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Probabilistic Methodology for Estimation of Number and Economic Loss 
(Cost) of Future Landslides in the San Francisco Bay Region, California 

 
Robert A. Crovelli and Jeffrey A. Coe 

 
 

ABSTRACT 
 
The Probabilistic Landslide Assessment Cost Estimation System (PLACES) presented in 
this report estimates the number and economic loss (cost) of landslides during a specified 
future time in individual areas, and then calculates the sum of those estimates. The 
analytic probabilistic methodology is based upon conditional probability theory and laws 
of expectation and variance. The probabilistic methodology is expressed in the form of a 
Microsoft Excel computer spreadsheet program. Using historical records, the PLACES 
spreadsheet is used to estimate the number of future damaging landslides and total 
damage, as economic loss, from future landslides caused by rainstorms in 10 counties of 
the San Francisco Bay region in California.  Estimates are made for any future 5-year 
period of time.     

 
The estimated total number of future damaging landslides for the entire 10-county region 
during any future 5-year period of time is about 330. Santa Cruz County has the highest 
estimated number of damaging landslides (about 90), whereas Napa, San Francisco, and 
Solano Counties have the lowest estimated number of damaging landslides (5–6 each). 
Estimated direct costs from future damaging landslides for the entire 10-county region for 
any future 5-year period are about US $76 million (year 2000 dollars). San Mateo County 
has the highest estimated costs ($16.62 million), and Solano County has the lowest 
estimated costs (about $0.90 million).  Estimated direct costs are also subdivided into 
public and private costs. 
 

 
KEY WORDS: PLACES, probability, spreadsheet, landslide, cost, loss, risk, San 
Francisco Bay, California. 
 
 

INTRODUCTION 
 
Landslides occur nearly every year in the San Francisco Bay region of California. Most 
landslides occur during the late fall through early spring seasons, typically between 
December and April. During the fall through spring seasons of 1968–69, 1972–73, 1981–
82, and 1997–98, landslides were widespread and caused extensive damage both to 
public and private property.  Following these years, the U.S. Geological Survey (USGS) 
mapped locations of landslides that caused damage, and compiled the direct costs of 
damage to public and private property (Taylor and Brabb, 1972; Taylor and others, 1975; 
Creasy, 1988; Godt and others, 1999). The mapping and compilation were done for 10 
counties in the region: Alameda, Contra Costa, Marin, Napa, San Francisco, Santa Clara, 
Santa Cruz, San Mateo, Solano, and Sonoma.  Total numbers of, and costs from, 
damaging landslides in each of these counties are listed in table 1.   
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The length of the historical record used in this report (referred to as “past time” in table 
1) is 39 years (1968/69–2006/07) for all counties except Santa Cruz, which is 35 years 
because data were not collected in Santa Cruz County in 1968–69 and 1972–73.  Even 
though 39 and 35 years were used as the length of record, during this timeframe, we only 
had data available for the fall through spring seasons of 1968–69, 1972–73, 1981–82, and 
1997–98. Because of this fact, the historical record used in this report is incomplete and 
all estimates of future landslide numbers and costs must be considered minimum 
estimates.  This statement is true for several reasons, including the following: (1) some 
years between 1968 and present (September 2007) have had landslides that caused 
damage (for examples, see Brown, 1988) that were not recorded by the USGS, (2) there 
were undoubtedly some landslides that caused damage during the years when records 
were kept (that is, 1968–69, 1972–73, 1981–82, and 1997–98) that were missed by the 
various USGS compilers, and (3) historical records of costs from landslides triggered by 
earthquakes were not included in the study.  Additional limitations of our analysis are 
that (1) we do not take into account any future increases or decreases in precipitation due 
to changing climatic conditions; we assume that precipitation conditions in the future will 
be similar to those reflected by the historical record, and (2) we do not explicitly account 
for future patterns of growth in public and private development that may affect future 
numbers and costs of damaging landslides. 
      
To analyze the historical cost data, we have used a newly developed Probabilistic 
Landslide Assessment Cost Estimation System (PLACES) to estimate the mean (or 
expected) number of future damaging landslides and the mean economic losses from the 
landslides.  Along with mean estimates, PLACES calculates, for any specified future 
time, prediction interval (low, high) estimates at any specified prediction probability level 
(percent) and exceedance probabilities at any specified loss exceedance level (dollars).  

 
PLACES significantly expands on probability methods for landslide data that were 
previously described by Crovelli (2000). An application of the methods described by 
Crovelli (2000) using historical landslide data from Seattle was described by Coe and 
others (2004).  PLACES expands on these previous studies primarily through the addition 
of methods to partition and aggregate landslide costs. New features include the concept of 
landslide clusters and landslides per cluster, costs of damage to public and private 
property, aggregation of totals under various degrees of correlation, and the inclusion of 
the complete historical data set from the San Francisco Bay region. The historical record 
of landslide costs in the San Francisco Bay region, which is unique because of the 
internal consistency of the data and the longevity of the compilation effort, serves as an 
ideal data set for an application of PLACES.  
 
PLACES uses probabilistic methodology for analysis of a particular set of landslide 
random variables. A random variable is a variable that has a probability distribution, 
along with a mean and a standard deviation. The PLACES probabilistic methodology 
involves the following random variables and their relationships, which form an outline of 
the probabilistic methodology section of this report: 
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(1) Number of landslide clusters 
 
(2) Recurrence interval of landslide clusters 
 
(3) Number of landslides per landslide cluster 
 
(4) Cost of landslides per landslide cluster 
 
(5) Total number of landslides — 
      (5) is a function of (1) and (3). 
 
(6) Total cost of landslides — 
      (6) is a function of (1) and (4). 
 
(7) Fraction or percentage/100 (public and private) 
       
(8) Fraction of total cost of landslides (public and private) — 
      (8) is a function of (6) and (7). 
 
(9) Aggregation of total numbers of landslides — 
      (9) is a function of (5). 
 
(10) Aggregation of total costs of landslides — 
        (10) is individually a function of (6) and then (8). 
 
 
Application and discussion sections follow the detailed description of the probabilistic 
methodology.  
 
 

PROBABILISTIC METHODOLOGY 
 

PLACES was designed from probabilistic methodology to calculate estimates of the 
number and economic loss (cost) of landslides during a specified future time in individual 
areas, and then calculate the sum of those estimates. The analytic probabilistic 
methodology was developed by deriving the necessary mathematical equations based 
upon conditional probability theory and laws of expectation and variance.  The 
derivations of the necessary equations are given in the following sections.   

 
 

Number of Landslide Clusters 
 
Landslide cluster: A group of one or more landslides that occurs within an individual 
water year. 
 
Water year: The year-long period between July 1 and June 30 of the following year. 
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Discrete-time probability model for occurrence of landslide clusters: Binomial process 
where there is a series of water years and within each water year a landslide cluster may 
or may not occur. 
 
Random variable N(t): Number of landslide clusters that occur during a time period of t 
water years in a particular area. 
 
Range of N(t): {0, 1, …, t} 
 
Assumptions: There are t independent water years.  Within each water year a landslide 
cluster may or may not occur.  The probability of a landslide cluster in a water year, 
denoted by p, remains constant from water year to water year. 
 
Probability distribution of N(t): Binomial distribution with parameters t and p. 
 
Parameter t: Specified number of water years. 
 
Parameter p: Probability of a landslide cluster in a water year. 
 
Probability mass function: P{N(t) = n} = C(t,n) pn (1 – p)t-n 
 
Mean or expected value of N(t): E[N(t)] = tp 
 
Standard deviation of N(t): S[N(t)] = [tp(1 – p)]1/2 

 
Exceedance probability: Probability of one or more clusters during a time period of t 
water years. 
 
Exceedance probability: P{N(t) ≥ 1} = 1 – (1 – p)t 

 
Estimator of parameter p: P = N(t*)/t* where t* denotes observed fixed time. 
 
 

Recurrence Interval of Landslide Clusters 
 
Random variable R: Recurrence interval is the number of water years from one landslide 
cluster until the next cluster. 
 
Range of R: {1, 2, …} 
 
Assumptions: There is a series of independent water years after a landslide cluster occurs 
until the next cluster occurs. Within each water year a landslide cluster may or may not 
occur.  The probability of a landslide cluster in a water year, denoted by p, remains 
constant from water year to water year. 
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Probability distribution of R: Geometric distribution with parameter p. 
 
Parameter p: Probability of a landslide cluster in a water year. 
 
Probability mass function: P{R = r} = p(1 – p)r-1 
 
Mean recurrence interval is the average time between landslide clusters. 
 
Mean or expected value of R: E[R] = 1/p 
 
Standard deviation of R: S[R] = [(1 – p)/p2]1/2 
 
Exceedance probability: Probability of a recurrence interval being greater than r water 
years. 
 
Exceedance probability: P{R > r} = (1 – p)r 
 
Estimator of parameter p: P = N(t*)/t* where t* denotes observed fixed time. 

 
 

Number of Landslides per Landslide Cluster 
 
Random variable L: Number of landslides per landslide cluster. 
 
Range of L: {1, 2, …} 
 
Mean or expected value of L: E[L]  
 
Standard deviation of L: S[L]  
 
Estimator of E[L]: Sample mean ML, based on n observed landslide clusters. 
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Cost of Landslides per Landslide Cluster 
 
Random variable X: Cost of landslides per landslide cluster. 
 
Range of X: (0, ∞) 
 
Mean or expected value of X: E[X]  
 
Standard deviation of X: S[X]  
 
Estimator of E[X]: Sample mean MX, based on n observed landslide clusters. 
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Estimator of S[X]: Sample standard deviation SX, based on n observed landslide clusters. 
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Total Number of Landslides 
 
Random variable M(t): Total number of landslides from all of the landslide clusters 
during a time period of t water years in a particular area.  
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where random variable Li: Number of landslides from the ith landslide cluster. 
 
Range of M(t): {n, n+1, …} 
 
Assumptions: The Li (i = 1, 2, …) are independent and identically distributed random 
variables which are also independent of N(t). 
 
The random variable M(t) is equal to the sum of a random number N(t) of random 
variables Li. The mean and standard deviation of M(t) can be derived from the theory of 
conditional probability and conditional expectation (Ross, 2000).  
 
The derivation of the formula for the mean of M(t) is given in Ross (2000, p. 103–104). 
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Mean or expected value of M(t): E[M(t)] = E[N(t)]E[L] 
 
The derivation of the formula for the standard deviation of M(t) is given in Ross (2000, p. 
111–112). 
 
Standard deviation of M(t): S[M(t)] = {E[N(t)](S[L])2 + (E[L])2(S[N(t)])2}1/2 
 
 

Total Cost of Landslides 
 
Random variable Y(t): Total cost of landslides from all of the landslide clusters during a 
time period of t water years in a particular area. 
 

∑=
)(

)(
tN

XtY
=1i

i

where random variable Xi: Cost of landslides from the ith landslide cluster. 
 
Range of Y(t): (0, ∞) 
 
Assumptions: The Xi (i = 1, 2, …) are independent and identically distributed random 
variables that are also independent of N(t). 
 
The random variable Y(t) is equal to the sum of a random number N(t) of random 
variables Xi. The mean and standard deviation of Y(t) can be derived from the theory of 
conditional probability and conditional expectation (Ross, 2000). 
 
The derivation of the formula for the mean of Y(t) is given in Ross (2000, p. 103–104). 
 
Mean or expected value of Y(t): μY = E[Y(t)] = E[N(t)]E[X] 
 
The derivation of the formula for the standard deviation of Y(t) is given in Ross (2000, p. 
111–112). 
 
Standard deviation of Y(t): σY = S[Y(t)] = {E[N(t)](S[X])2 + (E[X])2(S[N(t)])2}1/2 

 
 

Probability Distribution for Total Cost of Landslides 
 
Crovelli (1992) showed that the lognormal probability distribution is a good approximate 
distribution for the type of random variable Y(t). Hence, the fractiles (fractiles are the 
complement of percentiles) of Y(t) can be approximated by using the lognormal 
distribution.  
 
Y(t) is a sum of positive random variables and, therefore, is also a positive random 
variable. It is well known that sums of random variables tend to have a bell-shaped 
distribution and, by the Central Limit Theorem, approach the normal distribution. The 
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lognormal distribution is a positive bell-shaped distribution. We also have the fo
statement from the updated classical reference book on continuous probability 
distributions (Johnson and others, 1994, p. 239): “The two-parameter [lognormal] 
distribution is, in at least one important respect, a more realistic representation of 
distributions of characters like weight, height, and density than is the normal distribution.
These quantities cannot take negative values, but a normal distribution ascribes positi
probability to such events, while the two-parameter lognormal distribution doe
Furthermore, by taking σ small enough, it is possible to construct a lognormal 
distribution closely resembling any normal distribution. Hence, even if a normal 
distribution is 

llowing 

 
ve 

s not. 

felt to be really appropriate, it might be replaced by a suitable lognormal 
istribution.” 

lculated from the mean μY and standard deviation 
Y of a lognormal random variable Y. 

rs μ and σ are the following well-known formulas (Johnson and 
thers, 1994, p. 212).  

 

d
 
As derived in Crovelli (1992), the characterizing parameters of the lognormal 
distribution, namely μ and σ, can be ca
σ
 
The mean μY and standard deviation σY of a lognormal random variable Y with 
characterizing paramete
o
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Solving the two equations for the lognormal characterizing parameters μ and σ, we get  
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The details of this derivation are given as Theorem 1 in the Appendix. 
 
If one knows the lognormal characterizing parameters, the lognormal fractiles can be 
calculated from the formula 

F100α = e μ + zασ 0 ≤ α ≤ 1
 
where Z is a standard normal random variable and P{Z > zα} = α. 
 
For example, two fractiles of interest in this report are 
 

F95= eμ−1.645σ and F5 = eμ+1.645σ
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There is a 95% chance of exceeding F95, and a 5% chance of exceeding F5. Together, 
the low value of F95 and the high value of F5 form a range of values that is a 90% 
prediction interval for Y(t), the total costs from landslides during a specified time (at a 
90% prediction level). 
 
The reverse problem would be to find the probability of exceeding a specified amount in 
economic loss due to landslides in a particular area during a specified time. That is, given 
yα, find α such that 
 
P{Y(t) > yα} = α 
 
Normalizing 
 

σ
μα

α
−

=
yz ln

 
Now, from zα, find α such that P{Z > zα} = α. 
 
This probabilistic methodology would also apply in the case of the probability 
distribution for total number of landslides. 
 

 
Fraction of Total Cost of Landslides 

 
Public and private costs represent fractions of total cost of landslides.   
  
Random variable Z(t): Fraction of total cost of landslides during a time period of t water 
years in a particular area. 
 
Z(t) = F * Y(t) 
 
where random variable F: Fraction or percentage/100. 
 
The random variable Z(t) is equal to the product of a random fraction F and the random 
variable Y(t). 
 
Range of F: (0, 1) 
 
Range of Z(t): (0, ∞) 
 
Assumption: F and Y(t) are assumed to be independent. 
 
Mean or expected value of F: E[F]  
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Standard deviation of F: S[F]  
 
Estimator of E[F]: Weighted mean MF, based on n observed landslide clusters with 
fractions Fi and (weights) costs per cluster Xi (i = 1, 2, …, n). 
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Estimator of S[F]: Weighted standard deviation SF, based on n observed landslide 
clusters. 
 

 
The derivation of the following formulas for the mean and standard deviation of Z(t) are 
given as Theorem 2 in the Appendix. 
 
Mean or expected value of Z(t): E[Z(t)] = E[F]E[Y(t)] 
 
Standard deviation of Z(t): 
 
S[Z(t)] = {(S[F])2(S[Y(t)])2 + (E[Y(t)])2(S[F])2  + (E[F])2(S[Y(t)])2}1/2 
 
 

Aggregation of Total Costs of Landslides 
 
Random variable W(t): Aggregation of total costs of landslides during a time period of t 
water years in k areas. 
 

where random variable Yi(t) = Yi: Total cost of landslides in the ith area (i = 1, 2, …, k). 
 
Range of W(t): (0, ∞) 
 
The random variable W(t) is equal to the sum of a fixed number k of random variables 
Yi(t). 
 
Mean or expected value of W(t):  
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k

E[W (t)] = ∑E[Yi (t)]
i=1

Variance of W(t): 
 

k

V [W (t)] =∑ ∑V [Yi ]+ 2 Cov(Yi ,Y j )
i j= <1 i

 
where covariance of Yi and Yj: 
 
Cov(Yi ,Y j ) = E[(Yi − E[Yi ])(Y j − E[Y j ])]
 
Correlation coefficient of Yi and Yj: 
 

Cov(Y ,Y )
ρ ij =

i j

σ iσ j

 
where σi = S[Yi]: Standard deviation of Yi 
 
Number of distinct correlation coefficients (i<j): 
 
m = k(k – 1)/2; for example, k = 10, then m = 45. 
 
Variance of W(t): 
 

∑
k

V [W (t)] = σ 2
i + 2∑ρ ijσ iσ j

i=1 i< j

 
Weighted-average correlation coefficient: 
 

∑ρ ijσ iσ j

ρ = i< j
wa ∑σ iσ j

i< j

 
If σi = σ for all i = 1, 2, …, k, then we get the average correlation coefficient: 
 

∑ρ ij

ρwa =
i< j

k(k −1) / 2
 
Variance of W(t): 
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An algebraic relationship: 
 

 
The final general case of variance of W(t): 
 

 
Note that: -1 ≤ ρwa ≤ 1 
 
The special cases are (a) uncorrelation or independence, (b) perfect positive correlation, 
and (c) perfect negative correlation. 
 
(a)  ρwa = 0 ⇒ uncorrelation or independence 
 
(b)  ρwa = 1 ⇒ perfect positive correlation 
 
(c) ρwa = -1 ⇒ perfect negative correlation 
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If σi = σ  for all i = 1, 2, …, k, then 
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For k equal to 25 and 100, respectively, the variance of a sum of random variables with 
equal variances in the case of perfect positive correlation is 25 and 100 times greater than 
the variance of a sum of random variables with equal variances in the case of 
uncorrelation or independence. 
 
For k equal to 25 and 100, respectively, the standard deviation of a sum of random 
variables with equal standard deviations in the case of perfect positive correlation is 5 and 
10 times greater than the standard deviation of a sum of random variables with equal 
standard deviations in the case of uncorrelation or independence. 
 
Remarks concerning ρwa: 
 
1) Estimation of ρwa directly can save considerable effort compared to the estimation of 

the m individual ρij, especially when m is large. 
 
2) Interpretation of ρwa as a measure of the degree of weighted-average correlation of all 

of the random variables is helpful, especially when the value of ρwa can be thought of 
as a decimal fraction (or percentage) lying somewhere between independence (0) and 
perfect positive correlation (1) inclusively.  

 
3) When ρwa = 1, the V[W(t)] is larger than in the case when ρwa = 0. On the other hand, 

when ρwa = -1, the V[W(t)] is smaller than in the case when ρwa = 0. 
 
Also, we have: 
 
In the case of perfect positive correlation, the means, standard deviations, and fractiles 
are additive. 
 
This aggregation method is also used in the aggregation of total numbers of landslides 
where M(t) would replace Y(t). 
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SPREADSHEET AND APPLICATION 
 
The probabilistic methodology presented herein was used to construct a Microsoft Excel 
computer spreadsheet program. Using historical records, the PLACES spreadsheet was 
applied to estimate the number of future landslides, and total damage, as economic loss 
(cost), from future landslides caused by rainstorms in 10 counties of the San Francisco 
Bay region in California. Tables 1 and 2 contain summaries of historical cost data.  These 
historical data were used in PLACES to estimate mean recurrence intervals and 
probabilities of future damaging landslide clusters (table 3); numbers of future landslides 
in a specified amount of time with confidence intervals and exceedance probabilities 
(table 4); and estimates of future total costs, and their aggregation, with prediction 
intervals and exceedance probabilities (table 5). The future specified time of 5 years used 
in the spreadsheet is a reasonable value selected for purely illustrative purposes. Table 6 
contains historical cost data subdivided into public and private costs.  PLACES estimates 
of public costs due to future landslides, and their aggregation, with prediction intervals 
and exceedance probabilities are given in table 7, whereas estimates of private costs due 
to future landslides are given in table 8.  Recall that the historical record of landslides in 
the San Francisco Bay region is incomplete; therefore, all estimates of future numbers 
and costs (tables 3–5, 7–8) must be considered minimum estimates.    

 
 

DISCUSSION 
 
In the spreadsheet as it exists, the estimates of future total numbers and total costs of 
landslides in the San Francisco Bay region are based upon historical records from the 
region. When estimates of the future are based upon historical records, this could be 
referred to as a “historical” scenario. An assumption of the historical scenario is that the 
future will be similar to the past.  In general, this assumption may or may not be 
acceptable in various applications. The problem is that everything in the physical world is 
continuously changing — nothing stays the same. Our information about the physical 
world is also continuously changing. If we have information that suggests the future will 
be different from the past in a certain “direction,” for example, more landslides in the 
future than in the past, then we might want to modify the historical values of key 
parameters. That is, we might want to attempt some “what-if” scenarios by changing the 
historical values of certain key parameters in the PLACES model; for example, the 
probability of a landslide cluster might be increased. One of the most useful features of 
the PLACES spreadsheet is that we can modify the historical value of a key parameter 
and instantly see the effect on future estimates. 
 
The probabilistic methodology and computer spreadsheet could be modified easily to 
become applicable to other types of hazards and even other types of disciplines. 
Therefore, there could be modifications of the PLACES system itself, besides 
modifications of values of parameters within the system. Two cases of modification of 
two different aspects of the system itself are given below. 
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Case 1: Continuous-Time Model 
 
It would be a very simple procedure to modify the PLACES system itself in the case 
where N(t) has a Poisson distribution (continuous-time probability model) instead of a 
binomial distribution (discrete-time probability model), which would require that R have 
an exponential distribution instead of a geometric distribution while the rest of the system 
would remain exactly the same. 
  
Number of Point Events 
 
Point event: An event that occurs at some time point in continuous time, where time is 
not discretized into one-year increments, as in the case of water years; for example, an 
earthquake. 
 
Continuous-time probability model for occurrence of point events: Poisson process where 
there is a series of random point events in continuous time. 
 
Random variable N(t): Number of point events that occur during time t in a particular 
area. 
 
Range of N(t): {0, 1, 2, …} 
 
Assumptions: The process has independent increments; that is, the numbers of point 
events that occur in disjoint time intervals are independent. The process has stationary 
increments; that is, the distribution of the number of point events that occur in any 
interval of time depends only on the length of the time interval. 
 
Probability distribution of N(t): Poisson distribution with parameters t and λ. 
 
Parameter t: Specified time interval. 
 
Parameter λ: Rate of occurrence of point events. 
 
Probability mass function: P{N(t) = n} = e-λt (λt)n/n! 
 
Mean or expected value of N(t): E[N(t)] = λt 
 
Standard deviation of N(t): S[N(t)] = (λt)1/2 

 
Exceedance probability: Probability of one or more point events during time t. 
 
Exceedance probability: P{N(t) ≥ 1} = 1 – e-λt 

 
Estimator of parameter λ: λ = N(t*)/t* where t* denotes observed fixed time. 
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Recurrence Interval of Point Events 
 
Random variable R: Recurrence interval is the elapsed time between point events. 
 
Range of R: (0, ∞) 
 
Assumption: Probability model for occurrence of the point events is the Poisson process. 
 
Probability distribution of R: Exponential distribution with parameter λ. 
 
Parameter λ: Rate of occurrence of point events. 
 
Probability density function: f(r) = λte-λtr 
 
Mean recurrence interval is the average time between point events. 
 
Mean or expected value of R: E[R] = 1/λ 
 
Standard deviation of R: S[R] = 1/λ 
 
Exceedance probability: Probability of a recurrence interval being greater than time r. 
 
Exceedance probability: P{R > r} = e-λr 

 
Estimator of parameter λ: λ = N(t*)/t* where t* denotes observed fixed time. 
 
 

Case 2: Cluster-of-One Model 
 

In the degenerate case where the cluster always consists of only one single event so that 
the “cluster” would now become the “event,” we have  
 
Random variable L = 1 
 
Mean or expected value of L: E[L] = 1 
 
Standard deviation of L: S[L] = 0 
 
Random variable M(t) = N(t) 
 
Mean or expected value of M(t): E[M(t)] = E[N(t)] 
 
Standard deviation of M(t): S[M(t)] = S[N(t)] 
 
The rest of the system would remain exactly the same.   
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This case would be appropriate for the following situations:  
 

1. Modeling occurrence of seasonal floods (a series of single floods) by the binomial 
process (discrete-time probability model). 

2. Modeling occurrence of earthquakes (a series of single earthquakes) by the 
Poisson process (continuous-time probability model). 

 
 

Reminder: Philosophy of Probability Models 
 
We include this section as a reminder for readers who apply the methodology (or use the 
results) presented in this report.  It is very important to distinguish between hazardous 
processes themselves and our descriptions or models of these processes. At the scale of 
geologic and atmospheric hazards (for example, landslides, earthquakes, floods, 
tsunamis, volcanoes, and storms), nature is deterministic: every hazardous event has a 
cause. We cannot predict exactly when a hazardous event will occur because of the 
limitations to our knowledge of nature. A probability model is a mathematical model that 
incorporates our uncertainty. Probability models are used for purposes of description and 
prediction of physical processes in nature. Randomness is an assumption of probability 
models, not an inherent quality of natural processes. Hazards do not occur at random in 
nature, but they do occur at random in the models. In summary, hazardous processes are 
deterministic; but, because of our limitations when studying hazards, we resort to 
probability models that incorporate our uncertainty. 

 
SUMMARY 

 
This report presents probabilistic methodology (PLACES) that can be used to assess 
numbers and costs of future landslides based on historical data. The probabilistic 
methodology is expressed in the form of a Microsoft Excel computer spreadsheet 
program. Useful features of the methodology and spreadsheet are the following: (1) 
aggregation of totals under various degrees of correlation, (2) flexibility to modify 
parameter values within the system using the PLACES spreadsheet and instantly see the 
effect on future estimates, and (3) flexibility to modify the system itself using alternative 
probability models — two important cases are included in the report.   
 
The PLACES spreadsheet is used to estimate the number of future damaging landslides, 
and total damage, as economic loss, from future landslides caused by rainstorms in 10 
counties of the San Francisco Bay region in California.  Estimates are made for any 
future 5-year period of time.  The estimated total number of future damaging landslides 
for the entire 10 county region during any given 5-year period of time is about 330. Santa 
Cruz County has the highest estimated number of damaging landslides (about 90), 
whereas Napa, San Francisco, and Solano Counties have the lowest estimated number of 
damaging landslides (5–6 each). Estimated direct costs from future damaging landslides 
for the entire 10-county region for any future 5-year period are about US $76 million 
(year 2000 dollars). San Mateo County has the highest estimated costs ($16.62 million), 
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whereas Solano County has the lowest estimated costs (about $0.90 million).  Estimated 
direct costs are also subdivided into public and private costs. 
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APPENDIX 
 
Calculation of the characterizing parameters of a lognormal distribution from its mean 
and standard deviation. 
 

Theorem 1 
 
If Y has a lognormal distribution with characterizing parameters μ and σ, mean μY, and 
standard deviation σY, then μ and σ can be calculated from μY and σY by the following 
formulas: 
 

)1/ln(

ln

22

22

2

+=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

YY

YY

Y

μσσ

σμ

μ
μ

 
Proof 
 
The mean μY and varianceσ 2

Y  of a lognormal random variable Y with characterizing 
parameters μ and σ are the following well-known formulas (Johnson and others, 1994, p. 
212).   
 

22σμμ += eY  
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We now solve these two equations for the lognormal characterizing parameters μ and σ. 
 
Solving for σ 
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Solving for μ 
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Mean and standard deviation of a product of two independent random variables 
 

Theorem 2 
 
If X and Y are independent random variables with means E[X] and E[Y] and standard 
deviations S[X] and S[Y], then 
 
E[XY] = E[X]E[Y] 
 
S[XY] = {(S[X])2(S[Y])2 + (E[Y])2(S[X])2  + (E[X])2(S[Y])2}1/2 
 
Proof 
 
From Ross (2000, p. 50) we have the following theorem: 
 
If X and Y are independent, then for any functions g and h 
 
E[g(X)h(Y)] = E[g(X)]E[h(Y)] 
 
Therefore 
 
E[XY] = E[X]E[Y] 
 
and 
 
E[X 2Y 2] = E[X 2]E[Y 2] 
 
From Ross (2000, p. 45) we have  
 
Variance of X: V[X] = E[X 2] – (E[X])2 
 
Variance of Y: V[Y] = E[Y 2] – (E[Y])2 
 
We now consider 
 
Variance of XY: V[XY] = E[(XY)2] – (E[XY])2 
 
= E[X 2Y 2] – (E[X]E[Y])2 
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= E[X 2]E[Y 2] – (E[X])2 (E[Y])2 
 
= E[X 2]E[Y 2] – (E[X])2 E[Y 2] – (E[Y])2 E[X 2] + (E[X])2(E[Y])2  
 
+ (E[X])2E[Y 2] + (E[Y])2E[X 2] – (E[X])2(E[Y])2 – (E[X])2(E[Y])2 

  
= {E[X 2] – (E[X])2}{E[Y 2] – (E[Y])2} + (E[X])2E[Y 2]  
 
+ (E[Y])2E[X 2] – (E[X])2(E[Y])2 – (E[X])2(E[Y])2 

 
= V[X]V[Y] + (E[Y])2{E[X 2] – (E[X])2} + (E[X])2{E[Y 2] – (E[Y])2} 
 
= V[X]V[Y] + (E[Y])2 V[X] + (E[X])2 V[Y] 
 
S[XY] = {(S[X])2(S[Y])2 + (E[Y])2(S[X])2 + (E[X])2(S[Y])2}1/2

 22



TABLES 
 

Table 1. Summary of recorded numbers and costs of landslides in San Francisco Bay 
region of California.  Sources of data for this table, and tables 2 and 6, are Taylor and 
Brabb (1972), Taylor and others (1975), Creasy (1988), and Godt and others (1999).  
Numbers of damaging landslides are taken from published text when available or, if 
written values are unavailable, from counted landslide locations on published maps.  
Costs were converted to August 2000 dollars using the Consumer Price Index (CPI) for 
shelter and guidelines described by the U.S. Department of Labor (1997).  The percent 
change from each period to August 2000 was determined using the formula (((CPIAugust, 

2000 – CPIprevious period)/CPIprevious period) *100).  CPI values used were 30.5 for March 1969; 
37.5 for March 1973; 97.0 for February 1982; and 222.9 for August 2000. Percent change 
values to August 2000 were 630.8% from March 1969; 494.4% from March 1973; 
129.8% from February 1982; and 17.8% from February 1998.  Although no data were 
recorded for Napa County in 1982, we assume that the number of landslides and costs 
were zero based on a statement by LaVopa Creasey (1988) that the county had “sustained 
relatively few landslides.” Designations used in this table: no. of yrs., number of years; 
10^6$, million dollars.      
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Table 2. Recorded numbers and costs of landslides per landslide cluster.  See caption of 
table 1 for additional information regarding data sources. Designations used in this table: 
no. of yrs., number of years; S.D., standard deviation.     
  

 
 
 
 
Table 3. Numbers and recurrence intervals of landslide clusters. Designations used in this 
table: Prob., probability; distri., distribution; No., number; yrs., years; S.D., standard 
deviation; %, percent.    
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Table 4. Future total numbers of landslides and their aggregation. The three aggregations 
assume respectively perfect positive correlation (p.p.c.), independence (indep.), and 
weighted-average correlation coefficient of 0.5 for illustrative purposes. Designations 
used in this table: No., number; S.D., standard deviation; %, percent; Aggre., 
Aggregation. 
      

 
 
 
Table 5. Future total costs of landslides and their aggregation. The three aggregations 
assume respectively perfect positive correlation (p.p.c.), independence (indep.), and 
weighted-average correlation coefficient of 0.5 for illustrative purposes. Designations 
used in this table: S.D., standard deviation; %, percent; Aggre., Aggregation; 10^6$, 
million dollars.  
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Table 6. Recorded percentages of public and private costs. See title of table 1 for 
additional information regarding data sources. Designations used in this table: %, 
percent; 10^6$, million dollars.    
   

 
 
 
 
Table 7. Future public costs of landslides and their aggregation. The three aggregations 
assume respectively perfect positive correlation (p.p.c.), independence (indep.), and 
weighted-average correlation coefficient of 0.5 for illustrative purposes. Designations 
used in this table: S.D., standard deviation; %, percent; Aggre., Aggregation; 10^6$, 
million dollars.      
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Table 8. Future private costs of landslides and their aggregation. The three aggregations 
assume respectively perfect positive correlation (p.p.c.), independence (indep.), and 
weighted-average correlation coefficient of 0.5 for illustrative purposes. Designations 
used in this table: S.D., standard deviation; %, percent; Aggre., Aggregation; 10^6$, 
million dollars.   
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