exposure index. A complete description of these indexes is contained in Appendix H.


Special selected events are analyzed in detail for their one-third octave band frequency spectra using this equipment and the GR1522 dc Recorder which in conjunction with the GR1926 Multichannel rms Detector provides a hard copy bar graph of level (dB) versus one-third octave frequency bands from 25 Hz to 20 kHz including the flat "F" and "A" weighted outputs.

The multichannel detector is programmed to integrate over the time interval of the selected event or portion thereof, compute the level in dB for all 32 channels, and provide a DC output to the recorder. The recorder provides a hard copy of level (dB) versus one-third octave bands (frequency spectra) for the event. APPENDIX G
METEOROLOGICAL DATA

METEOROLOGICAL DATA

LOCATION		DATE	TIME hours	TEMP.	RELATIVE HUMIDITY percent	BAROMETRIC PRESSURE mmHg	WIND		
							VEL. mph	DIR,	SKY
PLAINSBORO NJ		23 MAY 1972	1000-1710	70-78	20	742	0-5	NW	CLEAR, SUNNY
WEST MANSFIELD MA		20 SEP 1972	1800-2100	40	92	742	CALM		CLEAR
WEST MANSFIELD MA		26 SEP 1972	1600-2100	63-65	90	726	3-5	SW	CLEAR
IRON HORSE PARK BILLERICA MA		21 MAR 1973	1000-1400	36-38	46-57	767	0-3	NE	CLOUDY, OVERCAST
SOMERVILLE MA		28 MAR 1973	0900-1200	4.5	53	770	5-10	NE	CLEAR, SUNNY
CHARLESTOWN MA		29 MAR 1973	0900-1200	40	50	77.5	5-8	E	CLEAR, SUNNY
KANSAS C	ITY KS								
Location	- 1	24 APR 1973	0590-1010	63	61	734	5-8	Е	SCATTERE
	2	24 APR 1973	1151-1211	64	60	734	5-10	Е	SCATTERE!
	3	24 APR 1973	1527-1547	65	63	735	5-10	NE	CLOUDY
	4	25 APR 1973	0936-0956	66	68	735	8-13	NE	SCATTERES CLOUDS
	5	25 APR 1973	1138-1158	66	68	735	8-10	NE	SCATTERE CLOUDS
	6	25 APR 1973	1500-1520	68	48	718	15-20	E	SUNNY
	7	25 APR 1973	1547-1607	67	42	727	15-20	NE	SUNNY
	8	25 APR 1973	1648-1708	63	50	732	10-18	E	SUNNY
	9	25 APR 1973	2251-2311	52	7.8	742	3-5	NE	CLEAR NIGHT
	10	26 APR 1973	1045-1105	5.6	7.0	740	5-15	NE	CLOUBY
	111	25 APR 1973	2302-2322	52	78	742	3-5	NE	CLEAR NIGHT
	12	24 APR 1973	1054-1114	6.4	60	734	5-8	Е	SCATTERE CLOUDS
	13	26 APR 1973	0952-1012	56	7.0	740	8-10	NE	SCATTERE CLOUDS
	1 14	26 APR 1973	1036-1056	56	7.0	740	8-10	NE	SCATTERE CLOUDS
	15	25 APR 1973	0926-0943	66	68	7.35	5-B	NE	SCATTERE CLOUDS
	16	24 APR 1973	1631-1645	65	53	735	5-8	NE	CLOUDY
	17	25 APR 1973	1630-1645	67	42	727	5+8	NE	SUNNY
	18	25 APR 1973	1400	66	68	735	8-10	NE	SUNNY
	19	25 APR 1973	1500	66	68	735	8-10	NE	SUNNY.
	20	25 APR 1973	1100	66	68	735	3-4	E	SUNNY
	21	25 APR 1973	1000	66	68	735	3-4	Е	SCATTERE CLOUDS

APPENDIX H
DEFINITION OF TERMS AND
CALCULATED VALUES

DEFINITION OF TERMS

Term	Definition					
A-weighted (dBA)	Sound level obtained by measuring the sound pressure through a filter network having a frequency response (A-weight) conforming to the American National Standards Institute (ANSI, S1.4, 1971)					
Sound Level Reference	20 microNewton per square meter or 20 microPascal					
Passby	Passage of vehicle by fixed measur- ing station					
Time History	Graphic recording of variations of level measured versus time					
Wayside	Along side of the railroad right-of- way					
Line-haul	Freight operations					
Retarder	A device used in a rail classifica- tion yard which exerts a frictional force against the wheels of a rail- road car for the purpose of retard- ing (slowing) its speed					
Active Retarder	A controlled retarder which exerts a varying force by electric or electric-pneumatic means					
Inert Retarder	A non-controlled retarder which exerts a fixed preset force					
Load Box	A resistive load in which the power generated by a locomotive during static testing is dissipated as heat. This power is normally supplied to the engine's traction motors					

Term	Definition				
Median Noise Level (L50)	Sound Level (dBA) exceeded 50-percent of the total measurement time				
x-percent decile (Lx)	Sound Level dBA exceeded x-percent of the total measurement time				
Noise-Pollution Level ($L_{\mbox{NP}}$)	A composite index (see calculation B6)				
L eq	"Energy mean" of the noise level (see calculation B5).				
Temporal	Temporary, Transient				

CALCULATIONS

To describe the temporal characteristics of the noise data gathered, a statistical analysis of sound pressure level samples was performed. RMS sound pressure level samples were taken using an integration time of one-eighth second at a sample rate of eight samples per second to obtain the information contained in Appendix A. The frequency response characteristics of the samples conformed to ANSI Standard for Type 1 Sound Level Meters, S1.4, 1971 for "A" weighted sound level.

The following terms and equations were used to compute the statistical and single-number indexes appearing in this report:

A. BASIC TERMS

- 1. Total samples obtained: N
- Total number of Sound Pressure Levels (from lowest level containing samples to highest level containing samples, inclusive): M
- 3. Sound Pressure Level (lowest to highest) ${\rm SPL}_1$, ${\rm SPL}_2$, ..., ${\rm SPL}_{\rm M}$
- 4. Samples at each Sound Pressure Level: C_1 , C_2 , ..., C_M
- 5. Relationships

$$a. \quad \sum_{i=1}^{M} C_{i} = N$$

b.
$$SPL_M - SPL_1 + 1 = M$$

6. dB ("A" Weight). Sound level obtained by measuring through a filter network having a frequency response (A weight) conforming to American National Standards Institute (ANSI), S1.4, 1971. Reference sound level, 20 microNewtons per square meter.

B. STATISTICAL EQUATIONS

1. Cumulative Distribution, percent (D_c)

$$D_{c} i = \frac{CM + CM-1 + ... + Ci}{N}$$
 (100)

2. Statistical Distribution, percent (D_s)

$$D_S i = \frac{Ci}{N}$$
 (100) $i = 1, 2, ..., M$

3. Average (Arithemetic Mean, SPL)

$$\overline{SPL} = \sum_{i=1}^{M} \frac{C_i SPL_i}{N}$$

4. Standard Deviation about Averages σ

$$\sigma = \sqrt[4]{\frac{1}{N-1}} \sum_{i=1}^{N} c_i (SPL_i - \overline{SPL})^2$$

5. Energy Mean (L eq) $L \text{ eq} = 10 \text{ log}_{10}$ $\sum_{i=1}^{M} C_i \text{ lo}$

6. Noise-Pollution Level (L_{NP})

$$L_{NP}$$
 = L eq + 2.56 σ

- 7. Percentile Noise Levels, dBA
 - a. 1 percent Percentile (L₁) = Level exceeded by 1 percent of total samples
 - b. 10 percent Decile (L_{10}) = Level exceeded by 10 percent of total samples

- c. Median (L_{50}) = Level exceeded by 50 percent of total samples
- d. 90 percent Decile (L_{90}) = Level exceeded by 90 percent of total samples
- e. 99 percent Percentile (L_{99}) = Level exceeded by 99 percent of total samples.

These percentile levels are obtained from linear interpolation of the percentage-cumulative distribution values.

Range: Highest sound level containing samples minus the lowest sound level containing samples

Range = SPL_M - SPL_1

- 9. Occupational Safety and Health Act of 1970 (O.S.H.A.)
 - a. The O.S.H.A. is a Federal regulation setting standards to assure safe and healthful working conditions for working men and women. One of the standards set by O.S.H.A. is concerned with the noise an employee may be exposed to during an eight-hour workday. The noise standards published by the Secretary of Labor in the Federal Register, date 29 May 1971, are identical to those of the Walsh-Healey Act of 1969.

The O.S.H.A. exposure percentage is a measure of the noise levels in terms of Walsh-Healey exposures normalized to an eight-hour workday. When the percentage reaches or exceeds 100, it means that exposure of a worker to that same noise climate for 8 hours would be in violation of the Act. Additionally, when any one-time exposure over 115 dBA is exceeded during the measurement period, the exposure percentage number will be followed by a "V" indicating a violation even if the number is less than 100 percent.

b. The equation used to calculate the O.S.H.A. exposure percentage is as follows:

$$W1 = \left[\frac{W2}{6} + \frac{W3}{4} + \frac{W4}{3} + \frac{W5}{2} + \frac{W6}{1.5} + \frac{W7}{1} + \frac{W8}{0.5} + \frac{W9}{0.25}\right] \times \frac{800}{N}$$

where

W1 = 0.S.H.A. exposure in percent

W2 = Number of samples in the 90 to 92 dBA band

W3 = Number of samples in the 92 to 95 dBA band

W4 = Number of samples in the 95 to 97 dBA band

W5 = Number of samples in the 97 to 100 dBA band

W6 = Number of samples in the 100 to 102 dBA band

W7 = Number of samples in the 102 to 105 dBA band

W8 = Number of samples in the 105 to 110 dBA band

W9 = Number of samples in the 110 to 115 dBA band

N = Total number of samples where one sample represents one-eight second.