

Risk and Exposure Assessment to Support the Review of the SO₂ Primary National Ambient Air Quality Standards: Second Draft

Risk and Exposure Assessment to Support the Review of the SO₂ Primary National Ambient Air Quality Standards: Second Draft

U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park, North Carolina

Disclaimer

This draft document has been prepared by staff from the Ambient Standards Group, Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency. Any opinions, findings, conclusions, or recommendations are those of the authors and do not necessarily reflect the views of the EPA. This document is being circulated to obtain review and comment from the Clean Air Scientific Advisory Committee (CASAC) and the general public. Comments on this draft document should be addressed to Michael Stewart, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, C504-06, Research Triangle Park, North Carolina 27711 (email: stewart.michael@epa.gov)

Table of Contents

1	
2	

1.0 INTRODUCTION	1
1.1 History	5
1.1.3 Assessment from Previous Review	7
1.2 Scope of the Risk and Exposure Assessment for the Current Review	9
1.2.2 Species of Sulfur Oxides Included in Analyses	
2.0 OVERVIEW OF HUMAN EXPOSURE	12
2.1 Background	13
2.2 Sources of SO ₂	13
2.3 Ambient levels of SO ₂	14
2.4 Relationship of personal Exposure to Ambient Concentrations	15
3.0 AT RISK POPULATIONS	18
3.1 Overview	18
3.2 Susceptibility: Pre-existing Disease	19
3.3 Susceptibility: Genetics	19
3.4 Susceptibility: Age	20
3.5 Vulnerability	20
3.6 Number of Susceptible or Vulnerable Individuals	21
4.0 HEALTH EFFECTS	22
4.1 Introduction	22
4.2 Short-Term Peak (<1-Hour, generally 5-10 minutes) SO ₂ Exposures and Respiratory Health Effects	
4.2.5 Medication as an Effect Modifier	
4.3 Short-Term (≥ 1-hour, Generally 24-Hour) SO ₂ Exposure and Respiratory Health Effects	
4.3.2 ED Visits and Hospitalizations for All Respiratory Causes	29
	1.1 History 1.1.1 History of the SO; NAAQS 1.1.2 Health Evidence from the Previous Review 1.1.3 Assessment from Previous Review 1.2 Scope of the Risk and Exposure Assessment for the Current Review 1.2.1 Overview of the Second Draft Assessment. 1.2.2 Species of Sulfur Oxides Included in Analyses 2.0 OVERVIEW OF HUMAN EXPOSURE 2.1 Background 2.2 Sources of SO2 2.3 Ambient levels of SO2 2.4 Relationship of personal Exposure to Ambient Concentrations. 3.0 AT RISK POPULATIONS 3.1 Overview 3.2 Susceptibility: Pre-existing Disease 3.3 Susceptibility: Genetics 3.4 Susceptibility: Genetics 3.5 Vulnerability 3.6 Number of Susceptible or Vulnerable Individuals. 4.0 HEALTH EFFECTS 4.1 Introduction 4.2 Short-Term Peak (<1-Hour, generally 5-10 minutes) SO2 Exposures and Respiratory Health Effects. 4.2.1 Overview. 4.2.2 Respiratory Symptoms 4.2.3 Decrements in Lung Function in the Presence of Respiratory Symptoms 4.2.4 Decrements in Lung Function in the Presence of Respiratory Symptoms 4.2.5 Medication as an Effect Modifier.

I	4.3.3 Emergency Department Visits and Hospitalizations for Asthma.	31
2 3	5.0 IDENTIFICATION OF POTENTIAL ALTERNATIVE STANDARDS FOR ANA	
4	5.1 Introduction	33
5	5.2 Indictator	33
6	5.3 Averaging Time	33
7	5.4 Form	36
8	5.5 Level	37
9	6.0 OVERVIEW OF RISK CHARACTERIZATION AND EXPOSURE ASSESSME	ENT 46
10	6.1 Introduction	46
11	6.2 Potential Health Effect Benchmark Levels	47
12	6.3 Approach for Assessing Exposure and Risk Associated with 5-Minute Peak So ₂ Exposures	48
13	6.4 Approach for Estimating 5-Minute Peak So ₂ Concentrations	50
14 15 16	6.5 Approach for Simulating the current and alternative standards 6.5.1 Adjustment of Ambient Air Quality 6.5.2 Adjustment of Potential Health Effect Benchmark Levels	54
17 18	7.0 AMBIENT AIR QUALITY AND BENCHMARK HEALTH RISK CHARACTERIZATION FOR 5-MINUTE PEAK SO ₂ EXPOSURES	63
19	7.1 Overview	63
20 21 22 23 24 25	7.2 Approach 7.2.1 Air Quality Data Screening 7.2.2 Site Characteristics of Ambient SO ₂ Monitors 7.2.3 Statistical model to estimate 5-minute maximum SO ₂ concentrations. 7.2.4 Locations to Evaluate the Current and Potential Alternative Standard Scenarios. 7.2.5 Air Quality Concentration Metrics	67 73 81
26 27 28 29 30 31 32	7.3 Results	As Is Air 106 - As Is 112 O Counties
33 34 35 36	7.4 Uncertainty Analysis 7.4.1 Air Quality Data 7.4.2 Measurement Technique for Ambient SO ₂	135

1	7.4.4 Spatial Representation	140
2	7.4.5 Air Quality Adjustment Procedure	141
3	7.4.6 Statistical Model Used for Estimating 5-minute SO ₂ Concentrations	144
4	7.4.7 Ambient Monitor to Exposure Representation.	
5	7.4.8 Health Benchmark	
6	7.5 Key Observations	156
7	8.0 EXPOSURE ANALYSIS	159
8	8.1 Overview	159
9	8.2 Overview of Human Exposure Modeling using APEX	160
10	8.3 Characterization of study areas	163
11	8.3.1 Study Area Selection.	163
12	8.3.2 Study Area Descriptions	165
13	8.3.3 Time Period of Analysis	168
14	8.3.4 Populations Analyzed	168
15	8.4 Characterization of Ambient Hourly Air Quality Data Using AERMOD	168
16	8.4.1 Overview	168
17	8.4.2 General Model Inputs	169
18	8.4.3 Stationary Sources Emissions Preparation	
19	8.4.4 Receptor Locations	
20	8.4.5 Modeled Air Quality Evaluation	180
21 22	8.5 Simulated Population	193
22	8.5.1 Characterizing Ventilation Rates	194
23	8.6 Construction of Longitudinal Activity Sequences	195
24	8.7 Calculating Microenvironmental Concentrations	196
25	8.7.1 Approach for Estimating 5-Minute Maximum SO ₂ Concentrations	
26	8.7.2 Microenvironments Modeled	198
27	8.7.3 Microenvironment Descriptions	199
28	8.8 Exposure Measures and Health Risk Characterization	202
29	8.8.1 Adjustment for Just Meeting the Current and Alternative Standards	203
30	8.9 Exposure Modeling and Health Risk Characterization Results	205
31	8.9.1 Asthmatic Exposures to 5-minute Daily Maximum SO ₂ in Greene County	205
32	8.9.2 Asthmatic Exposures to 5-minute Daily Maximum SO ₂ in St. Louis	207
33	8.10 Representativeness of Exposure Results	216
34 35	8.10.1 Introduction.	
35	8.10.2 Time spent outdoors	
36	8.10.3 Asthma Prevalence	218
37	8.11 Uncertainty Analysis	220
38	8.11.1 Dispersion Modeling Uncertainties	221
39	8 11.2 Exposure Modeling Uncertainties	226

1 2	9.0 HEALTH RISK ASSESSMENT FOR LUNG FUNCTION RESF ASTHMATICS ASSOCIATED WITH 5-MINUTE PEAK EXPOSUR	
3	9.1 Introdution	248
4	9.2 Development of Approach for 5-minute Lung Function Risk Assessment	249
5	9.2.1 General Approach	
6	9.2.2 Exposure Estimates	
7	9.2.3 Exposure-Response Functions	256
8	9.3 Lung Function Risk Estimates	265
9	9.3 Characterizing Uncertainty and Variability	277
0	9.4 Key Observations	281
3	10.1 Introduction	
4	10.2 General Approach	284
5	10.3 Adequacy of the Current 24-hour Standard	
6	10.3.1 Introduction	
7 8	10.3.2 Evidence-based considerations	
0	10.3.3 Air Quality, exposure and risk-based considerations	289
9	10.4 Adequacy of the Current Annual Standard	297
0	10.4.1 Introduction	
1	10.4.2 Evidence-based considerations	
2	10.4.3 Risk-based considerations	
3	10.4.4 Conclusions regarding the adequacy of the current annual standard	300
4	10.5 potential Alternative Standards	
5	10.5.1 Indicator	
6	10.5.2 Averaging Time	
7	10.5.3 Form	

1	List of Tables
2 3	Table 3-1 Factors Potentially Contributing to Susceptibility or Vulnerability to Air Pollution in
4	General (modified from Table 4-1 in the ISA)
5	Table 4-1. Weight of Evidence for Causal Determination 23
6	Table 7-1. Summary of all available 5-minute and 1-hour SO ₂ ambient monitoring data, years
7	1997-2007, pre-screened.
8	Table 7-2. Analytical data sets generated using the continuous-5, max-5, and 1-hour ambient
9	SO ₂ monitoring data, following screening.
10	Table 7-3. Counts of complete and incomplete site-years of 1-hour SO ₂ ambient monitoring data
11	for 1997-2006
12	Table 7-4. Comparison of prediction errors and model variance parameters for the four models
13	evaluated95
14	Table 7-5. Prediction errors of the statistical model used in estimating 5-minute maximum SO ₂
15	concentrations above benchmark levels96
16	Table 7-6. Counties selected for evaluation of air quality adjusted to just meeting the current and
17	potential alternative SO ₂ standards99
18	Table 7-7. The co-occurrence of daily 5-minute maximum and 1-hour daily maximum SO ₂
19	concentrations using measured ambient monitoring data
20	Table 7-8. Example of how the probability of exceeding a 300 ppb 5-minute benchmark would
21	be calculated given 1-hour daily maximum SO ₂ concentration bins
22	Table 7-9. Percent of days having a modeled daily 5-minute maximum SO ₂ concentration above
23	the potential health effect benchmark levels given air quality as is and air quality adjusted to
24	just meeting the current and each of the potential alternative standards
25	Table 7-10. Mean number of modeled daily 5-minute maximum concentrations above 100 ppb
26	per year in 40 selected counties given 2001-2006 air quality as is and air quality adjusted to
27	just meet the current and alternative standards
28	Table 7-11. Mean number of modeled daily 5-minute maximum concentrations above 200 ppb
29	per year in 40 selected counties given 2001-2006 air quality as is and that adjusted to just
30	meet the current and alternative standards.
31	Table 7-12. Mean number of modeled daily 5-minute maximum concentrations above 300 ppb
32	per year in 40 selected counties given 2001-2006 air quality as is and that adjusted to just
33	meet the current and alternative standards.
34	Table 7-13. Mean number of modeled daily 5-minute maximum concentrations above 400 ppb
35	per year in 40 selected counties given 2001-2006 air quality as is and that adjusted to just
36	meet the current and alternative standards.
37	Table 7-14. Summary of qualitative uncertainty analysis for the air quality and health risk
38	characterization.
39 40	Table 7-15. The percent of site-years with a difference in the number of modeled exceedances
40 41	using a 100 model simulation run versus a 20 model simulation run
41 42	Table 8-1. Surface stations for the SO ₂ study areas
42 43	
43 44	Table 8-3. Seasonal monthly assignments. 171 Table 8-4. NLCD2001 land use characterization. 174
++	Taulo 0-4. INDODZUUT IAHU USE CHATACIETIZAHUH

44

45

46

Table 8-5. Summary of NEI emission estimates and total emissions used for dispersion

1	Table 8-6. Asthma prevalence rates by age and gender used in Greene County and St. Louis	
2		94
3	Table 8-7. Population modeled in Greene County and St. Louis modeling domains	94
4	Table 8-8. List of microenvironments modeled and calculation methods used	98
5	Table 8-9. Geometric means (GM) and standard deviations (GSD) for air exchange rates by A	
6	\mathcal{L}	00
7	Table 8-10. Final parameter estimates of SO ₂ deposition distributions in several indoor	Λ1
8		01
9	Table 8-11. Exposure concentrations and adjusted potential health effect benchmark levels use	d
10	by APEX to simulate just meeting the current and potential alternative standards in the	
11	Greene County and St Louis modeling domains.	
12	Table 8-12. States used to define five regions of the U.S. and characterize CHAD data diaries.	
13		
14	Table 8-13. Time spent outdoors for children ages 5-17 using CHAD diaries	
15	Table 8-14. Asthma prevalence rates for children in four regions of the U.S	
16	Table 8-15. Asthma prevalence rates for adults in five regions of the U.S	
17	Table 8-16. Summary of qualitative uncertainty analysis for the exposure assessment	
18	Table 8-17. Number of multiple exceedances of potential health effect benchmark levels within	
19		39
20	Table 9-1. Example Calculation of the Number of Asthmatics in St. Louis Engaged in Modera	
21	or Greater Exertion Estimated to Experience At Least One Lung Function Response (Define	d
22	as an Increase in sRaw \geq 100%) Associated with Exposure to SO ₂ Concentrations Just	
23	\mathcal{C} 1 \mathcal{C} 11	53
24	Table 9-2. Example Calculation of Number of Occurrences of Lung Function Response	
25	(Defined as an Increase in sRaw \geq 100%), Among Asthmatics in St. Louis Engaged in	
26	Moderate or Greater Exertion Associated with Exposure to SO ₂ Concentrations that Just Me	
27	Tr · · · · · · · · · · · · · · · · · · ·	55
28	Table 9-3. Percentage of Asthmatic Individuals in Controlled Human Exposure Studies	
29		58
30	Table 9-4. Number of Asthmatics Engaged in Moderate or Greater Exertion Estimated to	
31	Experience At Least One Lung Function Response Associated with Exposure to SO ₂ Under	
32		67
33	Table 9-5. Percent of Asthmatics Engaged in Moderate or Greater Exertion Estimated to	
34	Experience At Least One Lung Function Response Associated with Exposure to SO ₂	
35		68
36	Table 9-6. Number of Occurrences (In Hundreds) of a Lung Function Response Among	
37	Asthmatics Engaged in Moderate or Greater Exertion Associated with Exposure to SO ₂	
38		69
39	Table 9-7. Number of Asthmatic Children Engaged in Moderate or Greater Exertion Estimated	
40	to Experience At Least One Lung Function Response Associated with Exposure to SO ₂ Und	er
41		70
12	Table 9-8. Percent of Asthmatic Children Engaged in Moderate or Greater Exertion Estimated	to
43	Experience At Least One Lung Function Response Associated with Exposure to SO ₂	
14	Concentrations Under Alternative Air Quality Scenarios	71
45	Table 9-9. Number of Occurrences (In Hundreds) of a Lung Function Response Among	
46	Asthmatic Children Engaged in Moderate or Greater Exertion Associated with Exposure to	
17	SO ₂ Concentrators Under Alternative Air Quality Scenarios	72

Table 9-10. Characterization of Key Uncertainties in the Lung Function Response Health Risk
Assessment for St. Louis and Greene County, Missouri
Table 10-1 Ratios of 99 th percentile 5-minute maximums to 99 th percentile 24-hour average and
1-hour daily maximum SO ₂ concentrations for monitors reporting measured 5-minute data
from years 2004-2006
Table 10-2. 99 th percentile 24-hour average SO ₂ concentrations for 2004 given just meeting the
alternative 1-hour daily maximum standards analyzed in the risk assessment
Table 10-3. 2 nd highest 24-hour average SO ₂ concentrations (i.e. the current 24-hour standard)
for 2004 given just meeting the alternative 1-hour daily maximum standards analyzed in the
risk assessment. 308
Table 10-4. Annual average SO ₂ concentrations for 2004 given just meeting the alternative 1-
hour daily maximum standards analyzed in the risk assessment
Table 10-5. SO ₂ concentrations (ppm) corresponding to the 2 nd -9 th daily maximum and 98 th /99 th
percentile forms (2004-2006)

List of Figures

2	
3	Figure 1-1. Overview of the analyses described in this document and their interconnections 3
	Figure 5-1. Effect estimates for U.S. all respiratory ED visit studies and associated 98 th and 99 th
5	
6	Figure 5-2. 24-hour effect estimates for U.S. asthma ED visit studies and associated 98th and 99th
7	percentile 1-hour daily maximum SO ₂ levels.
8	Figure 5-3. 1-hour effect estimates for U.S. asthma ED visit studies and associated 98 th and 99 th
9	percentile 1-hour daily maximum SO ₂ levels. 40
10	percentile 1-hour daily maximum SO ₂ levels. 40 Figure 5-4. 24-hour effect estimates for U.S. hospitalization studies and associated 98 th and 99 th
11	percentile 1-hour daily maximum SO ₂ levels. 41
12	Figure 5-5. Effect estimates for Canadian ED visits and hospitalization studies and associated 98 th
13	
14	Figure 6-1. Overview of analyses addressing exposures and risks associated with 5-minute peak
15	SO ₂ exposures. All three outputs are calculated considering current air quality, air quality just
16	meeting the current standards, and air quality just meeting potential alternative standards. Note:
17	
18	Figure 6-2. Example of an hourly time-series of measured 1-hour and measured 5-minute
19	
20	Figure 6-3. Comparison of measured daily maximum SO ₂ concentration percentiles in Beaver
21	County, PA for a high concentration year (1992) versus a low concentration year (2007) at two
22	
	Figure 6-4. Distributions of hourly SO ₂ concentrations at five ambient monitors in Cuyahoga
24	
25	
	Figure 6-5. Comparison of adjusted ambient monitoring concentrations or adjusted benchmark
27	· · · · · · · · · · · · · · · · · · ·
28	monitor in Cuyahoga County for year 2002. 61
	Figure 6-6. Comparison of the upper percentile modeled 5-minute daily maximum SO ₂ for where
30	y y
31	simulate just meeting the current annual standard at one ambient monitor in Cuyahoga County
32	for year 2002. The complete distributions are provided in Figure 6-4.
	Figure 7-1. Distribution of site-years of data considering monitoring objectives and scale: monitors
34 35	that reported 5-minute maximum SO ₂ concentrations (top) and the broader SO ₂ monitoring
	network (bottom)
30 37	
38	(bottom)
	Figure 7-3. The percent of total SO ₂ emissions of sources located within 20 km of ambient
39 40	monitors: monitors reporting 5-minute maximum SO_2 concentrations (top) and the broader SO_2
40 41	monitoring network (bottom)
	Figure 7-4. Distribution of the population residing within a 5 km radius of ambient monitors:
43	monitors reporting 5-minute maximum SO ₂ concentrations and the broader SO ₂ monitoring
44	network
	Figure 7-5. Comparison of hourly and 5-minute concentration COVs and GSDs at sixteen monitors
46	reporting all twelve 5-minute SO ₂ concentrations over multiple years of monitoring
	Transfer of the second of the manifest of the second of th

1	Figure 7-6. Cumulative density functions (CDFs) of hourly COVs (top) and GSDs (bottom) at
2	
3	SO ₂ monitoring network86
4	Figure 7-7. Peak-to-mean ratio (PMR) distributions for three COV and GSD variability bins and
5	
6	Figure 7-8. Distribution of total SO ₂ emissions (tpy) within 20 km of monitors by COV (left) and
7	GSD (right) concentration variability bins: monitors reporting 5-minute maximum SO ₂
8	concentrations (top) and the broader SO ₂ monitoring network (bottom)
9	Figure 7-9. Percent of monitors within each concentration variability bin where the monitoring
10	objective was source-oriented: monitors reporting 5-minute maximum SO ₂ concentrations (solid)
11	and the broader SO ₂ monitoring network (slotted)
	Figure 7-10. The number of measured daily 5-minute maximum SO ₂ concentrations above
13	
14	, I 2
	Figure 7-11. Probability of daily 5-minute maximum SO ₂ concentrations above potential health
16	
17	
	Figure 7-12. Probability of daily 5-minute maximum SO ₂ concentrations above potential health
19	- , , , , , , , , , , , , , , , , , , ,
20	
	Figure 7-13. The number of modeled daily 5-minute maximum SO ₂ concentrations above potential
22	
23	, 1 ,
	Figure 7-14. Probability of daily 5-minute maximum SO ₂ concentrations above potential health
25 26	
	Figure 7-15. Probability of daily 5-minute maximum SO ₂ concentrations above potential health
28	
20 29	
	Figure 7-16. The number of modeled daily 5-minute maximum SO ₂ concentrations above potential
31	· ·
32	1 ,
33	
	Figure 7-17. The number of modeled daily 5-minute maximum SO ₂ concentrations above 200 ppb
35	
36	
37	
38	Figure 7-18. The number of modeled daily 5-minute maximum SO ₂ concentrations above 100 ppb
39	
40	using the 40-county air quality data set
41	Figure 7-19. Probability of daily 5-minute maximum SO ₂ concentrations above potential health
42	
43	
	Figure 7-20. Probability of daily 5-minute maximum SO ₂ concentrations above potential health
45	- , , , , , , , , , , , , , , , , , , ,
46	adjusted to just meet the current and each of the potential alternative standards

1	Figure 7-21. Temporal trends in the number of ambient monitors in operation per year for monitors
2	
3	Figure 7-22. Temporal trends in the coefficient of variability (COV) for 5-minute maximum and 1-
4	hour concentrations at the 98 monitors that reported both 5-minute and 1-hour SO ₂
5	concentrations
6	Figure 7-23. Comparison of measured daily maximum SO ₂ concentration percentiles in Allegheny
7	County PA for one high concentration year (1998) versus a low concentration years (2007) at
8	five ambient monitors
9	Figure 7-24. Distributions of annual average peak-to-mean ratios (PMRs) derived from the 98
10	monitors reporting both 5-minute maximum and 1-hour SO ₂ concentrations, Years 1997 through
11	2007
12	Figure 7-25. Example histogram of peak-to-mean ratios (PMRs) compared with four fitted
13	distributions derived from monitors reporting the 5-minute maximum and 1-hour SO ₂
14	concentrations: monitors with medium level variability and 1-hour concentrations between 75
15	
16	Figure 7-26. Example of a measured peak-to-mean ratio (PMRs) distribution with the percentiles of
17	
18	Figure 7-27. Comparison of observed and predicted number of daily benchmark exceedances in a
19	j
	Figure 7-28. Distributions of the calculated difference between estimated concentration
21	exceedances using a single 100 model simulation run and those estimated using ten independent
22	
23	Figure 7-29. 95% prediction intervals for the number of modeled daily 5-minute maximum SO ₂
24	
25	, 1 1
	Figure 7-30. 95% prediction intervals for the number of modeled daily 5-minute maximum SO ₂
27	
28	, 1 3
	Figure 8-1. General process flow used for SO ₂ exposure assessment. 161
	Figure 8-2. Modeling domain for Greene County MO, along with identified emissions sources, air
31	quality receptors, ambient monitors, and meteorological station
	Figure 8-3. Three county modeling domain for St. Louis, MO, along with identified emissions
	sources, air quality receptors, ambient monitors, and meteorological station
	Figure 8-4. Derived best-fit non-point area source diurnal emission profile for the St. Louis domain,
35	
	Figure 8-5. Derived best-fit non-point area source diurnal emission profile for the Greene County
37	, 1
	Figure 8-6. Comparison of measured ambient monitor SO ₂ concentration distribution and diurnal
39	1 1
40	
	Figure 8-7. Comparison of measured ambient monitor SO ₂ concentration distribution and diurnal
42 42	1 1
43	
	Figure 8-8. Comparison of measured ambient monitor SO ₂ concentration distribution and diurnal
45 46	1
46	Greene County, Mo

1	Figure 8-9. Comparison of measured ambient monitor SO ₂ concentration distribution and diurnal
2	profile with the modeled monitor receptor and receptors within 4 km of monitors 291890004 and
3	291890006 in St Louis, Mo
4	Figure 8-10. Comparison of measured ambient monitor SO2 concentration distribution and diurnal
5	profile with the modeled monitor receptor and receptors within 4 km of monitors 291893001 and
6	291895001 in St Louis, Mo
7	Figure 8-11. Comparison of measured ambient monitor SO2 concentration distribution and diurnal
8	profile with the modeled monitor receptor and receptors within 4 km of monitors 291897003
9	,
10	Figure 8-12. Comparison of measured ambient monitor SO2 concentration distribution and diurnal
11	profile with the modeled monitor receptor and receptors within 4 km of monitor 295100086 in St
12	
13	Figure 8-13. Number of all asthmatics (top) and asthmatic children (bottom) with 5-minute daily
14	maximum SO ₂ exposures above selected exposure levels in Greene County, year 2002 air quality
15	as is and adjusted to just meeting the current and potential alternative standards
	Figure 8-14. Percent of all asthmatics (top) and asthmatic children (bottom) with 5-minute daily
17	
18	5 5
	Figure 8-15. Number person days all asthmatics (top) and asthmatic children (bottom) experience
20	
21	
22	
	Figure 8-16. Number of all asthmatics (top) and asthmatic children (bottom) with 5-minute daily
24	
25	y y 1
	Figure 8-17. Percent of all asthmatics (top) and asthmatic children (bottom) with 5-minute daily
27	
28	5 5
	Figure 8-18. Number person days all asthmatics (top) and asthmatic children (bottom) experience
30 31	
	Figure 8-19. The frequency of estimated exposure level exceedances in indoor, outdoor, and
33 34	
3 5	
	Figure 8-20. Example comparison of estimated geometric mean and geometric standard deviations
30 37	
	Figure 8-21. Example of boot strap simulation results used in evaluating random sampling variation
39	
	Figure 8-22. Example of boot strap simulation results used in evaluating random sampling
41	
	Figure 8-23. Duration of time spent outdoors (in minutes) using all CHAD events
	Figure 8-24. Percent of asthmatic children above given exposure level for two APEX simulations:
44	
45	
	Figure 8-25. Percent of asthmatic children above given exposure level for two APEX simulations:
	one using multiple neak concentrations in an hour the other assuming a single neak

1	concentration. Continuous 5-minute monitoring data (ID 42007005, year 2005) were used as the
2	air quality input
3	Figure 8-26. Frequency of exposure exceedances indoors for two APEX simulations: one using
4	multiple peak concentrations in an hour, the other assuming a single peak concentration.
5	Continuous 5-minute monitoring data (ID 42007005, year 2002) were used as the air quality
6	input
7	Figure 9-1. Major Components of 5-Minute Peak Lung Function Health Risk Assessment Based on
8	Controlled Human Exposure Studies
9	Figure 9-2. Bayesian-Estimated Median Exposure-Response Functions: Increase in sRaw ≥ 100%
10	for 5-Minute Exposures of Asthmatics Under Moderate or Greater Exertion
11	Figure 9-3. Bayesian-Estimated Median Exposure-Response Functions: Increase in sRaw ≥ 200%
12	for 5-Minute Exposures of Asthmatics Under Moderate or Greater Exertion
13	Figure 9-4. Bayesian-Estimated Median Exposure-Response Functions: Decrease in FEV1 > 20%
14	1
15	Figure 9-5. Bayesian-Estimated Median Exposure-Response Functions: Decrease in FEV1 > 20%
16	for 5-Minute Exposures of Asthmatics Under Moderate or Greater Exertion
17	Figure 9-6. Legend for Figures 9-7 and 9-8 Showing Total and Contribution of Risk Attributable to
18	SO2 Exposure Ranges
19	Figure 9-7. Estimated Annual Number of Occurrences of Lung Function Response (Defined as ≥
20	100% increase in sRaw) for Asthmatics and Asthmatic Children Associated with Short-Term (5-
21	, 1
22	Total and Contribution of 5-Minute SO ₂ Exposure Ranges
23	Figure 9-8. Estimated Percent of of Asthmatics and Asthmatic Children Experiencing One or More
24	Lung Function Responses (Defined as ≥ 100% increase in sRaw) Per Year Associated with
25	` ' I
26	
27	

1 2 3		List of Acronyms/Abbreviations
4	A/C	Air conditioning
5	AER	Air exchange rate
6	AERMOD	American Meteorological Society (AMS)/EPA Regulatory Model
7	AHS	American Housing Survey
8	APEX	EPA's Air Pollutants Exposure model, version 4
9	ANOVA	One-way analysis of variance
10	ANPR	Advanced Notice of Proposed Rulemaking
11	AQS	EPA's Air Quality System
12	AQCD	Air Quality Criteria Document
13	AS	Asthma symptoms
14	BRFSS	Behavioral Risk Factor Surveillance System
15	C	Cough
16	CAA	Clean Air Act
17	CAMD	EPA's Clean Air Markets Division
18	CASAC	Clean Air Scientific Advisory Committee
19	CDC	Centers for Disease Control
20	CHAD	EPA's Consolidated Human Activity Database
21	Clev/Cinn	Cleveland and Cincinnati, Ohio
22	CMSA	Consolidated metropolitan statistical area
23	CO	Carbon monoxide
24	COPD	Chronic Obstructive Pulmonary Disease
25	COV	Coefficient of Variation
26	C-R	Concentration-Response
27	СТРР	Census Transportation Planning Package
28	EDR	Emergency department visits for respiratory disease
29	EDA	Emergency department visits for asthma
30	EDAC	Emergency department visits for asthma – children
31	EPA	Environmental Protection Agency
32	HAAC	Hospital admissions for asthma - children
33	ER	Emergency room Light of States Environmental Protection A consu
34	EPA	United States Environmental Protection Agency
35	EOC	Exposure of Concern Forced expiratory volume in the first second
36 37	${ m FEV_1} \\ { m GM}$	Forced expiratory volume in the first second Geometric mean
38	GSD	Geometric mean Geometric standard deviation
39	GSD GST	Glutathione S-transferase (e.g., GSTM1, GSTP1, GSTT1)
39 40	ID	Identification
40 41	ISA	Integrated Science Assessment
42	ISH	Integrated Surface Hourly Database
43	km	Kilometer
44	L95	Lower limit of the 95 th confidence interval
45	LOEL	Lowest Observed Effect Level
46	m	Meter
	***	1.1000

i iliax iviaxilliulli	1	max	Maximum
-----------------------	---	-----	---------

- 2 ME Microenvironment
- 3 med Median 4 min Minimum
- 5 Metropolitan statistical area **MSA**
- 6 **NAAQS** National Ambient Air Quality Standards
- 7 **NAICS** North American Industrial Classification System 8 National Center for Environmental Assessment **NCEA**
- 9 NEI National Emissions Inventory 10 **NEM** NAAQS Exposure Model National Climatic Data Center 11 **NCDC**
- 12 National Human Activity Pattern Study NHAPS
- 13 **NHIS** National Health Interview Survey
- 14 Nitrogen dioxide NO_2 15 Oxides of nitrogen NO_{x}
- National Weather Service 16 NWS
- 17 **NYC** New York City
- 18 NYDOH New York Department of Health
- 19 O_3 Ozone
- 20 **OAQPS** Office of Air Quality Planning and Standards
- 21 Odds ratio OR
- 22 ORD Office of Research and Development
- 23 Office of Regulatory Information Systems identification code **ORIS**
- 24 Parameter occurrence code POC
- 25 Parts per billion ppb
- 26 PEN Penetration factor
- 27 Particulate matter PM 28
- Parts per million ppm
- 29 Policy-Relevant Background **PRB**
- 30 Proximity factor **PROX**
- 31 **PVMRM** Plume Volume Molar Ratio Method
- 32 REA Risk and Exposure Assessment
- 33 Residential Energy Consumption Survey RECS
- 34 RIU Rescue inhaler use
- 35 Relative risk RR
- Statistical Analysis Software 36 SAS
- 37 Shortness of breath SB38 SES Social-economic status
- 39 SIC Standard Industrial Code
- 40 SD Standard deviation
- 41 Se Standard error
- 42 SO_2 Sulfur dioxide
- 43 Sulfur trioxide SO_3
- 44 SO_4 Sulfate
- 45 Oxides of Sulfur SO_{x}
- 46 Specific airway resistance sRaw
- 47 Tons per year tpy

1	TRIM	EPA's Total Risk Integrated Methodology
2	U95	Upper limit of the 95 th confidence interval
3	UARG	Utility Air Regulatory Group
4	US DOT	United States Department of Transportation
5	US EPA	United States Environmental Protection Agency
6	USGS	United States Geological Survey

1.0 INTRODUCTION

The U.S. Environmental Protection Agency (EPA) is presently conducting a review of the primary, health based national ambient air quality standards (NAAQS) for sulfur dioxide (SO₂). Sections 108 and 109 of the Clean Air Act (The Act) govern the establishment and periodic review of the NAAQS. These standards are established for pollutants that may reasonably be anticipated to endanger public health and welfare, and whose presence in the ambient air results from numerous or diverse mobile or stationary sources. The NAAQS are to be based on air quality criteria, which are to accurately reflect the latest scientific knowledge useful in indicating the kind and extent of identifiable effects on public health or welfare that may be expected from the presence of the pollutant in ambient air. The EPA Administrator is to promulgate and periodically review, at five-year intervals, primary (health-based) and secondary (welfare-based) NAAQS for such pollutants. Based on periodic reviews of the air quality criteria and standards, the Administrator is to make revisions in the criteria and standards and promulgate any new standards as may be appropriate. The Act also requires that an independent scientific review committee advise the Administrator as part of this NAAQS review process, a function now performed by the Clean Air Scientific Advisory Committee (CASAC).

The first step in the SO₂ NAAQS review was the development of an integrated review plan. This plan presented the schedule for the review, the process for conducting the review, and the key policy-relevant science issues that would guide the review. The final integrated review plan was informed by input from CASAC, outside scientists, and the public. The integrated review plan for this review of the SO₂ primary NAAQS was presented in the Integrated Review Plan for the Primary National Ambient Air Quality Standard for Sulfur Dioxide (EPA, 2007a). This document was made available to the public on October 9, 2007 and can found at: http://www.epa.gov/ttn/naaqs/standards/so2/s_so2_cr_pd.html.

The second step in this review was a science assessment. A concise synthesis of the most policy-relevant science was compiled into an Integrated Science Assessment (ISA). The ISA was supported by a series of annexes that contained more detailed information about the scientific literature. The final ISA to support this review of the SO₂ primary NAAQS was presented in the Integrated Science Assessment for Oxides of Sulfur - Health Criteria, henceforth referred to as the ISA (EPA, 2008a). This document was made available to the public in

1 2

- 1 September 2008 and can found at:
- 2 http://www.epa.gov/ttn/naaqs/standards/so2/s so2 cr pd.html.
- The third step in this primary SO₂ NAAQS review is a risk and exposure assessment
- 4 (REA) that describes exposures and characterizes risks associated with SO₂ emissions from
- 5 anthropogenic sources. The plan for conducting the risk and exposure assessment to support the
- 6 SO₂ primary NAAQS review was presented in the Sulfur Dioxide Health Assessment Plan:
- 7 Scope and Methods for Exposure and Risk Assessment, henceforth referred to as the Health
- 8 Assessment Plan (EPA, 2008b). This document was made available to the public in November
- 9 2007 and can be found at: http://www.epa.gov/ttn/naaqs/standards/so2/s so2 cr pd.html. The
- 10 first draft SO₂ REA was informed by comments from the public and CASAC on the Health
- Assessment Plan, as well as the 1st and 2nd drafts of the ISA for SO_x. The first draft SO₂ REA
- developed estimates of human exposures and risks associated with recent ambient levels of SO₂
- and levels that just met the current SO₂ standards. This first draft REA document was made
- available to the public in July 2008 and can be found at:
- 15 http://www.epa.gov/ttn/naaqs/standards/so2/s so2 cr rea.html
- The second draft SO₂ REA is this document and it has been informed by comments from
- 17 CASAC and the public on the first draft REA, as well as findings and conclusions contained in
- the final ISA. This document develops estimates of human exposures and risks associated with:
- 19 (1) recent ambient levels of SO₂, (2) levels that just meet the current SO₂ standards, and (3)
- 20 levels that just meet potential alternative standards: defined in terms of indicator, averaging time,
- form, and level. This document also contains a policy assessment that will address the adequacy
- of the current SO₂ NAAQS and of potential alternative standards. More specifically, this policy
- 23 assessment considers epidemiological, human exposure, and animal toxicological evidence
- presented in the ISA (EPA, 2008a), as well as the air quality, exposure, and risk characterization
- 25 results presented in this document, as they relate to the adequacy of the current SO₂ NAAQS and
- potential alternative primary SO₂ standards (see Figure 1-1). This 2nd draft REA is to be
- followed by a final REA. The final REA will be informed by comments from CASAC and the
- public on the 2nd draft REA, as well as findings and conclusions contained in the final ISA.
- The final step in the review of the SO₂ NAAQS will be the rulemaking process. This
- 30 process will be informed by the risk and exposure information contained in the final REA, as

- 1 well the scientific evidence described in the final ISA. The rulemaking process will also take
- 2 into account CASAC advice and recommendations, as well as public comment on any policy
- 3 options under consideration. Notably, EPA is now under a consent decree to complete its review
- 4 of the SO₂ primary NAAQS by issuing a proposed rule no later than November 16, 2009 and a
- 5 final rule by June 2, 2010.

6

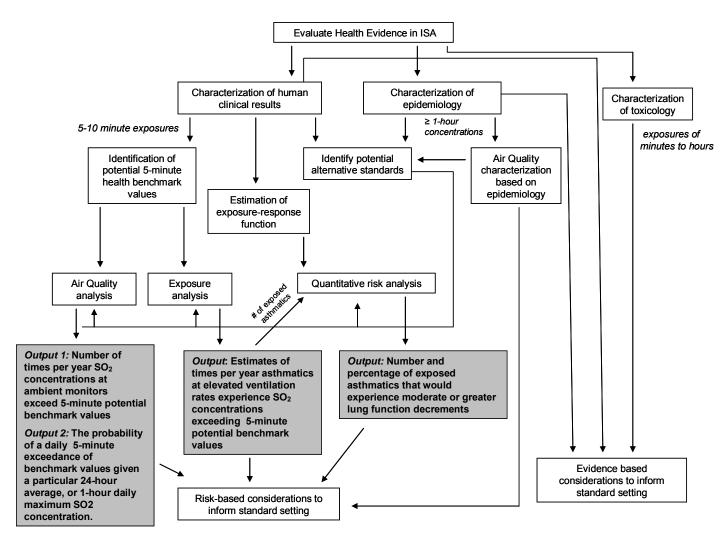


Figure 1-1. Overview of the analyses described in this document and their interconnections

selecting the appropriate analyses for assessing exposure and risks associated with current

As mentioned above, an initial step in the review process was the development of an

11 12

integrated review plan. This plan identified policy relevant questions that would guide the review of the SO₂ NAAQS. These questions are particularly important for the REA because they provide a context for both evaluating health effects evidence presented in the ISA, as well as for

13 14

7 8

9 10

March 2009

1	ambient SO ₂ levels, and levels that just meet the current standards. These policy relevant
2	questions are:
3	
4	• Has new information altered/substantiated the scientific support for the occurrence of
5	health effects following short- and/or long-term exposure to levels of SO_{x} found in the
6	ambient air?
7	• Does new information impact conclusions from the previous review regarding the effects
8	of SO_x on susceptible populations?
9	• At what levels of SO _x exposure do health effects of concern occur?
10	• Has new information altered conclusions from previous reviews regarding the plausibility
11	of adverse health effects caused by SO _x exposure?
12	• To what extent have important uncertainties identified in the last review been reduced
13	and/or have new uncertainties emerged?
14	What are the air quality relationships between short-term and longer-term exposures
15	to SO _x ?
16	Additional questions will become relevant if the evidence suggests that revision of the
17	current standard might be appropriate. These questions are:
18	• Is there evidence for the occurrence of adverse health effects at levels of SO _x different
19	than those observed previously? If so, at what levels and what are the important
20	uncertainties associated with that evidence?
21	• Do exposure estimates suggest that levels of concern for SO _x -induced health effects will
22	occur with current ambient levels of SO2, or with levels that just meet the current, or
23	potential alternative standards? If so, are these exposures of sufficient magnitude such

March 2009

estimates?

24

25

26

27

28

that the health effects might reasonably be judged to be important from a public health

Do the evidence, the air quality assessment, and the risk/exposure assessment provide

support for considering different standard indicators, averaging times, or forms?

perspective? What are the important uncertainties associated with these exposure

 What range of levels is supported by the evidence, the air quality assessment, and risk/exposure assessment? What are the uncertainties and limitations in the evidence and assessments?

1.1 HISTORY

1.1.1 History of the SO₂ NAAQS

The first SO_2 NAAQS was established in 1971. At that time, a 24-hour standard of 0.14 ppm, not to be exceeded more than one time per year, and an annual standard of 0.03 ppm were judged to be both adequate and necessary to protect public health. The most recent review of the SO_2 NAAQS was completed in 1996 and focused on the question of whether an additional short-term standard (e.g., 5-minute) was necessary to protect against short-term, peak exposures. Based on the scientific evidence, the Administrator judged that repeated exposures to 5-minute peak SO_2 levels (\geq 600 ppb) could pose a risk of significant health effects for asthmatic individuals at elevated ventilation rates. The Administrator also concluded that the likely frequency of such effects should be a consideration in assessing the overall public health risks. Based upon an exposure analysis conducted by EPA, the Administrator concluded that exposure of asthmatics to SO_2 levels that could reliably elicit adverse health effects was likely to be a rare event when viewed in the context of the entire population of asthmatics and therefore, did not pose a broad public health problem for which a NAAQS would be appropriate. On May 22, 1996, EPA's final decision not to promulgate a 5-minute standard and to retain the existing 24-hour and annual standards was announced in the Federal Register (61 FR 25566).

The American Lung Association and the Environmental Defense Fund challenged EPA's decision not to establish a 5-minute standard. On January 30, 1998, the Court of Appeals for the District of Columbia found that EPA had failed to adequately explain its determination that no revision to the SO₂ NAAQS was appropriate and remanded the decision back to EPA for further explanation. Specifically, the court required EPA to provide additional rationale to support the Agency judgment that 5-minute peaks of SO₂ do not pose a public health problem from a national perspective even though those peaks would likely cause adverse health impacts in a subset of asthmatics. In response, EPA has collected and analyzed additional air quality data focused on 5-minute concentrations of SO₂. These air quality analyses conducted since the last

review will help inform the current review, which will answer the issues raised in the Court's remand of the Agency's last decision.

1.1.2 Health Evidence from the Previous Review

The 1982 Air Quality Criteria Document (AQCD) for Particulate Matter and Sulfur Oxides (EPA, 1982), and its subsequent addenda and supplement (EPA, 1986b, 1994a) presented an evaluation of SO₂ associated health effects primarily drawn from epidemiological and human clinical studies. In general, these documents identified adverse health effects that were likely associated with both short- (generally hours to days), and long-term (months to years) exposures to SO₂ at concentrations present in the ambient mixture of air pollutants. Moreover, these documents presented evidence for bronchoconstriction and respiratory symptoms in exercising asthmatics following controlled exposures to 5-10 minutes peak concentrations of SO₂.

Evidence drawn from epidemiological studies supported a likely association between 24-hour average SO₂ concentrations and daily mortality, aggravation of bronchitis, and small, reversible declines in children's lung function (EPA 1982, 1994a). In addition, a few epidemiological studies found an association between respiratory symptoms and illnesses and annual average SO₂ concentrations (EPA 1982, 1994a). However, it was noted that most of these epidemiological studies were conducted in years and cities where particulate matter (PM) counts were also quite high, thus making it difficult to quantitatively determine whether the observed associations were the result of SO₂, PM, or a combination of both pollutants.

Evidence drawn from clinical studies exposing exercising asthmatics to <1000 ppb SO₂ for 5-10 minutes found that these types of SO₂ exposures evoked health effects that were similar to those asthmatics would experience from other commonly encountered stimuli (e.g. exercise, cold/dry air, psychological stress, etc. (EPA, 1994a). That is, there was an acute-phase response characterized by bronchoconstriction and/or respiratory symptoms that occurred within 5-10 minutes of exposure but then subsided on its own within 1 to 2 hours. This acute-phase response was followed by a short refractory period where the individual was relatively insensitive to additional SO₂ challenges. Notably, the SO₂-induced acute-phase response was found to be ameliorated by the inhalation of beta-agonist aerosol medications, and to occur without an additional, often more severe, late-phase inflammatory response.

The 1994 supplement to the AQCD noted that of particular concern was the subset of asthmatics in these clinical studies that appeared to be hyperresponsive (i.e. those experiencing greater-than-average bronchoconstriction or respiratory symptoms at a given SO_2 concentration). Thus, for a given concentration of SO_2 , EPA estimated the number of asthmatics likely to experience bronchoconstriction (and/or symptoms) of a sufficient magnitude to be considered a health concern. At 600 to 1000 ppb SO_2 , EPA estimated that more than 25% of mild to moderate exercising asthmatics would likely experience decrements in lung function distinctly exceeding typical daily variations in lung function, or the response to commonly encountered stimuli (EPA, 1994a). Furthermore, the AQCD concluded that the severity of effects experienced at 600-1000 ppb was likely to be of sufficient concern to cause a cessation of activity, medication use, and/or the possible seeking of medical attention. In contrast, at 200 - 500 ppb SO_2 , it was estimated that at most 10 - 20% of mild to moderate exercising asthmatics were likely to experience lung function decrements larger than those associated with typical daily activity, or the response to commonly encountered stimuli (EPA, 1994a).

1.1.3 Assessment from Previous Review

The risk and exposure assessment from the previous review of the SO₂ NAAQS qualitatively evaluated both the existing 24-hour (0.14 ppm) and annual standards (0.03 ppm), but primarily focused on whether an additional standard was necessary to protect against short-term (e.g., 5-minute) peak exposures. Based on the human clinical data mentioned above, it was judged that exposures to 5-minute SO₂ levels at or above 600 ppb could pose an immediate significant health risk for a substantial proportion of asthmatics at elevated ventilation rates (e.g., while exercising). Thus, EPA analyzed existing ambient monitoring data to estimate the frequency of 5-minute peak concentrations above 500, 600, and 700 ppb, the number of repeated exceedances of these concentrations, and the sequential occurrences of peak concentrations within a given day (SAI, 1996). The results of this analysis indicated that in the vicinity of local sources, several locations in the U.S. had a substantial number of 5-minute peak concentrations at or above 600 ppb.

In addition to the ambient air quality analysis, the previous review also included several annual exposure analyses that in general, combined SO₂ emission estimates from utility and non-utility sources with exposure modeling to estimate the probability of exposure to short-term peak

- 1 SO₂ concentrations. The first such analysis conducted by the Agency estimated the number of 5-
- 2 minute exposures \geq 500 ppb associated with four selected coal-fired power utilities (EPA,
- 3 1986a). An expanded analysis sponsored by the Utility Air Regulatory Group (UARG)
- 4 considered the frequency of short-term exposure events that might result from the nationwide
- 5 operation of all power utility boilers (Burton et al., 1987). Additionally, the probability of peak
- 6 concentrations surrounding non-utility sources was the focus of another study conducted by the
- 7 Agency (Stoeckenius et al., 1990). The resultant combined exposure estimates based on these
- 8 early analyses indicated that between 0.7 and 1.8 percent of the total asthmatic population
- 9 potentially could be exposed one or more times annually, while outdoors at exercise, to 5-minute
- SO₂ concentrations \geq 500 ppb. It also was noted that the frequency of 5-minute exposures above
- the health effect benchmark of 600 ppb, while not part of the analysis, would be anticipated to be
- lower.

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

In addition to the early analyses mentioned above, two other analyses were considered in the prior review. The first was an exposure assessment sponsored by the UARG (Rosenbaum et al., 1992) that focused on emissions from fossil-fueled power plants. That study accounted for the anticipated reductions in SO₂ emissions after implementation of the acid deposition provisions (Title IV) of the 1990 Clean Air Act Amendments. This UARG-sponsored analysis predicted that these emission reductions would result in a 42% reduction in the number of 5-minute exposures to 500 ppb for asthmatic individuals (reducing the number of asthmatics exposed from 68,000 down to 40,000) in comparison with the earlier Burton et al. (1987) analysis. The second was a new exposure analysis submitted by the National Mining Association (Sciences International, Inc. 1995) that reevaluated non-utility sources. In this analysis, revised exposure estimates were provided for four of the seven non-utility source categories by incorporating new emissions data and using less conservative modeling assumptions in comparison to those used for the earlier Stoeckenius et al. (1990) non-utility analysis. Significantly fewer exposure events (i.e., occurrence of 5-minute 500 ppb or greater

exposures) were estimated in this industry-sponsored revised analysis, decreasing the range of

estimated exposures for these four sources by an order of magnitude (i.e., from 73,000-259,000

short-term exposure events in the original analysis to 7,900-23,100 in the revised analysis).

1.2 SCOPE OF THE RISK AND EXPOSURE ASSESSMENT FOR THE CURRENT REVIEW

1.2.1 Overview of the Second Draft Assessment

The second draft REA describes exposure and risks associated with recent ambient levels of SO_2 , levels that just meet the current SO_2 standards, and levels that just meet potential alternative standards. This second draft REA also contains a policy discussion regarding the adequacy of the current SO_2 NAAQS, and potential alternative primary standards. A concise overview of the information, analyses, and policy discussion contained in this document is presented below.

Chapters 2-4 evaluate background information presented in the ISA that is relevant for conducting an exposure and risk assessment. This includes information on 1) human exposure to SO₂ 2) at-risk populations, and 3) health effects associated with short- and long-term exposures to SO₂. Chapter 5 presents in terms of indicator, averaging time, form, and level the potential alternative standards that will be used in the exposure and risk chapters of the document. Specifically, these potential alternative standards are 99th percentile 1-hour daily maximum SO₂ levels of 50, 100, 150, 200, and 250 ppb, and a 98th percentile 1-hour daily maximum SO₂ level of 200 ppb. Chapter 5 also describes the rationale for the selection of these potential alternative standards. In brief, the rationale takes into consideration both human exposure and epidemiological evidence from the ISA, as well as a qualitative analysis conducted by staff characterizing 98th and 99th percentile 1-hour daily maximum SO₂ levels in cities and time periods corresponding to key U.S. and Canadian hospitalization and ED visit studies for all respiratory causes and asthma (key studies are identified in Table 5-5 of the ISA). Chapter 6 is an overview of the technical analyses that will be presented in the subsequent chapters of this document. This chapter will also present rationale for the selection of specific health benchmark values derived from the human exposure literature.

Chapters 7-9 present the analytical portion of the document. Staff considered both evidence of bronchoconstriction and respiratory symptoms from human exposure studies, as well as CASAC advice on the first draft REA, and judged it appropriate to conduct a series of three analyses to estimate risks associated with 5-minute SO₂ exposures ranging from 100-400 ppb in exercising asthmatics (see Figure 1-1 and Chapter 6). Chapter 7 presents an air quality characterization that uses monitored and statistically estimated 5-minute ambient SO₂

1 2

3

4

5

6

7

8

9

10

1112

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1 concentrations as a surrogate for exposure. This analysis estimates the number of times per year 2 measured or statistically estimated 5-minute peak SO₂ concentrations meet or exceed the 3 potential health benchmark values of 100, 200, 300 and 400 ppb. This air quality analysis is done 4 under scenarios reflecting current air quality, air quality simulated to just meet the current 5 standards, and air quality simulated to just meet potential alternative standards (i.e. 99th percentile 1-hour daily maximum SO₂ levels of 50, 100, 150, 200 and 250 ppb and an 98th 6 7 percentile 1-hour daily maximum SO₂ level of 200 ppb). Chapter 8 presents results from 8 exposure analysis case studies conducted in St Louis and Greene Counties Missouri. Notably, 9 EPA is also attempting to extend its exposure and risk analyses to Alleghany County (Pittsburgh), Pennsylvania and Cuyahoga County (Cleveland), Ohio. However, as of this date 10 11 we are still working to rectify technical issues involving disparities between dispersion model 12 predicted SO₂ concentrations and measured SO₂ concentrations at fixed site monitors. If EPA is 13 successful in resolving these technical issues, additional exposure and risk estimates for these 14 areas will be included in the presentation to the CASAC Panel at the April 16-17 meeting. In 15 this document, analyses conducted in St. Louis and Greene Counties provides estimates of the 16 number and percent of asthmatics residing within 20 kilometers (km) of major SO₂ sources experiencing 5-minute exposures to 100, 200, 300, and 400 ppb SO₂ while at elevated 17 18 ventilation rates under the air quality scenarios mentioned above (i.e. recent air quality, and air 19 quality adjusted to just meet the current and alternative standards). Chapter 9 is a quantitative 20 risk assessment that produces health risk estimates for the number and percent of exposed 21 asthmatics (as determined by the exposure analysis; see Figure 1-1) that would experience 22 moderate or greater lung function responses under the air quality scenarios previously described. 23 In addition to the technical analyses presented in Chapters 7-9, Chapter 10 integrates the 24 scientific evidence and the air quality, exposure, and risk information as they pertain to 25 informing decisions about the primary SO₂ NAAQS. More specifically, Chapter 10 considers 26 the epidemiological, human exposure, and animal toxicological evidence presented in the ISA 27 (EPA, 2008a), as well as the air quality, exposure, and risk characterization results presented in 28 this document, as they relate to the adequacy of the current SO₂ NAAQS and potential 29 alternative primary SO₂ standards.

1.2.2 Sp	pecies of	f Sulfur	Oxides	Included	l in A	Analyse	S
----------	-----------	----------	--------	----------	--------	---------	---

2	The sulfur oxides include multiple gaseous (e.g., SO ₂ , SO ₃) and particulate (e.g., sulfate)
3	species. In considering what species of sulfur oxides are relevant to the current review of the
4	SO ₂ NAAQS, we note that the health effects associated with particulate species of sulfur oxides
5	have been considered within the context of the Agency's review of the primary NAAQS for
6	particulate matter (PM). In the most recent review of the NAAQS for PM, it was determined that
7	size-fractionated particle mass, rather than particle composition, remains the most appropriate
8	approach for addressing ambient PM. This conclusion will be re-assessed in the parallel review
9	of the PM NAAQS; however, at present it would be redundant to also consider effects of
10	particulate sulfate in this review. Therefore, the current review of the SO ₂ NAAQS will focus on
11	gaseous species of sulfur oxides and will not consider health effects directly associated with
12	particulate sulfur oxide species. Additionally, of the gaseous species, EPA has historically
13	determined it appropriate to specify the indicator of the standard in terms of SO_2 because other
14	gaseous sulfur oxides (e.g. SO ₃) are likely to be found at concentrations many orders of
15	magnitude lower than SO ₂ in the atmosphere, and because most all of the health effects and
16	exposure information is for SO ₂ . The ISA has again found this to be the case, and therefore this
17	REA will use SO ₂ as a surrogate for all gaseous sulfur oxides.

2.0 OVERVIEW OF HUMAN EXPOSURE

2	In order to help inform the air quality, exposure, and risk analyses presented in Chapters
3	7-9, staff has briefly summarized relevant human exposure information from the ISA. After
4	defining the concept of "integrated exposure," this chapter discusses major sources of SO ₂
5	emissions. Characterizing these SO ₂ sources helps identify the most relevant locations for
6	conducting air quality, exposure, and health risk analyses. This Chapter then discusses ambient
7	levels of SO ₂ associated with 1-hour, 24-hour, and annual averaging times. SO ₂ concentrations
8	associated with these averaging times are relevant to the air quality, exposure, and risk analyses
9	because the current SO ₂ standards have 24-hour and annual averaging times, and EPA is
10	considering potential alternative 1-hour averaging time standards (see section 5.3). In addition,
11	this chapter contains a general description of the monitors reporting 5-minute SO ₂
12	concentrations, as well a broad characterization of ambient 5-minute SO ₂ levels (a more thorough
13	discussion of these topics be found in Chapters 6 and 7). This discussion is particularly relevant
14	to the analyses described in this document because the potential health effect benchmark levels
15	and the outputs of the air quality, exposure, and risk assessments are presented with respect to a
16	5-minute averaging time (see section 6.2). More specifically, as previously described in section
17	1.2.1, outputs of the air quality analysis presented in Chapter 7 include the number of measured,
18	or statistically estimated (see Chapter 6) 5-minute SO ₂ concentrations that exceed 5-minute
19	potential health effect benchmark levels. Similarly, the output of the exposure analysis in
20	Chapter 8 is the number of exercising asthmatics exposed to 5-minute SO ₂ concentrations above
21	benchmark levels. Outputs of the exposure analysis (i.e. the number of exercising asthmatics
22	exposed to 5-minute SO ₂ concentrations above benchmark levels) are then used as inputs into the
23	quantitative risk assessment in Chapter 9 to estimate the number and percent of exposed
24	exercising asthmatics expected to experience a moderate or greater lung function response (see
25	Figure 6-1).
26	In addition to providing information relevant to the air quality, exposure, and risk
27	analyses presented in this document, this Chapter also provides information relevant to the
28	Chapter 4 health discussion and the Chapter 10 policy assessment. That is, the current chapter
29	highlights uncertainties involved with using ambient SO ₂ concentrations as a surrogate for
30	personal exposure in epidemiological studies, as well as the ISA's conclusions on this topic.

2.1 BACKGROUND

1 2

The integrated exposure of a person to a given pollutant is the sum of the exposures over all time intervals for all environments in which the individual spends time. People spend different amounts of time in different microenvironments and each microenvironment is characterized by different pollutant concentrations. There is a large amount of variability in the time that different individuals spend in different microenvironments, but on average people spend the majority of their time (about 87%) indoors. Most of this time spent indoors is spent at home with less time spent in an office/workplace or other indoor locations (ISA, Figure 2-21). In addition, people spend on average about 8% of their time outdoors and 6% of their time in vehicles. A potential consequence of multiple sources of exposure or microenvironments is the exposure misclassification that may result when total human exposure is not disaggregated between these various microenvironments. In epidemiological studies that rely on ambient pollutant levels as a surrogate for exposure to ambient SO₂, such misclassification may obscure the true relationship between ambient air pollutant exposures and health outcomes.

In addition to accounting for the times spent in different microenvironments, it is also important to note the duration of exposure experienced. This is important because health effects caused by long-term, low-level exposures may differ from those caused by relatively higher shorter-term exposures.

2.2 SOURCES OF SO₂

In order to estimate risks associated with SO₂ exposure, principle sources of the pollutant must first be characterized because the majority of human exposures are likely to result from the release of emissions from these sources. Anthropogenic SO₂ emissions originate chiefly from point sources, with fossil fuel combustion at electric utilities (~66%) and other industrial facilities (~29%) accounting for the majority of total emissions (ISA, section 2.1). Other anthropogenic sources of SO₂ include both the extraction of metal from ore as well as the burning of high sulfur containing fuels by locomotives, large ships, and non-road diesel equipment. Notably, almost the entire sulfur content of fuel is released as SO₂ or SO₃ during combustion. Thus, based on the sulfur content in fuel stocks, oxides of sulfur emissions can be calculated to a higher degree of accuracy than can emissions for other pollutants such as PM and NO₂ (ISA, section 2.1).

The largest natural sources of SO₂ are volcanoes and wildfires. Although SO₂ constitutes a relatively minor fraction (0.005% by volume) of total volcanic emissions, concentrations in volcanic plumes can be in the range of several to tens of ppm (thousands of ppb). Volcanic sources of SO₂ in the U.S. are limited to the Pacific Northwest, Alaska, and Hawaii. Emissions of SO₂ can also result from burning vegetation. The amount of SO₂ released from burning vegetation is generally in the range of 1 to 2% of the biomass burned and is the result of sulfur from amino acids being released as SO₂ during combustion.

2.3 AMBIENT LEVELS OF SO₂

Since the integrated exposure to a pollutant is the sum of the exposures over all time intervals for all environments in which the individual spends time, understanding the temporal and spatial patterns of SO₂ levels across the U.S is an important component of conducting air quality, exposure, and risk analyses. SO₂ emissions and ambient concentrations follow a strong east to west gradient due to the large numbers of coal-fired electric generating units in the Ohio River Valley and upper Southeast regions. In the 12 CMSAs that had at least 4 SO₂ regulatory monitors from 2003-2005, 24-hour average concentrations in the continental U.S. ranged from a reported low of ~1 ppb in Riverside, CA and San Francisco, CA to a high of ~12 ppb in Pittsburgh, PA and Steubenville, OH (ISA, section 2.4.4). In addition, inside CMSAs from 2003-2005, the annual average SO₂ concentration was 4 ppb (ISA, Table 2-8). However, spikes in hourly concentrations occurred; the mean 1-hour maximum concentration was 130 ppb, with a maximum value of greater than 700 ppb (ISA, Table 2-8).

In addition to considering 1-hour, 24-hour, and annual SO₂ levels in this document, examining the temporal and spatial patterns of 5-minute peaks of SO₂ is also important given that human clinical studies have demonstrated exposure to these peaks can result in adverse respiratory effects in exercising asthmatics (see Chapter 4). Although the total number of SO₂ monitors across the continuous U.S. can vary from year to year, in 2006 there were approximately 500 SO₂ monitors in the NAAQS monitoring network (ISA, section 2.5.2). State and local agencies responsible for these monitors are required to report 1-hour average SO₂ concentrations to the EPA Air Quality System (AQS). However, a small number of sites, only 98 total from 1997 to 2007, and not the same sites in all years—voluntarily reported 5-minute block average data to AQS (ISA, section 2.5.2). Of these, 16 reported all twelve 5-minute averages in each hour for at least part of the time between 1997 and 2007. The remainder

- 1 reported only the maximum 5-minute average in each hour. When maximum 5-minute
- 2 concentrations were reported, the absolute highest concentration over the ten-year period
- 3 exceeded 4000 ppb), but for all individual monitors, the 99th percentile was below 200 ppb (ISA,
- 4 section 2.5.2). Medians from these monitors reported data ranged from 1 ppb to 8 ppb, and the
- 5 average for each maximum 5-minute level ranged from 3 ppb to 17 ppb. Delaware,
- 6 Pennsylvania, Louisiana, and West Virginia had mean values for maximum 5-minute data
- 7 exceeding 10 ppb (ISA, section 2.5.2). Among aggregated within-state data for the 16 monitors
- 8 from which all 5-minute average intervals were reported, the median values ranged from 1 ppb to
- 9 5 ppb, and the means ranged from 3 ppb to 11 ppb (ISA, section 2.5.2). The highest reported

10 concentration was 921 ppb, but the 99th percentile values for aggregated within-state data were

all below 90 ppb (ISA, section 2.5.2).

12

13

14

15

16

17

18

19

20

21

22

23

24

25

2627

28

29

30

31

EPA has generally conducted NAAQS risk assessments that focus on the risks associated with levels of a pollutant that are in excess of policy relevant background (PRB). Policy relevant background levels are defined as concentrations of a pollutant that would occur in the U.S. in the absence of anthropogenic emissions in continental North America (defined here as the United States, Canada, and Mexico). However, throughout much of the United States, SO₂ PRB levels are estimated to be at most 30 parts per trillion and contribute less than 1% to present day SO₂ concentrations (ISA, section 2.5.3). We note that in the Pacific Northwest and Hawaii, PRB concentrations can be considerably higher due to geothermal activity (e.g. volcanoes); in these areas, PRB can account for 70-80% of total SO₂ concentrations (ISA, section 2.5.3). Since we do not plan on conducting SO₂ risk assessments in areas with high background SO₂ levels due to natural sources, and the contribution of PRB is negligible in all other areas, EPA is addressing the risks associated with monitored and/or modeled ambient SO₂ levels without regard to PRB levels.

2.4 RELATIONSHIP OF PERSONAL EXPOSURE TO AMBIENT CONCENTRATIONS

To help inform the evaluation of the epidemiological evidence in Chapter 4 and the evidence-based considerations presented in Chapter 10, this section discusses the relationship of personal SO₂ exposure to ambient SO₂ concentrations. Many epidemiological studies rely on measures of ambient SO₂ concentrations as surrogates for personal exposure to ambient SO₂. Thus, it is important to consider the potential sources of error that are associated with using SO₂

measured by ambient monitors as a surrogate for personal exposure to ambient SO₂. Key aspects related to this issue include: (1) ambient and personal sampling issues, (2) the spatial variability of ambient SO₂ concentrations, and (3) the relationship between ambient concentrations and personal exposures as influenced by exposure factors (e.g. indoor sources).

Only a limited number of studies have focused on the relationship between personal exposure and ambient concentrations of SO₂, in part because ambient SO₂ levels have declined markedly over the past few decades. Indoor and outdoor SO₂ concentrations are often below detection limits for personal samplers¹ and in these situations, the ISA notes that associations between ambient concentrations and personal exposures are inadequately characterized (ISA, section 2.6.3.2). However, in studies with personal measurements above detection limits, the ISA states that a reasonably strong association was observed between personal SO₂ exposure and ambient concentrations (Brauer et al., 1989; Sarnat et al., 2006; described in ISA section 2.6.3.2). In addition, the ISA notes that no study has examined the relationship between concentrations measured at ambient monitors and the community average exposure: a relationship that is more relevant than that of ambient concentration to personal exposure for the majority of the epidemiological studies presented in the ISA (ISA, section 5.3).

Because epidemiological studies rely on ambient SO₂ measurements at fixed site monitors, there is concern about the extent to which instrument error could influence the results of these studies. That is, the SO₂ monitoring network was designed and put into place when SO₂ concentrations were considerably higher, and thus, well within the standard monitor's limits of detection. However, SO₂ concentrations have fallen considerably over the years and are currently at, or very near these monitors' lower limit of detection (~3 ppb). This introduces a degree of uncertainty because as monitors approach their detection limits there can be greater error in their measurements. The ISA states that it is unclear how uncertainties in measured SO₂ concentrations will change the effect estimates of epidemiological studies relying on these monitors (ISA, section 2.6.4.1). As an additional matter, staff notes that the lower detection limit of these monitors is not considered problematic with respect to attaining the standards because the current 24-hour and annual standards, as well as the potential alternative 1-hour maximum standards, are all well within the detection limits of the SO₂ NAAQS monitoring network.

 $^{^{1}}$ The lower limit of detection of personal samplers is \sim 60 ppb for 1-hour and \sim 5 ppb for 24-hour. A discussion of personal sampler detection limits can be found in section 2.6.2 of the ISA.

1	Uncertainty in epidemiological studies is also associated with the spatial and temporal
2	variation of SO_2 across communities. The ISA finds that site-to-site correlations of SO_2
3	concentrations among monitors in U.S. cities ranges from very low to very high (ISA, section
4	2.6.4.1; ISA, Table 2-9). This suggests that at any given time, SO ₂ concentrations at individual
5	monitoring sites may not highly correlate with the average SO ₂ concentration in the community.
6	This could be the result of local sources (e.g. power plants) causing an uneven spatial
7	distribution of SO ₂ , monitors being sited to represent concentrations near local sources, or effects
8	related to terrain or weather (ISA, section 2.6.4.1). However, this type of error is not thought to
9	bias epidemiological conclusions in a positive direction because it generally tends to reduce,
10	rather than increase, the effect estimate (ISA, section 2.6.4.1).
11	In epidemiological studies, since people spend most of their time indoors, there is also
12	uncertainty in the relationship between ambient concentrations measured by local monitors and
13	actual personal exposure related to ambient sources. That is, the presence of indoor or
14	nonambient sources of SO ₂ could complicate the interpretation of associations between personal
15	exposure and ambient SO_2 in exposure studies. Sources of indoor SO_2 are associated with the
16	use of sulfur-containing fuels, with higher levels expected when emissions are poorly vented. In
17	the U.S., the contribution of indoor sources is not thought to be a major contributor to overall
18	SO ₂ exposure because the only known indoor source is kerosene heaters and their use is not
19	thought to be widespread (ISA, section 2.6.4.1).
20	As described above, the ISA finds that there is some error in epidemiological studies
21	associated with ambient SO_2 concentrations being used as a surrogate for personal exposure.
22	However, the ISA concludes that positive effect estimates in SO ₂ community time-series or panel
23	epidemiological studies would likely be stronger and less uncertain if these errors had been take
24	into account (ISA, section 2.6.4.4.).

March 2009

3.0 AT RISK POPULATIONS

3.1 OVERVIEW

The risk of an adverse health effect following exposure to a pollutant is dependent on a number of factors, such as the individual's personal attributes (age, gender, preexisting health conditions) and the toxic properties of the pollutant (e.g., as indicated by dose- or concentration-response relationships). Individuals in potentially sensitive groups are of concern, as they may experience adverse effects from lower levels of a pollutant compared to the general population or experience a greater impact with the same level of exposure. The term susceptibility generally encompasses innate (e.g. genetic) or acquired (age or disease) factors that make individuals more likely to experience pollutant-related health effects. In addition, some population groups are described as being particularly vulnerable to pollution-related health effects because their air pollution exposures are higher than those of the general population. Table 3-1 presents a list of factors that could potentially lead to increased susceptibility or vulnerability to air pollution in general. However it should be noted that currently, only a subset of these factors has been shown to lead to increased susceptibility or vulnerability to SO₂ specifically. Those groups identified in the ISA to be potentially susceptible and/or vulnerable to SO₂ exposure are described in greater detail below.

Table 3-1 Factors Potentially Contributing to Susceptibility or Vulnerability to Air Pollution in General (modified from Table 4-1 in the ISA)

Susceptibility Factors	Vulnerability Factors
Pre-existing disease (e.g. asthma)	Increased activity patterns
Genetic factors	Limited air conditioner use
Age	Increased exertion level
Gender	Work environment (e.g. outdoor workers)
Race	Lower SES
Ethnicity	Lower education level
Obesity	Residential location (e.g. living near sources)
Adverse birth outcomes (e.g. low birth	Geographic location (e.g. east vs. west)
rate)	

3.2 SUSCEPTIBILITY: PRE-EXISTING DISEASE

1 2

Both recent epidemiological and human clinical studies have strengthened the prior conclusion that individuals with pre-existing respiratory disease are likely more susceptible to the effects of SO₂ than the general public (ISA, section 4.2.1.1). Epidemiological studies have reported associations between ambient SO₂ concentrations and a range of respiratory symptoms in individuals with respiratory disease. Additionally, numerous controlled human exposure studies have found that exercising asthmatics are more responsive to the respiratory effects of SO₂ than healthy, non-asthmatic individuals. Specifically, clinical studies have demonstrated that in non-asthmatics, SO₂-attributible decrements in lung function have generally not been shown at concentrations <1000 ppb. In contrast, increases in respiratory symptoms and/or decrements in lung function have been shown in a significant proportion of exercising mild and moderate asthmatics following 5-10 minute exposures to SO₂ concentrations as low as 200-600 ppb (ISA, section 4.2.1.1).

The ISA also examined the possible effects of pre-existing cardiovascular disease (CVD) on SO₂ susceptibility. The ISA found that results from a limited number of epidemiological studies provided inconsistent evidence that individuals with pre-existing CVD were more susceptible than the general public to adverse health effects associated with ambient SO₂ exposure (ISA, section 4.2.1.2). Moreover, results from a single human clinical study found no evidence to suggest that patients with stable angina were more susceptible to SO₂- related health effects than healthy individuals. Overall, the ISA found the evidence for an association between pre-existing CVD and increased susceptibility to SO₂ related health effects to be inconclusive (ISA, section 4.2.1.2).

3.3 SUSCEPTIBILITY: GENETICS

The ISA noted that a consensus now exists among scientists that the potential association between genetic factors and increased susceptibility to ambient air pollution merits serious consideration. Several criteria must be satisfied in selecting and establishing useful links between polymorphisms in candidate genes and adverse respiratory effects. First, the product of the candidate gene must be significantly involved in the pathogenesis of the effect of interest, which is often a complex trait with many determinants. Second, polymorphisms in the gene must produce a functional change in either the protein product or in the level of expression of the

protein. Third, in epidemiological studies, the issue of confounding by other genes or environmental exposures must be carefully considered (ISA section 4.2.2).

While many studies have examined the association between genetic polymorphisms and susceptibility to air pollution in general, only one study has specifically examined the effects of SO_2 exposure on genetically distinct subpopulations. Winterton et al. (2001) found a significant association between SO_2 -induced decrements in Forced Expiratory Volume in the first second (FEV₁) and the homozygous wild-type allele in the promoter region of Tumor Necrosis Factor- α (TNF- α ; AA, position -308). However, the ISA concluded that the overall body of evidence was too limited to reach a conclusion regarding the effects of SO_2 exposure on genetically distinct subpopulations at this time.

3.4 SUSCEPTIBILITY: AGE

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

The ISA identifies children (i.e., <18 years of age) and older adults (i.e. >65 years of age) as groups that are potentially more susceptible than the general population to the health effects associated with SO₂ exposure. In children, the developing lung is highly susceptible to damage from environmental toxicants as it continues to develop through adolescence. The basis for increased susceptibility in the elderly is unknown, but one hypothesis is that it may be related to changes in antioxidant defenses in the fluid lining the respiratory tract. The ISA found a number of epidemiological studies that observed increased respiratory symptoms in children associated with increasing SO₂ exposures. In addition, several studies have reported that the excess risk estimates for ED visits and hospitalizations for all respiratory causes, and to a lesser extent asthma, associated with a 10-ppb increase in 24-hour average SO₂ concentrations were higher for children and older adults than for all ages together (ISA, section 4.2.3). However, the ISA also notes that results from human exposure studies do not suggest that adolescents are more susceptible than adults to the respiratory effects of SO₂ (ISA, section 4.2.3). Overall, the ISA states that compared to the general population, there is limited evidence to suggest that children and older adults are more susceptible to the adverse respiratory effects of ambient SO₂ (ISA, section 4.2.3).

3.5 VULNERABILITY

Indoor and personal SO₂ concentrations are generally much lower than outdoor ambient concentrations. Therefore, people who spend most of their time indoors are generally less

- 1 vulnerable to SO₂ related health effects than those who spend a significant amount of time
- 2 outdoors. In addition, human clinical studies have demonstrated that decrements in lung
- 3 function and respiratory symptoms occur at significantly lower SO₂ exposure levels in exercising
- 4 asthmatics compared to resting asthmatics. Thus, individuals who spend a significant amount of
- 5 time outdoors at elevated ventilation rates (e.g. while playing, or working) are expected to have
- 6 increased vulnerability and therefore be at greater risk of experiencing SO₂-related health effects.
- 7 In addition to individuals who spend extended periods of time outdoors, the ISA also
- 8 describes evidence that vulnerability to SO₂ exposure is associated with lower socioeconomic
- 9 status (SES) (ISA section 4.2.5). Finkelstein et al. (2003) found that among people with below-
- median income, the relative risk for above-median exposure to SO₂ was 1.18 (95% CI: 1.11,
- 1.26); the corresponding relative risk among subjects with above-median income was 1.03 (95%)
- 12 CI: 0.83, 1.28). However, the ISA concludes that overall, the evidence is too limited to reach a
- conclusion regarding SES and exposure to SO₂ (ISA section 4.2.5).

3.6 NUMBER OF SUSCEPTIBLE OR VULNERABLE INDIVIDUALS

- Large proportions of the U.S. population are likely to be at increased risk for SO₂-related
- health effects due to the potential susceptibilities and vulnerabilities mentioned above. In the
- 17 United States, approximately 10% of adults and 13% of children have been diagnosed with
- asthma. Notably, the prevalence and severity of asthma is higher among certain ethnic or racial
- 19 groups such as Puerto Ricans, American Indians, Alaskan Natives, and African Americans (ISA
- for NO_x, section 4.4). Furthermore, a higher prevalence of asthma among persons of lower SES
- and an excess burden of asthma hospitalizations and mortality in minority and inner-city
- communities have been observed. In addition, population groups based on age comprise
- substantial segments of individuals that may be potentially at risk for SO₂-related health impacts.
- Based on U.S. census data from 2000, about 72.3 million (26%) of the U.S. population are under
- 25 18 years of age, 18.3 million (7.4%) are under 5 years of age, and 35 million (12%) are 65 years
- of age or older. There is also concern for the large segment of the population that is potentially
- 27 vulnerable to SO₂-related health effects because of increased time spent outdoors at elevated
- ventilation rates (e.g. those who work or play outdoors). Overall, the considerable size of the
- 29 population groups at risk indicates that exposure to ambient SO₂ could have a significant impact
- on public health in the United States.

4.0 HEALTH EFFECTS

2	4.1	INIT	TD(שר		TIC	71
	4. 1	114	\mathbf{n}	יטכ	\mathbf{U}		JIN

1

- The ISA along with its annexes integrates newly available epidemiological, human clinical, and animal toxicological evidence with consideration of key findings and conclusions from prior reviews to draw conclusions about the relationship between short- and long-term exposure to SO₂ and numerous human health endpoints. For these health effects, the ISA characterizes judgments about causality with a hierarchy (for discussion see ISA section 1.3.7) that contains the following five levels:
- Sufficient to infer a causal relationship
 - Sufficient to infer a likely causal relationship (i.e., more likely than not)
- Suggestive but not sufficient to infer a causal relationship
- Inadequate to infer the presence or absence of a causal relationship
- Suggestive of no causal relationship
- The ISA notes that these judgments about causality are informed by a series of aspects of causality that are based on those set forth by Sir Austin Bradford Hill in 1965 (ISA section 1.3.6). These aspects include strength of the observed association, availability of experimental evidence, consistency of the observed association, biological plausibility, coherence of the
- evidence, temporal relationship of the observed association, and the presence of an exposure-
- 19 response relationship. A summary of each of the five levels of the hierarchy is provided in Table
- 20 1-2 of the ISA, which has also been included below (Table 4-1).

Table 4-1. Weight of Evidence for Causal Determination

Sufficient to infer a causal relationship	Evidence is sufficient to conclude that there is a causal relationship between relevant pollutant exposure and the outcome. Causality is supported when an association has been observed between the pollutant and the outcome in studies in which chance, bias, and confounding could be ruled out with reasonable confidence. That is, human clinical studies provide the strongest evidence for causality. Causality is also supported by findings from epidemiologic "natural experiments" or observational studies supported by other lines of evidence. Generally, determination is based on multiple studies from more than one research group.
Sufficient to infer a likely causal relationship (i.e., more likely than not).	Evidence is sufficient to conclude that there is a likely causal association between relevant pollutant exposures and the outcome. That is, an association has been observed between the pollutant and the outcome in studies in which chance, bias and confounding are minimized, but uncertainties remain. For example, observational studies show associations but confounding and other issues are difficult to address and/or other lines of evidence (human clinical, animal, or mechanism of action information) are limited or inconsistent. Generally, determination is based on multiple studies from more than one research group.
Suggestive, but not sufficient to infer a causal relationship	Evidence is suggestive of an association between relevant pollutant exposures and the outcome, but is weakened because chance, bias and confounding cannot be ruled out. For example, at least one high-quality study shows an association, while the results of other studies are inconsistent.
Inadequate to infer the presence or absence of a causal relationship	The available studies are inadequate to infer the presence or absence of a causal relationship. That is, studies are of insufficient quality, consistency or statistical power to permit a conclusion regarding the presence or absence of an association between relevant pollutant exposure and the outcome. For example, studies which fail to control for confounding or which have inadequate exposure assessment, fall into this category.
Suggestive of no causal relationship	The available studies are suggestive of no causal relationship. That is, several adequate studies, examining relationships between relevant population exposures and outcomes, and considering sensitive subpopulations, are mutually consistent in not showing an association between exposure and the outcome at any level of exposures. In addition, the possibility of a small elevation in risk at the levels of exposure studied can never be excluded.

For the purpose of characterizing SO₂-related health risks in the risk and exposure analyses, we have focused on health endpoints for which the ISA concludes that the available evidence is sufficient to infer a causal relationship. The ISA concludes that there is sufficient evidence to infer a causal relationship between respiratory morbidity and short-term exposure to SO₂ (ISA, section 5.2). This conclusion is based on the consistency, coherence, and plausibility of findings observed in controlled human exposure studies examining SO₂ exposures of 5-10 minutes, epidemiological studies mostly using 24-hour average exposures, and animal toxicological studies using exposures of minutes to hours (ISA, section 5.2). The evidence for causal associations between SO₂ exposure and other health endpoints is judged to be less convincing, at most suggestive but not sufficient to infer a causal relationship, and therefore will

- 1 not be discussed in this chapter, but may be considered as part of the policy discussion in
- 2 Chapter 10. Key conclusions reached in the ISA are listed below:

4

5

7

8

9

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

- Sufficient to infer a causal relationship:
 - o Short-Term Exposure to SO₂ and Respiratory Morbidity
- Suggestive but not sufficient to infer a causal relationship:
 - o Short-Term Exposure to SO₂ and Mortality
 - Inadequate to infer the presence or absence of a causal relationship
 - o Short-Term Exposure to SO₂ and Cardiovascular Morbidity;
- o Long-Term Exposure to SO₂ and Respiratory Morbidity;
- o Long-Term Exposure to SO₂ and Mortality;
- o Long-Term Exposure to SO₂ and Other Morbidity;
- 13 A more detailed summary of these conclusions can be found in Table 5-3 of the ISA.

4.2 SHORT-TERM PEAK (<1-HOUR, GENERALLY 5-10 MINUTES) SO₂ EXPOSURES AND RESPIRATORY HEALTH EFFECTS

4.2.1 Overview

The ISA concludes that there is sufficient evidence to infer a causal relationship between respiratory morbidity and short-term (5-minutes to 24-hours) exposure to SO₂ (ISA, section 5.2). In large part, this determination is based on controlled human exposure studies demonstrating a relationship between short-term peak SO₂ exposures and adverse effects on the respiratory system in exercising asthmatics. Since the last review, several human clinical studies providing evidence of SO₂-induced decrements in lung function and increases in respiratory symptoms among exercising asthmatics have been published (ISA section 3.1.3). In addition, based in part on recent guidance from the American Thoracic Society (ATS) regarding what constitutes an adverse health effect of air pollution (ATS, 2000), the ISA also reviewed and analyzed key older studies along with those published since the last review. In their official statement, the ATS concluded that an air pollution-induced shift in a population distribution of a given health-related endpoint (e.g., lung function) should be considered adverse, even if this shift does not result in the immediate occurrence of illness in any one individual in the population (ATS 2000). The ATS also recommended that transient loss in lung function with accompanying respiratory

- 1 symptoms attributable to air pollution should be considered adverse. However, the ISA cautions
- 2 that symptom perception is highly variable among asthmatics even during severe episodes of
- 3 asthmatic bronchoconstriction, and that an asymptomatic decrease in lung function may pose a
- 4 significant health risk to asthmatic individuals as it is less likely that these individuals will seek
- 5 treatment (ISA section 3.1.3). As in previous reviews, the ISA also concludes that at
- 6 concentrations below 1000 ppb, healthy individuals are relatively insensitive to the respiratory
- 7 effects of short-term peak SO₂ exposures (ISA, sections 3.1.3.1 and 3.1.3.2).

4.2.2 Respiratory Symptoms

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

The 1994 Supplement to the Second Addendum described multiple studies that evaluated respiratory symptoms (e.g. cough, wheeze, or chest tightness) following controlled exposures of asthmatic subjects to SO₂. Linn et al. (1983) reported that relative to exposure to clean air, exposure to SO₂ levels as low as 400 ppb for 5 minutes in exercising asthmatics resulted in a statistically significant increase in an overall respiratory symptoms score that included wheeze, chest tightness, cough, and substernal irritation. In an additional study, Linn et al. (1987) observed that 43% of asthmatics exhibited respiratory symptoms following exposure to 600 ppb SO₂ during a 10-minute period of exercise; this study also found that exposure to SO₂ concentrations of 400 ppb resulted in 15% of study subjects experiencing respiratory symptoms (ISA, 3.1.3.1). In addition, Balmes et al. (1987) reported that 7 out of 8 asthmatic adults at elevated ventilation rates developed respiratory symptoms following a 3-minute exposure via mouthpiece to 500 ppb SO₂ (ISA section 3.1.3.1). However, it should be noted that studies utilizing a mouthpiece exposure system cannot be directly compared to studies involving freely breathing subjects, as nasal absorption of SO₂ is bypassed during oral breathing, thus allowing a

Controlled human exposure studies published since the 1994 Supplement to the Second Addendum have provided additional evidence of short-term peak SO₂ exposures resulting in respiratory symptoms in asthmatics at elevated ventilation rates (ISA, section 3.1.3.1). In a study conducted by Gong et al. (1995), unmedicated SO₂-sensitive asthmatics were exposed to 0-, 500and 1000 ppb SO₂ for 10 minutes, while performing different levels of exercise (light, medium, or heavy). The authors found that respiratory symptoms increased with increasing SO₂

greater fraction of inhaled SO₂ to reach the tracheobronchial airways. As a result, individuals

exposed to SO₂ through a mouthpiece are likely to experience greater respiratory effects from a

given SO₂ exposure.

- 1 concentrations. Moreover, they found that exposure to 500 ppb SO₂ during light exercise evoked
- 2 a more severe symptomatic response than heavy exercise in clean air. In addition, Trenga et al.
- 3 (1999) observed a correlation between decreases in FEV_1 and increases in respiratory symptoms
- 4 following 10-minute exposures to 500 ppb SO₂ by mouthpiece.

4.2.3 Lung function

5

6

7

8

9

13

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

30

The ISA notes that it has been clearly established that subjects with asthma are more

sensitive to the respiratory effects of SO₂ exposure than healthy individuals (ISA, section

3.1.3.2). Asthmatic individuals exposed to SO₂ concentrations as low as 200-300 ppb for 5-10

min during exercise have been shown to experience moderate or greater bronchoconstriction,

measured as an increase in specific airway resistance (sRaw) of \geq 100% or decrease in FEV₁ of \geq

11 15% after correction for exercise-induced responses in clean air (Bethel et al., 1983; Linn et al.,

12 1983, 1984, 1987; 1988; 1990; Magnussen et al., 1990; Roger et al., 1985). Moreover, the ISA

finds that among asthmatics, both the magnitude of SO₂-induced lung function decrements and

the percent of individuals affected have been shown to increase with increasing 5- to 10-minute

 SO_2 exposures in the range of 200 to 1000 ppb.

The ISA finds supporting evidence for SO_2 -induced decrements in lung function from more recently published studies. Gong et al. (1995) found that increasing SO_2 concentrations resulted in both a decrease in FEV_1 , as well as an increase in sRaw. This same study found that increasing the concentration of SO_2 had a greater effect on sRaw and FEV_1 than increasing the level of exercise. In a separate study, following a 10-minute exposure to 500 ppb SO_2 by mouthpiece (see caveat in section 4.2.2), Trenga et al. (1999) observed that 25 out of 47 exercising adult asthmatics experienced a \geq 8% decrease in FEV_1 versus baseline (mean decrease

= 17.2%).

4.2.4 Decrements in Lung Function in the Presence of Respiratory Symptoms

SO₂-induced decrements in lung function (increased sRaw and decreased FEV₁) have frequently been associated with increases in respiratory symptoms among asthmatics at elevated ventilation rates (Balmes et al., 1987; Gong et al., 1995; Linn et al., 1983b; 1987; 1988; 1990). For example, Linn et al. (1987) exposed 40 asthmatics during 10-minute periods of exercise to 0, 200, 400, and 600 ppb SO₂ and the individual results were made available to EPA (Smith, 1994). In brief, this study found that after adjusting for effects of exercise in clean air, exposure to 600

- ppb SO₂ resulted in 21 of the 40 subjects experiencing moderate or greater decrements in lung
- 2 function. Of these 21 responders, 14 (67%) also experienced mild to severe respiratory
- 3 symptoms. In the same study, 14 asthmatics experienced moderate or greater decrements in lung
- 4 function in response to 400 ppb SO₂, five of whom (36%) also experienced mild to moderate
- 5 respiratory symptoms. In addition, five asthmatics experienced moderate or greater decrements
- 6 in lung function in response to 200 ppb SO₂ (i.e. the lowest concentration tested), one of whom
- 7 (20%) also experienced mild respiratory symptoms.

9

10

11

12

13

14

15

22

2324

25

26

27

28

29

30

4.2.5 Medication as an Effect Modifier

The ISA reports that quick-relief and long-term-control asthma medications have been shown to provide varying degrees of protection against SO₂-induced bronchoconstriction in mild and moderate asthmatics (ISA section 3.1.3.2 and Annex Table D-1). More specifically, while no therapy has been shown to completely eliminate SO₂-induced respiratory effects in exercising asthmatics, some short- and long-acting asthma medications are capable of significantly reducing SO₂-induced bronchoconstriction (Gong et al., 1996; 2001; Koenig et al., 1987; Linn et al., 1990). However, the ISA notes that asthma is often poorly controlled even among severe

- asthmatics due to inadequate drug therapy or poor compliance among those who are on regular
- medication (Rabe et al., 2004). Moreover, the ISA also notes that mild asthmatics, who
- 18 constitute the majority of asthmatic individuals, are much less likely to use asthma medication
- than asthmatics with more severe disease (O'Byrne, 2007; Rabe et al., 2004). Therefore, the ISA
- finds that it is reasonable to conclude that all asthmatics (i.e. mild, moderate, and severe), are at
- 21 high risk of experiencing adverse respiratory effects from SO₂ exposure (ISA section 3.1.3.2).

4.3 SHORT-TERM (≥ 1-HOUR, GENERALLY 24-HOUR) SO₂ EXPOSURE AND RESPIRATORY HEALTH EFFECTS

In addition to the human clinical evidence described above (section 4.2), the ISA also bases its causal determination for an association between exposure to short-term (5-minutes to 24-hour) SO₂ and respiratory morbidity on results from epidemiological studies. More specifically, this section will focus on the epidemiological results presented in the ISA with regard to respiratory symptoms, as well as hospitalization and ED visits for all respiratory causes and asthma. This is because the ISA emphasizes that epidemiological results from these studies provide "supporting evidence" for its determination of causality (ISA section 5.2).

4.3.1	Resp	iratory	Symi	otoms

2 The ISA finds that the strongest epidemiological evidence for an association between 3 short-term SO₂ concentrations and respiratory symptoms was in children, and comes from two 4 large U.S. multi-city studies: the National Cooperative Inner-City Asthma Study (NCICAS; 5 Mortimer et al., 2002; ISA section 3.1.4.1.), and the Childhood Asthma Management Program 6 (CAMP; Schildcrout et al., 2006; ISA section 3.1.4.1). Both of these studies found significant 7 associations between the level of SO₂ concentration and the risk of respiratory symptoms in 8 asthmatic children (Mortimer et al., 2002; Schildcrout et al., 2006;). However, it should be noted 9 that the Harvard Six Cities Study (Schwartz et al., 1994) suggested that the association between SO₂ and respiratory symptoms in children could be confounded by PM₁₀; the authors found that 10 11 the effect of SO₂ was substantially diminished after adjustment for PM₁₀ in copollutant models 12 (ISA, section 3.1.4.1). These key studies are discussed in more detail below. 13 The National Cooperative Inner-City Asthma Study (NCICAS, Mortimer et al. 2002) 14 included asthmatic children (n = 846) from eight U.S. urban areas and examined the relationship 15 between respiratory symptoms and summertime air pollution levels. The strongest associations 16 were found between morning symptoms (e.g. morning cough) and the median 3-hour average 17 SO₂ concentrations during morning hours (8 a.m. to 11 a.m.)- following a 1- to 2-day lag (ISA, 18 Figure 3-2). Three hour average concentrations in the morning hours ranged from 17 ppb in 19 Detroit to 37 ppb in East Harlem, NY. This relationship remained robust and statistically 20 significant in multi-pollutant models with ozone (O_3) , and nitrogen dioxide (NO_2) . When PM_{10} 21 was also added to the model, the effect estimate was similar although no longer statistically 22 significant (ISA, Figure 3-2), but the ISA notes that this loss of statistical significance could have 23 been the result of reduced statistical power (only three of eight cities were included in this 24 analysis) or collinearity resulting from adjustment of multiple pollutants (ISA, section 3.1.4.1). 25 The Childhood Asthma Management Program (CAMP, Schildcrout et al. 2006) examined 26 the association between ambient air pollution and asthma exacerbations in children (n = 990) 27 from eight North American cities. The median 24-hour average SO₂ concentrations (collected in 28 seven of the eight study locations) ranged from 2.2 ppb in San Diego to 7.4 ppb in St. Louis. All 29 lag structures were positively associated with an increased risk of asthma symptoms, but only the 30 3-day moving average was statistically significant (ISA, Figure 3-3). In joint-pollutant models

31

with carbon monoxide (CO) and NO₂, the 3-day moving average effect estimates remained

robust and statistically significant. In a joint-pollutant model with PM_{10} , the 3-day moving
average effect estimate remained robust, but was no longer statistically significant (ISA Figure 3-
3).

A longitudinal study of 1,844 schoolchildren during the summer months from the Harvard Six Cities Study suggested that the association between SO_2 and respiratory symptoms may potentially be confounded by PM_{10} (Schwartz et al., 1994). It should be noted that unlike the NCICAS and CAMP studies, this study was not limited to asthmatic children. The median 24-hour average SO_2 concentration during this period was 4.1 ppb (10th–90th percentile: 0.8, 17.9; maximum 81.9). SO_2 concentrations were found to be associated with cough incidence and lower respiratory tract symptoms. However, the effect of SO_2 was substantially reduced and no longer statistically significant after adjustment for PM_{10} . PM_{10} had the strongest association with respiratory symptoms, and the effect of PM_{10} remained robust in copollutant models. Because PM_{10} concentrations were correlated strongly to SO_2 -derived sulfate particles (r = 0.80), the reduced SO_2 effect estimate may indicate that for PM_{10} dominated by fine sulfate particles, PM_{10} has a slightly stronger association than SO_2 to cough incidence and lower respiratory symptoms (ISA, section 3.1.4.1.1).

In addition to epidemiological studies examining the relationship between ambient SO₂ concentrations and respiratory symptoms in children, the ISA also describes studies that looked for associations between SO₂ levels and respiratory symptoms in adults (ISA, section 3.1.4.1). The ISA notes that compared to the number of epidemiological studies examining the association between SO₂ exposure and respiratory symptoms in children, fewer studies examined this association in adults. Moreover, results in adults were mixed; some studies demonstrated positive associations while others showed no relationship at ambient SO₂ levels (ISA, section 3.1.4.1).

4.3.2 ED Visits and Hospitalizations for All Respiratory Causes

Respiratory causes for ED and hospitalization visits typically include asthma, pneumonia, bronchitis, emphysema, upper and lower respiratory infections, as well as other minor categories. Overall, the ISA concludes that these studies provide evidence to support an association between ambient SO₂ concentrations and ED visits and hospitalizations for all respiratory causes (ISA, section 3.1.4.6). The ISA also finds that when analyses are restricted by age, the results among children (0-14 years) and older adults (65+ years) are mainly positive, but not always statistically significant (ISA, section 3.1.4.6). When all age groups are combined, the ISA finds that the

- 1 results of studies are mainly positive; however, the excess risk estimates are generally smaller
- 2 compared to children and older adults (ISA, Figure 3-6). Results from key epidemiological
- 3 studies conducted in the U.S. and Canada are described below, and a more detailed discussion of
- 4 both the U.S. and international epidemiological literature can be found in the ISA (ISA, section
- 5 3.1.4.6).
- Wilson et al., (2005) examined the association between SO₂ levels and ED visits for all
- 7 respiratory causes in Portland, ME (54,000 ED visits) and Manchester, NH (30,000 ED visits).
- 8 The authors found a negative association in Portland when analyses were limited to children. In
- 9 Portland, they found a positive and statistically significant 9% (95% CI: 5, 14) excess risk per 10
- ppb increase in 24-hour average SO₂ in adults. Largest effects were observed among the elderly,
- with a 16% (95% CI: 7, 26) excess risk per 10 ppb increase in 24-hour average SO₂. When all
- ages were combined, a positive and statistically significant 7% (95% CI: 3, 12) excess risk per 10
- ppb increase in 24-hour average SO₂ was observed in Portland. No relationship was observed
- between SO₂ concentrations and ED visits for all respiratory causes in Manchester in the
- analyses of all ages or any age-stratified group.
- Schwartz (1995) conducted a study in New Haven, CT and Tacoma, WA evaluating the
- 17 relationship between hospital admissions for all respiratory causes ($n \approx 8,800$ in New Haven and
- 18 $n \approx 4,600$ in Tacoma) and ambient SO₂ concentrations in older adults (65+ years). The average
- 19 24-hour SO₂ concentration was 29.8 ppb in New Haven and 16.8 ppb in Tacoma. This study
- found positive associations between hospitalizations and SO₂, with a 2% (95% CI: 1, 3) excess
- 21 risk in New Haven and 3% (95% CI: 1, 6) excess risk in Tacoma per 10 ppb increase in 24-hour
- 22 average SO₂. Notably, the effect estimate for New Haven remained robust and statistically
- 23 significant in two-pollutant models with PM₁₀, but in Tacoma was substantially reduced and no
- longer statistically significant (ISA, Figure 3-8). Additional evidence for an association between
- 25 SO₂ exposure and hospital admissions for all respiratory causes in older adults was found in two
- studies conducted in Vancouver, BC. Fung et al., (2006) and Yang et al., (2003) both found
- positive associations between hospitalizations and 24-hour average SO₂ concentrations in older
- adults.
- Peel et al., (2005) investigated the relationship between 1-hour maximum SO₂
- 30 concentrations and respiratory ED visits ($n \approx 480,000$) for all ages in Atlanta, GA. The mean 1-
- 31 hour maximum SO₂ concentration was 16.5 ppb. A weak and statistically non-significant

- 1 relationship was observed for respiratory ED visits. Specifically, Peel et al., (2005) found an
- 2 excess risk of 1.6% (95% CI: -0.6, 3.8) per 40 ppb increase in 1-hour maximum SO₂. Tolbert et
- al (2007) recently reanalyzed the data from this study along with four additional years of data
- 4 and found similar results.

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

4.3.3 Emergency Department Visits and Hospitalizations for Asthma

The ISA also finds evidence of an association between SO₂ levels and ED visits and hospitalizations for asthma. The document notes that most of the effect estimates associated with asthma ED visits are positive (suggesting an association with ambient SO₂), although few are statistically significant (ISA, section 3.1.4.6). In an analysis encompassing all ages, Wilson et al., (2005) found a statistically significant positive association between asthma ED visits and SO₂, with an 11% (95% CI: 2, 20) excess risk per 10 ppb increase in 24-hour average SO₂ in Portland, ME. In Manchester NH, the authors found a positive, although not statistically significant association with a 6% (95% CI: -4, 17) excess risk per 10 ppb increase in 24-hour average SO₂. Ito et al., (2007) also examined the association between SO₂ and asthma ED visits in all ages. This study was conducted in New York City and found a 6% (95% CI: 3, 10) excess risk per 10 ppb increase in 24-hour average SO₂ in all year analyses. Multipollutant analyses were conducted in data limited to the warm season only. While the SO₂ effect estimate was robust and remained statistically significant after adjustment for PM_{2.5}, O₃, and CO in twopollutant models, it was found to diminish to null when adjusting for NO₂. Peel et al., (2005) also examined the association between asthma ED visits and ambient SO₂. This study was conducted in Atlanta and found a null association between ED visits for asthma and 1-hour maximum SO₂ levels. In addition to these ED studies, a hospital admissions study conducted by the New York Department of Health (NY DOH, 2006) found a statistically significant 10% (95%) CI: 5, 15) excess risk for asthma hospital admissions per 10 ppb increase in 24-hour average SO₂

In three Ohio cities, Jaffe et al., (2003) examined the association between SO₂ concentrations and asthma ED visits among asthmatics, aged 5-34 years. The mean 24-hour average SO₂ concentrations were 14 ppb in Cincinnati, 15 ppb in Cleveland, and 4 ppb in Columbus. A statistically significant association was observed in the multicity analysis. The authors found an excess risk of 6% (95% CI: 1, 11) per 10 ppb increase in 24-hour average SO₂. In the city-stratified analyses, statistically significant associations were observed for Cincinnati

for residents of the Bronx, but a null association for those living in Manhattan.

- 1 (17% [95% CI: 5, 31]), but not in Cleveland (3% [95% [CI -4, 11]) or Columbus (13% [95% CI:
- 2 -14, 49]).
- 3 Lin et al., (2004b) conducted a case-control study of children aged 0-14 years in Bronx
- 4 County, NY. The authors examined the potential association between daily ambient SO₂
- 5 concentrations (categorized into quartiles of both average and maximum levels) and cases
- 6 admitted into the hospital for asthma, or controls who were admitted for reasons other than
- 7 asthma. The results of this study demonstrated that cases were exposed to higher daily average
- 8 concentrations of SO₂ than controls. When the highest exposure quartile (>20 ppb, 24-h average
- 9 SO₂) was compared with the lowest (2.9-9.4 ppb, 24-h average SO₂), the odds ratios (ORs) were
- strongest when a 3-day lag was employed (OR 2.16 [95% CI: 1.77, 2.65]). However, the results
- were positive and statistically significant for all lag days examined. Lin et al., (2005) observed a
- weak positive association between hospitalizations for asthma and SO₂ among girls, and a null
- association for boys in a Toronto, ON study (mean 24-h average SO₂ of 5.36 ppb [SD 5.90]). In
- addition to these hospitalization studies, Wilson et al. (2005) found a positive, but not
- statistically significant 5% (95% CI -12, 25) excess risk per 10 ppb increase in 24-hour average
- 16 SO₂ for asthma ED visits in Portland, ME, and a positive, but not statistically significant 20%
- 17 (95% CI -3, 49) excess risk in Manchester, NH among children aged 0-14 years.

5.0 IDENTIFICATION OF POTENTIAL ALTERNATIVE STANDARDS FOR ANALYSIS

5.1 INTRODUCTION

The primary goals of the SO₂ risk and exposure assessment described in this draft document are to estimate short-term exposures and potential human health risks associated with 1) recent levels of ambient SO₂; 2) SO₂ levels associated with just meeting the current standards; and 3) SO₂ levels associated with just meeting potential alternative standards. This section identifies potential alternative standards to be included in the quantitative analyses discussed in Chapters 7 through 9. The potential alternative standards to be analyzed are defined in terms of indicator, averaging time, form, and level and this chapter provides the rationale that was used for their selection

5.2 INDICTATOR

The SO_x include multiple gaseous (e.g., SO₂, SO₃) and particulate (e.g., sulfate) species. In considering the appropriateness of different indicators, we note that the health effects associated with particulate species of SO_x have been considered within the context of the health effects of ambient particles in the Agency's review of the PM NAAQS. Thus, as discussed in the integrated review plan (2007a), the current review of the SO₂ NAAQS is focused on the gaseous species of SO_x and will not consider health effects directly associated with particulate species of SO_x. Of the gaseous species, EPA has historically determined it appropriate to specify the indicator of the standard in terms of SO₂ because other gaseous sulfur oxides (e.g., SO₃) are likely to be found at concentrations many orders of magnitude lower than SO₂ in the atmosphere, and because most all of the health effects evidence and exposure information is related to SO₂. The final ISA has again found this to be the case and therefore, staff finds that SO₂ remains the most appropriate indicator for the alternative standards to be analyzed in this document.

5.3 AVERAGING TIME

Staff finds that the most robust evidence for SO_2 -induced respiratory morbidity exists for exposure durations \leq 1-hour. The strongest evidence for this finding comes from controlled human exposure studies that have consistently demonstrated that exposure to SO_2 for 5-10 minutes can result in significant bronchoconstriction and/or respiratory symptoms in exercising

- asthmatics (see section 4.2). In fact, the ISA describes the controlled human exposure studies as
- 2 being the "definitive evidence" for its causal determination between SO₂ exposure and short-
- 3 term respiratory morbidity (ISA, section 5.2). In addition to these controlled human exposure
- 4 studies, there is a relatively small body of epidemiological evidence describing positive
- 5 associations between 1-hour maximum SO₂ levels and respiratory symptoms as well as hospital
- 6 admissions and ED visits for all respiratory causes and asthma (ISA, Tables 5.4 and 5.5). In
- 7 addition to the 1-hour epidemiological evidence, there is a considerably larger body of
- 8 epidemiological studies reporting associations between 24-hour average SO₂ levels and
- 9 respiratory symptoms, as well as hospitalizations and ED visits; however, the ISA notes that it is
- possible that associations observed in these 24-hour studies are being driven, at least in part, by
- short-term peaks of duration < 24-hours of SO₂. More specifically, when describing
- epidemiological studies observing associations between ambient SO₂ and respiratory symptoms,
- 13 the ISA states "that it is possible that these associations are determined in large part by peak
- exposures within a 24-hour period" (ISA, section 5.2). The ISA also states that the respiratory
- effects following peak SO₂ exposures in controlled human exposure studies provides a basis for a
- progression of respiratory morbidity that could result in increased ED visits and hospital
- admissions (ISA, section 5.2). It should also be noted that epidemiological studies conducted in
- Paris, France (Dab et al., 1996) and in Manhattan and Bronx, NY (NY DOH, 2006) used both
- 19 24-hour average and 1-hour daily maximum air quality levels and found similar effect estimates
- with regard to hospital admissions for all respiratory causes (Dab et al., 1996) and asthma ED
- visits (NY DOH, 2006). Finally, in addition to the controlled human exposure and
- 22 epidemiological evidence, the ISA describes key toxicological studies with exposures ranging
- from minutes to hours resulting in decrements in lung function, airway inflammation, and/or
- 24 hyperresponsiveness in laboratory animals (ISA, Table 5-2).
- 25 The scientific evidence described above suggests that at a minimum, averaging time(s)
- selected for further risk and exposure analyses should address respiratory effects associated with
- SO₂ exposures of \leq 1-hour. We note that analyses conducted in the ISA demonstrate that at
- 28 monitors measuring all twelve 5-minute SO₂ levels in an hour (n=16), there is a high Pearson
- correlation between the 5-minute maximum level and the corresponding 1-hour average SO₂
- 30 concentration, with only one monitor observing a correlation ≤ 0.9 (ISA, section 2.5.2; ISA,
- Table 2-12). Thus, for the purpose of conducting quantitative exposure and risk analyses staff

1 concluded that the focus should be on potential alternative SO₂ standards with an averaging time 2 of 1-hour. Staff believes that alternative standards with an averaging time of 1-hour will limit

both 5-minute peak concentrations within an hour, as well as other peak SO_2 concentrations (≥ 1 -

hour) that are likely in part, driving the respiratory outcomes described in epidemiological

studies.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Staff also considered examining alternative 5-minute standards in the risk and exposure assessment, but concluded for several reasons that such an analysis would be of questionable utility in the decision-making process. We note that EPA historically conducts air quality, exposure, and risk analyses of alternative standards by adjusting measured, not modeled air quality data. This is an issue in evaluating alternative 5-minute standards for SO₂ because there were, and continue to be relatively few locations reporting 5-minute SO₂ concentrations. As described in Appendix A, from 1997-2007, there were a total of 98 monitors in 13 states and the District of Columbia measuring maximum 5-minute SO₂ concentrations in an hour. In comparison, there were 933 monitors in 49 states, the District of Columbia, Puerto Rico and the Virgin Islands measuring 1-hour SO₂ concentrations. Moreover, it is important to consider that those monitors reporting 5-minute concentrations do not represent data from a dedicated 5minute monitoring network, but rather a voluntary submission of 5-minute values from monitors placed for the purpose of evaluating attainment of 24-hour and annual average SO₂ NAAQS. Thus, staff has little confidence that this limited set of data, from monitors sited for a different purpose, can provide the input required for a comprehensive air quality, exposure, and risk analysis of a much shorter averaging time standard. In fact, given the spatial heterogeneity of 5minute peaks, and the aforementioned issues with monitor siting, staff is not confident (based on 5-minute monitoring data alone) that even in the 13 locations reporting 5-minute concentrations, that those reported values adequately reflect the extent to which 5-minute peaks are occurring in those areas.

While we have chosen to evaluate alternative 1-hour averaging time standards in the air quality, exposure, and risk chapters of this document, it does not preclude the possibility of considering 5-minute standards as part of the policy assessment discussion in Chapter 10, or during the rulemaking process. Consideration of potential alternative 5-minute standards could be based on evidence-based considerations, drawn from the discussion of the scientific evidence related to 5-10 minute exposures from the ISA, and presented below in Chapter 10.

5.4 FORM

1

2 In evaluating alternative forms of primary standards to be analyzed in the risk and 3 exposure chapters, staff recognizes that it is important to have a form that: (1) reflects the health 4 risks posed by elevated SO₂ concentrations and (2) achieves a balance between limiting the 5 occurrence of peak concentrations and providing a stable and robust regulatory target. 6 Consistent with judgments made in recent reviews of the PM (71FR61144) and O₃ (73 FR 7 16436) NAAQS, staff judges that a concentration-based form for the SO₂ standard would better 8 reflect the health risks and would provide greater stability than a form based on expected 9 exceedances. This is because a concentration-based form gives proportionally greater weight to 10 1-hour daily maximum values when concentrations are well above the level of the standard than to 1-hour daily maximum values when the concentrations are just above the level of the standard. 11 12 In contrast, an expected exceedance form would give the same weight to a 1-hour daily 13 maximum concentration that just exceeds the level of the standard as to a 1-hour daily maximum 14 concentration that greatly exceeds the level of the standard. Therefore, a concentration-based form better reflects the continuum of health risks posed by increasing SO₂ concentrations (i.e. the 15 16 percentage of asthmatics affected and the severity of the response increases with increasing SO₂ 17 concentrations). The most recent review of the PM NAAQS (completed in 2006) judged that using a 98th percentile form averaged over 3 years provides an appropriate balance between 18 19 limiting the occurrence of peak concentrations and providing a stable regulatory target (71 FR 61144). In that review, staff also considered other forms within the range of the 95th to the 99th 20 21 percentiles. In making recommendations regarding the form, staff considered the impact on risk 22 of different forms, the year-to-year stability in the air quality statistic, and the extent to which 23 different forms of the standard would allow different numbers of days per year to be above the 24 level of the standard in areas that achieve the standard. Based on these considerations, staff recommended either a 98th percentile form or a 99th percentile form. We have made similar 25 26 judgments in identifying an appropriate range of forms for potential alternative 1-hour daily maximum SO₂ standards. As a result of these judgments, we have determined it appropriate here 27 to consider 98th and 99th percentile SO₂ concentrations averaged over 3 years. We have judged 28 that the 98th and 99th percentile, when combined with the range of alternatives identified for the 29 30 level of a new 1-hour standard (see below), will likely offer a sufficient range of options to

- balance the objective of providing a stable regulatory target against the objective of limiting the
- 2 occurrence of peak 5-minute to 1-hour SO₂ concentrations.

5.5 LEVEL

When considering the appropriate range of levels for alternative 1-hour daily maximum standards to analyze in the exposure and risk assessments described in this document, staff examined both the controlled human exposure and epidemiological evidence evaluated in the ISA. Controlled human exposure evidence demonstrates that there is a continuum of SO_2 -related health effects following 5-10 minute peak SO_2 exposures in exercising asthmatics. That is, the ISA finds that the percentage of asthmatics affected and the severity of the response increases with increasing SO_2 concentrations. At concentrations ranging from 200 ppb-300 ppb, 5-30% percent of exercising asthmatics are likely to experience moderate or greater bronchoconstriction (ISA, Table 3-1). At concentrations \geq 400 ppb, moderate or greater bronchoconstriction occurs in 20-60% of exercising asthmatics, and compared to exposures at 200-300 ppb, a larger percentage of subjects experience severe bronchoconstriction (ISA, Table 3-1). Moreover, at concentrations \geq 400 ppb, moderate or greater bronchoconstriction was frequently accompanied with respiratory symptoms (ISA, Table3-1).

In addition to the controlled human exposure evidence, we also considered the epidemiological evidence, as well as an air quality analysis conducted by staff characterizing 1-hour daily maximum SO₂ air quality levels in cities and time periods corresponding to key U.S. and Canadian ED visit and hospital admission studies for all respiratory causes and asthma² (key studies are identified in Table 5-5 of the ISA). Figures 5-1 to 5-5 show standardized effect estimates and the 98th and 99th percentile 1-hour daily maximum SO₂ levels for locations and time periods corresponding to these key U.S. (Figures 5-1 to 5-4) and Canadian³ (Figure 5-5)

 $^{^2}$ Authors of relevant U.S. and Canadian studies were contacted and air quality statistics from the study monitor that recorded the highest SO_2 levels were requested. In some cases, U.S. authors provided the AQS monitor IDs used in their studies and the statistics from the highest reporting monitor were calculated by EPA. In cases where U.S. authors were unable to provide the requested data (Schwartz 1995, Schwartz 1996, and Jaffe 2005), EPA identified the maximum reporting monitor from all monitors located in the study area and calculated the 98^{th} and 99^{th} percentile statistics (see Thompson 2009).

The Canadian statistics presented in Figure 5-5 were calculated from a data set provided by Dr. Richard Burnett and were used for all relevant single city studies on which he was an author. Note that air quality statistics presented for Canadian studies are likely not directly comparable to those presented for U.S. studies. This is because SO₂ concentrations presented for Canadian studies represent the 98th and 99th percentile 1-hour daily maximum SO₂ concentrations across a given city, rather than concentrations from the single monitor that recorded the highest 98th and 99th percentile SO₂ levels in a given city (see Thompson, 2009).

studies. In general, staff finds that the results presented in these figures demonstrate that most of

2 these epidemiological studies show positive, although frequently not statistically significant

associations with SO₂. Furthermore, we find that Figures 5-1 to 5-5 demonstrate that positive

effect estimates, including some that are statistically significant, are found in locations that span

5 a broad range of 98th and 99th percentile 1-hour daily maximum SO₂ concentrations (98th

6 percentile range: 19- 401 ppb; 99th percentile range: 21-457 ppb). Thus, staff finds it appropriate

to utilize the 1-hour daily maximum air quality data presented in these figures to help inform

both the upper and lower ranges of alternative SO₂ standards to be analyzed in the air quality,

9 exposure, and risk assessments described in this REA.

3

4

7

8

10

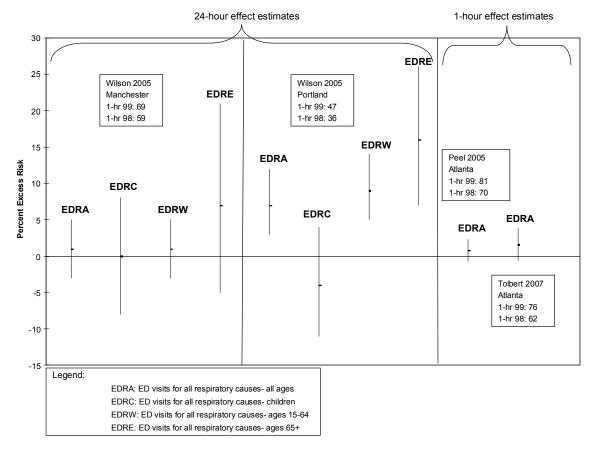


Figure 5-1. Effect estimates for U.S. all respiratory ED visit studies and associated 98th and 99th percentile 1-hour daily maximum SO₂ levels.

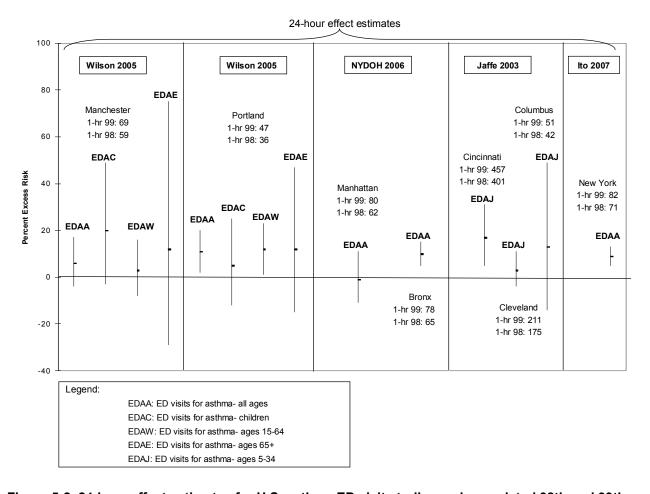


Figure 5-2. 24-hour effect estimates for U.S. asthma ED visit studies and associated 98th and 99th percentile 1-hour daily maximum SO_2 levels.

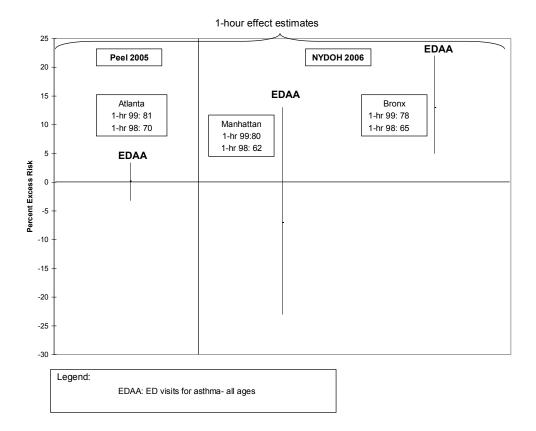


Figure 5-3. 1-hour effect estimates for U.S. asthma ED visit studies and associated 98^{th} and 99^{th} percentile 1-hour daily maximum SO_2 levels.

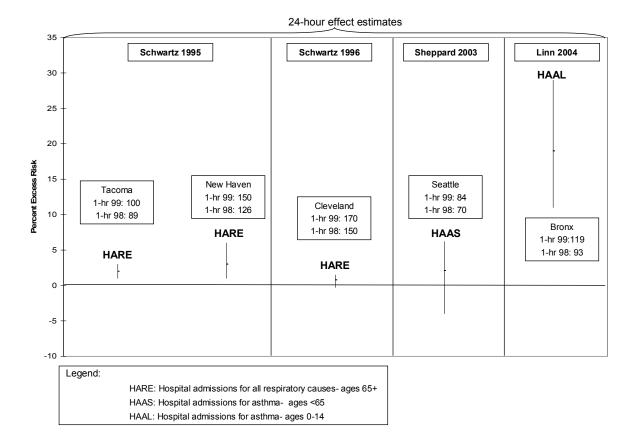


Figure 5-4. 24-hour effect estimates for U.S. hospitalization studies and associated 98th and 99th percentile 1-hour daily maximum SO₂ levels.⁴

3 4 5

⁴ There were no key U.S. hospitalization studies with 1-hour effect estimates identified in Table 5-5 of the ISA

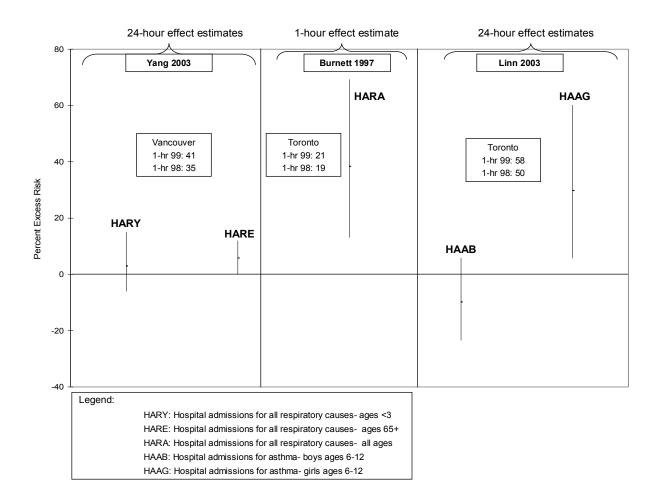


Figure 5-5. Effect estimates for Canadian ED visits and hospitalization studies and associated 98th and 99th percentile 1-hour daily maximum SO₂ levels.

The highest 99th percentile 1-hour daily maximum air quality levels were found in analyses conducted in the cities of Cincinnati (Figure 5-2), Cleveland (Figures 5-2 and 5-4) and New Haven (Figure 5-4). These studies showed positive associations⁵ with respiratory-related hospital admissions or ED visits during time periods when 98th and 99th percentile 1-hour daily maximum SO_2 concentrations ranged from 126 ppb to 457 ppb. Notably, this range of 1-hour daily maximum SO_2 levels overlaps considerably with 5-10 minute SO_2 concentrations (\geq 200 ppb) that have consistently been shown in controlled human exposure studies to result in lung function responses in exercising asthmatics. Of particular concern are the air quality levels that were found in Cincinnati (Jaffe et al., 2003). The 98th and 99th percentile 1-hour daily maximum SO_2 concentrations were in excess of 400 ppb. Notably, levels \geq 400 ppb have consistently been

⁵ Results in Cincinnati (Jaffe et al., 2003) and New Haven (Schwartz et al., 1996) were statistically significant.

shown in human exposure studies to result in moderate or greater bronchoconstriction in the

2 presence of respiratory symptoms in a considerable percentage of exercising asthmatics. As a

3 result, staff judges that the upper bound of alternative standard levels to be analyzed should be

250 ppb. We find that it is reasonable to suggest that a 98th or 99th percentile 1-hour daily

maximum standard at this level will both substantially limit the number of days when the 1-hour

daily maximum SO_2 concentration is ≥ 200 ppb, while also potentially limiting the number of 5-

10 minute SO_2 peaks ≥ 400 ppb.

In identifying the lower end of the range of alternative standards to be analyzed, staff again considered controlled human exposure and epidemiological evidence. However, with regard to the controlled human exposure evidence, several additional factors were considered. First, it is important to consider that the subjects in human exposure studies do not necessarily represent the most SO₂ sensitive asthmatics; that is, these studies included mild and moderate, but not severe asthmatics. Also while human clinical studies have been conducted in adolescents, younger children have not been included in these exposure studies, and thus, it is possible asthmatic children represent a population that is more sensitive to the respiratory effects of SO₂ than the individuals who have been examined to date. Moreover, it is important to consider that 5-30% of asthmatics who engaged in moderate or greater exertion experienced bronchoconstriction following exposure to 200-300 ppb SO₂, which is the lowest level tested in breathing chamber studies (ISA, Table 3-1)⁶. Thus, it is highly likely that a subset of the asthmatic population would also experience bronchoconstriction following exposure to levels lower than 200 ppb.

In addition to the consideration of controlled human exposure evidence mentioned above, we note that Figure 5-5 contains epidemiological analyses observing associations between ambient SO_2 concentrations and hospital admissions in Canadian cities where 1-hour daily maximum SO_2 levels were \leq 41 ppb. More specifically, positive associations between SO_2 and hospital admissions were found in Toronto, (Burnett al., 1997) and Vancouver (Yang et. al., 2003) when 99^{th} percentile 1-hour daily maximum SO_2 levels were approximately 21 ppb and 41 ppb, respectively. Moreover, in a U.S. study, Delfino et al., (2003) observed an association

 $^{^6}$ The ISA cites one chamber study with intermittent exercise where healthy and asthmatic children were exposed to 100 ppb SO₂ in a mixture with ozone and sulfuric acid. The ISA notes that compared to exposure to filtered air, exposure to the pollutant mix did not result in statistically significant changes in lung function or respiratory symptoms (ISA section 3.1.3.4)

- between ambient SO₂ and respiratory symptoms in Hispanic children when the maximum 1-hour
- 2 SO₂ concentration in Los Angeles was 26 ppb (ISA Table 5-4). However, it should be noted that
- 3 the association reported in the Vancouver study was not statistically significant in either single,
- 4 or multipollutant models with O₃, and the study did not examine the potential for confounding by
- 5 PM (Figure 5-5; ISA Table 5-5). In addition, while the association observed in the Toronto study
- 6 was statistically significant in a single pollutant model, the effect estimate was substantially
- 7 diminished and no longer statistically significant in a multi-pollutant model with PM₁₀ (ISA,
- 8 Table 5-5). Finally, the epidemiological study conducted in Los Angeles (Delfino et al., 2003;
- 9 ISA, Table 5-4) was very small (n=22), and did not examine potential confounding by co-
- 10 pollutants. Thus, staff finds that this evidence alone is not sufficient to warrant inclusion of
- alternative 1-hour daily maximum standards at levels below 50 ppb in the risk and exposure
- 12 assessments.

16

17

18

In contrast to the epidemiological evidence in cities and over time frames when 1-hour

daily maximum SO₂ concentrations were < 46 ppb, staff finds relatively stronger evidence of an

association between SO₂ and hospital admissions and ED visits in cities and over time frames

when 98th and 99th percentile 1-hour daily maximum SO₂ concentrations ranged from 47 to 100

ppb (Figures 5-1 to 5-5). More specifically, the majority of epidemiological studies in this range

observed positive associations between ambient SO₂ levels and increased hospital admissions

19 and increased ED visits for all respiratory causes or asthma. Moreover, although most of these

20 positive effect estimates were not statistically significant, there were some statistically significant

- 21 results in single pollutant models (Portland, Wilson, 1995; Bronx, NYDOH, 2006; NYC, Ito,
- 22 2006; and Schwartz, 1995), as well as limited evidence of statistically significant associations in
- 23 multi-pollutant models with PM⁷ (Bronx, NYDOH, 2006; NYC, Ito, 2006; New Haven,
- Schwartz 1995). Given these epidemiological and air quality results, as well as the
- considerations mentioned above regarding the controlled human exposure evidence, staff
- 26 concluded it was appropriate to examine a range of alternative standards in the air quality,
- exposure, and risk analyses that includes a level of 50 ppb as the lower bound. Staff believes
- 28 that a 98th or 99th percentile 1-hour daily maximum standard at this level would both limit the

 $^{^{7}}$ In the NYDOH study (2006), the Bronx positive effect estimate remained statistically significant in the presence of PM_{2.5}. In Ito et al., (2006), the NYC positive effect estimate was statistically significant in the presence of PM_{2.5} during the warm season. In Schwartz et al., (1995), the positive effect estimate in New Haven remained statistically significant in the presence of PM₁₀.

- 1 number of days when 1-hour daily maximum SO_2 levels are ≥ 50 ppb, while also limiting 5-10
- 2 minute peaks of $SO_2 \ge 100$ ppb. Moreover, we note that a level of 50 ppb is substantially below
- 3 the 98^{th} and 99^{th} percentile 1-hour daily maximum SO_2 levels observed in the Bronx during the
- 4 NYDOH analysis and in NYC during the period analyzed by Ito et al., (2006): two studies where
- 5 the SO₂ effect estimate remained robust and statistically significant in multi-pollutant models
- 6 with $PM_{2.5}$ (ISA, Table 5-5).

6.0 OVERVIEW OF RISK CHARACTERIZATION AND EXPOSURE ASSESSMENT

6.1 INTRODUCTION

The assessments presented in the subsequent chapters of this document will characterize	,
short-term exposures (i.e., 5-minutes) and potential health risks associated with: (1) recent	
ambient levels of SO ₂ , (2) levels associated with just meeting the current SO ₂ NAAQS, and (3)	
levels associated with just meeting potential alternative standards (see chapter 5 of this document	nt
for the discussion of potential alternative standards). To characterize health risks, we will	
employ three approaches (Figure 6-1). With each approach, we will characterize health risks	
associated with the air quality scenarios mentioned above (i.e., recent air quality unadjusted, air	•
quality adjusted to simulate just meeting the current standards, and air quality adjusted to	
simulate just meeting potential alternative standards). In the first approach, SO ₂ air quality leve	els
are compared to potential health effect benchmark values (see section 6.2) derived from the	
controlled human exposure literature (Chapter 7). In the second approach, modeled estimates o	f
human exposure are compared to the same potential health effect benchmark values derived from	m
the human exposure literature (Chapter 8). In the third approach, outputs from the exposure	
analysis are combined with exposure-response functions derived from the human clinical	
literature to estimate the number and percent of exposed asthmatics that would experience	
moderate or greater lung function responses under the different air quality scenarios (Chapter 9)).
A more detailed overview of each of these approaches to characterizing potential health risks is	
provided below (section 6.3), and each approach is described in more detail in their respective	
chapters and associated appendices. In addition, this chapter also describes important	
methodologies used throughout these analyses. That is, estimation of 5-minute SO_2	
concentrations from 1-hour data (section 6.4) and adjustment of recent air quality to simulate ju	st
meeting the current, as well as potential alternative SO ₂ standards (section 6.5)	

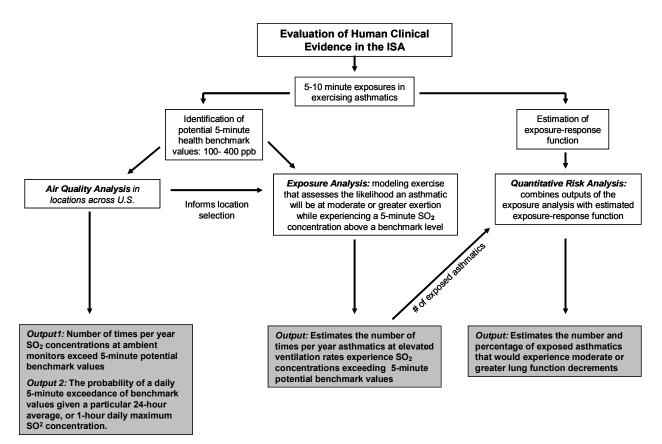


Figure 6-1. Overview of analyses addressing exposures and risks associated with 5-minute peak SO₂ exposures. All three outputs are calculated considering current air quality, air quality just meeting the current standards, and air quality just meeting potential alternative standards. Note: this schematic was modified from Figure 1-1.

6.2 POTENTIAL HEALTH EFFECT BENCHMARK LEVELS

Potential health benchmark values to be used in the air quality, exposure, and risk analyses are derived solely from the human exposure literature. This is primarily because concentrations used in clinical studies represent actual personal exposures rather than concentrations measured at fixed site ambient monitors. In addition, human exposure studies can examine the health effects of SO_2 in the absence of co-pollutants that can confound results in epidemiological analyses; thus, health effects observed in clinical studies can confidently be attributed to a defined exposure level of SO_2 .

The ISA presents human exposure evidence demonstrating decrements in lung function in 5-30% of exercising asthmatics exposed to 200-300 ppb SO₂ for 5-10 minutes. However, it is important to note: (1) subjects in human exposure studies do not include individuals who may be most susceptible to the respiratory effects of SO₂, (e.g. severe asthmatics and children) and (2)

- given that 5-30% of exercising asthmatics experienced bronchoconstriction following exposure
- 2 to 200 -300 ppb SO₂ (the lowest levels tested in free-breathing chamber studies), it is likely that a
- 3 percentage of asthmatics would also experience bronchoconstriction following exposure to levels
- 4 lower than 200 ppb. Considering this information, staff finds it appropriate to examine potential
- 5 5-minute benchmark values in the range of 100- 400 ppb. The lower end of the range considers
- 6 the factors mentioned above, while the upper end of the range recognizes that 400 ppb represents
- 7 the lowest concentration at which statistically significant decrements in lung function are seen in
- 8 conjunction with statistically significant respiratory symptoms. Moreover, we note that this
- 9 range of benchmark values is in general agreement with consensus CASAC comments on the
- 10 first draft REA.

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

6.3 APPROACH FOR ASSESSING EXPOSURE AND RISK ASSOCIATED WITH 5-MINUTE PEAK SO₂ EXPOSURES

In the air quality characterization, we have compared SO₂ air quality with the potential health effect benchmark levels for SO₂. Scenario-driven air quality analyses were performed using ambient SO₂ concentrations for the years 1997 though 2006. All U.S. monitoring sites where 1-hour SO₂ data have been collected are represented by this analysis and, as such, the results generated are considered a broad characterization of national air quality and potential human exposures that might be associated with these concentrations. An advantage of this approach is its relative simplicity; however, there is uncertainty associated with the assumption that SO₂ air quality can serve as an adequate indication of exposure to ambient SO₂. Actual exposures will be influenced by factors not considered by this approach, such as the spatial and temporal variability in human activities.

In the second approach, we have used an inhalation exposure model to generate estimates of personal exposures. Estimates of personal exposure have also been compared to the potential SO₂ health benchmark levels as was done in the air quality characterization. This results in estimates of the number of individuals that are likely to experience exposures exceeding these benchmark levels. For this exposure analysis, a probabilistic approach was used to model individual exposures considering the time people spend in different microenvironments and the variable SO₂ concentrations that occur within these microenvironments across time, space, and microenvironment type. The model also accounts for activities that individuals perform within the microenvironments, allowing for estimation of exposures that coincide with varying activity

levels. As such, this approach to assessing exposures was more resource intensive than

2 evaluating ambient air quality; therefore, at this time staff has included the analysis of two

3 specific locations in the U.S. (Greene County, MO. and St. Louis, MO.)⁸. Although the

geographic scope of this analysis is restricted, the approach provides realistic estimates of SO₂

exposures, particularly those exposures associated with important emission sources of SO₂ and

serves to complement the broad air quality characterization.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

For the characterization of risks in both the air quality analysis and the exposure modeling analysis described above, staff has used a range of short-term potential health effect benchmarks. The levels of potential benchmarks are based on SO₂ exposure levels that have been associated with respiratory symptoms and decrements in lung function in exercising asthmatics during controlled human exposure studies (ISA, section 5.2; see above section 4.2 for discussion). Benchmark values of 100, 200, 300, and 400 ppb have been compared to both SO₂ air quality (measured and modeled 5-minute concentrations) and to estimates of SO₂ exposure. In characterizing the SO₂ air quality using ambient monitors, the output of the analysis is an estimate of the number of times per year specific locations experience 5-minute daily maximum levels of SO₂ that exceed a particular benchmark. When personal exposures are simulated, the output of the analysis is an estimate of the number of individuals at risk for experiencing daily maximum 5-minute levels of SO₂ of ambient origin that exceed a particular benchmark. An advantage of using potential health effect benchmark levels to characterize health risks is that the effects observed in controlled human exposure studies clearly result from SO₂ exposure. This is in contrast to health effects associated with SO₂ in epidemiologic studies, which may also be associated with pollutants that co-occur with SO₂ in the ambient air. Thus, when using epidemiologic studies as the basis for risk characterization, the unique contribution of SO₂ to a particular health effect may be difficult to quantify. A disadvantage of the potential benchmark approach is that the magnitude of the SO₂ effect on respiratory morbidity can vary considerably from individual to individual and not all asthmatics would be expected to respond to the same

⁸ In the document titled *Risk and Exposure Assessment to Support the Review of the SO₂ Primary National Ambient Air Quality Standard: First Draft*, staff presented the results of an exposure analysis for Greene County (or Springfield, MO.) and several other source-based modeling domains. Based on CASAC comments received on that exposure analysis, we have refined our approach and applied those refinements to the Greene County analysis presented in this document and completed the exposure assessment in St. Louis which had been started at the time of the earlier draft.

levels of SO₂ exposure. Therefore, the public health impacts of SO₂-induced respiratory morbidity are difficult to quantify.

The third approach is a quantitative risk assessment combining outputs from the exposure analysis with estimated exposure-response functions based on data from controlled human exposure studies. This analysis estimates the percentage, and number of asthmatics likely to experience a given decrement in lung function associated with recent air quality and SO₂ levels adjusted to simulate just meeting the current, and potential alternative standards.

6.4 APPROACH FOR ESTIMATING 5-MINUTE PEAK SO₂ CONCENTRATIONS

Health effects evaluated in this REA include those associated with 5-10 minute peak concentrations of SO₂. While there are 98 ambient monitors that have reported 5-minute SO₂ concentrations some time during 1997-2007, the spatial and temporal representation is limited to a few states and often only a few years of monitoring. Most of these monitors report the 5-minute maximum SO₂ concentration occurring within an hour, though there were a few that reported all twelve continuous 5-minute SO₂ concentrations measured within the hour. The ambient monitors reporting continuous SO₂ values are limited to fewer locations and number of monitoring years, with sixteen monitors deployed within six US states and Washington DC, ten of which operated only during one year. The overwhelming majority of the SO₂ ambient monitoring data are for 1-hour average concentrations (upwards to 935 monitors), comprising a broad monitoring network that includes most U.S. states and territories. Because the health effects of greatest interest were associated with short-term exposures (5-10 minutes) and a greater number of monitors and monitor-years were available for the 5-minute maximum SO₂ concentrations than 10 minute concentrations, a model was developed to estimate 5-minute maximum SO₂ concentrations from the comprehensive 1-hour SO₂ ambient monitoring data.

Staff first reviewed the air quality characterization conducted in the prior SO₂ NAAQS review and supplementary analyses, where the relationship between the maximum 5-minute SO₂ concentration and the 1-hour average SO₂ concentration, or peak-to-mean ratios (PMRs) were initially evaluated and used to approximate 5-minute maximum SO₂ concentrations (EPA, 1986a; EPA, 1994b; SAI, 1995; Thompson, 2000). While the relationship between the two metrics is not expected to be linear, the temporal patterns in the two averaging times are consistent. Five-minute maximum SO₂ concentrations are often much greater than that of the

- 1 corresponding 1-hour SO₂ concentrations, and observed increases in a given 1-hour SO₂
- 2 concentration often coincide with increases in the 5-minute maximum SO₂ concentration. As an
- 3 example of this pattern, the time-series of 1-hour average and 5-minute maximum SO₂
- 4 concentrations measured at an ambient monitor across a 3-day period in 2005 is illustrated in
- 5 Figure 6-2.

March 10-12, 2005 - ID 290770037

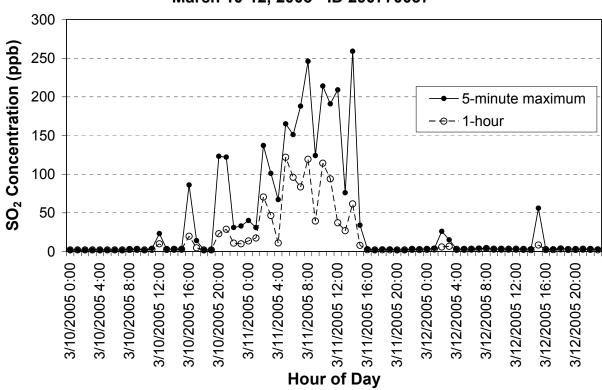


Figure 6-2. Example of an hourly time-series of measured 1-hour and measured 5-minute maximum SO_2 concentrations.

In general, PMRs were determined to be approximately two in some of the earlier studies and used in estimating 5-minute peak SO₂ concentrations; though for the exposure analyses conducted for the last NAAQS review, a distribution of PMRs was used with values of up to eleven (EPA, 1994b). In each of the analyses conducted previously, estimates of PMRs were derived using ambient monitoring data (i.e., where both 5-minute maximum and 1-hour average SO₂ were measured) and then used to estimate the occurrence of peak 5-minute SO₂ concentrations given a 1-hour ambient SO₂ concentration, generally as follows:

1617

6

7 8

9

10

11

12

13

14

1	$C_{\text{max-5}} = PMR$	$2 \times C_{1-hour}$ equation (6-1)
2	where,	
3	$C_{max-5} =$	estimated 5-minute maximum SO ₂ concentration (ppb)
4	PMR =	peak-to-mean ratio (PMR)
5	$C_{l ext{-}hour} =$	measured 1-hour average SO ₂ concentration
6		

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

At the time of the last NAAQS review, there were very few monitors reporting 5-minute SO₂ data. In fact, distributions of PMRs from ambient monitors surrounding a single coal-fired power utility served as the primary source used in estimating 5-minute peak concentrations used in the exposure analyses (EPA, 1994b). As mentioned above, the PMRs were determined to be approximately two in these earlier studies; however, the ratio can vary depending on a several factors. It has been shown that there can be increased variability in the ratio with decreasing 1hour average SO₂ concentrations, that is, there is a greater likelihood of values greater than two at low hourly average concentrations than expected at high hourly average concentrations (EPA, 1986a). It has also been argued that the occurrence of short-term peak concentrations at ambient monitors may be influenced by particular SO₂ emission sources (EPA, 1994b). Different sources may have variable emission amounts, temporal operating patterns (e.g., seasonal, time-of-day), facility maintenance, and other physical parameters (e.g., stack height, area terrain) that could contribute to variability in 5-minute maximum SO₂ concentrations. In addition, a sensitivity analysis conducted for copper-smelters determined that distance from the source was inversely proportional to the PMR in all three of the 1-hour mean stratifications evaluated (i.e., ≤ 0.04 ppm, 0.04 to ≤ 0.15 ppm, and >0.15 ppm), with the highest 1-hour category having the lowest range of PMR (Sciences International, 1995).

There are some data available for the current SO₂ monitoring network regarding the type of sources that may be near the ambient monitors, the magnitude of emissions, the temporal variation in emissions, and distance from specific sources; however, staff determined that there was no practical way to define every ambient monitor as being exclusively influenced by a single source or a defined mix of sources. Given other conditions that may vary within a specific source category (monitor-to-source distances, local meteorology, operating conditions, etc.), staff

⁹ In that analysis, normalized 1-hour SO₂ concentrations were obtained by dividing by the maximum hourly concentration.

also determined that there was no practical way to use such data quantitatively in the construction of the PMR statistical model and apply such a model to the 1-hour SO_2 ambient monitor data.

In recognizing the limited geographic span of the monitors reporting the 5-minute maximum SO₂ concentrations and the overall uncertainty regarding the amount of influence of a specific source on any given monitor, staff developed an approach based on hourly SO₂ concentration levels and the variability observed at the monitors reporting both the 5-minute maximum 1-hour average SO₂ concentrations. The main assumption in the approach is that the temporal and spatial pattern in SO₂ source emissions is influenced by the type of source(s) present, its operating conditions, and that the emission pattern(s) is reflected in the ambient SO₂ concentration distribution measured at the monitor. Thus, measures of concentration level and associated variability at each monitor were used as a surrogate for the variability in the source characteristics that may impact concentrations at a particular monitor. Each monitor reporting 5-minute maximum SO₂ concentrations was categorized based on the coefficient of variation (COV) of 1-hour average SO₂ concentrations and then used to estimate distribution of PMRs for range of 1-hour SO₂ concentrations. This approach is detailed in section 7.2.3.

6.5 APPROACH FOR SIMULATING THE CURRENT AND ALTERNATIVE STANDARDS

A primary goal of this draft of the risk and exposure assessments is to evaluate the ability of the current SO₂ standards (0.03 ppm annual average, 0.14 ppm 24-hour average) and potential alternative standards (99th percentile 1-hour daily maximum SO₂ levels of 50, 100, 150, 200, and 250 ppb, and 98th percentile 1-hour daily maximum SO₂ levels: 200 ppb; see chapter 5 of this document) to protect public health. In order to evaluate the ability of a specific standard to protect public health, ambient SO₂ concentrations need to be adjusted such that they simulate levels of SO₂ that just meet that standard. Such adjustments allow comparisons of the level of public health protection that could be associated with just meeting the current and potential alternative standards.

All areas of the United States currently have ambient SO₂ levels below the current annual standard (EPA, 2007c). One site in Northampton County, Pa., measured concentrations above the level of the 24-hour standard in 2006. Therefore, in order to evaluate whether the current standards adequately protect public health, nearly all SO₂ concentrations need to be adjusted

upwards for all areas included in our assessment in order to simulate levels of SO₂ that would just meet the current standard levels. Similarly, to simulate a potential standard that is below current air quality levels, those current levels must be adjusted downward.

This procedure for adjusting ambient concentrations was necessary to provide insight into the degree of exposure and risk which would be associated with an increase in ambient SO₂ levels such that the levels were just at or near the current standards in the areas analyzed. Staff recognizes that it is extremely unlikely that SO₂ concentrations in any of the selected areas where concentrations have been adjusted would rise to meet the current NAAQS and that there is considerable uncertainty associated with the simulation of conditions that would just meet the current standards. Nevertheless, this procedure was necessary to assess the ability of the current standards, not current ambient SO₂ concentrations, to protect public health. This process of adjusting air quality to simulate just meeting a specific standard is described in more detail below.

6.5.1 Adjustment of Ambient Air Quality

Ambient SO₂ concentrations were characterized in Chapter 7 by considering air quality as is and several hypothetical air quality scenarios. Each of the hypothetical air quality scenarios had an ambient concentration target, derived from the form and level of the current NAAQS or from potential alternative standards. An overview of the approach used to adjust the ambient air quality is provided in the following, with additional details in the approach and application provided in section 7.2.4.

In developing a simulation approach to adjust air quality to meet a particular standard level, policy-relevant background (PRB) levels in the U.S. were first considered. As described in section 2.3, PRB is well below concentrations that might cause potential health effects at most locations. Policy-relevant background will not be considered separately in any characterization of health risk associated with *as is* air quality or air quality just meeting the current standards. In monitoring locations where PRB is expected to be of particular importance however (e.g., Hawaii County, HI) data will be noted as under possible influence of natural rather than anthropogenic sources and will not be used in analyses simulating air quality that would just meet the current or potential alternative standards.

While annual average concentrations have declined significantly over the time period of analysis, the variability in the concentrations (both the 5-minute and 1-hour SO₂ concentrations)

1	have remained relatively constant. This trend is apparent when considering the air quality data
2	collectively (section 7.4.3) and when considering individual locations (Rizzo, 2009). As an
3	example, Figure 6-3 compares the pattern in daily maximum SO ₂ 1-hour concentration
4	percentiles at the two ambient monitors in Beaver County PA that were in operation as far back
5	as 1978 and are currently part of the monitoring network. Staff selected a recent year of data to
6	constitute a low concentration year along with an historical year of data (1992) constituting a
7	high concentration year (2007), each of the years were common to both monitors. As shown in
8	the figure, the relationships between the low and high concentration years at each of the daily
9	maximum concentration percentiles are mostly linear, with R ² values above 0.98. Where
10	deviation from linearity did occur in many of the comparisons performed, it occurred primarily
11	at the extreme upper or lower portions of the distribution, often times at the maximum daily
12	maximum or the minimum daily maximum 1-hour SO ₂ concentration (Rizzo, 2009). In addition,
13	the absolute values for simple linear regression intercepts were typically 1-3 ppb (Rizzo, 2008).
14	This indicates that the rate of decrease in ambient air quality concentrations at the mean value for
15	the monitors evaluated is consistent with the rate of change at the lower and upper daily
16	maximum 1-hour concentration percentiles. This evaluation provides support for the use of a
17	proportional approach to adjust current ambient concentrations to represent air quality under both
18	the current and alternative standard scenarios.

High Year: 1992 Low Year: 2007

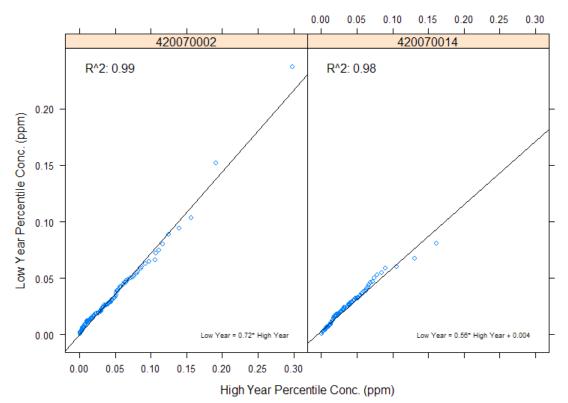


Figure 6-3. Comparison of measured daily maximum SO₂ concentration percentiles in Beaver County, PA for a high concentration year (1992) versus a low concentration year (2007) at two ambient monitors.

The current deterministic form of each standard was used to approximate concentration adjustment factors to simulate just meeting the current 24-hour and annual SO_2 NAAQS. The 24-hour standard of 0.14 ppm is not to be exceeded more than once per year, therefore, the second highest daily mean observed at each monitor was used as the target for adjustment. The rounding convention, which is part of the form of the standard, defines values up to 144 ppb as just meeting the 24-hour standard. The form of the current annual standard requires that the standard level of 0.03 ppm is not to be exceeded, therefore, the highest annual average concentration at each monitor served as the target for adjustment. With a rounding convention to the fourth decimal, values of up to 30.4 ppb would just meet the current standard. For each county (i) and year (j), 24-hour and annual SO_2 concentration adjustment factors (F) were derived by the following equation:

$$F_{ii} = S / C_{\text{max},ii}$$
 equation (6-2)

1	where,		
2	$F_{\it ij}$	=	Adjustment factor derived from either the 24-hour or the annual
3			average concentrations at monitors in location i for year j (unitless)
4	S	=	concentration values allowed that would just meet the current NAAQS
5			(either 144 ppb for 24-hour or 30.4 ppb for annual average)
6	$C_{max,ij}$	=	the maximum 2 nd highest daily mean SO ₂ concentration at a monitor in
7			county i and year j or the maximum annual average SO_2 concentration
8			at a monitor in location i and year j (ppb)

In these cases where staff simulated a proportional adjustment in ambient SO₂ concentrations using equation (6-2), it was assumed that the current temporal and spatial distribution of air concentrations (as characterized by the current air quality data) is maintained and increased SO₂ emissions contribute to increased SO₂ concentrations, with the highest monitor (in terms of annual averages) being adjusted so that it just meets either the current 0.03 ppm annual average standard or the 0.14 ppm 24-hour standard, whichever is the controlling standard. Values for each air quality adjustment factor used for each location evaluated in the air quality and risk characterization are given in Appendix A (section A.3). For each county and calendar year, all the hourly SO₂ concentrations in a count were multiplied by the same constant value *F* to make the highest annual mean equal to 30.4 ppb or the 2nd highest 24-hour average equal to 144 ppb for that location and year.

For example, of five monitors measuring hourly SO_2 in Cuyahoga County for year 2001 (Figure 6-4, top), the maximum annual average concentration was 7.5 ppb (ID 390350060), giving an adjustment factor of F = 30.4/7.5 = 4.06 for that year. The 2^{nd} highest 24-hour SO_2 concentration was 35.5 (ID 390350038) giving an adjustment factor of F = 144/35.5 = 4.05 for year 2001. Because the adjustment factor derived from the 24-hour concentration was lower, 4.05 was selected as the factor to adjust air quality to just meet the current standard. All 1-hour concentrations measured at all monitoring sites in Cuyahoga County were multiplied by 4.05,

¹⁰ The controlling standard by definition would be the standard that allows air quality to just meet either the annual concentration level of 30.4 ppb (i.e., the annual standard is the controlling standard) or the 2nd highest 24-hour concentration level of 144 ppb (i.e, the 24-hour standard is the controlling standard). The factor selected is derived from a single monitor within each county (even if there is more than one monitor in the county) for a given year. A different (or the same) monitor in each county could be used to derive the factor for other years; the only

requirement for selection is that it be the lowest factor, whether derived from the annual or 24-hour standard level.

1 resulting in an upward scaling of hourly SO₂ concentrations for that year. Therefore, one

monitoring site in Cuyahoga County for year 2001 would have an 2nd highest 24-hour average

concentration of 144 ppb, while all other monitoring sites would have a 2nd highest 24-hour

average concentration below that value, although still proportionally scaled up by 4.05 (Figure 6-

4, bottom). Then, using the adjusted hourly concentrations to simulate just meeting the current

standard, the metrics of interest (i.e., annual mean SO₂ concentration, 24-hour average SO₂

concentration, 1-hour daily maximum SO₂ concentration, and the number of potential health

effect benchmark exceedances) were estimated for each site-year.

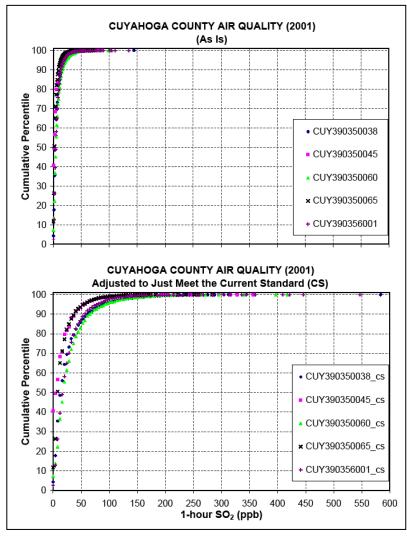


Figure 6-4. Distributions of hourly SO₂ concentrations at five ambient monitors in Cuyahoga County, as is (top) and air quality adjusted to just meet the current 24-hour SO₂ standard (bottom), Year 2001.

9 10

11

12

2

3

4

5

6

7

Proportional adjustment factors were also derived considering the form, averaging time, and levels of the potential alternative standards under consideration. Discussion regarding the staff selection of each of these components is provided in chapter 5 of this document. The 98th and 99th percentile 1-hour daily maximum SO₂ concentrations averaged across three years of monitoring were used in calculating the adjustment factors at each of five standard levels as follows:

$$F_{ikl} = S_l / \left(\frac{\sum_{j=1}^{3} C_{ijk}}{3} \right)_{\text{max } i}$$
 equation (6-3)

where, $F_{ikl} = SO_2 \text{ concentration adjustment factor (unitless) in location } i \text{ given alternative}$ $S_{l} = Standard \text{ level } l \text{ (i.e., 50, 100, 150, 200, and 250 ppb 1-hour SO}_2 \text{ concentration}$

(ppb)) $C_{ijk} = \text{Selected percentile } k \text{ (i.e., } 98^{\text{th}} \text{ or } 99^{\text{th}} \text{) } 1\text{-hour daily maximum SO}_2$ concentration at a monitor in location i (ppb) for each year j

As described above for adjustments made in simulating just meeting the current standards, it was assumed that the current temporal and spatial distribution of air concentrations (as characterized by the current SO₂ air quality data) is maintained and increased SO₂ emissions contribute to increased SO₂ concentrations, with the highest monitor (in terms of the 3-year average at the 98th or 99th percentile) being adjusted so that it just meets the level of the particular 1-hour alternative standard. Since the alternative standard levels range from 50 ppb through 250 ppb, both proportional upward and downward adjustments were made to the 1-hour ambient SO₂ concentrations. The values for each air quality adjustment factor used for each location evaluated in the air quality and risk characterization are given in Appendix A (section A.3). Due to the form of the alternative standards, the expected utility of such an analysis, and the limited time available to conduct the analysis, only the more recent air quality data were used (i.e., years 2001-2006). The 1-hour ambient SO₂ concentrations were adjusted in a similar manner described above for just meeting the current standard, however, due to the form of these

standards, only one factor was derived for two 3-year periods (i.e., 2001-2003, 2004-2006),

rather than one factor for each calendar year.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

6.5.2 Adjustment of Potential Health Effect Benchmark Levels

Rather than proportionally modify the air quality concentrations used for input to the exposure modeling described in Chapter 8, staff applied a proportional adjustment to the potential health effect benchmark levels. The benchmark levels were adjusted rather than the air quality to reduce the processing time associated the modeling of several thousands of receptors in each of the large exposure modeling domains. In addition, because the adjustment procedure is proportional, the application of an adjustment of the selected benchmark level (i.e., division by the adjustment factor) is mathematically equivalent to a proportional adjustment of the air quality concentrations (i.e., multiplication by the adjustment factor). The same proportional approach used in the air quality adjustment described above was used in the exposure modeling to scale the benchmark levels to simulate just meeting the current and potential alternative standards. For example, an adjustment factor of 5.10 was determined for Cuyahoga County for year 2002 to simulate ambient concentrations just meeting the current standard, based on a 2nd highest 24-hour average SO₂ concentration of 28.2 ppb observed at an ambient monitor for that year (see Appendix A, section A.3). Therefore, the 5-minute potential health effect benchmark levels of 100, 200, 300, and 400 ppb were proportionally adjusted downward to 19.6, 39.2, 58.8, and 78.4 ppb, respectively for year 2002.

A comparison of the two procedures is presented in Figure 6-5 where air quality is adjusted to simulate just meeting the current annual standard (i.e., the controlling standard in this example) and where the benchmark is adjusted to simulate air quality that just meets the current standard with using the *as is* air quality. This example used the distribution of hourly SO₂ concentrations measured at one ambient monitor (ID 390350045) within the Cuyahoga County modeling domain for year 2002. Both the adjusted and unadjusted 1-hour SO₂ concentrations were input to the statistical model used to estimate 5-minute daily maximum SO₂ concentrations. If one were interested in the number of exceedances of 5-minute daily maximum SO₂ concentrations of 400 ppb under the current standard scenario for example, this would be equivalent to counting the number of exceedances of 5-minute daily maximum SO₂ concentrations of 78.4 ppb using the *as is* air quality.

For additional clarity, the same ambient air quality data are presented in Figure 6-6, only with expansion of the highest percentiles on the graph to allow for the visualization of the number of exceedances. In using the air quality adjusted to just meet the current standard, i.e., the *as is* air quality was adjusted upwards by a factor 5.10, there were 14 exceedances of a daily maximum 5-minute concentration of 400 ppb. When considering the *as is* air quality without adjustment but with a downward adjustment of the benchmark by the same factor of 5.10, there are the same number of exceedances. This benchmark adjustment procedure was applied by staff in each of the exposure modeling domains to simulate just meeting the current and alternative standards. Additional details regarding derivation of the adjusted benchmark levels used in the exposure modeling are provided in chapter 8 of this document.

MODELED CUYAHOGA COUNTY 5-Minute Daily Max (2002) As Is and Adjusted to Just Meet the Current Standard (CS) Cumulative Percentile 390350045 cs Adjust AQ up Adjust Benchmark Down 5-minute Daily Maximum SO₂ (ppb)

Figure 6-5. Comparison of adjusted ambient monitoring concentrations or adjusted benchmark level (dashed line) to simulate just meeting the current annual average standard at one ambient monitor in Cuyahoga County for year 2002.

¹¹ Only 12 points are observed in Figure 6-3 however, three peak concentrations were identical within each of the simulations.

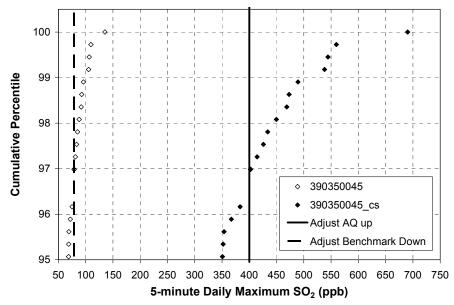


Figure 6-6. Comparison of the upper percentile modeled 5-minute daily maximum SO₂ for where 1-hour ambient SO₂ concentrations were adjusted and the benchmark level was adjusted to simulate just meeting the current annual standard at one ambient monitor in Cuyahoga County for year 2002. The complete distributions are provided in Figure 6-4.

7.0 AMBIENT AIR QUALITY AND BENCHMARK HEALTH RISK CHARACTERIZATION FOR 5-MINUTE PEAK SO₂ EXPOSURES

7.1 OVERVIEW

Ambient monitoring data for each of the years 1997 through 2007 were used in this analysis to characterize SO_2 air quality across the U.S. Measured air quality, as well as additional SO_2 concentrations derived from the measured air quality data, were used as an indicator of potential human exposure. While an ambient monitor measures SO_2 concentrations at a stationary location, the monitor may well represent the concentrations to which persons residing nearby are exposed. The quality of the extrapolation of ambient monitor concentration to personal exposure depends upon the spatial distribution of important emission sources, the siting of the ambient monitors, local meteorological conditions, and consideration of places that persons visit. It is within this context that the approach for characterizing ambient SO_2 air quality was designed by staff.

As previously mentioned, the ISA finds the evidence for an association between respiratory morbidity and SO₂ exposure to be "sufficient to infer a causal relationship" (ISA section 5.2). The ISA states that the "definitive evidence" for this conclusion comes from the results of human exposure studies demonstrating decrements in lung function and/or respiratory symptoms in exercising asthmatics following exposure to SO₂ levels as low as 200 to 300 ppb for 5-10 minutes (section 5.2). Accordingly, 5-minute potential health effect benchmark levels ranging from 100-400 ppb were derived from the human exposure literature (see section 6.2 for benchmark level rationale) and compared to measured and statistically modeled 5-minute ambient concentrations. A broad analysis is first presented that evaluates the potential health risk at all ambient monitors, and then for more detailed analyses, at monitors located within selected U.S. counties (see section 7.2.4). Both the number of the 5-minute benchmark exceedances in a year and the probability of benchmark exceedances given 1-hour daily maximum or 24-hour average concentrations were estimated.

All ambient monitors report hourly SO_2 concentrations; a subset of those report 5-minute maximum SO_2 concentrations as well, with a subset of these reporting continuous 5-minute SO_2 concentrations. Because there were essentially two distinct sample averaging times reported for the available ambient monitoring data (i.e., ambient monitors reporting 1-hour SO_2 concentration

```
1
      measurements alone and monitors reporting both 5-minute and 1-hour average SO<sub>2</sub>
 2
      concentrations), the data used in the analyses were separated by staff as follows. The first set of
 3
      ambient air quality data is from monitors reporting both 5-minute and 1-hour SO<sub>2</sub> concentrations.
 4
      Staff (1) analyzed the ambient monitoring data for trends in 1-hour and 5-minute SO<sub>2</sub>
 5
      concentrations, (2) counted the number of measured daily 5-minute maximum SO<sub>2</sub>
 6
      concentrations above the potential health effect benchmark levels given the annual average SO<sub>2</sub>
 7
      concentrations, (3) estimated the probability of benchmark exceedances given the 24-hour
 8
      average and 1-hour daily maximum SO<sub>2</sub> concentrations, and (4) developed a statistical model to
 9
      estimate 5-minute maximum SO<sub>2</sub> concentrations from 1-hour SO<sub>2</sub> concentrations (see section
10
       7.2.3). The second set of ambient data was comprised of 1-hour SO_2 concentrations from the
11
      broader SO<sub>2</sub> monitoring network; therefore this set also includes 1-hour SO<sub>2</sub> concentrations from
12
      those monitors where 5-minute SO<sub>2</sub> data were reported, though the vast majority of the 1-hour
13
      data were from monitors that did not report 5-minute concentration measurements. Staff applied
14
      the statistical model that related 5-minute to 1-hour SO<sub>2</sub> measurements to this second set of
15
      ambient monitoring data to estimate 5-minute maximum SO<sub>2</sub> concentrations. As was done with
      the 5-minute SO<sub>2</sub> ambient measurement data, staff evaluated trends in SO<sub>2</sub> concentrations,
16
17
      counted the number of statistically modeled potential health effect benchmark exceedances in a
18
      day using the same longer-term averaging times, and estimated the probability of peak
19
      concentrations associated with 1-hour daily maximum and 24-hour average SO<sub>2</sub> concentrations.
20
               Staff considered three scenarios in this REA to characterize the ambient SO<sub>2</sub> air quality.
21
       The first scenario involved an evaluation of the combined 5-minute and 1-hour SO<sub>2</sub>
22
      measurement data as they were reported, representing the conditions at the time of monitoring
23
      (termed in this assessment "as is"). The second scenario also considered the as is air quality;
24
      however in this scenario staff used the statistically modeled 5-minute SO<sub>2</sub> concentrations based
25
      on the 1-hour SO<sub>2</sub> measurements. This second scenario expands the geographic scope of the 5-
26
      minute air quality characterization in using the broader SO<sub>2</sub> monitoring network. The third
27
      scenario considered ambient 1-hour SO<sub>2</sub> concentrations simulated to just meeting the current
```

NAAQS¹² and each of the potential alternative 1-hour daily maximum standard levels of 50, 100,

¹² For consistency, the concentration units in this chapter are reported as ppb, even though NAAQS have units of ppm. Just meeting the current NAAQS levels could either be meeting a 30 ppb annual average or the 140 ppb 24-

- 1 150, 200 and 250 ppb (see chapter 5 for details). The data used in this third scenario were
- 2 limited to the most recent and comprehensive ambient monitoring data available (i.e., 2001-
- 3 2006). Due to the form of the alternative standards considered here (98th and 99th percentiles of
- 4 the 1-hour daily maximum concentrations averaged over 3 years), the recent ambient monitoring
- data set was evaluated using two three-year groups, 2001-2003 and 2004-2006. ¹⁴ To summarize,
- 6 the first scenario is the only scenario that used entirely 1-hour and 5-minute SO₂ measurement
- 7 data. The second and third scenarios are common in that they both used a simulation procedure
- 8 to estimate 5-minute concentrations from measured 1-hour SO₂ concentrations, while the third
- 9 scenario also included an adjustment of the 1-hour SO₂ concentrations to just meet a particular
- 10 standard level.

12

13

14

15

16

17

18

19

20

21

22

23

Staff expected there would be variability in the number of persons living within close proximity of each monitor (both the 5-minute and 1-hour SO₂ monitors) given the particular siting characteristics of the ambient monitors (e.g., either source- or population-oriented monitoring objectives). Therefore, we separated some of the air quality results within each scenario by using the population density surrounding each ambient monitor. First, each monitor was characterized by having one of three population densities (i.e., low, medium, and high), groupings defined by the three characteristic regions of the population distribution generated from the broader SO₂ monitoring network. Then, staff counted the number of 5-minute benchmark exceedances per year at each monitor, either measured or estimated depending on the scenario considered, and aggregated the monitors by the population density group. Rather than count the total number of 5-minute SO₂ concentrations above a particular benchmark, staff calculated the number of times in a year the daily 5-minute maximum SO₂ concentration exceeded a benchmark.¹⁵

hour average concentration (one allowed exceedance), whichever is the controlling standard at that ambient monitor (see section 6.5 and section 7.2.4).

At the time of the initial data download from the AQS data mart, many of the monitors did not have complete years of data available for 2007, therefore the most recent data for most monitors was from 2006. These data are a subset of the broader ambient monitoring data set.

¹⁴ A number of 3-year groups are within 2001-2006 (e.g., 2001-2003, 2002-2004, etc.) and a number of years of monitoring data are outside the 2001-2006 time frame that could have been used in an extended 3-year grouping of 2001-2006 air quality (e.g., 2000-2002). For convenience, the upper and lower groupings were chosen by staff to represent 3-year air quality within the 6-year period when considering just meeting the potential alternative standards.

¹⁵ In the first draft SO₂ REA, as well as the early draft NO₂ REAs, all benchmark exceedances for any hour of the day were reported. The use of the daily maximum exceedance was selected in the final NO₂ REA as well in this

Because many of the SO_2 ambient monitoring sites used in this analysis are targeting
public health monitoring objectives and the monitoring results are separated by population
density groups, staff considers the results a broad characterization of national air quality and
potential human exposures that might be associated with these scenario-driven concentrations.
One of the outputs of this air quality characterization is an estimate of the number of times per
year a monitor experienced daily 5-minute maximum levels of SO ₂ above those that may cause
adverse health effects in susceptible individuals (i.e., benchmark level exceedances). These
counts are a useful metric in comparing one monitor or location to another and in identifying
where and when frequent benchmark exceedances occur. The 1st draft SO ₂ REA however
indicated that the relationship between the annual average SO ₂ concentration and the number of
5-minute benchmark exceedances was generally weak; therefore comparison of the number of
exceedances in a year with the annual average SO ₂ concentration is of limited use. This absence
of a strong relationship highlights the ineffectiveness of long-term averaged concentrations in
controlling short-term peak concentrations. In addition, while it was shown in the 1^{st} draft SO_2
REA that the number of 5-minute maximum concentrations had an improved relationship with
24-hour average concentrations, ¹⁶ it was also shown that the number of peak concentrations was
variable given a specific 24-hour average concentration. Often times the number of 5-minute
maximum SO ₂ concentrations above benchmark levels was zero for a wide range of 24-hour
average SO ₂ concentrations, while in other instances is could as many as five within the same
range. In recognizing that there is variability in the number of 5-minute peak SO ₂ concentrations
associated with concentrations of longer-term averaging times, that a daily maximum 5-minute
SO ₂ concentration was the metric of interest, and that the potential alternative standards
investigated use 1-hour daily maximum SO2 concentrations, staff decided that a more
appropriate comparison would be between the frequency of peak SO ₂ concentrations and a given
1-hour daily maximum SO ₂ concentration. Thus, the second output of this air quality
characterization is presented as the probability of a benchmark exceedance given a daily
maximum 1-hour SO ₂ concentration. For comparison, the probability of a 5-minute benchmark

draft SO₂ REA to improve the temporal perspective for the metric (i.e, the number of daily maximum exceedances

also gives the number of days in a year with an exceedance of a selected benchmark).

16 In the first draft SO₂ REA, multiple exceedances within a day (if any) were counted. In this draft there is only one possible exceedance per day.

- 1 exceedance given a 24-hour average concentration is also provided to offer additional
- 2 perspective on this averaging time.

7.2 APPROACH

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

There were five broad steps to characterize the SO₂ air quality. The first step involved compiling and screening the ambient air quality data collected since 1997 to ensure consistency with the SO₂ NAAQS requirements and for usefulness in this air quality characterization. Next, due to potential variable influence of SO₂ emission sources on ambient monitor concentrations, the monitors from each of the two data sets (i.e., combined 5-minute and 1-hour, broader 1-hour only) were categorized and evaluated according to their monitoring site attributes, including land use characteristics, location type, monitoring objective, distance to emissions sources, and population density. In addition, the variability in 5-minute and 1-hour SO₂ concentrations was evaluated and used to categorize each ambient monitor for use in development and application of the 5-minute maximum SO₂ statistical model. Then, criteria based on the measured concentrations proximity to the level of the current standards and the number of exceedances of potential health effect benchmark levels were used to identify specific locations for focused analysis. These locations served as the geographic centers of the current and potential alternative standard analyses. And finally, air quality metrics of interest (i.e., the number and probability of potential health effect benchmark exceedances) were calculated using the air quality data from each scenario.

The following provides an overview of the five steps used to characterize air quality and summarizes key portions of the analysis. Briefly, the five steps include: 1) an air quality data screening; 2) evaluation of site characteristics of ambient SO₂ monitors; 3) development of a statistical model to estimate 5-minute maximum SO₂ concentrations; 4) selection of locations to evaluate the current and potential alternative standard scenarios; and 5) generation of air quality metrics. Details regarding the ambient monitors used for characterizing air quality and associated descriptive meta-data are provided in Appendix A-1.

7.2.1 Air Quality Data Screening

SO₂ air quality data and associated documentation from the years 1997 through 2007 were downloaded from EPA's Air Quality System for this analysis (EPA, 2007c, d). Data obtained were used as reported; there were no substitutions performed for any missing or zero

- 1 concentration data. The available SO₂ ambient monitoring data, collected over either 5-minute
- 2 or 1-hour averaging times, are summarized in Table 7-1. The 5-minute SO₂ monitoring data
- 3 existed in either one of two forms; the single highest 5-minute concentration occurring in a 1-
- 4 hour period (referred to here as max-5 data set), or all twelve 5-minute concentrations within a 1-
- 5 hour period (referred to here as continuous-5 data set).

Table 7-1. Summary of all available 5-minute and 1-hour SO₂ ambient monitoring data, years 1997-2007, pre-screened.

Sample Type	Number of Monitors	Number of States ¹	Years in Operation	Number of Measurements
Max-5	104	13 + DC	1997-2007	3,457,057
Continuous-5	16	6 + DC	1999-2007	3,328,725
1-hour	935	49 + DC, PR, VI	1997-2007	47,206,918

Notes:

¹ DC=District of Columbia, PR=Puerto Rico, VI=Virgin Islands.

67

8

9

10

11

12

13

14

15

16

17

Staff evaluated the data for inconsistencies and duplication. The reported measurement units varied within each of the data sets, therefore the staff converted all concentrations to parts per billion (ppb). Next staff screened each of the three data sets listed in Table 7-1 for where monitor IDs had multiple parameter occurrence codes (POCs) and identical monitoring times; this could indicate that SO₂ concentrations were measured simultaneously at a given location. These duplicate measures could either result from co-location of ambient monitors (i.e., more than one instrument) or from duplicate reporting of ambient concentrations (i.e., the 5-minute maximum concentration in the max-5 data set is the same as the maximum 5-minute concentration reported from the continuous-5 data set). As a result of this evaluation and additional concentration level screening (see below), staff constructed several data sets for analysis in this REA and summarized in Table 7-2 and is described below.

Table 7-2. Analytical data sets generated using the continuous-5, max-5, and 1-hour ambient SO₂ monitoring data, following screening.

Sample Type	Within Set Duplicates (n) Within Set Data (n) Combined Se Duplicates (n) (n)		licates	Final Combined Max-5 Data (n)	Final Combined 1-hour (n)	Final Combined Max-5 & 1- hour (n)	
Max-5	300,438	3,156,619					
Continuous-5 with 1-hour ¹	0	283,202 ²	29,058	258,457	3,410,763	47,213,385 ³	2,367,686
1-hour	0	47,188,640				, 5,555	

Notes:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1. Simultaneously reported/measured ambient SO₂ data

Two data sets were constructed that had multiple 5-minute SO₂ measurements collected at the same monitoring location and time for:

- max-5 duplicates (i.e., simultaneous measurements of 5-minute maximum SO₂ concentrations from co-located max-5 monitors; n=300,438)
- max-5 and continuous-5 duplicates (i.e., simultaneous 5-minute maximum SO₂ concentrations reported in max-5 and continuous-5 datasets; n=29,058)

A third data set was constructed that had simultaneous 1-hour SO₂ measurements collected at the same monitoring location and time for:

• 1-hour duplicates (i.e., from 1-hour SO₂ monitors and from averaging the continuous-5 monitors; n=258,457)

Each of these duplicate data sets were used for quality assurance purposes only, the evaluation of which is presented in Appendix A-2. The duplicate values were not used in the statistical model development or for any other 5-minute SO_2 concentration analysis.

¹ 1-hour concentrations from continuous-5 data were calculated from all 5-minute values within the hour.

² The number of 5-minute maximum samples.

³ There were a total of 24,745 unique 1-hour values added from the continuous-5 monitors.

2. Combined 5-minute and 1-hour ambient SO₂ data

A complete set of 5-minute maximum SO₂ concentrations, ¹⁷ generated from the max-5 data set and from the maximum 5-minute concentrations reported by the continuous-5 monitors, was then combined with their corresponding measured 1-hour SO₂ concentrations (see below). Then, the combined data were screened for validity, recognizing that the combined max-5 and 1-hour SO₂ data set may have certain anomalies (e.g., 5-minute maximum SO₂ concentrations < 1-hour mean SO₂ concentration). A value of 1 was selected as the lower bound peak-to-mean ratio (PMR), accepting the possibility that the 5-minute maximum concentrations (and all other 5-minute concentrations within the same hour) may be identical to the 1-hour average concentration. A PMR of <12 was selected as the upper bound since it would be a mathematical impossibility to generate a value at or above that given there are twelve 5-minute measurements within any 1-hour period. ¹⁸ This screening resulted in a total of nearly 2.4 million values comprising the combined 5-minute maximum and 1-hour SO₂ concentration data set. Staff used this data set to develop a statistical model (section 7.2.3) and in characterizing the measured 5-minute maximum ambient air quality. Details on the monitors used and site attributes (e.g., latitude, longitude, operating years, monitoring objective) are provided in Appendix A-1.

3. Broader 1-hour ambient SO₂ data

This data set was comprised of all 1-hour SO₂ data, whether obtained from the 1-hour ambient monitoring data set or from averaging 5-minute concentrations from the continuous-5 data set. The raw 1-hour data from a total of 935 ambient monitors were first screened for negative concentrations (n=3,555) and for where concentrations were less than 0.1 ppb (n=14,723). The refined 1-hour data were then combined with the 1-hour average concentrations obtained from the continuous 5-monitors. Staff retained the 1-hour average concentrations from the continuous-5 monitors where duplicate values existed. This was done to better maintain the relationship between the 5-minute maximum and 1-hour SO₂ concentrations. Staff removed duplicate 1-hour values identified at each monitoring location originating from the 1-hour and

 $^{^{17}}$ A single 5-minute and 1-hour SO₂ concentration was used in each of data set 2 and 3. The criteria for selection of a particular value was first based on whether the 1-hour concentration was calculated from the continuous-5 data (where present) followed by the monitor ID POC that had the greatest overall number of samples.

As the 5-minute maximum concentration approaches infinity, the other 11 concentrations measured in the hour comparatively tend towards zero, giving a maximum PMR = Peak/Mean = $C_{max}/[(C_{max} + (C_{others} \rightarrow 0) \times 11)/12] < 12$.

1 continuous-5 monitors for separate analysis (Appendix A-2). The remaining 1-hour SO₂ data set

2 (with duplicate 1-hour values removed) was then combined with the complete 5-minute

3 maximum data set described above (with duplicate 5-minute maximum SO₂ values removed).

Staff used this data set in developing the statistical model to estimate 5-minute maximum SO₂

5 concentrations (section 7.2.3).

4

6

7

8

9

10

11

12

13

14

15

16

17

Additional screening of the 1-hour SO₂ data set was performed using a 75% completeness criterion. For a monitor to have a valid year of data, first, valid days were selected as those with at least 18 hours of data. Then, each monitor was required to have 75% of each calendar quarter with complete days (either 68 or 69 days per quartile). This 75% completeness criterion was applied to the available monitoring data to generate 4,692 valid site-years of data obtained from 809 ambient monitors. The number of valid monitoring site-years available as a result of this screening is presented in Table 7-3, effectively encompassing ambient SO₂ monitoring in 48 US States, Washington DC, Puerto Rico and the US Virgin Islands over years 1997 through 2006. This data set was used in the second data air quality characterization scenario that considered the measured *as is* 1-hour SO₂ concentrations with statistically modeled 5-minute maximum concentrations. Details on the monitors used and site attributes (e.g.,

latitude, longitude, operating years, monitoring objective) are provided in Appendix A-1.

 $^{^{19}}$ Based on the version date of the files downloaded from EPA's AQS data mart (6/20/2007), all 1-hour SO₂ data from 2007 were less than complete. In addition, two monitors located in Hawaii County, HI were identified in the 1^{st} draft REA as having concentrations influenced by natural sources. Therefore, monitor IDs 150010005 and 150010007, while meeting the completeness criteria, were removed from the valid 1-hour SO₂ data set due to the influence of volcanic activity on measured SO₂ concentrations at these locations. Alaska had no SO₂ monitors during the period of analysis.

Table 7-3. Counts of complete and incomplete site-years of 1-hour SO_2 ambient monitoring data for 1997-2006.

State		Number o	f Site-Years	Number of Vali Percent Monitors per ye		
Abbr.	obr. Code Complete Incomplete		Valid	Minimum	Maximum	
AL	01	36	15	71	1	5
AZ	04	44	24	65	1	6
AR	05	17	14	55	1	2
CA	06	308	136	69	7	41
CO	08	33	13	72	1	6
CT	09	69	18	79	6	12
DE	10	27	16	63	2	4
DC	11	10	1	91	1	1
FL	12	223	76	75	3	28
GA	13	65	34	66	5	9
HI	15	31	19	62	2	4
ID	16	17	10	63	1	3
IL	17	235	30	89	18	30
IN	18	276	80	78	13	34
IA	19	110	33	77	8	14
KS	20	28	27	51	2	4
KY	21	104	42	71	2	13
LA	22	57	11	84	5	6
ME	23	25	18	58	1	7
MD	24	10	7	59	1	3
MA	25	102	33	76	6	15
MI	26	84	28	75	5	15
MN	27	74	23	76	5	12
MS	28	25	11	69	1	4
MO	29	166	40	81	11	21
MT	30	121	50	71	2	18
NE	31	9	13	41	1	2
NV	32	16	6	73	1	4
NH	33	63	26	71	3	11
NJ	34	117	21	85	12	14
NM	35	56	24	70	3	9
NY	36	229	72	76	21	24
NC	37	61	29	68	4	9
ND	38	155	45	78	10	18
ОН	39	309	74	81	28	35
OK	40	59	32	65	3	9
OR	41	0	4	0	0	0
PA	42	398	97	80	33	51
RI	44	21	2	91	2	3
SC	45	90	34	73	5	11
SD	46	7	4	64	1	3

State		Number o	f Site-Years	Percent	Number of Valid Monitors per year	
Abbr.	Code	Complete Incomplete		Valid	Minimum	Maximum
TN	47	175	70	71	12	23
TX	48	172	71	71	10	21
UT	49	33	14	70	3	4
VT	50	11	4	73	1	2
VA	51	94	28	77	8	11
WA	53	18	24	43	1	7
WV	54	203	28	88	14	25
WI	55	39	18	68	2	7
WY	56	3	8	27	1	1
PR	72	33	32	51	1	6
VI	78	24	23	51	1	5
Total of		4692	1612	68	6	12

Notes

7.2.2 Site Characteristics of Ambient SO₂ Monitors

The siting of the monitors is of particular importance, recognizing that proximity to local sources could have an influence on the measured SO₂ concentration data and subsequent interpretation of the air quality characterization. Staff evaluated the attributes of monitors within each of the two data sets; the first data set comprised of monitors that reported 5-minute maximum SO₂ concentrations, and the second generated from monitors within the broader SO₂ monitoring network and having valid 1-hour SO₂ concentrations. Two points are worthy of mention for this analysis; the first being the number of monitors and the second being the potential for differences in types of sources influencing each monitor. While there is overlap in the measurement of 5-minute maximum and its associated 1-hour SO₂ concentration at some locations (n=98), the remainder of SO₂ monitors with valid data (n=711) are sited in other locations where 5-minute SO₂ measurements have not been reported. Staff evaluated the ambient monitor attributes within each data set because there may be influential attributes in the subset of data used to develop the statistical model (i.e., monitors reporting 5-minute maximum SO₂ concentrations) that are not applicable to the broader SO₂ monitoring network.

First staff evaluated the specific monitoring site characteristics provided in AQS, including the monitoring objective, measurement scale, and predominant land-use. Additional features such as proximity to SO₂ emission sources and the population residing within various

¹ Complete and incomplete site years are summed. The percent valid site-years and the monitors in operation per year generating valid data are averaged.

- distances of each monitor were estimated using monitoring site and emission source geographic
- 2 coordinates and U.S Census data. Each of these attributes is summarized here to provide
- 3 perspective on the attributes of where 5-minute maximum SO₂ concentrations were reported
- 4 versus the attributes of the broader SO₂ monitoring network. A more thorough discussion of the
- 5 ambient monitoring network is provided in Chapter 2. Individual monitor site characteristics are
- 6 given in Appendix A-1.

11

12

13

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

7 The monitoring objective meta-data field describes the nature of the monitor in terms of

8 its attempt to generally characterize health effects, the presence of point sources, regional

9 transport, or welfare effects. In recognizing that there were variable numbers of ambient

monitors in operation and variation in the number of valid site-years available for each data set,

the monitoring objectives were weighted by the number of site-years. This was done to provide

perspective on the air quality characterization results that are based on the total site-years of data

available, not just the number of ambient monitors. In addition, the monitors can have more than

one objective. Where multiple objectives were designated, staff selected a single objective to

characterize each monitor using the following order: population exposure, source-oriented, high

concentration, general/background, unknown. All other objectives (whether known or indicated

as "none") were grouped by staff into an "Other" category. Figure 7-1 summarizes the

monitoring objectives for each monitoring data set. Each of the data sets had a large proportion

of site-years that would target public health objectives through the population exposure and

highest concentration categories, though the monitors in the broader SO₂ monitoring network

had a greater percentage than the monitors reporting both 5-minute maximum and 1-hour SO₂

concentrations. The monitors reporting 5-minute concentrations had approximately twice the

percentage of site-years from source-oriented monitors when compared with the broader SO₂

monitoring network.

Similarly, the overall measurement scale of the monitors used for the air quality characterization in each location was evaluated based on the weighting of valid site-years of data. The measurement scale represents the air volumes associated with the monitoring area dimensions. While a monitor can have multiple objectives, each monitor typically has only one measurement scale. Figure 7-1 summarizes the measurement scales for the monitoring site-years comprising each data set. Both data sets had their greatest proportion of monitoring site-years

1 associated with neighborhood measurement scales (500 m to 4 km), though monitors recording

2 1-hour concentrations had about 22 percentage points greater than the monitors reporting 5-

minute maximum concentrations. Furthermore, monitors reporting 5-minute values had a larger

proportion of site-years of data characterized at an urban (4 to 50 km) and regional scale (50 km

to 1,000 km) compared with the broader SO₂ monitoring network.

The land-use meta-data indicate the prevalent land-use within ¼ mile of the monitoring site. Figure 7-2 summarizes the land-use surrounding monitors that reported 5-minute maximum concentrations and the broader 1-hour SO₂ monitoring network. Over half of the site-years are from residential and industrial areas and are of similar proportions for both data sets considered. The greatest difference in the surrounding land-use was for the number of site-years associated with monitors sited in agricultural and commercial areas. The monitors reporting 5-minute maximum SO₂ concentrations had about 10 percentage points more site-years from monitors within agricultural areas and 10 percentage points less in commercial areas when compared to the respective land use of the broader SO₂ monitoring network.

The setting is a general description of the environment within which the site is located. Figure 7-2 summarizes the setting of each data set. For monitors reporting 5-minute concentrations, the greatest proportion of site-years is from ambient monitors with a rural setting (49%). Most of the site-years in the broader SO₂ monitoring network were from monitors within a suburban setting (40%).

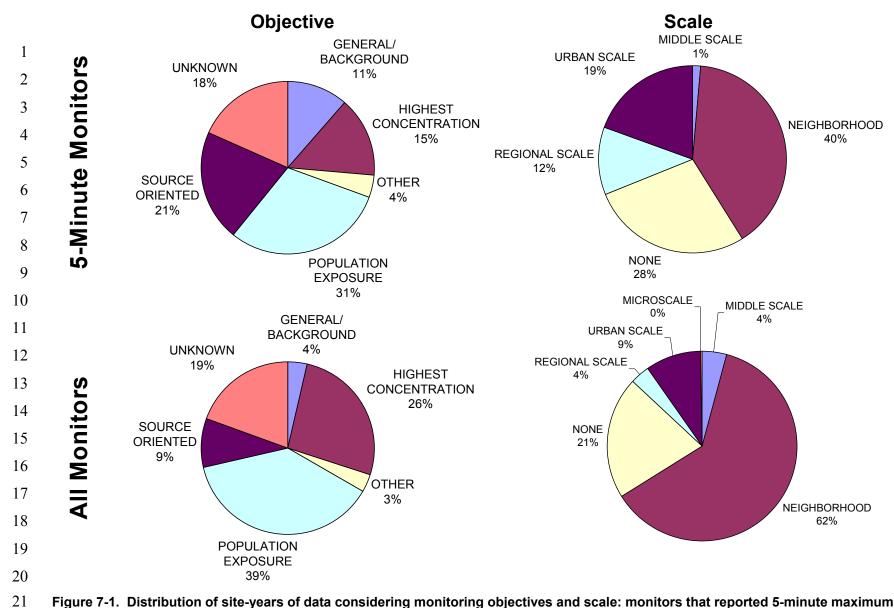


Figure 7-1. Distribution of site-years of data considering monitoring objectives and scale: monitors that reported 5-minute maximum SO₂ concentrations (top) and the broader SO₂ monitoring network (bottom).

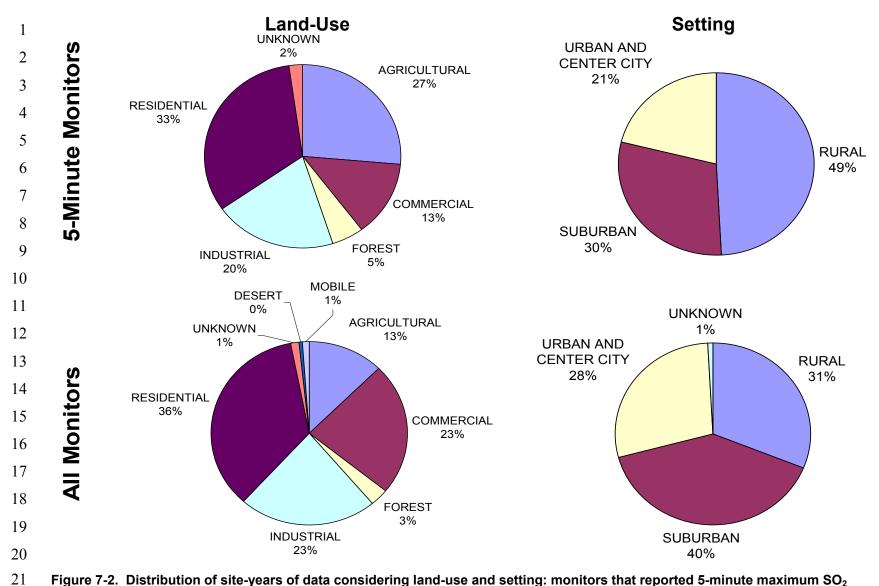


Figure 7-2. Distribution of site-years of data considering land-use and setting: monitors that reported 5-minute maximum SO₂ concentrations (top) and the broader SO₂ monitoring network (bottom).

Stationary sources (in particular, power generating utilities using fossil fuels) are the
largest contributor to SO ₂ emissions in the U.S. (ISA). First, staff determined the distances,
amounts of, and types of stationary source emissions associated with each of the ambient SO ₂
monitors. Then, staff selected the sources in close proximity of each monitor to identify whether
there are differences in the distribution of emission sources that could affect the monitored
concentrations. Stationary sources emitting $>$ 5 tons per year (tpy) SO_2 and within 20 km of each
monitor were identified using data from the 2002 National Emissions Inventory (NEI). 20 Details
on the number of sources, the distribution of emissions, and the method for determining the
distances to each individual ambient monitor are provided in Appendix A-1.

The total SO₂ source emissions within 20 km of every monitor were summed by their source descriptions; the top eight source types were selected for evaluation followed by a summing of all other remaining source types in a final source description group ("other"). These emission results are presented in Figure 7-3 for the monitors reporting 5-minute maximum SO₂ concentrations and for the broader SO₂ monitoring network. A comparison of the sources located within 20 km of monitors comprising both data sets indicates strong similarity in the types of sources present. Approximately 70% of the stationary source emissions local to monitors comprising either data set originate from fossil fuel power generation.²¹ Similarity in emission contributions from several other source categories is also evident (e.g., petroleum refineries, iron and steel mills, cement manufacturing). One of the largest distinctions between the sources surrounding the two data sets is the emission contribution from primary smelters. There were greater source emissions from smelters located within 20 km of the monitors reporting 5-minute maximum SO₂ concentrations (8.8%) than within 20 km of the broader SO₂ monitoring network (1.1%). A second difference between the two sets of data existed in the emission contribution from a combined power generation, transmission and distribution description; this source category contributes approximately 11% to emissions proximal monitors in the broader SO₂ monitoring network compared with only 2% at monitors measuring 5-minute SO₂ concentrations.

1

2

3

4

5

6 7

8

9

10

11

12

13

14

15

16

17

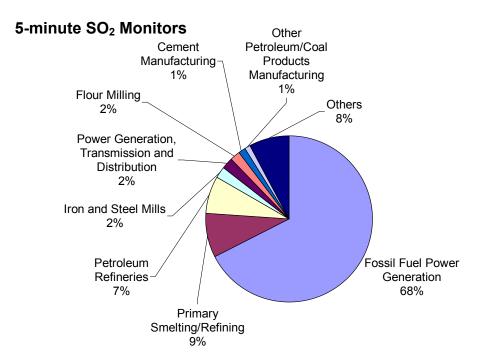
18

19

20

21

22


23

24

25

²⁰ 2002 National Emissions Inventory Data & Documentation. Office of Air Quality Planning and Standards, Research Triangle Park, NC. Available at: http://www.epa.gov/ttn/chief/net/2002inventory.html.

 $^{^{21}}$ This emission category was summed from fossil fuel power generation (NEI code 221112) and hydroelectric utilities (NEI code 221111). Hydroelectric utility SO_2 emissions arise from power generating facility operations that require fossil fuel combustion (e.g., diesel-fueled backup generators).

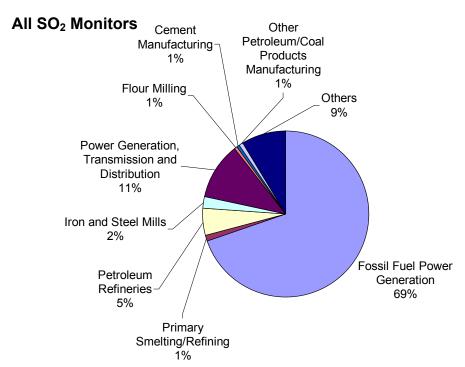


Figure 7-3. The percent of total SO₂ emissions of sources located within 20 km of ambient monitors: monitors reporting 5-minute maximum SO₂ concentrations (top) and the broader SO₂ monitoring network (bottom).

March 2009

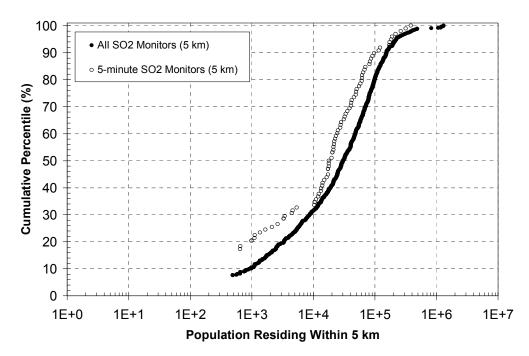


Figure 7-4. Distribution of the population residing within a 5 km radius of ambient monitors: monitors reporting 5-minute maximum SO_2 concentrations and the broader SO_2 monitoring network.

7.2.3 Statistical model to estimate 5-minute maximum SO₂ concentrations

As described earlier, staff noted there were a limited number of ambient monitors that reported 5-minute maximum SO₂ concentrations. The majority of the SO₂ monitoring network reports 1-hour average SO₂ concentrations. Staff developed a statistical model to extend the 5-minute SO₂ air quality characterization to locations where 5-minute concentrations were not reported. The statistical model was briefly introduced in section 6.4; this section details the development of the statistical model designed to estimate 5-minute maximum SO₂ concentrations from 1-hour SO₂ concentrations, using the combined 5-minute maximum and 1-hour SO₂ measurement data set.

Fundamental to the model are the peak-to-mean ratios or PMRs. Peak-to-mean ratios are derived by dividing the 5-minute maximum SO₂ concentration by the 1-hour average SO₂ concentration. These derived PMRs can be useful in estimating 5-minute maximum SO₂ concentrations when only the 1-hour concentration is known. The PMRs derived from monitoring data can be variable however, and are likely dependent on local source emissions, site meteorology, and other influential factors. Each of these factors will have variable influence

on the measured concentrations at ambient monitors. Therefore, to develop a useful tool for extrapolating from the measured data, at a minimum, the approach needed to account for variation in ambient concentration. It is within this context that the statistical model was developed.

Staff selected the variability in SO₂ concentrations at each individual ambient monitor as a collective surrogate for source emissions, source types, and/or distance to sources in developing a purposeful application of the statistical model to the broader 1-hour SO₂ measurement data. Many of the meta-data described in section 7.2.2, while useful for qualitatively describing the SO₂ monitoring network, were not considered robust in quantifying how sources could influence monitored concentrations, particularly when many monitor characteristics are unknown, missing, or potentially mischaracterized. In addition, while individual source types, emissions, and distances to the monitors are presented as quantitative measures, use of this data can be problematic knowing that 1) source characteristics can change over time, 2) it is largely unknown what source(s) influence many of the ambient monitors and by how much, 3) there is uncertainty in source emission estimates, and 4) even similar source types will not have the same emission characteristics. There may be several ways to extrapolate between the two data sets, however staff decided that the measured concentrations had the most to offer in efficiently designing the linkage between the statistical model and the broader SO₂ ambient monitoring data set given the strong relationships between averaging times, concentration variability, and the frequency of peak concentrations. Where possible, staff compared the relevant monitor attributes described in section 7.2.2 with selected variability metrics used in developing and applying the statistical model.

The purpose of the first analysis that follows is to determine an appropriate variable to reasonably connect the statistical model derived from 5-minute and 1-hour concentrations to any 1-hour SO₂ concentration data set where there are no 5-minute SO₂ measurements. Staff first evaluated variability metrics associated with 5-minute and 1-hour SO₂ ambient monitoring concentrations as a basis for linking the statistical model to 1-hour concentrations. Next, staff generated distributions of PMRs for use in estimating 5-minute concentrations. Then the statistical model was applied to where 5-minute measurements were reported and evaluated using cross-validation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

7.2.3.1 Relationship Between 5-minute and 1-hour SO₂ Concentrations

Because the statistical model employs 5-minute and 1-hour SO₂ concentrations, staff evaluated the relationship between the concentrations for the two averaging times. The monitors reporting all twelve 5-minute concentrations within the hour were used for this analysis (n=16). First, all of the continuous-5 minute data available for each monitor were averaged to generate a single 5-minute mean concentration (both in an arithmetic and geometric mean form) and their respective standard deviations, yielding a total of 16 monitor-specific 5-minute SO₂ values.²² Staff performed a second calculation to generate similar statistics using the continuous-5 data, though a 1-hour averaging time was of interest. To obtain the 1-hour statistics, the twelve 5-minute SO₂ concentrations were averaged to generate 1-hour mean SO₂ concentration (both in an arithmetic and geometric mean form) and their corresponding standard deviations, yielding a total of 16 monitor-specific 1-hour SO₂ values.

Staff selected the coefficient of variation (COV) 23 and geometric standard deviation (GSD) as metrics used to compare concentration variability in both 1-hour and 5-minute averaging times, each of which are illustrated in Figure 7-5. As expected, a strong direct linear relationship exists between the variability in 5-minute and 1-hour SO₂ concentrations at each monitor. Even with the limited geographic representation (these monitors are from only six U.S. States and Washington DC), there is a wide range in the observed concentration variability for both the 5-minute and associated hourly measurements (i.e., COVs range from about 75 – 300%, GSDs range from about 1.7 – 3.7). In general, this analysis demonstrates that variability in 5-minute SO₂ concentrations is directly related to the variability in 1-hour SO₂ concentrations, and these measures of variability may be used as to describe the potential variability in concentrations measured at any ambient SO₂ monitor, similarly for either the 1-hour or 5-minute measured concentrations. Note that there is a difference in the slope of the two lines, indicating that there is not a direct linear relationship between the COV and GSD. This means that in characterizing the variability at any ambient monitor, an identified COV (e.g., either low or high COV) does not necessarily correspond to the same GSD characterization.

²² Each of the 16 continuous-5 monitors was characterized by four statistics, arithmetic and geometric means and their respective standard deviations.

²³ The COV used here is calculated by dividing the standard deviation by the arithmetic mean, then multiplying by 100.

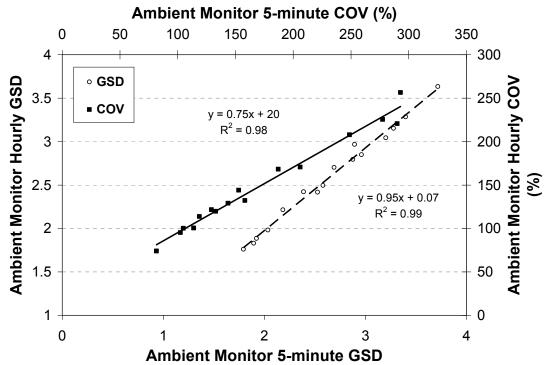
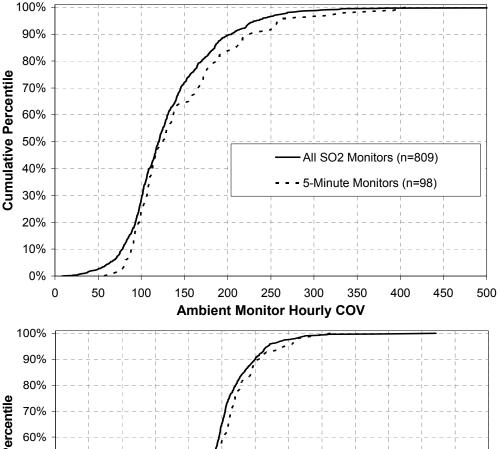



Figure 7-5. Comparison of hourly and 5-minute concentration COVs and GSDs at sixteen monitors reporting all twelve 5-minute SO₂ concentrations over multiple years of monitoring.

Next, staff compared the variability in 1-hour SO₂ concentrations using data from the monitors reporting 5-minute maximum SO₂ concentrations the broader SO₂ monitoring network. The objective of this evaluation was to determine if the observed hourly concentration variability was similar for the two sets of data. Four statistics were generated for each ambient monitor using the 1-hour SO₂ concentrations, with the variability at each represented by its COV and GSD. Figure 7-6 illustrates the cumulative density functions (CDFs) for the hourly COVs and GSDs at each of the 98 monitors that reported 5-minute maximum SO₂ concentrations (i.e., the data set used for developing the statistical model) and the 809 monitors from the broader SO₂ monitoring network (i.e., the final 1-hour SO₂ data set with complete years). While the subset of monitors reporting the 5-minute maximum SO₂ concentrations exhibit greater variability in hourly concentration at most percentiles of the distribution, the overall shape and span of the distribution is very similar to monitors within the broader SO₂ monitoring network using either variability metric. The similarity in variability distributions could indicate that the monitor proximity to sources, the magnitude and temporal profile of source emissions, and the types of sources affecting concentrations at either set of data (i.e., the monitors reporting 5-minute SO₂

- 1 concentrations versus the broader SO₂ monitoring network) are similar. This, combined with the
- 2 meta-data evaluation and the source type, distance, and emissions analysis that indicated similar
- 3 source type emission proportions between the two sets of ambient monitoring data (7.2.2),
- 4 provides support for using concentration variability as a variable to extrapolate information from
- 5 the 5-minute SO_2 monitors to the 1-hour SO_2 monitors.

Cumulative Percentile 50% All SO2 Monitors (n=809) 40% - - 5-minute SO2 Monitors (n=98) 30% 20% 10% 0% 1.5 2.5 3 3.5 0.5 5.5 6.5 **Ambient Monitor Hourly GSD**

Figure 7-6. Cumulative density functions (CDFs) of hourly COVs (top) and GSDs (bottom) at ambient monitors: monitors reporting 5-minute maximum SO₂ concentrations and the broader SO₂ monitoring network.

7.2.3.2 Development of Peak-to-Mean Ratio (PMR) Distributions

A key variable in the statistical model to estimate the 5-minute maximum SO_2 concentrations where only 1-hour average SO_2 concentrations were measured is the peak-to-mean ratio (PMR). Peak-to-mean ratios are obtained by dividing the 5-minute maximum SO_2 concentration occurring within an hour by the 1-hour SO_2 concentration. The use of a PMR or

1

6 7

8

9

- distributions of PMRs in estimating 5-minute maximum SO₂ concentrations is not new to the
- 2 current NAAQS review. Both individual PMRs and distributions of PMRs were used in the
- 3 previous NAAQS review in characterizing 5-minute SO₂ air quality (Thrall et al, 1982; EPA,
- 4 1986a; 1994b; Thompson 2000) and in estimating human exposures to 5-minute SO₂
- 5 concentrations (Burton et al. 1987; EPA, 1986a, 1994b; Stoeckenius et al. 1990; Rosenbaum et
- 6 al., 1992; Sciences International, 1995). In this review, staff generated distributions of PMRs to
- 7 characterize 5-minute SO₂ air quality and in estimating 5-minute SO₂ exposures (chapter 8). The
- 8 distributions of PMRs used here build upon recent PMR analyses conducted by Thompson
- 9 (2000).²⁴ In the current PMR analysis, staff developed several distributions of PMRs using more

recent 5-minute SO₂ monitoring data (through 2007) and used concentration level and variability

as categorical variables in defining the distributions of PMRs.

Concentration variability has been identified as a potential attribute in characterizing sources affecting concentrations measured at the ambient monitors (section 7.2.3.1). Instead of designing a continuous function from the variability distribution, staff chose to use categorical variables to describe the monitors comprising each data set. The approach involved the creation of variability bins, such that PMR data from several monitors would comprise each bin. Staff decided this approach would better balance the potential number of PMRs available in generating the distributions of PMR given the variable number of samples collected and years of monitoring at monitors that reported the 5-minute maximum SO_2 concentrations (Appendix A-2). Using the hourly COV or GSD distributions in Figure 7-6, staff assigned one of three COV or GSD bins to each of the 98 monitors reporting the 5-minute maximum SO_2 concentrations: for COV, the bins were defined as low (COV \leq 100%), mid (100% < COV \leq 200%), and high (COV > 200%). These three COV bins were selected to capture the upper and lower tails of the variability distribution and a mid-range area. Similarly and based on the same percentile ranges selected for the COV, three GSD bins were selected as follows: low (GSD \leq 2.17), mid (2.17 < GSD \leq 2.94), and high (GSD > 2.94.

In addition, the level of the 1-hour mean SO₂ concentration has been identified as an important consideration in defining an appropriate PMR distribution to use in estimating 5-

March 2009

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

 $^{^{24}}$ In the Thompson (2000) analysis, a single distribution of PMRs was employed based on 6 ratio bins and assumed independence between the ratio and the 1-hour SO₂ concentration.

²⁵ For monitors reporting the 5-minute maximum SO2 concentrations, these groupings corresponded to approximately the 25th and the 84th percentile of the variability distribution.

- 1 minute maximum SO₂ concentrations (EPA, 1986a). Therefore, staff further stratified the PMRs
- by seven 1-hour mean concentration ranges: 1-hour mean ≤ 5 ppb, $5 \leq 1$ -hour mean ≤ 10 ppb, 10
- 3 \leq 1-hour mean \leq 25 ppb, 25 \leq 1-hour mean \leq 75 ppb, 75 \leq 1-hour mean \leq 150 ppb, 150 \leq 1-
- 4 hour mean < 250 ppb, and 1-hour mean > 250 ppb. Staff selected these 1-hour concentration
- 5 stratifications to maximize any observed differences in the PMR distributions within a given
- 6 variability and concentration bin and to limit the total possible number of PMR distributions for
- 7 computational manageability. While PMR distributions were generated for 1-hour SO₂
- 8 concentrations < 5 ppb, it should be noted that any estimated 5-minute maximum SO₂

directly related to the variability in the short-term concentrations.

9 concentration would be below that of the lowest potential health effect benchmark level of 100

10 ppb.

11

12

13

14

15

16

17

18

19

20

21

22

Based on the concentration variability and 1-hour concentration bins, staff generated a total of 19 separate PMR distributions.²⁶ Due to the large number of PMRs available for several of the variability and concentration bins, all of the empirical data were summarized into distributions using the cumulative percentiles ranging from 0 to 100, by increments of 1. Figure 7-7 illustrates two patterns in the PMR distributions when comparing the different stratification bins. First, the monitors with the highest COVs or GSDs contain the highest PMRs at each of the percentiles of the distribution (bottom graph of each variability bin in Figure 7-7) when compared with monitors from the other two variability bins (top and middle graphs), while the mid-range variability bins (middle graph) had a greater proportion of higher PMRs than the low variability bin (top graph). These distinctions in the PMR distributions are consistent with the results illustrated in Figure 7-5, that is, the variability in the hourly average concentrations is

²⁶ Although there were a total of 21 PMR distributions possible (i.e., 3×7), the COV < 100% and GSD <2.17 categories had only three 1-hour concentrations above 150 ppb. Therefore, the two highest concentration bins do not have a distribution, and concentrations > 75 ppb constituted the highest concentration bin in the low COV or low GSD bins. All PMR distributions are provided in Appendix A-3.

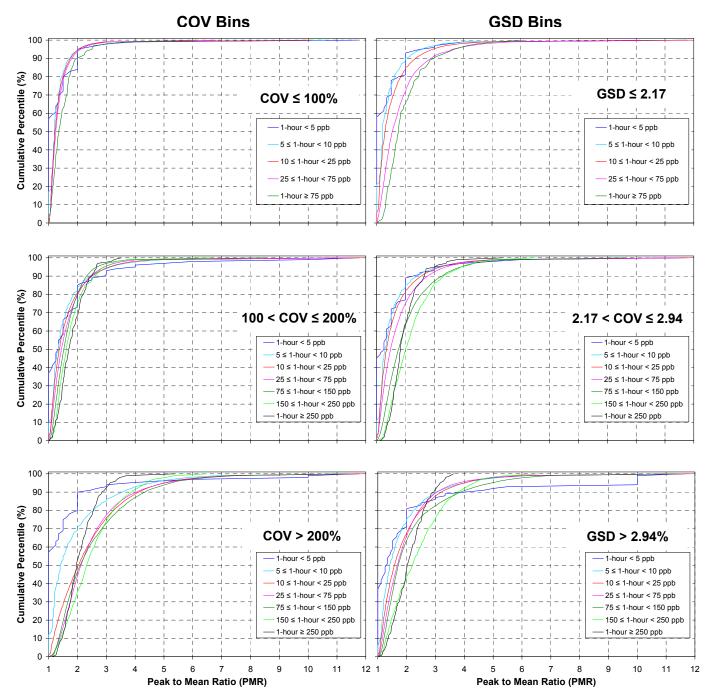


Figure 7-7. Peak-to-mean ratio (PMR) distributions for three COV and GSD variability bins and seven 1-hour SO₂ concentration stratifications.

1	
2	Second, differences were observed in the PMR distributions within each variability bin when
3	stratified by 1-hour SO ₂ concentration. This is most evident in the highest variability bin
4	(bottom graph of Figure 7-7); the highest 1-hour concentration category (> 250 ppb) had lower
5	PMRs at each of the distribution percentiles compared with the PMR distributions derived for the
6	lower concentration categories, most prevalent at the upper percentiles of the distribution. In
7	fact, the maximum PMRs for the > 250 ppb concentration bin were only 5.4 and 3.6 for the COV
8	and GSD high variability bin, respectively, compared with maximum PMRs of about 11.5 at
9	many of the other concentration bins. Again, this inverse relationship between the PMR and
10	concentration level has been shown by other researchers (EPA, 1986a). The stratification of
11	PMRs by the 1-hour concentration was done to avoid applying high PMRs calculated from low
12	hourly concentrations to high hourly concentrations. The observed patterns in the PMR
13	distributions support the staff selection of variability bins and 1-hour concentration stratifications
14	in controlling for the aberrant assignment of PMRs to particular 1-hour concentrations.
15	Staff compared the assigned concentration variability bin at each monitor with two
16	ambient monitoring site characteristics described in section 7.2.2. First, the total emissions
17	within 20 km of each monitor were compared with the assigned concentration variability bin.
18	This comparison was performed using the monitors reporting 5-minute maximum SO_2
19	concentrations and the broader SO ₂ monitoring network (Figure 7-8). A pattern of increased
20	emissions associated with increasing concentration variability bin is common with both the COV
21	and GSD bins, though more prominent in the COV bins. In general, this indicates the variability

bins may be useful as a surrogate for local source emission characteristics.

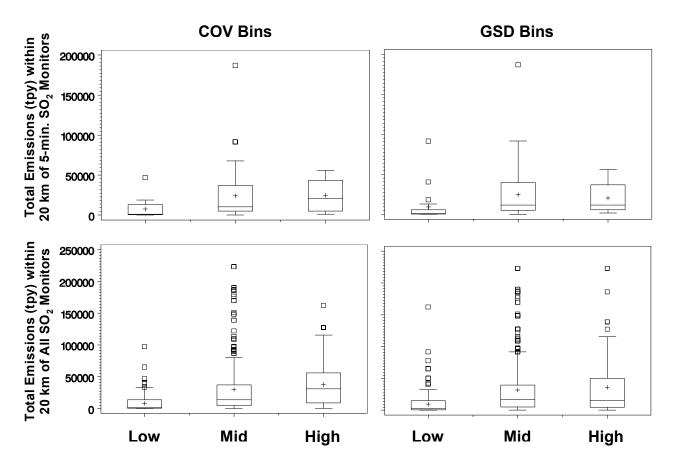


Figure 7-8. Distribution of total SO₂ emissions (tpy) within 20 km of monitors by COV (left) and GSD (right) concentration variability bins: monitors reporting 5-minute maximum SO₂ concentrations (top) and the broader SO₂ monitoring network (bottom).

The second ambient monitoring site characteristic compared with the selected concentration variability bins was the monitoring objective, principally when it was noted as source-oriented. Staff calculated the percent of monitors in each variability bin that were identified as source-oriented using the two sets of data; the set comprised of monitors that reported 5-minute maximum SO₂ concentrations and those within the broader SO₂ monitoring network. In general, there is an increasing percent of monitors characterized as source oriented in the higher concentration variability bins when using either the COV or GSD metrics (Figure 7-9), though the pattern is more consistent with the COV metric than with the GSD metric. This comparison also indicates that the concentration variability metric may be useful as a surrogate for local source emission characteristics.

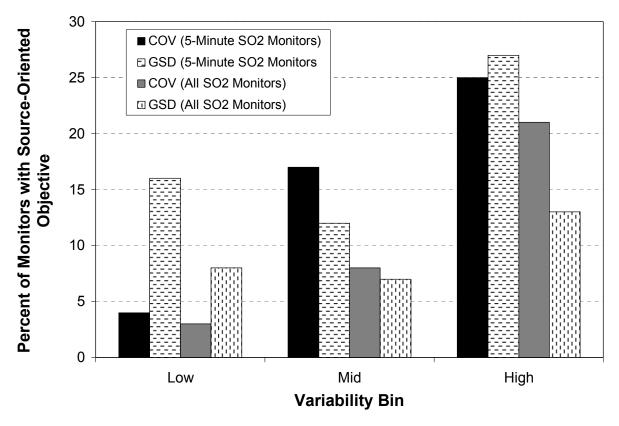


Figure 7-9. Percent of monitors within each concentration variability bin where the monitoring objective was source-oriented: monitors reporting 5-minute maximum SO_2 concentrations (solid) and the broader SO_2 monitoring network (slotted).

7.2.3.3 Application of Peak to Mean Ratios (PMRs)

As described above regarding the monitors reporting 5-minute maximum SO_2 concentrations, staff characterized the monitors within the broader SO_2 monitoring network (n=809) were also characterized by their respective hourly concentration variability and placed in one of the three COV bins (COV \leq 100%, 100% < COV \leq 200%, and COV > 200%) and GSD bins (GSD \leq 2.17, 2.17 < GSD \leq 2.94, and GSD > 2.94). Based on the monitor's assigned concentration variability bin (either from the COV or GSD, not mixed) and the 1-hour SO_2 concentration, PMRs can be randomly sampled²⁷ from the appropriate PMR distribution to estimate a 5-minute maximum SO_2 concentrations using the following equation:

²⁷ The random sampling was based selection of a value from a uniform distribution {0,100}, whereas that value was used to select the PMR from the corresponding distribution percentile value.

l	$C_{\text{max}-5} = PMI$	$_{ij} \times C_{i,1-hour}$ equation (7-1)
2	where,	
4	$C_{max-5} =$	estimated 5-minute maximum SO ₂ concentration (ppb) for each hour
5	$PMR_{ij} =$	peak-to-mean ratio (PMR) randomly sampled from the i concentration
6		variability and j 1-hour mean SO ₂ concentration distribution
7	$C_{i,1-hour}=$	measured 1-hour average SO_2 concentration at an i concentration
8		variability monitor
9		

As a result of this calculation, every 1-hour ambient SO_2 concentration has an estimated 5-minute maximum SO_2 concentration.²⁸ These data were then summarized using the output metrics described in section 7.2.5.

7.2.3.4 Evaluation of Statistical Model Performance

Staff evaluated the performance of the statistical model using cross-validation (Stone, 1974). Details of the evaluation are provided in Langstaff (2009). Briefly, PMR distributions were estimated using 97 of the 98 monitors that reported both the 1-hour and 5-minute maximum SO₂ concentrations. All ambient monitors were characterized using the same variability bins and 1-hour concentrations were characterized by the same stratifications described in section 7.2.3.2. Then staff used the newly constructed PMR distributions to predict the 5-minute maximum SO₂ concentrations at the monitor not included in developing the PMR distributions using equation 7-1. This modeling was performed 98 times, i.e., removing every single monitor (one monitor at a time), generating new PMR distributions, and predicting 5-minute maximum SO₂ concentrations at the removed monitor. Staff then compared the predicted and measured daily 5-minute maximum SO₂ concentrations to generate a distribution of model prediction errors (e.g., median errors, median absolute errors) and general model statistics (i.e., the root mean square error or RMSEs, and R², a measure of the amount of variance explained by the model).

Four statistical models were evaluated: the two variability bins (COV and GSD) using all percentiles of the PMR distributions and the two variability bins without the minimum and maximum percentiles of the PMR distributions. The models were evaluated at the benchmark

²⁸ When the 1-hour SO_2 concentration was > 0, otherwise the 5-minute maximum SO_2 concentration was estimated as zero).

- 1 concentration levels as well as at selected percentiles in the 5-minute SO₂ concentration
- 2 distribution. In comparing the model predictions, the model using variability bins defined by the
- 3 COV and excluding the minimum and maximum percentiles had the lowest prediction errors
- 4 (e.g., see Table 7-4).²⁹ Based on these results, staff used this COV model (excluding the 0th and
- 5 100th percentiles of the PMR distribution) to estimate 5-minute maximum SO₂ concentrations
- 6 from 1-hour SO₂ concentrations.

March 2009

²⁹ Table 7-4 presents a few of the prediction error statistics used to compare each of the models, though several other prediction errors were evaluated (e.g., the 75th and 99th). Each of these were consistent with results presented, that is the alt. COV model had the lowest error when compared with the other models evaluated. See Langstaff (2009) for the additional percentile comparisons for each of the models.

Table 7-4. Comparison of prediction errors and model variance parameters for the four models evaluated.

Benchmark Level (ppb)	Model ¹	Median Prediction Error ²	RMSE	R²
	COV	2.6	18.9	0.72
100	alt. COV	0.4	14.1	0.81
100	GSD	2.5	24.8	0.48
	alt. GSD	0.3	19.8	0.63
	COV	1	10.7	0.66
200	alt. COV	0.1	8.6	0.74
200	GSD	1.3	12.8	0.49
	alt. GSD	0.4	10.2	0.64
	COV	0.6	6.5	0.73
300	alt. COV	0	5.6	0.78
000	GSD	0.6	8.2	0.55
	alt. GSD	0.1	7.1	0.64
	COV	0.3	4.5	0.76
400	alt. COV	0	3.9	0.8
400	GSD	0.3	6	0.55
N	alt. GSD	0	5.5	0.61

Notes

1 2

3

4

5

6

7

8

9

10

Staff performed additional evaluations using the prediction errors associated with the statistical model. Additional percentiles of the prediction error distribution were calculated to estimate the magnitude and direction of the model bias. Table 7-5 summarizes the prediction errors for each benchmark level. When considering paired percentiles (e.g., the 25th and the 75th or prediction intervals) and the 50th percentile as a pivot point (there is no bias here), there appears to be over-estimation bias at each of the benchmark levels. For example, there is a greater overestimation of the 400 ppb benchmark level at the 95th percentile (i.e., 5 exceedances), than compared with the under estimation at the 5th percentile (i.e., 1 exceedance). However, there is good agreement in the predicted versus observed number of exceedances, whereas 90%

¹ The "alt." abbreviation denotes the alternative model was used: the minimum and maximum percentiles of the PMR distributions were not used.

² The absolute value of the prediction differences is calculated (predicted minus the observed number of exceedances in a year), generating a distribution of prediction errors. The value reported here is the (50th percentile) of that distribution.

- of the predicted exceedances of 400 ppb were within -1 to 5 exceedances per year. There is a
- 2 wider range in the prediction intervals at the lower benchmark levels, partly a function of the
- 3 greater number of exceedances at the lower benchmark levels rather than the degree of
- 4 agreement (Table 7-5). At the extreme ends of the distribution for each of the benchmarks, the
- 5 agreement between the predicted and observed exceedances widens, indicating that for some
- 6 site-years (approximately 2%), the number of exceedances can be over- or under-estimated by 20
- 7 to 50 days in a year.

Table 7-5. Prediction errors of the statistical model used in estimating 5-minute maximum SO₂ concentrations above benchmark levels.

	Prediction Error at Benchmark Level ¹				
Percentile	100	200	300	400	
1	-31	-17	-18	-19	
5	-15	-7	-3	-1	
25	-1	0	0	0	
50	0	0	0	0	
75	7	1	1	0	
95	32	20	10	5	
99	48	43	26	14	
	Mean Number of Benchmark Exceedances ²				
	100	200	300	400	
Observed	148	81	69	56	
Predicted	150	100	67	45	

Notes:

8

9

10

11

12

13

14

15

16

7.2.4 Locations to Evaluate the Current and Potential Alternative Standard Scenarios

As discussed in section 6.4, staff needed to adjust the air quality concentrations to allow for comparison of the level of public health protection that could be associated with just meeting the current and potential alternative standards. A proportional approach was selected based on the mostly linear relationship between older high concentration years of air quality when compared with recent low concentration years at several locations (Rizzo, 2009). Staff limited the analysis to particular locations using designated geographic boundaries (not just the monitors

 ¹ The percentiles are based on the distribution of predicted minus the observed values for each benchmark. Units are the number of exceedances per year.
 ² This is the average of all site-years. Units are the number of

² This is the average of all site-years. Units are the number of exceedances per year.

themselves). Counties were used to define the locations of interest in these alternative air quality standard scenarios. Use of a county is consistent with current policies on the designation of appropriate boundaries of non-attainment areas (Meyers, 1983). Further, to maintain a computationally manageable data set given the number of air quality scenarios (i.e., eight) and potential health effect benchmark levels investigated (i.e., four), staff used the recent ambient

monitoring data, specifically years 2001 through 2006.³⁰

The first criterion used to select locations was based on monitors that had a high number of daily 5-minute maximum SO₂ concentrations at or above the potential health effect benchmark levels. Ambient monitors located in two counties in Missouri (Iron and Jefferson) had the most frequently measured daily 5-minute maximum SO₂ concentrations above the potential health effect benchmarks (see Appendix A-5). While there were limited data available from these ambient monitors (4 and 2 years did not met the completeness criteria out of 8 total site-years for each of Jefferson and Iron counties, respectively), it was decided by staff that lack of a complete year should not preclude their use in this focused analysis given the high number of measured daily 5-minute maximum SO₂ concentrations at these monitors. All other monitoring data used in this focused analysis were selected from where 1-hour ambient monitoring met the completeness criteria described in section 7.2.1.

Staff selected an additional 38 counties based on the relationship of the ambient SO_2 concentrations within the county to the current annual and daily NAAQS to expand the number of counties investigated to a total of 40.³¹ Mean multiplicative factors were calculated using the form and level of each standard (annual average or 2^{nd} highest 24-hour concentration) in comparison with the measured SO_2 concentrations. First, for each county (*i*) and year (*j*), 24-hour and annual SO_2 concentration adjustment factors (*F*) were derived by the following equation:

$$F_{ij} = S/C_{\text{max},ij} \qquad \text{equation (7-2)}$$

where,

³⁰ As described in the section 7.2.1, at the time the 1-hour concentrations were downloaded, none of the monitors had a complete year of data for 2007. All data from 2007 were excluded from the 1-hour monitor simulations.
³¹ In the 1st draft SO2 REA, a total of 20 counties were selected for the current standard scenario only.

1	F_{ij}	=	Adjustment factor derived from either the 24-hour or the annual
2			average concentrations at monitors in county i for year j (unitless)
3	S	=	concentration values allowed that would just meet the current
4			standards (either 144 ppb for 24-hour or 30.4 ppb for annual average)
5	$C_{max,ij}$	=	2^{nd} highest daily mean SO ₂ concentration at a monitor in county <i>i</i> and
6			for year j or the maximum annual average SO_2 concentration at a
7			monitor in county i and for year j (ppb)

Two initial criteria to be met for selection included having at least two monitors operating in the county for at least five of the six possible years of monitoring.³² The mean daily and mean annual factor for each county was calculated by averaging the site-years available at each monitor, with the selection of the lowest mean factor retained to characterize the county. Each county was then ranked in ascending order based on this selected mean factor. The 38 counties were selected from the top 38 values, that is, those counties having the lowest mean adjustment factors. The 40 counties selected and the mean factors used to select each location given the above selection criteria are provided in Table 7-6.

³² In the 1st draft SO₂ REA, having at least three monitors for all six years of the monitoring period was required. These earlier criteria were relaxed to allow for additional locations that may have ambient concentrations close to the current and daily standard levels.

Table 7-6. Counties selected for evaluation of air quality adjusted to just meeting the current and potential alternative SO₂ standards.

State	County ¹	Mean Factor	Closest Standard ²
Arizona	Gila	3.44	Α
Delaware	New Castle	2.80	D
Florida	Hillsborough	3.81	D
Iowa	Linn	3.58	D
IOWa	Muscatine	3.46	D
Illinois	Madison	3.78	D
IIIIIIOIS	Wabash	3.39	D
	Floyd	4.38	D
Indiana	Gibson	2.60	D
Indiana	Lake	4.41	D
	Vigo	4.80	D
Michigan	Wayne	3.13	D
	Greene	4.47	D
Missouri	Iron ³	5.49	Α
	Jefferson ³	3.53	D
New Hampshire	Merrimack	2.98	D
•	Hudson	3.90	Α
New Jersey	Union	3.81	Α
	Bronx	3.09	Α
New York	Chautauqua	4.19	D
	Erie	3.17	D
	Cuyahoga	4.51	Α
Ohio	Lake	2.99	D
	Summit	3.13	D
Oklahoma	Tulsa	4.61	Α
	Allegheny	2.65	D
	Beaver	2.39	D
Pennsylvania	Northampton	3.26	Α
•	Warren	1.74	D
	Washington	3.19	Α
	Blount	1.86	D
Tennessee	Shelby	4.08	D
	Sullivan	3.45	D
Texas	Jefferson	4.38	D
Virginia	Fairfax	4.80	A
US Virgin Islands	St Croix	4.60	D
<u> </u>	Brooke	2.32	Α
MAIn at Minail 1	Hancock	2.32	A
West Virginia	Monongalia	2.93	D
	Wayne	3.07	 D

Notes:

¹Listed counties were selected based on lowest mean concentration adjustment factor, derived from at least 2 monitors per year for years 2001-2006.

² Ambient concentrations were closest to either the annual (A) or daily (D) NAAQS level.

³ County selected based on frequent 5-minute benchmark level exceedances.

1	Following the selection of the 40 counties, staff retained the adjustment factors calculated
2	for each monitoring site-year (not the mean factor that was used for the county selection) to
3	simulate air quality just meeting the current standard (either the daily or annual factor, whichever
4	was lower). These adjustment factors are given in Appendix A, Table A.4-1. When simulating a
5	proportional adjustment in ambient SO ₂ concentrations using the factors generated by equation
6	(7-2), staff assumed that the current temporal and spatial distribution of air concentrations (as
7	characterized by the current air quality data) was maintained and that increased SO ₂ emissions
8	would contribute to increased SO ₂ concentrations. For the daily averages, the 2 nd highest
9	monitor concentration would be adjusted so that it meets the current 140 ppb, 24-hour average
10	standard (144 ppb considering the rounding convention). For the annual average concentration,
11	the maximum monitor concentration would be adjusted so that it meets the current 30 ppb,
12	annual average standard (30.4 ppb considering the rounding convention). For each county and
13	calendar year, all the hourly ambient monitoring concentrations in the county were multiplied by
14	the same constant value F (whichever adjustment value was lower) determined for that county
15	and year. For example, of the seven monitors measuring SO ₂ in Allegheny County, PA for year
16	2003, the 2 nd highest 24-hour mean concentration was 64.6 ppb, giving an adjustment factor of
17	$F_{daily} = 144/64.6 = 2.23$ for that year. This is lower than the adjustment factor calculated
18	considering the maximum annual average concentration for that year ($F_{annual} = 30.4/11.9 = 2.54$).
19	All hourly concentrations measured at all monitoring sites in that county would then be
20	multiplied by 2.23, resulting in an upward scaling of all hourly SO_2 concentrations for that year.
21	Therefore, one monitoring site in Allegheny County, Pa. for year 2003 would have the 2 nd
22	highest 24-hour average concentration at 144 ppb, while all other monitoring sites would have
23	their 2 nd highest daily average concentrations below that value, although still proportionally
24	scaled up by 2.23. Using the adjusted hourly concentrations to simulate just meeting the current
25	standard (either the daily or annual average standard), 5-minute maximum SO ₂ concentrations
26	were estimated using equation (7-1). Then, air quality characterization metrics of interest were
27	estimated for each monitoring site and year as described in section 7.2.5.
28	Similarly, staff generated air quality adjustment factors for evaluating the potential
29	alternative standards described in chapter 5. The 98 th and 99 th percentile 1-hour daily maximum

- 1 SO₂ concentrations averaged across three years of monitoring were used in calculating the
- 2 adjustment factors at each of five standard levels as follows:

$$F_{ikl} = S_l / \left(\frac{\sum_{j=1}^{3} C_{ijk}}{3}\right)_{\text{max},i}$$
 equation (7-3)

5 where,

 F_{ikl} = SO₂ concentration adjustment factor (unitless) in county *i* given alternative standard percentile form *k* and standard level *l* across a 3-year period

 S_l = Standard level l (i.e., 50, 100, 150, 200, and 250 ppb 1-hour SO₂ concentration (ppb))

 C_{ijk} = Selected percentile k (i.e., 98^{th} or 99^{th}) 1-hour daily maximum SO_2 concentration at a monitor in county i (ppb) for each year j

As described above for adjustments made in simulating just meeting the current standards, staff assumed that the current temporal and spatial distribution of air concentrations (as characterized by the current SO₂ air quality data) is maintained and increased SO₂ emissions contribute to increased SO₂ concentrations, with the highest monitor (in terms of the 3-year average at the 98th or 99th percentile) being adjusted so that it just meets the level of the particular 1-hour alternative standard. Since the alternative standard levels range from 50 ppb through 250 ppb, both proportional upward and downward adjustments were made to the 1-hour ambient SO₂ concentrations. The values for each percentile (i.e., 98th or 99th) 1-hour daily maximum SO₂ concentration averaged over three years at a monitor in the selected counties are given in Appendix A, Table A.4-2. Staff adjusted the 1-hour ambient SO₂ air quality in a similar manner described above for just meeting the current standard, however, due to the form of these standards, only one factor was derived for two 3-year periods (i.e., 2001-2003, 2004-2006) and applied to the individual years within the 3-year group, rather than one factor for each calendar year as was done with just meeting the current standard. Using the adjusted hourly concentrations to simulate just meeting each of the potential alternative standards, staff estimated

- 5-minute maximum SO₂ concentrations using equation (7-1). Then, air quality characterization
- 2 metrics of interest were estimated for each site and year as described in section 7.2.5.

7.2.5 Air Quality Concentration Metrics

For each of the three air quality characterization scenarios considered, several concentration metrics were calculated; these included the annual average, 24-hour, and 1-hour daily maximum SO_2 concentrations for each site-year of data and the number of exceedances of the potential health effect benchmark levels. The numbers of daily maximum 5-minute concentration exceedances were counted (i.e., either 1 or none per day) rather than total number of exceedances (i.e., which confounds numbers of exceedances and days with exceedances). To characterize the relationship between the number of 5-minute benchmark exceedances and the ambient concentrations, staff generated two types of analyses given the different concentration averaging times.

The first analysis compares the annual average SO₂ concentration and the number of daily 5-minute maximum SO₂ concentrations above the benchmark levels in a year. The output of this is the number of days per year a monitor had a measured or modeled exceedance, given an annual average SO₂ concentration. In general, these results are graphically depicted in this REA, though most of the individual results displayed in the figures are provided in Appendix A-5. When considering the 40 counties used for detailed analysis, the results are presented at the county-level, some of which had multiple ambient monitors. Therefore, the results for the monitors within counties were aggregated to generate mean values representing the central tendency of the county's concentrations and numbers of benchmark exceedances.

The second analysis provides the probability of potential health effect benchmark exceedances associated with concentrations of short-term averaging times. It was proposed in chapter 5 that the 1-hour daily maximum SO₂ concentration would be of an appropriate averaging time in controlling the number of daily 5-minute maximum SO₂ concentrations. Staff analyzed such a relationship using the measured 5-minute and 1-hour ambient SO₂ concentrations to determine if this indeed was the case. A tally was made every time a daily 5-minute maximum SO₂ concentration occurred during the same hour of the day as the 1-hour daily maximum SO₂ concentration. The results of this analysis, separated by benchmark exceedance level, are given in Table 7-7. The co-occurrence of daily 5-minute maximum and 1-

- 1 hour daily maximum SO₂ concentrations is greater than 70% at each of the benchmark levels
- 2 indicating a strong relationship between the two concentrations.

Table 7-7. The co-occurrence of daily 5-minute maximum and 1-hour daily maximum SO₂ concentrations using measured ambient monitoring data.

Concentration/Level	Co-occurring 5- minute and 1-hour daily maximums (n)	Total 5-minute Daily Maximums (n)	Percent Co-occurring (%)
All concentrations	106,115	130,296	81.4
> 100 ppb	6,192	8,817	70.2
> 200 ppb	2,030	2,793	72.7
> 300 ppb	1,067	1,476	72.3
> 400 ppb	700	961	72.8

Given the form of the current standard (i.e., the 24-hour average) and the potential alternative standards (1-hour daily maximum) and the frequency of 5-minute SO₂ benchmark exceedances (i.e., either one or none per concentration), the probability of the exceedance can be calculated for any of the air quality scenarios considered (using either measured or modeled daily 5-minute maximum SO₂ concentrations). First, concentration data (24-hour average or 1-hour daily maximum) were categorized by using concentration midpoints, separated by 10 ppb bins. For example a concentration of 53 ppb would be included in the 50 ppb bin, while a concentration of 55 ppb would fall within the 60 ppb bin. Then, the presence or absence of a daily 5-minute benchmark exceedance given the number of values in each concentration bin (that originate from all monitoring concentrations in the range of the bin) was used to estimate the probability of an exceedance. For example, if there were 237 exceedances of the 300 ppb

hour concentration of around 90 ppb.As mentioned earlier, these pr

As mentioned earlier, these probability results were separated into one of three population density groups; either low ($\leq 10,000$ persons within 5 km), mid (10,001 to $\leq 50,000$ persons within 5 km), or high (> 50,000 persons within 5 km). Staff hypothesized that there may be different exceedance probabilities in dense population areas compared with locations having fewer residents given the siting characteristics of the monitors with regard to the presence of emission sources. This separation of the monitoring results by the surrounding population

benchmark level out of 1,265 instances of a 24-hour average binned concentration of 90 ppb, the

probability of a 300 ppb benchmark exceedance would be $237/1,265 \times 100 = 19\%$ given a 24-

should be useful in appropriately characterizing the air quality because the monitoring data are used as indicator of potential human exposure; the results from monitors sited within greater population densities should be more representative of potential population exposure.

In constructing the probability curves, staff noted there were fewer samples with increasing concentrations (either 1-hour daily maximum or 24-hour average). Having too few samples generated instability in the calculated probabilities at the highest 1-hour or 24-hour concentrations. For example, there were very few measured 1-hour daily maximum SO₂ concentrations above the 130 ppb bin considering the high population density group (Table 7-8). A total of 116 1-hour daily maximum SO₂ concentrations out of 26,983 were scattered across the bins of 140 through 620 ppb, either indicating the presence or absence of a 300 ppb benchmark exceedance. There are increasing probabilities of benchmark exceedances with increasing 1hour daily maximum SO₂ concentration starting at 100 ppb; however, at certain higher concentrations (shaded area of Table 7-8) there are lower estimated probabilities of exceedances than the preceding lower 1-hour daily maximum SO₂ concentration. If using the probability data alone in Table 7-8, this would imply that at 1-hour daily maximum concentrations of about 210 – 230 ppb, the likelihood of an exceedance is less than that when considering 1-hour daily maximum concentrations between 190 - 200 ppb. This is likely not the case, and in this instance, the estimated probabilities are more a function of the sample sizes (no more than 3 samples per bin in this case) rather than the 1-hour daily maximum SO₂ concentrations. Therefore, in viewing the occurrence of this issue at small sample sizes, staff selected concentration bins having at least thirty 1-hour daily maximum (or 24-hour average) concentrations (whether it was all, none, or a mixture of exceedances) for inclusion in the probability curves.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Table 7-8. Example of how the probability of exceeding a 300 ppb 5-minute benchmark would be calculated given 1-hour daily maximum SO_2 concentration bins.

	Number	Probability of	
Daily Maximum 1-hour bin	With no	With 1	Exceedance
	exceedances	exceedance	(%)
100	71	0	0
110	45	2	4
120	43	1	2
130	34	1	3
140	17	1	6
150	15	2	12
160	11	4	27
170	10	2	17
180	8	3	27
190	1	4	80
200	1	3	75
210	1	0	0
220	1	2	67
230	2	0	0
240	0	2	100
250	0	2	100
260	0	4	100
270	0	2	100

7.3 RESULTS

1

2 3	7.3.1 Measured 5-minute Maximum and Measured 1-Hour SO_2 Concentrations at Ambient Monitors – As Is Air Quality
4	In this first scenario staff analyzed the as is air quality, solely based on the SO ₂ ambient
5	monitor measurements. Ambient monitoring data were evaluated at the 98 locations where both
6	the hourly and 5-minute maximum SO ₂ concentrations were reported for years 1997 through
7	2007. Due to the large size of the data set (i.e., 471 site-years), staff summarized the number of
8	potential health effect benchmark exceedances in a series of figures. This analysis centered on
9	the relationship between various concentration averaging times and the daily 5-minute maximum
10	SO ₂ concentration exceedances. Descriptive statistics for the measured daily 5-minute maximum
11	and the 1-hour SO ₂ concentrations are provided in Appendix A-5 and in the SO _x ISA section
12	2.5.2, the latter of which includes additional discussion of the spatial and temporal variability of
13	the 5-minute maximum and continuous 5-minute SO ₂ concentrations.
14	First, staff evaluated the occurrence of the daily 5-minute maximum SO ₂ concentration
15	exceedances in a year. Figure 7-10 compares the number of daily 5-minute maximum SO_2
16	concentrations above the potential health effect benchmark levels along with the corresponding
17	annual average SO ₂ concentration from each max-5 monitor. Overall, the frequency of daily 5-
18	minute maximum SO ₂ concentrations above the potential health effect benchmark levels in a
19	year is low. Given the data in Table 7-6, no more than 7% of total measured days had a daily 5-
20	minute maximum SO ₂ concentrations above the 100 ppb benchmark, while approximately 2%,
21	1%, and 0.7% of days had a daily 5-minute maximum SO ₂ concentrations above the 200, 300,
22	and 400 ppb levels, respectively. None of the monitors in this data set had annual average SO_2
23	concentrations above the current NAAQS of 30 ppb. However, several of the monitors in
24	several years frequently had daily 5-minute maximum SO2 concentrations above the potential
25	health effect benchmark levels. Many of those monitors where frequent exceedances occurred
26	had annual average SO ₂ concentrations between 5 and 15 ppb, with little to no correlation
27	between the annual average SO_2 concentration and the number of daily 5-minute maximum SO_2
28	concentrations above the potential health effect benchmark levels. The data are useful in
29	determining the number of days in a year a particular monitor had a daily maximum exceedance

30

of a selected benchmark level, however from a practical perspective, the annual average

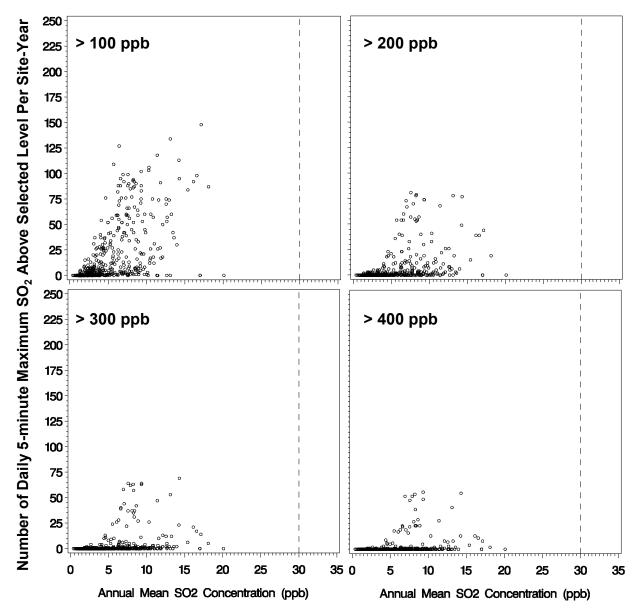


Figure 7-10. The number of measured daily 5-minute maximum SO_2 concentrations above potential health effect benchmark levels per year at 98 monitors given the annual average SO_2 concentration, 1997-2007 air quality as is. The level of the annual average SO_2 NAAQS of 30 ppb is indicated by the dashed line.

The probability of potential health effect benchmark exceedances was estimated using the combined 5-minute maximum and 1-hour measurement data set and considering the 24-hour average and 1-hour daily maximum SO₂ concentrations. Figure 7-11 presents the probability

1 results using the 24-hour average SO₂ concentrations, separated by the three population densities.

2 There is an increasing probability of daily 5-minute maximum SO₂ concentration exceedances

3 with increasing 24-hour average concentrations at each of the potential health effect benchmark

levels and each of the population density groups. Some deviation from increasing probability

occurs near the end of the curves in the monitors cited within mid-population density areas, and

as discussed earlier, it is likely a function of the small sample size rather than 24-hour SO₂

concentrations. Monitors sited in the low-population density area exhibit a steeper slope on each

of the probability curves when compared with the other density groups, indicating a greater

probability of exceedance given the same 24-hour concentration. For example, the probability of

exceeding a daily 5-minute maximum concentration of 200 ppb is 30% at the low-population

density monitors given a 24-hour average concentration of about 20 ppb, while at the mid- and

high-population density monitors the probability is only about 14% and 3%, respectively. There

is a small probability (about 10%) of exceedance of the 300 and 400 ppb in the high-population

density areas given a 24-hour average concentration of about 40 ppb, though at monitors sited in

the low-population areas this probability is between 50% and 60%. At a 24-hour average

concentration of approximately 60 ppb, it is estimated that the probability of a daily 5-minute

maximum above 100 ppb is at or near 100% considering any of the population density groups.

Figure 7-12 presents similar relationships using the 5-minute and 1-hour ambient measurement data, only the probabilities are associated with the 1-hour daily maximum SO_2 concentrations. A pattern of increasing probability with increasing 1-hour daily maximum SO_2 concentration is present considering each of the benchmark levels and population densities, along with steeper slopes noted for the low-population density group when compared with the higher population density groups. Note that while there is uncertainty regarding an extrapolation beyond the measured 1-hour daily maximum SO_2 concentrations, one can be assured that the probability of an exceedance of a daily 5-minute maximum SO_2 concentration of 400 ppb is 100% given a 1-hour daily maximum SO_2 concentration of 400 ppb (and so on for the other 5-minute benchmark/1-hour daily maximum SO_2 concentration combinations). The shape of the

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

³³ Technically, if all 5-minute concentrations were exactly 400 ppb, the 1-hour average concentration would be 400 ppb and the 5-minute maximum would not actually exceed 400 ppb. However, note that probability of exceeding the 100 or 200 ppb benchmarks approaches 100% at less than a 1-hour daily maximum of 100 an 200 ppb, respectively (Figure 7-11).

curves beyond the measured data to the peak level though can only be informed by additional measurement or modeling, the latter being performed in subsequent sections.

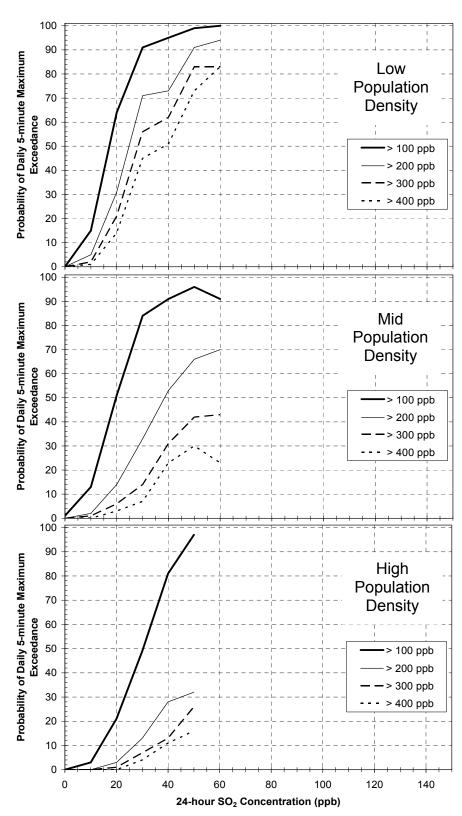


Figure 7-11. Probability of daily 5-minute maximum SO_2 concentrations above potential health effect benchmark levels given 24-hour average SO_2 concentrations, 1997-2007 air quality as is. Both the 5-minute maximum concentrations and 1-hour concentrations were from measurements collected at 98 ambient monitors and then separated by population density within 5 km of monitors.

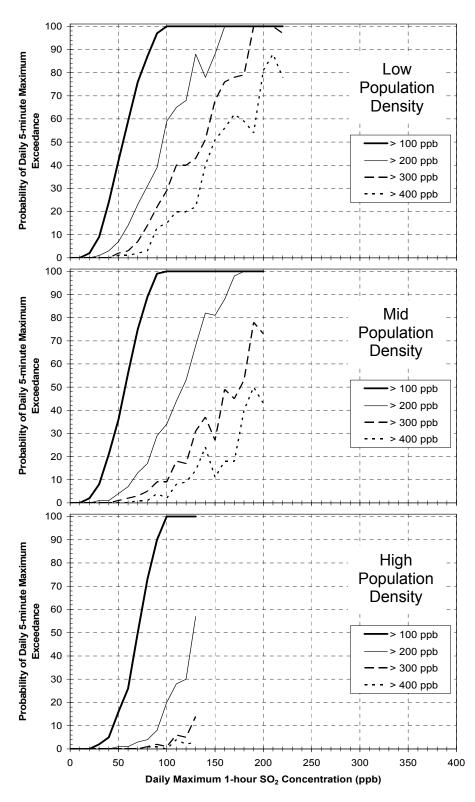


Figure 7-12. Probability of daily 5-minute maximum SO₂ concentrations above potential health effect benchmark levels given 1-hour daily maximum SO₂ concentrations, 1997-2007 air quality as is. Both the 5-minute maximum concentrations and 1-hour concentrations were from measurements collected at 98 ambient monitors and then separated by population density within 5 km of monitors.

7.3.2 Measured 1-Hour and Modeled 5-minute Maximum SO ₂ Concentrations at Al
Ambient Monitors – As Is Air Quality

Results for this second scenario analyzing the *as is* air quality are based on a combination of measurement and modeled data. As described in section 7.2.3, a statistical model was applied to 1-hour ambient SO₂ measurements to estimate 5-minute maximum SO₂ concentrations. This was done because there are a greater number monitors in the broader SO₂ monitoring network compared to subset of monitors reporting the 5-minute maximum SO₂ concentrations. This larger monitoring data set included 809 ambient monitors in operation at some time during the years 1997 through 2006 that met the completeness criteria described in section 7.2.1. This data set includes 4,692 site-years of data, and combined with the estimated 5-minute SO₂ concentrations using the measured 1-hour values, allowed for a comprehensive characterization of the hourly and 5-minute SO₂ air quality at ambient monitors located across the U.S. Descriptive statistics for the measured 1-hour SO₂ concentrations are provided in the SO_x ISA section 2.5.1 including additional discussion of the spatial and temporal variability in 1-hour SO₂ concentrations.

Twenty separate simulations were performed to estimate the 5-minute maximum SO₂ concentration associated with each 1-hour measurement. The individual simulation results were combined to generate a mean estimate for the number of daily 5-minute benchmark exceedances. The modeled (5-minute maximum) and measurement (1-hour) data were analyzed in a similar manner as performed on the measured 5-minute maximum and 1-hour SO₂ concentrations described in section 7.3.1. The results provided in this section were generated using the modeled daily 5-minute maximums and the measured hourly SO₂ concentrations at 1-hour, 24-hour, and annual averaging times.

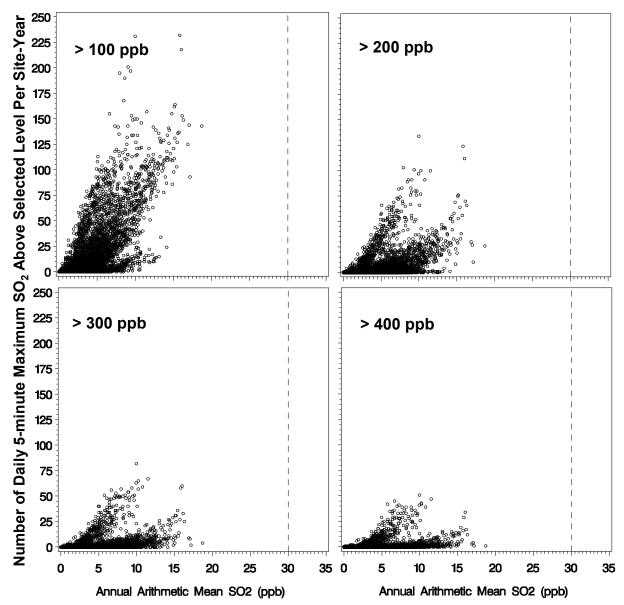


Figure 7-13. The number of modeled daily 5-minute maximum SO₂ concentrations above potential health effect benchmark levels per year at 809 ambient monitors given the annual average SO₂ concentration, 1997-2006 air quality as is. The level of the annual average SO₂ NAAQS of 30 ppb is indicated by the dashed line.

The occurrence of the modeled daily 5-minute maximum SO₂ concentrations was first evaluated with regard to the annual average SO₂ concentrations calculated from the 1-hour measurements. Figure 7-13 compares the number of daily 5-minute maximum SO₂ concentrations above the potential health effect benchmark levels with the annual average SO₂ concentration from each monitoring site-year of data. Fewer than 5% of total days had an estimated daily 5-minute maximum SO₂ concentration above the 100 ppb benchmark, while

- approximately 1%, 0.5%, and 0.2% of days had a 5-minute peak above the 200, 300, and 400
- 2 ppb levels, respectively. None of the monitors in this data set had annual average SO₂
- 3 concentrations at or above the level of the current annual NAAQS (30 ppb). However as
- 4 described above, several of the monitors in several years had estimated 5-minute SO₂
- 5 concentrations above the potential health effect benchmark levels. Many of those monitors
- 6 where frequent exceedances occurred had annual average SO₂ concentrations between 10 and 20
- 7 ppb, with a pattern of increasing numbers of benchmark exceedances with increasing annual
- 8 average concentrations, most prominent at the 100 ppb benchmark level, though progressively
- 9 less of a relationship present at each the subsequent benchmark levels.
- Figure 7-14 presents the probability of benchmark exceedances using the modeled daily
- 5-minute maximum SO₂ concentrations, exhibiting patterns similar to the measured daily 5-
- minute maximum results (Figure 7-11). Again, low-population density probability curves are
- steeper than both the higher population density curves at each to the benchmark levels
- 14 considered. The modeled probability curves though are slightly steeper than was observed with
- the measurement data when considering the 100 ppb benchmark level. For example, at a 24-
- hour average concentration of about 20 ppb, the probabilities for the low-, mid-, and high-
- population densities using all measurement data is 60, 50, and 20%, respectively (Figure 7-11).
- 18 At the same 24-hour average and benchmark concentrations, the probability of an exceedance is
- 19 70, 60 and 30% when considering the modeled 5-minute maximum concentrations (Figure 7-14).
- At the higher benchmark levels however (e.g., 300 and 400 ppb), the slopes appear to be
- 21 consistent between the measured and modeled 5-minute maximum data, where comparable 24-
- 22 hour average concentrations exist. In using the broader SO₂ monitoring network to estimate
- 23 daily 5-minute maximum SO₂ concentrations, there is insight as to the potential shape of each
- probability curve at greater 24-hour average concentrations. The upper range of 24-hour
- concentrations extends to around 70 100 ppb, while at the monitors reporting 5-minute
- 26 maximum concentrations the maximum 24-hour average concentrations extend to at most
- between 50 and 60 ppb.
- Similar patterns in the probability curves are exhibited when considering a 1-hour daily
- 29 maximum concentration (Figure 7-15). In comparing these short-term probability curves with
- 30 corresponding 24-hour probability curves (Figure 7-14), the overall slopes using the 1-hour daily
- maximums are steeper. This means that changes in 1-hour daily maximum SO₂ concentration

- 1 (either up or down) will effectively result in larger changes in the probability of exceedances
- when compared with the 24-hour average probability curves, given a similar concentration shift.
- 3 Again, a wider range of 1-hour daily maximum concentrations is observed in using the broader
- 4 monitoring network when compared with the results using the monitors reporting the 5-minute
- 5 maximum SO₂ concentrations (see Figure 7-12), giving greater ability to discern the probability
- 6 of benchmark exceedances at higher 1-hour daily maximum SO₂ concentrations.

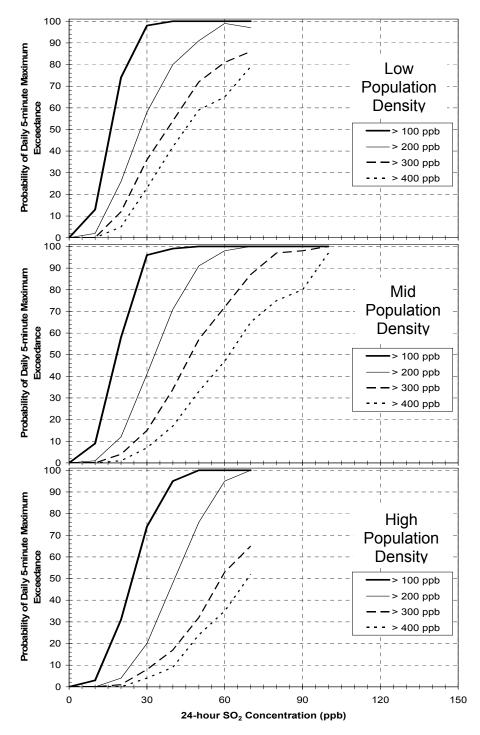


Figure 7-14. Probability of daily 5-minute maximum SO₂ concentrations above potential health effect benchmark levels given 24-hour average SO₂ concentrations, 1997-2006 air quality as is. The 5-minute maximum concentrations were modeled from 1-hour measurements collected at 809 ambient monitors and then separated by population density within 5 km of monitors.

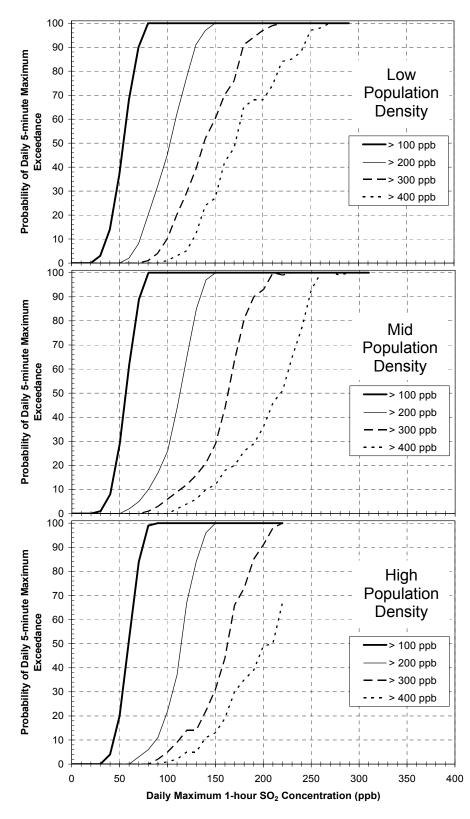


Figure 7-15. Probability of daily 5-minute maximum SO_2 concentrations above potential health effect benchmark levels given 1-hour daily maximum SO_2 concentrations, 1997-2006 air quality as is. The 5-minute maximum concentrations were modeled from 1-hour measurements collected at 809 ambient monitors and then separated by population density within 5 km of monitors.

7.3.3 Modeled 1-Hour and Modeled 5-minute Maximum SO₂ Concentrations at Ambient Monitors in 40 Counties – Air Quality Adjusted to Just Meet the Current and Potential Alternative Standards

Staff selected forty counties for detailed analyses that included an evaluation of ambient concentration distributions and the estimated numbers of exceedances of the potential health effect benchmark levels using as is air quality and air quality adjusted to just meeting the current and alternative standards. The counties were selected using criteria discussed in section 7.2.4; 38 counties having 1-hour ambient monitor SO₂ concentrations nearest the current NAAQS levels, and two counties having a high frequency of measured daily 5-minute maximum SO₂ concentrations above the potential health effect benchmark levels. The 1-hour SO₂ measurement data were from 128 ambient monitors and totaled 610 site-years of monitoring, a subset of data from the broader SO₂ monitoring network (see section 7.3.2). Staff evaluated multiple alternative air quality scenarios by first adjusting the 1-hour ambient monitoring concentrations (section 7.4). Then, staff performed twenty simulations to estimate the 5-minute maximum SO₂ concentration associated with each 1-hour adjusted concentration using the statistical model described in section 7.2.3. These simulation results were combined to generate a mean estimate for each of the metrics of interest (e.g., the number of daily 5-minute maximum SO₂ concentrations > 200 ppb) selected here as the best estimate from the twenty simulations.

First staff evaluated the relationship between the short-term peak concentrations and the level of the current annual SO₂ NAAQS in the selected counties. Figure 7-16 presents the number of 5-minute daily maximum SO₂ concentrations above the potential health effect benchmark levels along with the corresponding annual average concentration from each site-year using air quality adjusted to just meeting the current SO₂ standards. None of the monitors in the selected counties had annual average concentrations above the level of the current NAAQS (30 ppb) by design³⁴, however there are many more site-years with modeled daily 5-minute maximum SO₂ concentrations above the potential health effect benchmark levels. There are a decreasing number of exceedances with increasing benchmark concentrations, though there is a greater proportion of monitors with exceedances when considering concentrations adjusted to just meeting the current standard than when using the *as is* air quality (e.g., see Figure 7-13). With the concentration adjustment procedure, there is a stronger relationship between the annual

 $^{^{34}}$ The current annual SO₂ NAAQS is 30 ppb. Concentrations of up to 30.4 ppb are possible due to a rounding convention. This is why there are several data points just to the right of the dashed line in Figure 7-16.

- 1 average concentrations and the number of benchmark exceedances than observed previously
- 2 with the as is air quality however, the strength of that relationship weakens with increasing
- 3 benchmark levels.

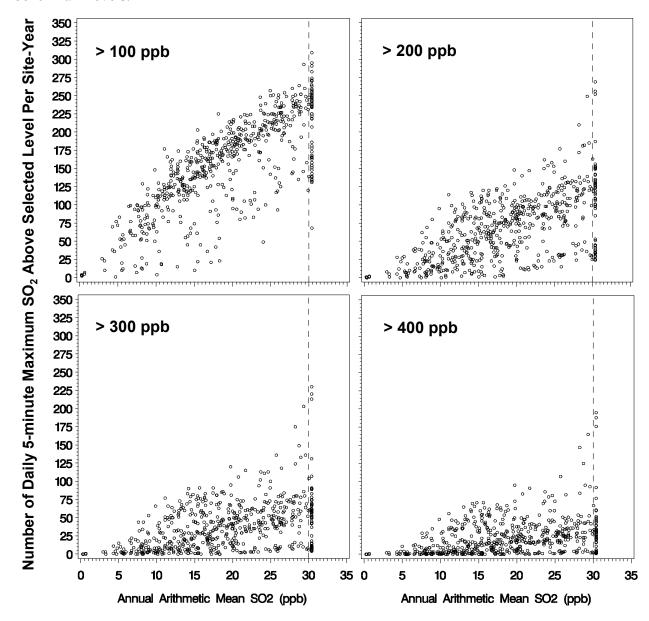


Figure 7-16. The number of modeled daily 5-minute maximum SO₂ concentrations above potential health effect benchmark levels per year at 128 ambient monitors in 40 selected counties given the annual average SO₂ concentration, 2001-2006 air quality adjusted to just meet the current NAAQS. The level of the annual average SO₂ NAAQS of 30 ppb is indicated by the dashed line.

Similar relationships are present between the annual average SO₂ concentrations and the number of benchmark exceedances when considering the potential alternative standards. Each of the potential alternative standards had a unique adjustment factor to simulate the alternative air quality. Based on the direction (either >1 or <1) and magnitude of the adjustment factor used, the estimated number of 5-minute benchmark exceedances was within the range of results generated using the *as is* air quality or the air quality adjusted to just meet the current standard. For example, a comparison of the annual average SO₂ concentrations and number of daily 5-minute maximum exceedances of 200 ppb is presented in Figure 7-17 for six air quality scenarios: four of the 99th percentile 1-hour daily maximum potential alternative standards (i.e., the 100, 150, 200, and 250 ppb); the air quality adjusted to just meet the current standards; and *as is* air quality.

Clearly, in using the air quality adjustment procedure combined with the statistical model to estimate 5-minute maximum SO₂ concentrations, the current standard air quality scenario allows for the greatest estimated number of potential health effect benchmark exceedances in a year (Figure 7-17). However, at a minimum the annual standard does provide protection against annual average concentrations above the level of the current standard. While there were fewer 5-minute benchmark exceedances using the 1-hour daily maximum forms of a potential standard, two of the levels (1-hour daily maximums of 200 and 250 ppb) did not prevent annual average concentrations from exceeding the current annual standard (Figure 7-17). High annual average concentrations become less of an issue when considering the lower levels of the 1-hour daily maximum standards. Even though the 99th percentile 1-hour daily maximum standards of 100 or 150 ppb allow for greater annual average concentrations than when considering *as is* air quality, all but one site-year are below the level of the current annual standard and there are fewer estimated daily 5-minute benchmark exceedances. These results further demonstrate the stronger relationship 5-minute peak concentrations have with 1-hour SO₂ concentrations than with annual average concentrations.

Figure 7-17. The number of modeled daily 5-minute maximum SO_2 concentrations above 200 ppb per year at 128 ambient monitors in 40 selected counties given the annual average SO_2 concentration, 2001-2006 air quality as is and that adjusted to just the current and four potential alternative standards (text in graph indicate standard evaluated). The level of the annual average SO_2 NAAQS of 30 ppb is indicated by the dashed line.

Table 7-9. Percent of days having a modeled daily 5-minute maximum SO_2 concentration above the potential health effect benchmark levels given air quality as is and air quality adjusted to just meeting the current and each of the potential alternative standards.

Air Quality	Percent of Days With Daily 5-minute Maximum SO ₂ Concentrations Above Benchmark Levels			
Scenario ¹	> 100 ppb	> 200 ppb	> 300 ppb	> 400 ppb
As Is	9.1	2.4	0.9	0.5
CS	41.0	17.2	9.1	5.3
99-50	0.7	0.0	0.0	0.0
99-100	4.5	0.7	0.2	0.0
99-150	10.6	2.2	0.7	0.3
99-200	17.2	4.5	1.6	0.7
99-250	23.6	7.4	2.9	1.3
98-200	22.5	6.9	2.6	1.2

Notes:

1 2

Staff summarized the frequency of daily 5-minute maximum SO₂ concentrations within the 40-county data set for additional comparisons of the air quality scenarios. Table 7-9 presents the percent of all days above each of the benchmark levels considering each of the air quality scenarios. Again, the scenario where air quality just meets the current standard has the greatest percent of days with benchmark exceedances. With each progressive decrease in the 1-hour daily maximum SO₂ concentration levels of the potential alternative standards, there are fewer days with benchmark exceedances. The percent of days with benchmark exceedances using *as is* air quality was between a potential 1-hour daily maximum alternative standard level of 100 – 150 ppb (99th percentile form).

Staff also evaluated two forms of the potential alternative standards: the 99th and 98th percentile forms, each having a 1-hour daily maximum level of 200 ppb. For example, Figure 7-18 indicates that nearly all site-years have a greater number of daily 5-minute maximum SO₂ concentrations above 100 ppb given the 98th percentile form when compared with a 99th percentile form at the same level. This is expected given the number of allowable 1-hour SO₂ concentrations above the 200 ppb level for each of the percentile forms. On average, the 98th percentile form allowed for approximately 46, 68, 84, and 86% more benchmark exceedances

¹ As is air quality is unadjusted; CS is air quality adjusted to just meet the current standard; x-y are the xth percentile form of a 1-hour daily maximum level of y.

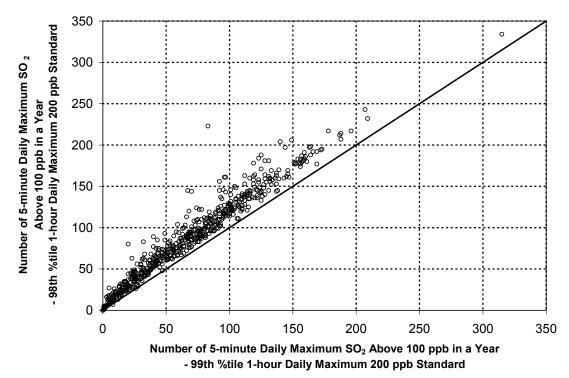


Figure 7-18. The number of modeled daily 5-minute maximum SO_2 concentrations above 100 ppb per year given the 99^{th} and 98^{th} percentile forms at a 1-hour daily maximum level of 200 ppb, using the 40-county air quality data set.

Staff approximated the probability of potential health effect benchmark exceedances given the adjusted air quality scenarios and short-term averaging times. Again, patterns in the curves were consistent with what was observed and described previously; monitors within lowpopulation density areas had steeper probability curves compared with those in higher population density areas. Further, there were similarities in the shape and the steepness of the curves when comparing the adjusted air quality probability curves with the curves developed from the corresponding as is air quality. For example, Figure 7-19 presents the probability of 5-minute benchmark exceedances using as is air quality and air quality adjusted to just meet the current standard, given 1-hour daily maximum SO₂ concentrations. In general, all of the corresponding 100 and 200 ppb probability curves for all of the air quality scenarios follow a similar pattern. However, the estimated probabilities of exceeding the 300 and 400 ppb benchmark levels using the adjusted air quality were lower than when using the as is air quality given a similar 1-hour daily maximum concentration, most notable at monitors sited in low- and high population density areas. This is likely a function of the non-linear form of the statistical model used to estimate the 5-minute maximum SO₂ concentrations, the proportional adjustment procedure to simulate alternative standards, and the air quality characterization metric.

When adjusting the 1-hour SO₂ concentrations upwards using a proportional factor, a corresponding proportional increase in the number of exceedances does not necessarily follow. The statistical model uses multiple distributions of PMRs, not linearly related to 1-hour SO₂ concentrations. Certainly, the total number of days in a year with benchmark exceedances will increase with an upward adjustment of air quality, and does so as observed in Figure 7-17. However, the greatest proportion of monitoring days within any of the air quality scenarios is comprised of days without an exceedance. The frequency of exceedances of the higher benchmarks is already very low; the few added days with estimated exceedances of 300 or 400 ppb using the simulated air quality is not proportional to the universal increase in hourly concentrations applied to all 1-hour concentrations, therefore the probability curves tend to be less steep with the upward 1-hour concentration adjustments. Furthermore, days already having an exceedance are only counted once, that is, if there were an exceedance on a given day using the as is air quality, it is likely that the same day would also have an exceedance using the adjusted air quality, only it is associated with a greater 1-hour (or 24-hour average) concentration. Again, the 1-hour concentrations are increased without proportional increases in

1 the probability of exceedances when comparing the two scenarios. Conversely, it could also be

2 argued that there may be an increased probability of daily 5-minute exceedances of 300 and 400

3 ppb when using air quality with a relatively low concentration distribution (such as with the as is

air quality) compared with a distribution of higher concentrations (such as with the current

standard scenario). However, it should be noted that the total number of benchmark level

exceedances in a year (and the absence of exceedances at the same high 1-hour daily maximum

concentration) under either of these scenarios would be very few, with far fewer numbers of

exceedances associated with the relatively low concentration air quality.

This discussion of probability curves can be extended to each of the potential alternative standards. For example, Figure 7-20 illustrates a range in each of the probability curves given each of the adjusted air quality scenarios and using monitors sited within high-population density areas. The 100 and 200 ppb benchmark level probability curves exhibit a narrow range across each of the adjusted air quality scenarios. While the estimated 300 and 400 ppb probability curves are wider than the 100 and 200 ppb curves, there is still agreement in the estimated probabilities at many of the 1-hour daily maximum SO₂ values. The range in probability curves tended to be widest at the lowest probabilities/1-hour daily maximum SO₂ concentrations within a given benchmark, likely indicating an increased uncertainty in the relationship between exceedance of the daily 5-minute maximum SO₂ concentrations of 300 and 400 ppb and 1-hour daily maximum SO₂ concentrations less than 130 ppb and 180 ppb, respectively.

4

5

6

7

8

9

10

11

12

13

14

15

16

1718

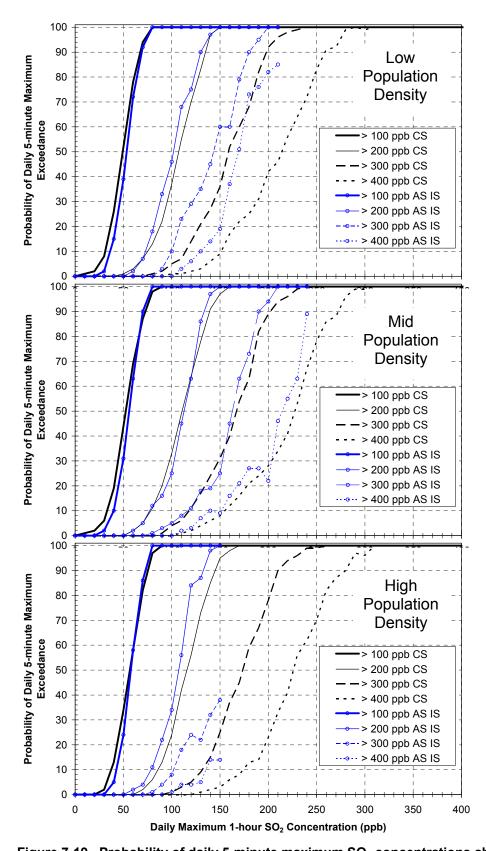


Figure 7-19. Probability of daily 5-minute maximum SO₂ concentrations above potential health effect benchmark levels given 1-hour daily maximum SO₂ concentrations, 2001-2006 air quality as is and that adjusted to just meet the current NAAQS. The 5-minute maximum concentrations were modeled from 1-hour measurements collected at 128 ambient monitors from 40 selected counties and then separated by population density within 5 km of monitors.

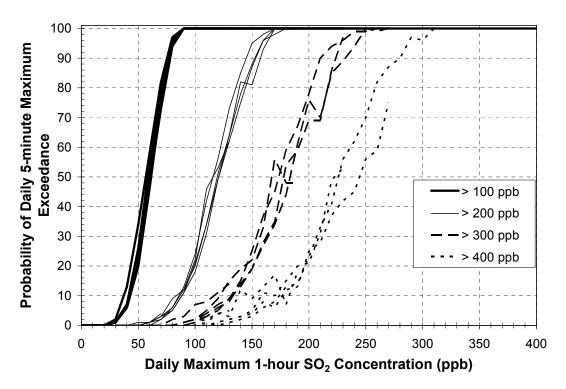


Figure 7-20. Probability of daily 5-minute maximum SO₂ concentrations above potential health effect benchmark levels given 1-hour daily maximum SO₂ concentrations, 2001-2006 air quality adjusted to just meet the current and each of the potential alternative standards. The 5-minute maximum concentrations were modeled from 1-hour measurements collected at 128 ambient monitors from 40 selected counties, high-population density within 5 km of monitors.

While there are similarities in the probability of daily 5-minute maximum benchmark
exceedances for each of the potential alternative standard scenarios given either the 1-hour daily
maximum or 24-hour average SO ₂ concentrations, there are large differences in the total number
of exceedances given a particular county and air quality scenario. Table 7-10 presents the mean
number of days in a year where the daily 5-minute maximum SO_2 concentration was above 100
ppb in each of the 40 selected counties and for all air quality scenarios. In considering the
highest potential alternative standard levels of 200 and 250 ppb (1-hour daily maximum) and the
current standard air quality, counties such as Hudson NJ, Tulsa OK, and Wayne WV were
estimated to have the greatest number of benchmark exceedances. On average it is estimated
that between 100 and 200 days of the year there would be daily 5-minute maximum SO_2
concentrations above 100 ppb in these counties. Most of the other locations though had fewer
than 100 exceedances in a year, particularly when considering the two potential alternative 1-
hour daily maximum standards. Air quality simulating just meeting the current standard was
associated with the greatest number of estimated exceedances at most locations. This consistent
pattern was observed with each of the benchmark levels (see below) again indicating the limited
influence the current standard has on the estimated number of 5-minute benchmark exceedances.
In addition, the number of exceedances using a 98 th percentile 1-hour daily maximum alternative
standard level of 200 ppb was similar to the 99 th percentile using a 250 ppb 1-hour concentration
level considering any of the 5-minute benchmarks. Decreases in the potential alternative
standard level corresponded with decreases in the number of exceedances. Most counties have
fewer mean estimated 5-minute benchmark exceedances of 100 ppb using air quality adjusted to
just meeting the 99^{th} percentile daily 1-hour maximum concentration of 100 ppb, than estimated
using the as is air quality.
There were fewer estimated exceedances of 200 ppb given the 1-hour daily maximum
potential alternative standards than compared with the current standard scenario (Table 7-11).
Most counties had fewer than forty days with 5-minute maximum SO_2 concentrations above 200
ppb, even at the 250 ppb 1-hour daily maximum level; though the number of exceedances was
typically double that using air quality simulating just meeting the current standard. With
progressive decreases in the 1-hour daily maximum standard level, the number of days with 5-

exceedances using as is air quality was within that estimated using 1-hour daily maximum

minute maximum SO₂ concentrations also decreases. In most counties, the estimated number of

1	standard levels of 100 and 200 ppb (approximately 10-20 per year). The 99 percentile 1-nour
2	daily maximum concentration level of 50 was associated with the fewest days with 5-minute
3	maximum SO ₂ concentrations above 200 ppb. On average most locations had zero exceendaces
4	of the 200 ppb benchmark level.
5	Similar results are presented for each the 300 ppb (Table 7-12) and the 400 ppb (Table 7-
6	13) 5-minute benchmark levels, though the difference in the number of exceedances between the
7	current standard and the other air quality scenarios is much greater than was observed for the
8	lower benchmark levels. Most counties had a 5-fold (or greater) number of days with daily 5-
9	minute maximum SO ₂ concentrations above 300 or 400 ppb when considering air quality just
10	meeting the current standard compared with air quality adjusted to just meet the 99th percentile 1-
11	hour daily maximum level of 250 ppb. The number of exceedances given as is air quality was
12	still within the range of values estimated using the potential standard levels of 100 and 200 ppb;
13	in most counties it was fewer than 10 days per year. Most counties did not have any estimated
14	daily 5-minute maximum SO ₂ concentrations above 400 ppb given a 99 th percentile 1-hour daily
15	maximum of 100 ppb, while 75% of the counties had 1 or fewer exceedances of 300 ppb
16	considering this same potential alternative standard.
17	
18	
19	

Table 7-10. Mean number of modeled daily 5-minute maximum concentrations above 100 ppb per year in 40 selected counties given 2001-2006 air quality as is and air quality adjusted to just meet the current and alternative standards.

		As				1-hour	98 th Percentile		
State	County	ls	cs	50	100	150	200	250	200
AZ	Gila	119	234	9	36	63	89	111	107
DE	New Castle	21	123	1	8	19	34	50	46
FL	Hillsborough	22	127	3	12	23	37	50	53
IL	Madison	24	166	1	11	25	42	60	61
IL	Wabash	42	139	6	17	30	43	54	64
IN	Floyd	47	211	8	24	43	62	81	83
IN	Gibson	58	122	8	23	37	50	63	61
IN	Lake	17	186	3	20	41	64	91	93
IN	Vigo	27	184	2	12	27	44	63	68
IA	Linn	29	103	8	25	42	56	68	66
IA	Muscatine	34	123	9	26	41	54	68	65
MI	Wayne	29	134	2	18	40	62	80	76
МО	Greene	20	92	8	24	37	47	59	57
МО	Iron	65	108	9	30	40	48	55	54
МО	Jefferson	70	150	6	22	37	50	61	61
NH	Merrimack	46	118	7	31	52	68	81	76
NJ	Hudson	3	145	1	20	62	111	161	150
NJ	Union	2	117	1	16	51	98	141	122
NY	Bronx	8	124	2	28	71	115	155	137
NY	Chautauqua	38	172	6	18	33	50	70	65
NY	Erie	60	163	13	34	52	68	83	75
OH	Cuyahoga	16	203	2	23	55	93	122	129
ОН	Lake	44	164	3	20	41	61	80	73
OH	Summit	51	198	3	23	51	81	110	96
OK	Tulsa	26	202	4	43	93	133	162	154
PA	Allegheny	30	159	1	8	22	41	65	58
PA	Beaver	76	194	2	11	30	55	83	79
PA	Northampton	14	130	2	25	56	87	114	127
PA	Warren	63	110	3	17	33	48	62	62
PA	Washington	25	185	2	21	53	88	125	110
TN	Blount	62	116	3	19	42	63	83	75
TN	Shelby	11	144	3	13	26	39	53	57
TN	Sullivan	75	201	2	20	49	74	94	100
TX	Jefferson	24	132	3	19	40	58	75	68
VA	Fairfax	0	109	1	17	54	98	143	129
WV	Brooke	76	220	3	25	62	101	140	135
WV	Hancock	78	207	2	21	52	86	118	110
WV	Monongalia	39	172	3	15	26	38	50	54
WV	Wayne	30	201	4	33	83	138	180	166
VI	St Croix	8	67	1	4	11	20	30	37

Table 7-11. Mean number of modeled daily 5-minute maximum concentrations above 200 ppb per year in 40 selected counties given 2001-2006 air quality as is and that adjusted to just meet the current and alternative standards.

		As				1-hour			98 th Percentile
State	County	Is	cs	50	100	150	200	250	200
AZ	Gila	55	171	0	9	22	36	49	47
DE	New Castle	4	38	0	1	4	8	13	12
FL	Hillsborough	6	50	1	3	7	12	17	18
IL	Madison	5	66	0	1	5	11	17	18
IL	Wabash	17	75	1	6	11	17	23	29
IN	Floyd	17	117	1	7	16	24	33	34
IN	Gibson	28	70	1	8	16	22	30	29
IN	Lake	2	80	0	3	10	20	31	31
IN	Vigo	6	90	0	2	6	12	19	21
IA	Linn	10	53	2	8	17	25	34	33
IA	Muscatine	14	57	1	9	18	26	34	32
MI	Wayne	5	61	0	2	9	18	29	25
MO	Greene	6	47	1	8	16	24	31	30
МО	Iron	44	77	0	9	21	29	36	34
МО	Jefferson	38	99	0	6	14	22	29	31
NH	Merrimack	14	68	1	7	18	30	42	37
NJ	Hudson	0	31	0	1	7	20	39	34
NJ	Union	0	22	0	1	6	15	31	24
NY	Bronx	0	32	0	2	11	27	48	38
NY	Chautauqua	15	88	1	6	11	18	25	24
NY	Erie	29	86	2	13	24	34	43	38
ОН	Cuyahoga	1	85	0	2	10	23	38	38
ОН	Lake	11	71	0	3	10	20	30	26
ОН	Summit	11	96	0	3	12	24	37	31
OK	Tulsa	2	112	0	5	19	42	69	62
PA	Allegheny	5	52	0	1	3	8	14	12
PA	Beaver	17	88	0	2	5	11	20	18
PA	Northampton	2	40	0	3	10	25	40	41
PA	Warren	25	52	0	3	9	17	25	25
PA	Washington	3	66	0	2	10	21	36	29
TN	Blount	19	54	0	3	10	20	31	26
TN	Shelby	2	35	0	3	7	13	20	21
TN	Sullivan	21	121	0	2	9	21	35	39
TX	Jefferson	5	71	0	3	10	19	29	25
VA	Fairfax	0	21	0	1	6	17	34	28
WV	Brooke	16	96	0	3	12	26	43	40
WV	Hancock	17	96	0	2	9	21	36	32
WV	Monongalia	15	63	0	3	9	15	21	22
WV	Wayne	3	71	0	4	16	33	58	48
VI	St Croix	2	24	0	1	3	4	7	10

Table 7-12. Mean number of modeled daily 5-minute maximum concentrations above 300 ppb per year in 40 selected counties given 2001-2006 air quality as is and that adjusted to just meet the current and alternative standards.

		As				1-hour			98 th Percentile
State	County	Is	CS	50	100	150	200	250	200
AZ	Gila	31	130	0	2	9	18	27	25
DE	New Castle	1	17	0	0	1	3	5	5
FL	Hillsborough	3	27	0	1	3	6	8	9
IL	Madison	1	35	0	0	1	4	7	7
IL	Wabash	9	50	0	2	6	9	13	17
IN	Floyd	8	75	0	3	8	13	18	19
IN	Gibson	16	47	0	3	7	13	18	17
IN	Lake	0	42	0	1	3	8	13	13
IN	Vigo	2	49	0	1	2	5	8	9
IA	Linn	5	35	0	4	8	14	19	19
IA	Muscatine	6	39	0	4	9	15	20	19
MI	Wayne	1	32	0	0	2	6	12	10
МО	Greene	2	32	0	3	7	13	19	18
МО	Iron	33	61	0	1	9	17	24	23
MO	Jefferson	24	72	0	1	6	11	17	18
NH	Merrimack	5	46	0	3	7	14	22	19
NJ	Hudson	0	7	0	0	1	4	10	9
NJ	Union	0	5	0	0	1	3	8	6
NY	Bronx	0	9	0	0	2	7	16	11
NY	Chautauqua	9	52	0	2	6	10	13	12
NY	Erie	17	59	0	5	13	20	27	24
ОН	Cuyahoga	0	39	0	0	2	7	13	13
OH	Lake	3	41	0	0	2	7	13	10
ОН	Summit	2	51	0	1	3	8	15	12
OK	Tulsa	0	60	0	1	4	12	26	22
PA	Allegheny	1	21	0	0	1	2	4	4
PA	Beaver	6	42	0	0	2	4	7	6
PA	Northampton	1	16	0	1	3	7	15	14
PA	Warren	11	31	0	1	3	7	11	11
PA	Washington	1	28	0	0	2	7	13	10
TN	Blount	7	28	0	0	3	7	13	10
TN	Shelby	0	19	0	1	3	6	9	10
TN	Sullivan	7	83	0	0	2	6	12	15
TX	Jefferson	1	43	0	1	3	7	13	10
VA	Fairfax	0	5	0	0	1	4	9	7
WV	Brooke	5	45	0	1	4	8	16	15
WV	Hancock	4	48	0	0	2	6	12	10
WV	Monongalia	7	36	0	1	3	6	11	12
WV	Wayne	1	31	0	1	4	10	21	16
VI	St Croix	0	11	0	0	1	2	3	4

Table 7-13. Mean number of modeled daily 5-minute maximum concentrations above 400 ppb per year in 40 selected counties given 2001-2006 air quality as is and that adjusted to just meet the current and alternative standards.

		As				1-hour			98 th Percentile
State	County	Is	CS	50	100	150	200	250	200
AZ	Gila	18	102	0	0	3	9	15	14
DE	New Castle	0	9	0	0	0	1	2	2
FL	Hillsborough	2	17	0	1	2	3	5	5
IL	Madison	0	21	0	0	0	1	3	3
IL	Wabash	6	36	0	1	4	6	8	10
IN	Floyd	5	52	0	1	4	8	11	12
IN	Gibson	10	34	0	1	4	8	11	12
IN	Lake	0	23	0	0	1	3	6	6
IN	Vigo	1	30	0	0	1	2	3	4
IA	Linn	2	24	0	2	5	9	12	12
IA	Muscatine	3	28	0	2	5	9	13	12
MI	Wayne	0	18	0	0	1	2	5	4
MO	Greene	1	23	0	1	4	8	12	11
MO	Iron	25	50	0	0	3	9	15	13
MO	Jefferson	16	54	0	0	2	6	10	11
NH	Merrimack	2	31	0	1	3	7	12	10
NJ	Hudson	0	2	0	0	0	1	3	3
NJ	Union	0	1	0	0	0	1	2	2
NY	Bronx	0	2	0	0	0	2	5	3
NY	Chautauqua	6	34	0	1	3	6	9	8
NY	Erie	10	44	0	2	7	13	18	15
OH	Cuyahoga	0	19	0	0	1	2	5	5
OH	Lake	1	25	0	0	1	3	6	4
OH	Summit	1	30	0	0	1	3	6	5
OK	Tulsa	0	30	0	0	1	4	10	8
PA	Allegheny	0	10	0	0	0	1	2	1
PA	Beaver	3	22	0	0	1	2	3	3
PA	Northampton	0	7	0	0	1	3	6	5
PA	Warren	5	19	0	0	1	3	6	6
PA	Washington	0	13	0	0	1	2	5	4
TN	Blount	3	15	0	0	1	3	5	4
TN	Shelby	0	12	0	0	1	3	5	5
TN	Sullivan	3	58	0	0	1	2	5	6
TX	Jefferson	1	27	0	0	1	3	6	5
VA	Fairfax	0	1	0	0	0	1	3	2
WV	Brooke	2	24	0	0	1	3	7	7
WV	Hancock	1	25	0	0	0	2	5	4
WV	Monongalia	3	25	0	0	1	3	5	6
WV	Wayne	0	14	0	0	1	4	8	6
VI	St Croix	0	6	0	0	0	1	2	2

7.4 UNCERTAINTY ANALYSIS

The approach for evaluating uncertainty was adapted from guidelines outlining how to conduct a qualitative uncertainty characterization (WHO, 2008). First, the key sources of the assessment that contribute to uncertainty are identified, and the rationale for why they are included is discussed. Second, a qualitative characterization follows for the types and components of uncertainty, resulting in a summary describing, for each source of uncertainty, the level and direction of influence the uncertainty may have on the air quality characterization results.

The overall characterization of uncertainty is qualitatively evaluated by considering the degree of severity of the uncertainty, implied by the relationship between the source of the uncertainty and the output of the air quality characterization. To the extent possible, an appraisal of the knowledge base (e.g., the accuracy of the data used, acknowledgement of data gaps) and evaluation of the decisions made (e.g., selection of particular model forms) is also included in this uncertainty rating. The characterization is subjectively scaled by staff using a designation of low, medium, and high. Briefly, a *low* level of uncertainty suggests large changes within the source of uncertainty would have only a small effect on the results, there is completeness and scientific consistency in the knowledge base, and decisions made regarding the particular source of uncertainty would be widely accepted. A designation of *medium* implies that a change within the source of uncertainty would likely have a proportional effect on the results; there may be limited scientific backing, and limited selection of inputs or models to choose from. A characterization of *high* implies that a small change in the source would have a large effect on results, there may be inconsistencies present in the scientific support, and assumptions made would be considered unusual and restrictive by others.

The bias direction indicates how the source of uncertainty has been judged to influence estimated concentrations, either the concentrations are likely *over-* or *under-estimated*. In the instance where two or more types or components of uncertainty are present that potentially offset the direction of influence, the bias has been judged as *both*. An *unknown* bias has been assigned where there was no evidence reviewed to judge the direction of uncertainty bias associated with the source. Table 7-14 provides a summary of the sources of uncertainty identified in the air quality characterization, the level of uncertainty, and the overall judged bias of each. A

- discussion regarding each of these sources of uncertainty and how conclusions were drawn is 1
- 2 given in the sections that follow.

Table 7-14. Summary of qualitative uncertainty analysis for the air quality and health risk characterization.

Source	Туре	Concentration/ Exceedance Bias Direction	Characterization of Uncertainty
Air Quality Data	Database quality	Both	Low
Ambient Measurement	Interference	Both	Medium
Tomporol	Scale	None - Unknown	Medium
Temporal Representation	Missing data	Both	Low
representation	Years evaluated	Unknown	Low
Spatial Representation	Scale	Unknown	Medium - High
Air Quality	Proportional approach used	Unknown	Moderate
Adjustment	Spatial scale	Over	Low - Moderate
	Data Screening	Both	Low
Statistical Model	Temporal Variation in PMRs	Unknown	Low
using PMRs	Distribution form of PMRs	Unknown	Low
doing i wixo	Accuracy	Both	Low - Moderate
	Reproducibility	Both	Low
Ambient as Indicator of Exposure	Scale	Over	Moderate
Health	Averaging time	Unknown	Low
Benchmarks	Susceptibility	Under	Moderate

7.4.1 Air Quality Data

5 6

7

8

9

10

11

13

14

4

already. Methods exist for ensuring the precision and accuracy of the ambient monitoring data (e.g., EPA, 1983). Reported concentrations contain only valid measures, since values with quality limitations are not entered to the system, removed following determination of being of lower quality or flagged. There is likely no selective bias in retention of data that is not of

One basic assumption is that the AQS SO₂ air quality data used are quality assured

- reasonable quality if the data are in error; it is assumed that selection of high concentration poor quality data would be just as likely as low concentration data of poor quality. Given the numbers
- 12 of measurements used for this analysis, it is likely that even if a few low quality data are present in the data set, they would not have any significant effect on the results presented here. In
 - addition, a quantitative analysis of available simultaneous measures in Appendix A-3 indicated
- 15 little to no bias in measured concentrations or in the selection of one particular simultaneous
- 16 measurement over another. There are no alternative data sets available that are as

comprehensive, and where monitoring data are available that are not included in the AQS, it is expected that given the same methods and quality assurances, they would be complementary to the data existing in the AQS. Therefore, the air quality data and database used likely contributes minimally to the uncertainty level, there is low uncertainty in the knowledge base, and the uncertainty in the subjectivity of choices is also considered low.

Temporally, some of the ambient monitoring data used in this analysis had both the 5-minute maximum and 1-hour concentrations reported and appropriately accounted for variability in concentrations that are commonly observed for SO₂. When employing the completeness criteria discussed in section 7.2, data were assured as representative of either a valid day or year. In addition, having more than one ambient monitor accounted for some of the spatial variability in selected counties. However, the degree of representation of the monitoring data used in this analysis can be evaluated from several perspectives, one of which is how well the temporal and spatial variability are represented. In particular, missing 5-minute maximum or hourly measurements at a monitor may introduce bias (if there are specific periods within a day, month or a year that influence measured values) and reduce certainty in the estimations. Furthermore, the spatial representativeness will be poor if the monitoring network is not dense enough to resolve the spatial variability (causing increased uncertainty) or if the monitors are not effectively distributed to reflect population exposure (causing a bias). Additional uncertainty regarding temporal and spatial representation by the monitors is expanded below.

7.4.2 Measurement Technique for Ambient SO₂

One source of uncertainty in SO_2 air quality data is due to interference with other compounds. The ISA notes several sources of positive and negative interference that could increase the uncertainty in the measurement of ambient SO_2 concentrations (ISA, sections 2.3.1 and 2.3.2). Many of the identified sources (e.g., polycyclic aromatic hydrocarbons, stray light, collisional quenching) were described as having limited impact on SO_2 measurement due to the presence of instrument controls that prevent the interference. The actual impact on any individual monitor though is unknown; the presence of either negative or positive interference, and the degree of interference contributed by one or the other, has not been quantified for any ambient monitor. In addition, it is not known whether there is a concentration dependence on the amount of interference. This may be an important uncertainty in considering the air quality concentrations adjusted to just meet the current and potential alternative standards. While

1 reported ambient monitoring concentrations could be either over- or under-estimated, it is

2 probably minimal given instrument controls. The uncertainty is characterized as medium given

the limited quantitative evidence to judge the degree of bias at any individual ambient monitor.

7.4.3 Temporal Representation

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Data are valid 5-minute and 1-hour average SO₂ measurements and are of the same temporal scale as identified potential health effect benchmarks where 5-minute measurements were reported. There are frequent missing values within a given valid year that may reduce the degree of certainty in concentration distributions and model estimations; however, given the level of the benchmark concentrations and the low frequency of benchmark exceedances, it is likely of negligible consequence. Bias may be introduced if some seasons, day-types (e.g., weekday/weekend), or times of the day (e.g., nighttime or daytime) are not equally represented. This type of bias may be present in the combined 5-minute and 1-hour measurement data set because all of the available data were used without considering the standard 75% completeness criteria. Staff elected to use all of the data rather than further reducing the already limited number of samples and locations represented by the 5-minute SO₂ measurement data. The 5minute measurement data set did undergo screening that improved the quality of the data set, including the removal of duplicate reporting/measurements, concentrations < 0.1 ppb, and any concentrations resulting in technically impossible PMRs. For the analyses performed using the broader SO₂ monitoring network and the 40-county analysis, a valid year of ambient monitoring was based on 75 percent complete hours/day and days/quarter, and having all four complete quarters/year. Therefore, these potential biases resultant from missing data are likely to have been removed from these data sets.

Data were not interpolated in the analysis; missing data were not substituted with estimated values and concentrations reported as zero were used as is. For the missing data, it is assumed here that missing values are not systematic, i.e., high concentrations would be absent as well low concentrations in equal proportions. There are methods available that can account for time-of-day, day-of-week, and seasonal variation in ambient monitoring concentrations. However, if a method were selected it would have to not simply interpolate the data, but accurately estimate the probability of peak 1-hour SO₂ concentrations that could occur outside the predictive range of the method. It was judged that if such a method was available or one was developed to substitute data, it would likely add to a similar level of uncertainty as not choosing

- 1 to substitute the missing values. Again, this can be viewed as having a limited effect on
- 2 uncertainty because using the validity criteria should select for the most representative and
- 3 complete ambient monitoring data sets possible. In using the concentrations reported as zero,
- 4 there is likely a negligible effect on uncertainty in the analyses resulting from not estimating any
- 5 extremely low (e.g., <1 ppb) 1-hour concentrations, since the concentrations of interest are well
- 6 above 1 ppb.
- 7 There may be bias and added uncertainty if the years and concentrations vary
- 8 significantly between monitors and across the two averaging times. When using older
- 9 monitoring data, the assumption is that the sources present at that time have similar emissions
- and emission profiles as the current sources, adding uncertainty to results if this is not the case.
- 11 Monitoring sites across the U.S. have changed over time, with a trend of decreasing number of
- monitors most evident for those reporting the 5-minute maximum SO₂ concentrations (Figure 7-
- 13 21). Five-minute SO₂ concentrations have been reported in fewer monitors than the 1-hour SO₂
- concentrations; generally only a few years of data exist for 5-minute SO₂ concentrations
- 15 (Appendix A, Table A.1-1). This is the reason why, given the limited number of measurements,
- all of the 5-minute maximum SO₂ data were used in developing the statistical relationships and
- 17 for the model evaluation without meeting 75% completeness criteria. In addition, the use of the
- older ambient monitoring data (e.g., pre-2001) in some of the analyses here carries the
- assumption that the sources present at that time are the same as current sources, potentially
- adding to uncertainty if this is were not the case. The variability in monitoring concentrations
- 21 (both the 1-hour and 5-minute maximum SO₂) does not change significantly across most
- 22 monitoring years (i.e., years 1997 though 2004) and have a comparable range between the two
- 23 averaging times (Figure 7-22). There is some compression in the range of COVs considering
- some of the more recent years of data, most notable for year 2007, possibly affected by the
- 25 reduction in the number of ambient monitors in operation rather than a reduction in the temporal
- variability in 5-minute or 1-hour concentrations at particular monitors. Furthermore, the
- selection of a subset of the recent air quality (2001-2006) for detailed analyses may reduce the
- 28 potential impact from changes in national- or location-specific source influences and is judged to
- 29 have a minimal bias in representing air quality concentrations for those selected years.
- Therefore, due to the limited variation in temporal trends in COV for both 5-minute and 1-hour

SO₂, the overall impact to uncertainty is expected to be low for analyses performed using the

monitoring data set that spans several years.

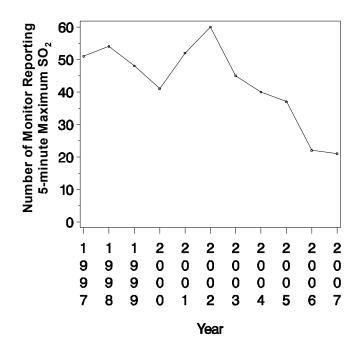


Figure 7-21. Temporal trends in the number of ambient monitors in operation per year for monitors reporting both 5-minute and 1-hour SO_2 concentrations

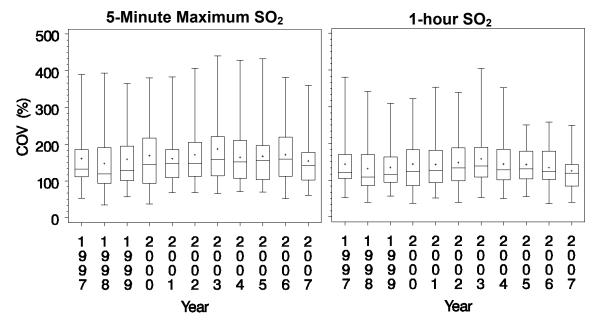


Figure 7-22. Temporal trends in the coefficient of variability (COV) for 5-minute maximum and 1-hour concentrations at the 98 monitors that reported both 5-minute and 1-hour SO₂ concentrations

7.4.4 Spatial Representation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

The ambient monitoring data are assumed to be spatially representative of the locations analyzed in this REA because the monitors are used in determining whether areas meet or do not meet the NAAQS. However, relative to the physical area, staff recognizes there are only a small number of monitors, particularly when considering the set of monitors that reported 5-minute maximum SO₂. When considering 1-hour ambient monitoring at the county level, data were assumed to be spatially representative of those particular locations analyzed here. This includes areas between the 1-hour ambient monitors that may or may not be influenced by similar local sources of SO₂. For these reasons, the uncertainty due to the spatial networks may be moderate, although the SO₂ monitoring network design should have addressed these issues within the available resources and other monitoring constraints. Portions of the air quality characterization used all monitors meeting the 75 percent completeness criteria, without taking into account the monitoring objectives, scale, or land use. Thus, there may be a further lack of spatial representation and contribution to uncertainty due to either the inclusion or exclusion of monitors that are near local source emissions of SO₂ resultant from the validity screening. Bias will depend on ambient monitoring objectives, monitoring scale, and whether there is large variability in monitoring surface, i.e., areas of differing terrain that are not adequately represented by the current distribution of monitors. The direction of this bias is largely unknown due to the differences in the true representativeness of the network and the particular terrain in each location.

In addition, because the monitors reporting 5-minute concentrations are not part of a designed 5-minute SO₂ monitoring network but are entirely voluntary, it is largely unknown what the direction of bias and magnitude of uncertainty may be for the results generated using these monitors. In comparing the emission sources in close proximity to the monitors reporting 5-minute maximum versus the broader SO₂ monitoring network, similar distributions were observed in the types of sources and the total emissions potentially impacting both sets of data. This could indicate that the relationships derived from monitors reporting 5-minute SO₂ concentrations and applied to the broader monitoring network does not add to uncertainty when considering the ambient monitoring data wholly. In comparing individual monitors, there are varying numbers and types of sources within given distances of each monitor, each potentially contributing in varying proportions to the measured SO₂ concentrations at each monitor. There

- 1 could be added uncertainty in extrapolating relationships derived from any one monitor and
- 2 applied to other ambient monitors with dissimilar source types and total emissions. However,
- 3 the method of applying both concentration level and variability measures to each hourly
- 4 concentration at each monitor should have accounted for some of the variability anticipated by
- 5 the presence differing source types and emissions. Additional discussion on the use of the
- 6 monitors reporting 5-minute data is given below in section 7.4.6. Based on the similarity in the
- 7 emission sources surrounding the group of monitors in each data set, it is judged that there is at
- 8 most a moderate uncertainty associated with the spatial representation of the monitors reporting
- 9 5-minute SO₂ concentrations with unknown bias.

7.4.5 Air Quality Adjustment Procedure

There is uncertainty in the air quality adjustment procedures due to the uncertainty of the true relationship between the adjusted concentrations that are simulating a hypothetical scenario and the *as is* air quality. The adjustment factors used for the current and the potential alternative standards each assumed that all hourly concentrations will change proportionately at each ambient monitoring site. Two principal uncertainties are discussed, namely uncertainty regarding the proportional approach used and the universal application of the approach to all ambient monitors within each location.

Different sources have different temporal emission profiles, so that equally applied changes to the concentrations at the ambient monitors to simulate hypothetical changes in emissions may not correspond well within all portions of the concentration distribution. When adjusting concentrations upward to just meeting the current standard, the proportional adjustment used an equivalent multiplicative factor derived from the annual mean or daily mean concentration and equally applied that factor to all portions of the concentration distribution, i.e., the upper tails were treated the same as the area of central tendency. This may not necessarily reflect changes in an overall emissions profile that may result from, for example, an increase in the number of sources in a location. It is possible that while the mean concentration measured at an ambient monitor may increase with an increase in the source emissions affecting concentrations measured at the monitor, the tails of the hourly concentration distribution might not have the same proportional increase. The increase could be greater or it could be less than that observed at the mean, dependent largely on the type of sources and inherent operating conditions. Adjusting the ambient concentrations upwards to simulate the potential alternative

- standards also carries a similar level of uncertainty although the multiplicative factors were
- 2 derived from the upper percentiles of the 1-hour daily maximum SO₂ concentrations, rather than
- 3 the mean, and then applied to the 1-hour SO₂ concentrations equally. If there are deviations from
- 4 proportionality, the magnitude of the bias is likely related to the magnitude of the concentration
- 5 adjustment. There is likely greater uncertainty in the results for evaluating the current and the
- 6 250 ppb 99th percentile alternative standards which have the highest adjustment factors, than
- 7 when considering the 50 ppb and 100 ppb 99th percentile alternative standard which have the
- 8 lowest adjustment factors.

In each of these instances of adjusting the concentrations upwards, one could argue that there may be an associated over-estimation in the concentrations at the upper tails of the distributions, possibly leading to over-estimation in the numbers of exceedances of benchmark levels. An analysis was performed on monitors within seven counties used in the air quality characterization to investigate how distributions of hourly nitrogen dioxide concentrations have changed over time (Rizzo, 2009). The analysis indicates that a proportional approach can be appropriate in simulating higher concentrations at most monitoring sites, since historically, SO₂ concentrations have decreased linearly across the entire concentration distribution at each of the monitoring sites and counties evaluated.

At some of monitoring sites analyzed however, there were features not consistent with a completely proportional relationship, including deviation from linearity primarily at the maximum or minimum percentile concentrations, some indication of curvilinear relationships, and the presence of either a positive or negative regression intercept (Rizzo, 2009). Where multiple monitors were present in a location, there tended to be a mixture of each of these conditions including proportionality (e.g., see Figure 7-23). Not all of the counties analyzed as part of the air quality characterization were included in the evaluation. It was also assumed that the analysis conducted for the seven counties would reflect what may be observed at the other counties if evaluated for trends in concentration over long periods of time. Further, there is uncertainty in adjusting concentrations upwards or downwards considering assumptions regarding future source emission scenarios and how these would relate to observed trends in current and historical air quality. The uncertainty about future source emission control scenarios is largely unknown.

Universal application of the proportional simulation approach for each of the counties and within each county was done for consistency and was designed to preserve the inherent variability in the concentration distribution. There is uncertainty regarding emission changes that would affect the concentrations at the design monitor having the highest concentration (e.g., the highest annual mean, 98th or 99th percentile 1-hour concentration) that may not necessarily affect other lower concentration sites proportionately. This could result in either over- or underestimations in the number of exceedances at lower concentration sites within a county where the current or alternative standard scenarios were evaluated. For example, Figure 7-23 shows the daily maximum 1-hour SO₂ concentration percentiles for five ambient monitors in Allegheny County PA, where each of the ambient monitors were in operation for years 1998 and 2007. While all five of the monitors generally demonstrate features of proportionality, the difference in regression slopes indicates that the rate of change in the concentration distribution was not equal when comparing these monitors for these two monitoring years.

Given the limited deviations in linearity and proportionality at each monitor site that may result in both over- or under-estimations in concentrations following either an adjustment upwards or downwards and the limited time and resources available to develop a new universal approach that addresses each of the observed deviations, staff judged the proportional approach used to simulate just meeting the current and alternative standards as adequate and appropriate for the scenario considered. The uncertainty is judged moderate, given the differences in the rate of change in concentrations over time and limited deviations from linearity/proportionality at individual monitoring sites, each of which could add to either an over- or underestimation bias.

High Year: 1998 Low Year: 2007

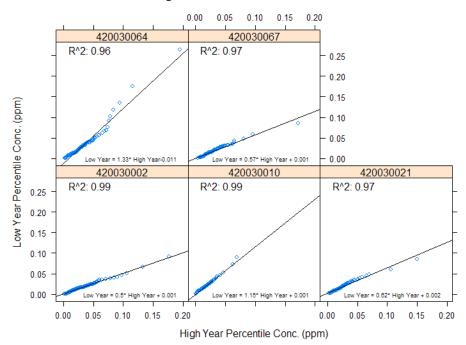


Figure 7-23. Comparison of measured daily maximum SO₂ concentration percentiles in Allegheny County PA for one high concentration year (1998) versus a low concentration years (2007) at five ambient monitors.

7.4.6 Statistical Model Used for Estimating 5-minute SO₂ Concentrations

Four components of uncertainty were identified regarding the statistical model: the screening of the PMR data, the temporal representation of data used in the statistical model development, the accuracy of the model in predicting daily 5-minute maximum concentrations and the reproducibility of the model predictions.

Staff identified data for removal from the combined 5-minute and 1-hour ambient measurement data set using the PMR. The calculation of PMRs less than 1 implies the 5-minute peak is less than the 1-hour average, a physical impossibility, and values >12 are a mathematical impossibility. The 5-minute ambient monitoring data were screened for values outside of these bounds³⁵, increasing confidence in the relevance of PMRs used for development of the statistical model. While a total of 40,665 data points were excluded from the data set using the PMR criterion, this comprised less than 2% of the data available to develop the PMR relationship. It is

³⁵ It is possible to have a PMR equal to 12. The value is achievable with one 5-minute concentration above zero and the other eleven 5-minute values reporting concentrations of zero. Data used in developing the statistical relationship were screened for the values with a PMR equal to 12 however since it could not be used by the AERMOD/APEX modeling. It is of little consequence because the distributions chosen in estimating the 5-minute concentrations included the 1st through the 99th percentiles, not the minimum and maximum values.

assumed that the criterion used for the data removal is not biased, only directed towards identifying unrealistic 5-minute and 1-hour concentration combinations. Therefore, given the few data removed from further analysis and recognizing there would be reduced uncertainty offered in using a data set comprised of PMRs with realistic bounds, the uncertainty associated with the screening of the 5-minute data is low.

The use of all screened 5-minute maximum SO₂ data (1997 to 2007) in developing distributions of PMRs assumes that the source emissions present at that time of measurement are similar to other year source emissions, possibly adding to uncertainty in estimated exceedances in areas where source emissions have or have not changed over time. However, as noted with the concentration variability, the PMRs do not have any apparent trend with monitoring year and have averaged around 1.6 using the 5-minute maximum measurement data (Figure 7-24). This indicates that the use of the older ambient monitoring data in developing the statistical model may have a negligible impact on the predicted concentrations.

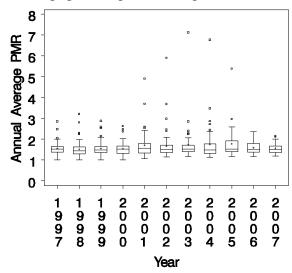


Figure 7-24. Distributions of annual average peak-to-mean ratios (PMRs) derived from the 98 monitors reporting both 5-minute maximum and 1-hour SO₂ concentrations, Years 1997 through 2007.

The PMRs distributions for each COV and concentration bin were represented by a non-parametric form condensed to single percentiles, with each value from the distribution having an equal probability of selection. While there may be other distribution forms that could be alternatively selected, staff judged that use of a fitted distribution would not improve the representation of the true population of PMRs compared with a non-parametric form, and that there would likely be no reduction in the uncertainty of estimated number of exceedances if

- 1 using a parameterized distribution. While many of the PMR distributions were similar to a
- 2 lognormal distribution (for example Figure 7-25), 93 of 95 possible statistical tests performed
- 3 indicated the distributions were statistically distinct (p<0.01) from any of the tested forms (i.e.,
- 4 normal, lognormal, Weibull, gamma, and exponential) (see Figure 7-26 as an example). The
- 5 PMRs derived from monitors having the greatest COV (all concentration bins) and those derived
- 6 from the lowest concentration bins (all COV bins) were most common in exhibiting atypical
- 7 distribution forms. While there is uncertainty associated with the use of the empirically-derived
- 8 data in representing the true population of PMRs, assuming a fitted distribution would not be
- 9 without its own uncertainties. For example, using a lognormal distribution may underestimate
- 10 the observed frequency of certain values of PMRs while overestimating others. For PMR
- distributions that are of similar form with the lognormal distribution, it is likely that the small
- variation in PMRs selected from a fitted lognormal distribution would have only limited impact
- 13 to the estimated 5-minute maximum SO₂ concentrations. For distributions exhibiting no
- similarities to any parametric distribution, experimental justification criteria would need to be
- developed in selecting the most appropriate form of the distribution, likely requiring multiple test
- iterations, potentially yielding distributions with more uncertainty than those of a non-parametric
- form (WHO, 2008). Each of these additional evaluations and iterations would require time and
- 18 resources not available to staff. Furthermore, the sample sizes for many of the PMR
- distributions used are well above 1,000 (only 5 of the 19 distributions had fewer than 1,000),
- with all above 100 samples, providing support that the true distribution may be well-represented
- by the non-parametric form. Each of these factors mentioned (uncertainty in the form of the
- distribution, limits on time and resources available, and numbers of samples available) were
- considered and it was decided by staff that the non-parametric distribution derived from the
- 24 measurement data would be appropriate.

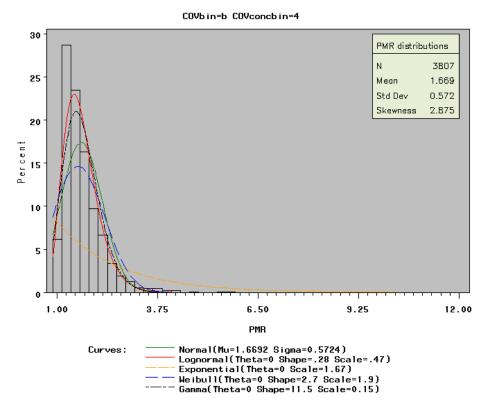


Figure 7-25. Example histogram of peak-to-mean ratios (PMRs) compared with four fitted distributions derived from monitors reporting the 5-minute maximum and 1-hour SO₂ concentrations: monitors with medium level variability and 1-hour concentrations between 75 and 150 ppb.

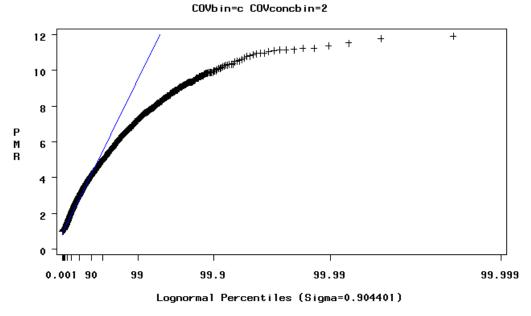


Figure 7-26. Example of a measured peak-to-mean ratio (PMRs) distribution with the percentiles of a fitted lognormal distribution.

1	The accuracy in the predicted daily 5-minute maximum SO ₂ concentrations above each of
2	the benchmark levels was evaluated using measured concentrations. The results indicated that
3	on average, the statistical model performed well in estimating of these short-term peak
4	concentrations (section 7.2.3.4). However, the evaluation indicated the estimated number of
5	daily 5-minute maximum SO ₂ concentrations above the any of the benchmark levels could be
6	either over- or under-estimated by as many as 20 to 50 days in the year. These model prediction
7	errors were limited to several site-years from a few monitors. Figure 7-27 presents the model
8	predicted and observed number of benchmark exceedances at each of the benchmark levels.
9	While there is generally uniform agreement between the predicted and observed values at the
10	100 ppb benchmark, there is some deviation in the agreement at the highest and lowest number
11	of exceedances for the 200, 300, and 400 ppb benchmark levels. For example, there were a few
12	site-years without any observed daily 5-minute maximum SO ₂ concentrations above 400 ppb,
13	although the statistical model predicted between 2-15 days in a year. This could indicate that a
14	few of the site-years may have moderate overestimations in the estimated number of daily 5-
15	minute maximum SO_2 concentrations, where the estimated number of exceedances is 15 or less.
16	In addition, site-years with the greatest number of observed exceedances of 400 ppb (about 50
17	per year) were consistently underestimated by about 30%. This could imply that when the
18	estimated number of daily 5-minute maximum SO ₂ concentrations above 400 ppb is at 40 per
19	year, the underestimate may be as large as 15 days per year. Neither of these situations appeared
20	related to a source type; additional monitors sited in the same area impacted by similar source
21	types had good agreement between the observed and predicted concentrations. At the monitor
22	with the greatest number of measured benchmark exceedances (ID 290930030) and largest over-
23	prediction error, complex terrain may be an influential factor. A nearby monitor (ID 290930031)
24	sited in open, flat terrain and close to the major source of emissions (about 1.7 km) had small
25	prediction errors. The other monitor (ID 290930030) is about 4.6 km from the same primary
26	smelter, but located at the base of a ridge running between the source and the monitoring site.
27	These results suggests that when considering any individual monitor, there may be factors not
28	accounted for by the statistical model that are important in estimating benchmark exceedances.
29	Based on the results of the model evaluation, the greatest uncertainty in the number of
30	benchmark exceedances for individual monitors is likely at the lower and upper tails of the
31	prediction distribution. However, in evaluating the estimated number of benchmark exceedances

- at most of the other monitoring site-years (i.e., about 90% of the data set) and at all of the
- 2 benchmark levels, the uncertainty in the predicted number of exceedances as a whole is likely
- 3 low.

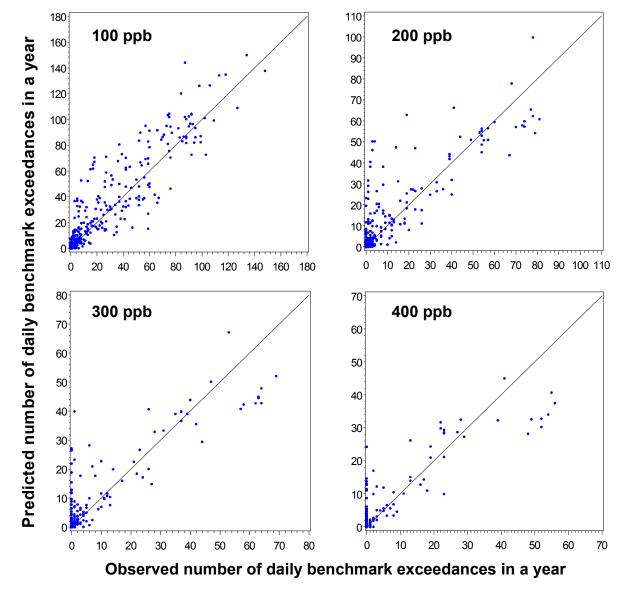


Figure 7-27. Comparison of observed and predicted number of daily benchmark exceedances in a year at monitors reporting 5-minute maximum SO₂ concentrations.

Reproducibility in the model estimates was evaluated by performing multiple model runs. For the sake of efficiency, a limit of 20 simulations per air quality scenario was selected as sufficient to generate stable estimates of 5-minute concentrations where the statistical modeling was performed. This determination was based on a series of sensitivity runs conducted using the 40-county *as is* air quality data set. First, ten independent model runs were performed using 20

4

5 6

7

8

9

10

11

- simulations in each run. A simulation is where each monitor has all of its years of 1-hour data
- 2 used in estimating 5-minute maximum concentrations; this is repeated 20 times and used to
- 3 generate a mean number of daily 5-minute maximum SO₂ concentration exceedances for each
- 4 year. This model run was repeated 10 times to generate the 10 runs of 20 simulations. Then an
- 5 additional model run was performed, only this time it was comprised of 100 simulations using
- 6 the same air quality data set. Estimated mean exceedances from this larger model simulation run
- 7 were compared with the 10 independent 20 model simulation runs to evaluate differences
- 8 between the runs. The absolute difference in the number of exceedances between the single 100
- 9 simulation run and each of the ten 20 simulation runs for each site-year (n=610) was calculated.
- 10 The distribution of the differences in the estimated number of exceedances of the potential health
- effect benchmark levels is provided in Figure 7-28. For each of the potential benchmark levels,
- there is little to no difference in using a 100 model simulation versus a 20 model simulation per
- run. All of the differences in the number of exceedances are centered at zero, with a very few
- site-years exhibiting prediction differences greater than one. There may be a small
- overestimation bias in estimating daily 5-minute maximum concentrations above 100 ppb when
- using a 20 model simulation run compared with a 100 model simulation run, however the
- difference for most of the site years is at most 1 exceedance. Of the 610 site-years simulated in
- each run, over 70% were within at least one exceedance when considering the 100 ppb level,
- while about 95% were within at least two estimated exceedances (Table 7-15). At the higher
- benchmark levels the agreement improves, with nearly 98% of all model run site-years with a
- 21 two or fewer exceedance difference between the 100 and 20 model simulation runs. Run-to-run
- variability is also limited, indicating that a single independent 20 model simulation run would
- consistently estimate the mean number of benchmark exceedances.

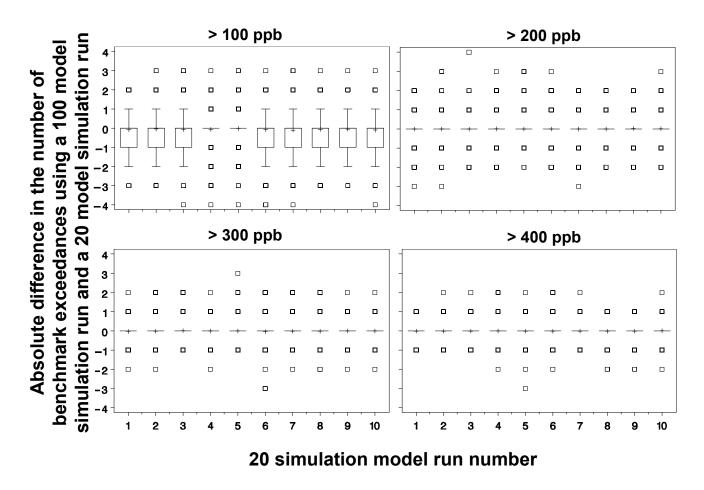


Figure 7-28. Distributions of the calculated difference between estimated concentration exceedances using a single 100 model simulation run and those estimated using ten independent 20 model simulation runs. Box represents the inner quartile range (IQR, or the 25th to 75th percentile), + indicates the mean, whiskers are 1.5 times the IQR.

Table 7-15. The percent of site-years with a difference in the number of modeled exceedances using a 100 model simulation run versus a 20 model simulation run.

Difference in	Potential	Health Effect B	enchmark Leve	I Compared
Estimated Yearly Exceedances	> 100 ppb	> 200 ppb	> 300 ppb	> 400 ppb
≤ 1	71.5 - 73.8	82.6 - 85.6	91.1 - 93.1	93.8 - 95.4
≤ 2	94.6 - 97.5	97.9 - 99.3	99 - 99.8	99.7 - 100

In further analyzing the reproducibility of the statistical model, ninety-five percent prediction intervals (95-PI) about the median number of daily 5-minute maximum benchmark exceedances were generated for each monitor in the forty counties selected for detailed analysis, using the model simulations for the as is air quality scenario, for each year simulated, and for

1 each potential health effect benchmark level. Percentile distributions were calculated from the 2 100 model simulation run using the number of estimated exceedances at each monitor, with the 2.5th, 50th, and 97.5th percentile values retained. First, the estimated median peak values were 3 ranked for each site-year and used to represent the central tendency. Then, the 2.5th and 97.5th 4 5 percentile predictions were used to construct the 95-PI about the ranked median estimates (i.e., 97.5^{th} value minus 2.5^{th} value = 95^{th} prediction interval).

Figure 7-29 presents the results of this sensitivity analysis for the number of days with 5minute benchmark exceedances per site-year in the selected counties when using the as is air quality data. The 95-PI spans about 15 and is generally consistent across a wide range of estimated number of potential health effect benchmark exceedances and for each benchmark level, indicating little bias in the estimation procedure at any individual site-year. When a few exceedances are estimated (e.g., 7 or less in a year), the 95-PI tends to include an estimate of zero, suggesting that when a monitor contains this few estimated mean or median number of exceedances, the certainty in the prediction may be limited. This is evident when considering the lowest percentiles of the distribution, that of course varies with each given benchmark level. For example, just over 15 percent of site-years have a 95-PI that includes zero exceedances of the 100 ppb benchmark. Even though there may have been a positive number (say 3 or 4) of mean or median estimated exceedances for a percentage of these site-years, zero exceedances is still a reasonable prediction. Compared to the benchmark of 100 ppb, far fewer monitors have mean exceedances of 300 ppb greater than zero, with around 80 percent either having a 95-PI that includes zero or a mean estimate of zero exceedances. Where the estimated exceedances of any of the benchmarks in a year are greater than or equal to about 10, the 95-PI excludes a value of zero, indicating greater certainty about the estimated mean or median number of exceedances being different from zero. This is most evident in the number of estimated days with 5-minute maximum concentrations above 100 ppb, where most of the site-years (about 80%) likely have about 10 exceedances in a year. The other benchmark levels also have 95-PI that does not include zero exceedances, albeit at a lower percentage of the total site-years.

Similarly, Figure 7-30 presents the 95-PI generated at the county level. These intervals were generated using the mean estimates of each benchmark percentile (i.e., the 2.5th, the 50th, and the 97.5th) by county for each year. The 95-PI have a smaller range than when considering

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

- 1 individual site-years, spanning approximately 10 exceedances, suggesting a mean prediction of
- 2 about 5 or more exceedances likely excludes the possibility of zero estimated exceedances.

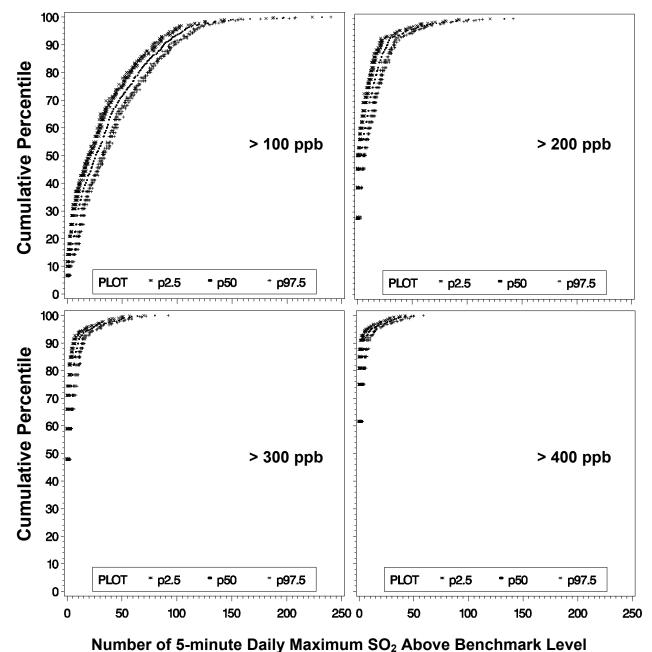
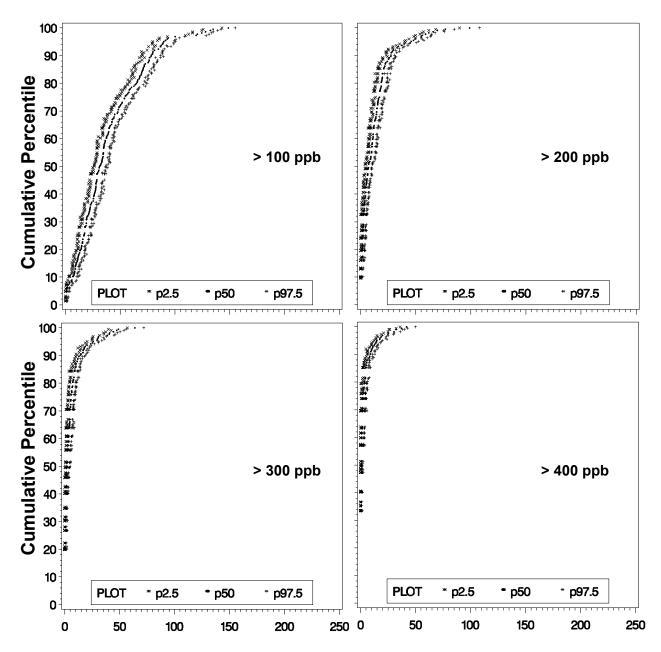



Figure 7-29. 95% prediction intervals for the number of modeled daily 5-minute maximum SO₂ concentrations in a year above potential health effect benchmark levels by each monitor, Years 2001 through 2006 for 40 selected counties, air quality data as is.

3

Mean Number of 5-minute Daily Maximum SO₂ above Benchmark Level

Figure 7-30. 95% prediction intervals for the number of modeled daily 5-minute maximum SO₂ concentrations in a year above potential health effect benchmark levels by each county, Years 2001 through 2006 for 40 selected counties, air quality data as is.

7.4.7 Ambient Monitor to Exposure Representation

Human exposure is characterized by contact of a pollutant with a person, and as such, the air quality characterization assumes that the ambient monitoring concentrations can serve as a surrogate for exposure. The ISA reports that personal exposure measurements (PEM) are of limited use since ambient concentrations are typically below the detection limit of the personal samplers. There is no method to quantitatively assess the relationship between 5-minute ambient monitoring data and 5-minute personal exposures, particularly since personal exposures are time-averaged over hours or days, and never by 5-minute averages. Therefore the fraction of actual 5-minute maximum personal exposure concentrations attributed to 5-minute maximum ambient is unknown and thus adds to uncertainty when using ambient as an indicator of human exposure.

An evaluation in the ISA indicates the relationship between longer-term averaged ambient monitoring concentrations and personal exposures is strong, particularly when ambient concentrations are above the limit of detection. The strength of the relationship between personal and ambient concentrations is supported further by the limited presence of indoor sources of SO₂; much of an individuals' personal exposure is of ambient origin. However, SO₂ personal exposure concentrations are reportedly a small fraction of ambient concentrations. This is because local outdoor SO₂ concentrations are typically half that of the ambient monitoring SO₂ concentrations, and indoor concentrations about half that of the local outdoor SO₂ concentrations (ISA). Therefore, while the relationship between personal exposures and ambient is strong, the use of monitoring data as a surrogate for exposure would likely lead to an overestimate in the number of peak concentrations those individuals might encounter. While the magnitude of the uncertainty about the true relationship between actual human exposure and any given ambient monitor short-term concentration exceedance is unknown, it is likely to be a moderate level given the large difference between the longer-term PEM and the ambient concentrations.

7.4.8 Health Benchmark

The choice of potential health effect benchmarks, and the use of those benchmarks to assess risks, can add to uncertainty in the risk assessment results. For example, the potential health effect benchmarks used were from studies where volunteers were exposed to SO₂ for varying lengths of time. Typically, the SO₂ exposure durations in the controlled human studies were between 5 and 10 minutes. This may add to uncertainty in the characterization of risk using

- the air quality because the potential health effect benchmark levels were compared to
- 2 concentration exceedances over a 5-minute time period. If there were a difference in the
- 3 response rate for a given concentration level and averaging time, the use of a 5-minute averaging
- 4 time could either over- or under-estimate risks. The true dose-response relationship may be
- 5 dependent on both the combined concentration level and the exposure duration, that is, it is
- 6 possible that a particular response rate observed at a 10-minute exposure level of concentration x
- 7 may be similar to that of a 5-minute exposure level equal to or greater than concentration x. In
- 8 this hypothetical scenario, if benchmarks were derived from 10 minute exposures and applied in
- 9 the evaluation of 5-minute ambient concentrations, the potential risk may well be over-estimated.
- However, the ISA did not distinguish between health effects observed following either 5- or 10-
- minute exposures. Therefore the potential bias is unknown, and given similarity in studies using
- either 5- or 10-minute exposures, the overall uncertainty is judged low.

In addition, the human exposure studies evaluated airways responsiveness in mild to

moderate asthmatics. For ethical reasons, adults with severe asthma and younger asthmatics.

15 Severe asthmatics and/or asthmatic children may be more susceptible than mild asthmatic adults

to the effects of SO₂ exposure. Therefore, the potential health effect benchmarks based on these

studies could underestimate risks in populations with greater susceptibility. This assumption

likely adds a moderate level of uncertainty to the relevance of the particular health effect

benchmark levels.

20

2122

23

24

25

26

27

28

29

30

31

13

16

17

18

19

7.5 KEY OBSERVATIONS

Presented below are key observations resulting from the SO₂ air quality characterization:

• For unadjusted *as is* air quality at ambient monitors measuring 5-minute maximum concentrations, nearly 70% of the 471 site-years analyzed had at least one daily 5-minute maximum concentration above 100 ppb and over 100 site-years had ≥ 25 days with a daily 5-minute maximum concentration above 100 ppb. Less than half (44%) of the site-years had at least one daily 5-minute maximum concentration above 200 ppb and only 36 site-years had ≥ 25 days with a daily 5-minute maximum concentration above 200 ppb. Approximately 25% and 17% of the 471 site-years analyzed had at least one daily 5-minute maximum concentration above 300 and 400 ppb, respectively, with 23 and 12 site-years

- having \geq 25 days with a daily 5-minute maximum concentration above 300 and 400 ppb, respectively (Appendix A, Table A.5-1).
 - For any of the air quality scenarios considered, the probability of exceeding the 5-minute maximum benchmark levels was consistently greater at monitors sited in low-population density areas compared with high-population density areas. In addition, the probability of any 5-minute benchmark exceedance was consistently related to either a 24-hour average or 1-hour daily maximum concentration.
 - For unadjusted air quality in the 40 counties selected for detailed analysis, most counties are estimated to have, on average, fewer than 50 days per year where the daily 5-minute maximum ambient SO₂ concentrations are > 100 ppb. Most counties are estimated to have, on average, 25 days per year with daily 5-minute maximum ambient SO₂ concentrations > 200 ppb. Very few counties are estimated to have more than ten days with 5-minute maximum SO₂ concentrations > 300 ppb, while nearly half did not have any days with 5-minute maximum SO₂ concentrations > 400 ppb (Tables 7-10 to 7-13).
 - When air quality is adjusted to simulate just meeting the current annual standard in the 40 counties selected for detailed analysis, a hypothetical scenario requiring air quality to be adjusted upward, all locations evaluated are estimated to have multiple days per year where 5-minute maximum ambient SO₂ concentrations are > 100 ppb. Most counties are estimated to have, on average, 100 days or more per year with 5-minute maximum ambient SO₂ concentrations > 100 ppb, while eight of the forty counties are estimated to have 200 days or more per year with 5-minute maximum ambient SO₂ concentrations > 100 ppb. Fewer benchmark exceedances are estimated to occur with higher benchmark levels. For example, only five counties are estimated to have 60 or more days per year with 5-minute maximum ambient SO₂ concentrations that exceed 300 ppb (Table 7-12) and only four counties are estimated to 50 or more days per year with 5-minute maximum ambient SO₂ concentrations that exceed 400 ppb.
 - In all counties, potential alternative standard levels of 100 and 150 ppb are estimated to result in fewer days per year than the current standards and the potential alternative standard levels of 200 and 250 ppb with daily 5-minute

1	maximum SO_2 concentrations > 300 and > 400 ppb (Tables 7-12 and 7-13).
2	When considering the potential 1-hour daily maximum potential alternative
3	standard levels of 100 and 200 ppb, corresponding annual average SO_2
4	concentrations were typically between 3 and 15 ppb, similar to a range of
5	concentrations using unadjusted air quality (Appendix A). When considering the
6	potential alternative standard levels of 200 and 250 ppb, corresponding annual
7	average SO ₂ concentrations were typically between 10 and 30 ppb, similar to the
8	range of concentrations observed when using adjusted air quality that just meets
9	the current annual standard.

8.0 EXPOSURE ANALYSIS

8.1	\sim	/CDI	VIEW
_O_T	w		v i \sqsubset vv

This section documents the methodology and data staff used in the inhalation exposure assessment and associated health risk characterization for SO_2 conducted in support of the current review of the SO_2 primary NAAQS. Two important components of the analysis include the approach for estimating temporally and spatially variable SO_2 concentrations and simulating human contact with these pollutant concentrations. The approach was designed to better reflect exposures that may occur near SO_2 emission sources, not necessarily reflected by the existing ambient monitoring data alone.

Staff used a combined air quality and exposure modeling approach to generate estimates of 5-minute maximum, 24-hour, and annual average SO₂ exposures within Greene County, MO. and portions of the St. Louis Metropolitan Statistical Area (MSA) for the year 2002. AERMOD, an EPA recommended dispersion model, was used to estimate 1-hour ambient SO₂ concentrations using emissions estimates from stationary, non-point, and port sources. The Air Pollutants Exposure (APEX) model, EPA's human exposure model, was used to estimate population exposures using the census block level hourly SO₂ concentrations estimated by AERMOD. Staff used the person-based exposure profiles to generate the number of 5-minutes daily maximum exposure events in an entire year.

Exposure and potential health risk were characterized considering recent air quality conditions (*as is*), for air quality adjusted to just meet the current SO₂ standards (0.030 ppm, annual average; 0.14 ppm, 24-hour average), and for just meeting potential alternative standards (see Chapter 5). Specifically, the number of times an individual experienced a daily maximum 5-minute exposure concentration in excess of 100 ppb through 800 ppb was estimated. The exposures for each individual were estimated over an entire year therefore, multiple occurrences of exceedances were estimated, giving the number of days per year with an exceedance of the potential health effect benchmark levels.

The approaches used for assessing exposures in Greene County and St. Louis are described below. Additional model input data and supporting discussion of APEX modeling are provided in Appendix B. Briefly, the discussion in this Chapter includes the following:

- description of the inhalation exposure model and associated input data used for Green
 County and St. Louis;
 - evaluation of estimated SO₂ air quality concentrations and exposures; and
 - assessment of the quality and limitations of the input data for supporting the goals of the SO₂ NAAQS exposure and risk characterization.

The overall flow of the exposure modeling process performed for this SO₂ NAAQS review is illustrated in Figure 8-1. Several models were used in addition to APEX and AERMOD including emission factors and meteorological processing, as well as a number of data bases and literature sources to populate the model input parameters. Each of these are described within this Chapter, supplemented with additional details in Appendix B.

8.2 OVERVIEW OF HUMAN EXPOSURE MODELING USING APEX

The EPA has developed the APEX model for estimating human population exposure to criteria and air toxic pollutants. APEX serves as the human inhalation exposure model within the Total Risk Integrated Methodology (TRIM) framework (EPA 2009a; 2009b). APEX was recently used to estimate population exposures in 12 urban areas for the O₃ NAAQS review (EPA, 2007d; 2007e) and in estimating population NO₂ exposures in Atlanta as part of the NO₂ NAAQS review (EPA, 2008d).

APEX is a probabilistic model designed to account for sources of variability that affect people's exposures. APEX simulates the movement of individuals through time and space and estimates their exposure to a given pollutant in indoor, outdoor, and in-vehicle microenvironments. The model stochastically generates a sample of simulated individuals using census-derived probability distributions for demographic characteristics. The population demographics are drawn from the year 2000 Census at the tract, block-group, or block level, and a national commuting database based on 2000 census data provides home-to-work commuting flows. Any number of simulated individuals can be modeled, and collectively they approximate a random sampling of people residing in a particular study area.

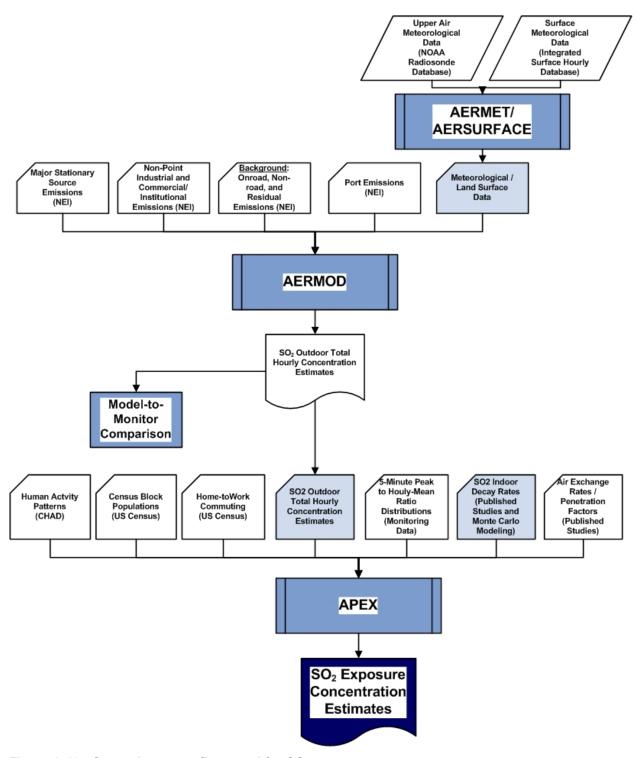


Figure 8-13. General process flow used for SO₂ exposure assessment.

1 Daily activity patterns for individuals in a study area, an input to APEX, are obtained 2 from detailed diaries that are compiled in the Consolidated Human Activity Database (CHAD) 3 (McCurdy et al., 2000; EPA, 2002). The diaries are used to construct a sequence of activity 4 events for simulated individuals consistent with their demographic characteristics, day type, and 5 season of the year, as defined by ambient temperature regimes (Graham and McCurdy, 2004). 6 The time-location-activity diaries input to APEX contain information regarding an individuals' 7 age, gender, race, employment status, occupation, day-of-week, daily maximum hourly average 8 temperature, the location, start time, duration, and type of each activity performed. Much of this 9 information is used to best match the activity diary with the generated personal profile, using 10 age, gender, employment status, day of week, and temperature as first-order characteristics. The 11 approach is designed to capture the important attributes contributing to an individuals' behavior, 12 and of likely importance in this assessment (i.e., time spent outdoors) (Graham and McCurdy, 13 2004). Furthermore, these diary selection criteria give credence to the use of the variable data 14 that comprise CHAD (e.g., data collected were from different seasons, different states of origin, 15 etc.). 16 APEX has a flexible approach for modeling microenvironmental concentrations, where the user can define the microenvironments to be modeled and their characteristics. Typical 17 18 indoor microenvironments include residences, schools, and offices. Outdoor microenvironments 19 include for example near roadways, at bus stops, and playgrounds. Inside cars, trucks, and mass 20 transit vehicles are microenvironments which are classified separately from indoors and 21 outdoors. APEX probabilistically calculates the concentration in the microenvironment 22 associated with each event in an individual's activity pattern and sums the event-specific 23 exposures within each hour to obtain a continuous series of hourly exposures spanning the time 24 period of interest. The estimated microenvironmental concentrations account for the contribution of ambient (outdoor) pollutant concentration and influential factors such as the 25 26 penetration rate into indoor microenvironments, air exchange rates, decay/deposition rates, 27 proximity to important outdoor sources, and indoor source emissions. Each of these influential 28 factors are dependent on the microenvironment modeled, available data to define model inputs, 29 and estimation method selected by the model user. And, because the modeled individuals 30 represent a random sample of the population of interest, the distribution of modeled individual

31

exposures can be extrapolated to the larger population within the modeling domain.

The exposure modeling simulations can be summarized by five steps, each of which is detailed in the subsequent sections of this document. Briefly, the five steps are as follows:

- 1. **Characterize the study area**. APEX selects the census blocks within a study area and thus identifies the potentially exposed population based on user-defined criteria and availability of air quality and meteorological data for the area.
- 2. **Generate simulated individuals**. APEX stochastically generates a sample of hypothetical individuals based on the demographic data for the study area and estimates anthropometric and physiological parameters for the simulated individuals.
- 3. **Construct a sequence of activity events**. APEX constructs an exposure event sequence spanning the period of the simulation for each of the simulated individuals using time-location-activity pattern data.
- 4. Calculate 5-minute and hourly concentrations in microenvironments. APEX users define microenvironments that people in the study area would visit by assigning location codes in the activity pattern to the user-specified microenvironments. The model calculates 5-minute and hourly concentrations of a pollutant in each of these microenvironments for the period of simulation, based on the user-provided microenvironment descriptions, the hourly air quality data, and peak-to-mean ratios (PMRs; see section 7.2.3). Microenvironmental concentrations are calculated for each of the simulated individuals.
- 5. **Estimate exposures**. APEX estimates a concentration for each exposure event based on the microenvironment occupied during the event. In this assessment, APEX estimated 5-minute exposures. These exposures can also be averaged by clock hour to produce a sequence of hourly average exposures spanning the specified exposure period. The values may be further aggregated to produce daily, monthly, and annual average exposure values.

8.3 CHARACTERIZATION OF STUDY AREAS

8.3.1 Study Area Selection

The selection of areas to include in the exposure analysis takes into consideration the availability of ambient monitoring, the presence of significant and diverse SO₂ emission sources, population demographics, and results of the ambient air quality characterization. Although it could be useful to characterize SO₂ exposures nationwide, because the exposure modeling approach is both time and labor intensive, a regional and source-oriented approach was selected to make the analysis tractable and with the goal of focusing on areas most likely to have elevated SO₂ peak concentrations and with sufficient data to conduct the analysis.

A broad study area was first identified based on the results of a preliminary screening of the 5-minute ambient SO₂ monitoring data that were available. The state of Missouri was one of only a few states reporting both 5-minute maximum and continuous 5-minute SO₂ ambient monitoring data (14 total monitors), as well as having over thirty monitors in operation at some time during the period from 1997 to 2007 that measured 1-hour SO₂ concentrations. In addition, the air quality characterization described in Chapter 7 estimated frequent exceedances above the potential health effect benchmark levels at several of the 1-hour ambient monitors. In a ranking of estimated SO₂ emissions reported in the National Emissions Inventory (NEI), Missouri ranked 7th out of all U.S. states for the number of stacks with annual emissions greater than 1,000 tons. These stack emissions were associated with a variety source types such as electrical power generating units, chemical manufacturing, cement processing, smelters, and emissions associated with port operations.

In the 1st draft SO₂ REA, several modeling domains were characterized within the selected state of Missouri to assess the feasibility of the modeling methods. These modeling domains were defined as areas within 20 km of a major point source of SO₂ emission. While modeled air quality and exposure results were generated for several of these domains in the 1st draft REA, changes in the methodology used in this 2nd draft REA precluded additional analysis for most of the domains. Staff judged the availability of relevant ambient monitoring data within the model domain as essential in evaluating model performance, increasing confidence in the predicted air quality and exposure modeling results. For example, when comparing the modeled air quality to ambient monitoring data in Greene County in the 1st draft REA, it was judged by staff that non-point source emissions may contribute to a large proportion of measured ambient concentrations. Addressing non-point source emissions then added a layer to the already complex modeling performed, further limiting the potential number of locations analyzed. Second, to assess the impact of potential alternative standards, baseline conditions (as is) need to be known, again requiring ambient monitoring data. Because Greene County had a number of ambient monitors and most of the model input data were already well-defined, it was selected for additional modeling in the 2nd draft REA. Further, staff decided that modeling a large urban area would be advantageous in combining both large emission sources and large potentially exposed populations. Modeling for St. Louis, MO was already underway at the time of the 1st draft REA,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

1	therefore it was decided that modeling in this domain should be continued and expanded for
2	other sources for this 2 nd draft REA.
3	8.3.2 Study Area Descriptions
4	8.3.2.1 Greene County
5	The greater Springfield, MO, Metropolitan Statistical Area (MSA) consists of five
6	counties in southwestern Missouri including Christian, Dallas, Greene, Polk, and Webster
7	counties. The only city in the region with a population greater than 150,000 is Springfield, in
8	Greene County. Greene County has a total area of approximately 678 mi ² (1,756 km ²). Due to
9	the complexity of the air quality and exposure modeling to be performed in this exposure
10	assessment and the focus on receptors within 20 km of stationary sources, the modeling domain
11	was limited to Greene County (see Figure 8-2). The Springfield-Branson Regional Airport
12	(WBAN 13995) served as the source of meteorological data used in the Greene County modeling
13	domain.
14	8.3.2.2 St. Louis Area
15	The greater St. Louis Metropolitan Statistical Area (MSA) is the 18 th largest MSA in the
16	United States and includes the independent City of St. Louis; the Missouri counties of St. Louis,
17	St. Charles, Jefferson, Franklin, Lincoln, Warren, and Washington; as well as the Illinois
18	counties of Madison, St. Clair, Macoupin, Clinton, Monroe, Jersey, Bond, and Calhoun. The
19	total MSA has an area of approximately 8,846 mi ² (22,911 km ²). Due to the complexity of the
20	air quality and exposure modeling performed in this exposure assessment and the focus on
21	receptors within 20 km of stationary sources, staff limited the modeling domain to three counties
22	directly surrounding the city of St. Louis: St. Louis City, St. Louis County, and St. Charles
23	County (see Figure 8-3). These three counties comprise much of the urban center of the St.
24	Louis MSA, with a combined population of 1,151,094 (2000 Census), which is approximately 45
25	percent of the Greater St. Louis MSA population.
26	
27	
28	
29	

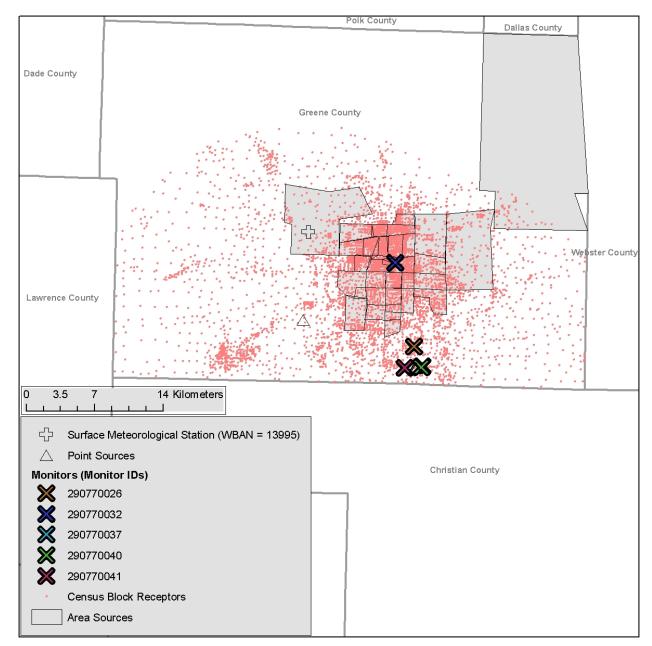


Figure 8-2. Modeling domain for Greene County MO, along with identified emissions sources, air quality receptors, ambient monitors, and meteorological station.

The St. Louis modeling domain reported on here was assembled from three separate modeling domains described in the 1st Draft SO₂ REA, aggregated to utilize the most reliable hourly meteorological data available (St. Louis International-Lambert Field; WBAN 13994). It was then reduced to just the three counties of the urban core. Figure 8-3 shows the modeling domain for the greater St. Louis, MO area.

Figure 8-3. Three county modeling domain for St. Louis, MO, along with identified emissions sources, air quality receptors, ambient monitors, and meteorological station.

8.3.3 Time Period of Analysis

- 2 Calendar year 2002 was simulated for both modeling domains to characterize the most
- 3 recent year of emissions data available for the study locations. Year 2002 temperature and
- 4 precipitation used in the dispersion modeling was compared with 30-year climate normal period
- data from 1978 through 2007. For Greene County, 2002 was similar to the 30-year normal (56.2)
- 6 °F compared to 56.3 °F) though drier than the 30-year normal (37.8 in. compared to 40.2 in.).
- 7 For St. Louis, 2002 was warmer on average than the 30-year normal (57.9 °F compared to 56.8
- 8 °F) and received an annual rainfall total that was similar with the 30-year normal (40.9 in.
- 9 compared to 39.1 in.). See Appendix B, Attachment 1 for further details.

8.3.4 Populations Analyzed

- The exposure assessment included the total population residing in each modeled area and population subgroups that were considered more susceptible as identified in the ISA. These population subgroups include:
 - Asthmatic children (5-18 years in age)
- All Asthmatics (all ages)

In addition, based on the observed responses in the human clinical trials, all asthmatic exposures were characterized only when the individual was at moderate or greater exertion levels during the exposure events.

19

20

21

22

23

24

25

26

27

28

29

30

31

10

11

12

13

14

15

1

8.4 CHARACTERIZATION OF AMBIENT HOURLY AIR QUALITY DATA USING AERMOD

8.4.1 Overview

- Air quality data used for input to APEX were generated using AERMOD, a steady-state, Gaussian plume model (EPA, 2004). For both modeling domains, the following steps were performed.
- 1. **Collect and analyze general input parameters.** Meteorological data, processing methodologies used to derive input meteorological fields (e.g., temperature, wind speed, precipitation), and information on surface characteristics and land use are needed to help determine pollutant dispersion characteristics, atmospheric stability and mixing heights.
 - 2. **Define sources and estimate emissions.** The emission sources modeled included:

						.1 1	
9	Maior	stationary	emiccion	COLLEGE	within '	the d	omain
а.	IVIAJOI	stational y	CIIIISSIUII	Sources	VV I LIIIIII	uic u	iomani,

- b. Major stationary emission sources outside the domain (cross-border stacks)
- c. Non-point source area emissions,
- d. Emissions from ports, and
- e. Background sources not otherwise captured.

However, note that not all source categories were present in both modeling domains.

- 3. **Define air quality receptor locations**. Two sets of receptors were identified for the dispersion modeling, including ambient monitoring locations (where available) and census block centroids.
- 4. **Estimate concentrations at receptors**. Full annual time series of hourly concentration were estimated for 2002 by summing concentration contributions from each of the emission sources at each of the defined air quality receptors.

Estimated hourly concentrations output from AERMOD were then used as input to the APEX model to estimate population exposure concentrations. Details regarding both modeling approaches and input data used are provided below. Supplemental information regarding model inputs and methodology is provided in Appendix B.

8.4.2 General Model Inputs

8.4.2.1 Meteorological Inputs

1 2

All meteorological data used for the AERMOD dispersion model simulations were processed with the AERMET meteorological preprocessor, version 06341. The National Weather Service (NWS) served as the source of input meteorological data for AERMOD. Tables 8-1 and 8-2 list the surface and upper air NWS stations chosen for the two areas. A potential concern related to the use of NWS meteorological data is the often high incidence of calms and variable wind conditions reported for the Automated Surface Observing Stations (ASOS) in use at most NWS stations. A variable wind observation may include wind speeds up to 6 knots, but the wind direction is reported as missing. The AERMOD model currently cannot simulate dispersion under these conditions. To reduce the number of calms and missing winds in the surface data for each of the four stations, archived one-minute winds for the ASOS stations were used to calculate hourly average wind speed and directions, which were used to supplement the standard archive of winds reported for each station in the Integrated Surface Hourly (ISH) database.

Details regarding this procedure are described in Appendix B, Attachment 1.

Table 8-1. Surface stations for the SO₂ study areas.

Area	Station	Identifier	WMO (WBAN)	Latitude ¹	Longitude ¹	Elevation (m)	Time Zone ²
Greene County	Springfield- Branson Regional AP	SGF	724400 (13995)	37.23528	-93.40028	387	6
St. Louis	Lambert-St. Louis International AP	STL	724340 (13994)	38.7525	-90.37361	161	6

Notes:

1

Table 8-2. Upper air stations for the SO₂ study areas.

Area	Station	Identifier	WMO (WBAN)	Latitude	Longitude	Elevation (m)	Time Zone ¹
Greene County	Springfield- Branson Regional AP	SGF	724400 (13995)	37.23	-93.40	394	6
St. Louis	Lincoln- Logan County AP, IL	ILX	724340 (4833)	40.15	-89.33	178	6

Notes:

3

4

5

6

7

8

9

10

11

12

13

14

15

2

8.4.2.2 Surface Characteristics and Land Use Analysis

The AERSURFACE tool (US EPA, 2008e) was used to determine surface characteristics (albedo, Bowen ratio, and surface roughness) for input to AERMET. Surface characteristics were calculated for the location of the ASOS meteorological towers, approximated by using aerial photos and the station history from the National Climatic Data Center (NCDC). A draft version of AERSURFACE (08256) that utilizes 2001 National Land Cover Data (NLCD) was used to determine the surface characteristics for this application since the 2001 land cover data will be more representative of the meteorological data period than the 1992 NLCD data supported by the current version of AERSURFACE available on EPA's SCRAM website. All stations were considered at an airport. Monthly seasonal assignments were defined as shown in Table 8-3 and because the AERSURFACE default seasonal assignments were not used, the surface characteristics were output by month.

¹ Latitude and longitude are the best approximation coordinates of the meteorological towers.

² Time zone is the offset from UTC/GMT to LST in hours.

¹ Time zone is the offset from UTC/GMT to LST in hours.

Table 8-3. Seasonal monthly assignments.

Station	Win	ter (no snow)	Spring	Summer	Autumn	
SGF		r, January,	April, May	June, July, August	September,	
	February,	March			October,	
					November	
STL	Decembe	r, January,	March, April, May	June, July, August	September,	
	February				October,	
					November	
			Seasonal definitions	}		
Winter (n	o snow)	Late autumn after	frost and harvest, or wi	nter with no snow		
Spring		Transitional spring with partial green coverage or short annuals				
Summer		Midsummer with lush vegetation				
Autumn		Autumn with unha	rvested cropland	<u> </u>	·	

8.4.3 Stationary Sources Emissions Preparation

8.4.3.1 Emitting Sources and Locations

Point Sources

1

2

3

4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Point sources at major facilities were identified and paired to a representative surface meteorological station. Any stacks listed as in the same location with identical release parameters within a certain resolution (typically to the nearest integer value) were aggregated into a single stack to simplify modeling but retain all emissions. For this analysis, major facilities were defined as those with an SO₂ emission total exceeding 1,000 tpy in 2002. Within such facilities, every stack emitting more than one tpy was included in the modeling inventory. This process resulted in the identification of 11 (combined) stacks in Greene County and 38 (combined) stacks in St. Louis. Additionally, 45 (combined) stacks were identified across the state border that could influence concentrations in St. Louis. These cross-border stacks were modeled the same as the within-state stacks. The locations of all emitting stacks were corrected based on GIS analysis. This was necessary because many stacks in the NEI are assigned the same location, which often corresponds to a location in the facility – such as the front office – rather than the actual stack locations. To correct for this, stack locations were reassigned manually with the Microsoft® Live Maps® Virtual Earth® tool to visually match stacks from the NEI database to their locations within the facilities using stack heights as a guide to stack identification. All release heights and other stack parameters were taken from the values listed in the NEI. Table B-3-1 (in Appendix B) lists all stacks in both domains.

Port-Related Sources

Only the St. Louis domain has relevant port emissions. The Port of St. Louis is one of the Nation's largest inland river ports. Activity from this port was modeled as fourteen area sources along the waterfront. All port-related emission sources were considered as non-point area emissions with boundaries based on GIS analysis of aerial photographic images. A release height of 5.0 m with a plume initial vertical standard deviation (σ_{zi}) of 2.33 m was used in all cases to represent emissions from Category 1 and 2 commercial marine vessels. Port emission strength was taken from the NEI for appropriate activity within St. Louis City and allocated uniformly by emission density for all harbor areas. That is, all ports were modeled with the same emission density. The emission profile was taken as the seasonal hourly value from the EMS-HAP model.

Non-Point Sources

Non-point sources constitute industrial, commercial and institutional facilities as identified in the NEI. Emissions from non-point sources in Greene County are identified for each tract in the County. In Greene County, spatial allocation factors (SAFs) from EPA's EMS-HAP data base³⁶ were used to disaggregate the county-wide emissions from the NEI to census tracts. Tracts with total non-point emission densities greater than 12 tons per year/square mile were digitized and characterized as non-point source area polygons. These tracts accounted for about 87% of the total non-point source emissions in Greene Co.

The release height for non-point area sources are 10.0 m with initial vertical dispersion (σ_{zi}) of 4.67 m for rural tracts and 20.0 m with σ_{zi} of 9.34 m for rural tracts. Because these sources are not well-defined, the release parameters were derived by conducting sensitivity runs to characterize model performance at the ambient monitor locations.

For the St. Louis domain, staff chose a slightly different approach to characterize non-point emissions sources. During model-to-monitor comparisons, it became clear that the spatial allocation of county-wide non-point emissions to tracts, based on SAFs, resulted in an inaccurate spatial pattern of emissions. Therefore, the spatial resolution of non-point sources in this domain was retained at the county level. However, to improve the numerical representation of these emissions in the model, the two counties with the highest non-point source emissions – St. Louis

³⁶ The SAFs were derived from land use data.

- 1 City and St. Louis County were subdivided into regular grid cells. St. Louis County grid cells
- were 5 km by 5 km; St. Louis City grid cells were 1 km by 1 km, more closely approximating the
- 3 smaller and denser census tracts in that region. All county-wide non-point source emissions
- 4 were spatially allocated uniformly to the grid cells. St. Charles County was modeled as a single
- 5 area source, with edges approximating the full county boundaries.
- The release parameters for the St. Louis domain varied according to the urban and rural
- designation of individual grid cells. Rural grid cells have a release height of 10 m and initial
- 8 dispersion length of 4.67 m. Urban grid cells have a release height of 20 m and initial dispersion
- 9 length of 9.34 m.

Background Sources

- For the Greene County domain, background sources were assembled to account for any
- 12 emissions not otherwise included. These were comprised of any point sources in facilities not
- meeting the 1,000 tpy selection criteria and any residual non-point sources, as well as on-road
- and non-road mobile sources. In addition, all emission sources in neighboring Christian County
- were modeled as a rural, county-wide non-point area source with uniform density. Both
- background sources were characterized as county-wide polygon rural area sources with release
- heights of 10.0 m and initial dispersion length of 4.67 m.
- For the St. Louis domain, emissions from residual point sources, on-road mobile sources,
- and non-road mobile sources were combined with the county-wide non-point sources as
- described above. Thus, no separate background sources were simulated.

21 8.4.3.2 Urban vs. Rural Designations

- 22 AERMOD regulatory default settings were employed in each model domain. Therefore,
- 23 no chemical decay is assumed for rural sources, while urban sources experience a 4-hour half-
- 24 life. For urban sources, additional dispersion is simulated at night to account for increased
- surface heating within an urban area under stable atmospheric conditions. The magnitude of this
- 26 effect is weakly proportional to the urban area population.

Point Sources

- 28 Urban or rural designations for point sources were made according to EPA guidance based on
- 29 the land use within 3 km of the source. The 2001 NLCD database was used to make this
- determination. Table 8-4 lists the land use categories in the 2001 NLCD.

Table 8-4. NLCD2001 land use characterization.

Category	Land Use Type	Category	Land Use Type
11	Open Water	73	Lichens
12	Perennial Ice/Snow	74	Moss
21	Developed, Open Space	81	Pasture/Hay
22	Developed, Low Intensity	82	Cultivated Crops
23	Developed, Medium Intensity	90	Woody Wetlands
24	Developed, High Intensity	91	Palustrine Forested Wetland ¹
31	Barren Land (Rock/Sand/Clay)	92	Palustrine Scrub/Shrub Wetland ¹
32	Unconsolidated Shore ¹	93	Estuarine Forested Wetland ¹
41	Deciduous Forest	94	Estuarine Scrub/Shrub Wetland ¹
42	Evergreen Forest	95	Emergent Herbaceous Wetlands
43	Mixed Forest	96	Palustrine Emergent Wetland (Persistent) 1
51	Dwarf Scrub	97	Estuarine Emergent Wetland ¹
52	Shrub/Scrub	98	Palustrine Aquatic Bed ¹
71	Grassland/Herbaceous	99	Estuarine Aquatic Bed ¹
72	Sedge/Herbaceous		
Notes:			

5

6

7

8

9

10

11

12

13

14

15

Each stack where more than half the land use within 3 km fell into categories 21-24 were designated as urban. These categories are consistent with those considered developed by AERSURFACE.³⁷

Non-Point Sources

Non-point area sources were defined as rural or urban using a similar methodology as that for the point sources. As noted in the 2008 AERMOD Implementation Guide³⁸, in some cases, a population density is more appropriate than a land use characterization. Therefore, nonpoint area sources were evaluated from both a land use and population density perspective.

In Greene County, area sources were defined as corresponding to the census tract boundaries. Each tract was then considered urban or rural by considering both the population density and land use fraction from NLCD2001. If the population density was greater than 750/ km² or the developed land use categories 22-24 throughout the tract was greater than 50 percent,

¹ Coastal NLCD class only.

³⁷ AERSURFACE User's Guide, U.S. EPA, OAQPS, Research Triangle Park, NC, EPA-454/B-08-001, January

³⁸ AERMOD IMPLEMENTATION GUIDE, AERMOD Implementation Workgroup, US EPA, OAQPS, Air Quality Assessment Division, Research Triangle Park, NC, Revised January 9, 2008,

the tract was designated as urban. In addition, if a tract was surrounded by urban tracts it was

designated as urban, since the emissions from such a tract would likely be subject to urban

3 dispersion conditions.

1

2

4

5

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

As explained above, for the St. Louis domain, the counties with the greatest non-point

emissions – St. Louis City and St. Louis County – were subdivided into regular grid cells, while

St. Charles County was represented as a polygon area source with its political boundaries. The

urban or rural designation was then assigned to each based on population density. St. Charles

County and all but eleven of the 5 km grid cells in St. Louis County were designated rural; the

9 remaining cells in St. Louis County and all of St. Louis City were designated urban.

Port-Related Sources

Only the St. Louis domain has relevant port emissions. The fourteen port-related nonpoint area sources described above were designated urban, given their location in the urban core along the waterfront and their associated industrial activities.

Background Sources

Background area sources for Greene County were classified with the same procedures for non-point area sources. Both Greene and Christian counties were designated rural.

8.4.3.3 Source Terrain Characterization

All corrected locations for the final list of major facility stacks in St. Louis and Green County domains were processed with a pre-release version of the AERMAP terrain preprocessing tool. This version is functionally equivalent to the current release version of the tool (version 08280). In particular, this updated version allows use of 1 arc-second terrain data from the USGS Seamless Server³⁹ which allows for more highly resolved values of the source and receptor heights as well as the hill height scales.

Terrain height information for point sources was processed through AERMAP with input data taken from the USGS server. For all area sources (non-point and background source types), the outputs from AERMAP were modified. In these cases, rather than using a single point to represent these large areas, the terrain height for each vertex of the area was estimated with AERMAP. The terrain height for the entire source polygon was then characterized as the average terrain height from all vertices.

³⁹ http://seamless.usgs.gov/index.php

8.4.3.4 Emissions Data Sources

Point Sources

1

2

3

23

24

4 comes primarily from three sources: the 2002 NEI (EPA, 2007f), Clean Air Markets Division 5 (CAMD) Unit Level Emissions Database (EPA, 2007g), and temporal emission profile information contained in the EMS-HAP (version 3.0) emissions model.⁴⁰ The NEI database 6 7 contains stack locations, emissions release parameters (i.e., height, diameter, exit temperature, 8 exit velocity), and annual SO₂ emissions. The CAMD database has information on hourly SO₂ 9 emission rates for all the electric generating units in the US, where the units are the boilers or equivalent, each of which can have multiple stacks. 41 These two databases generally contain 10 complimentary information, and were first evaluated for matching facility data. However, 11 12 CAMD lacks SO₂ emissions data for facilities other than electric-generating units. To convert annual total emissions data from the NEI into hourly temporal profiles required for AERMOD, a 13 14 three tiered prioritization was used, as follows. 15 1. CAMD hourly concentrations to create relative temporal profiles. 16 2. EMS-HAP seasonal and diurnal temporal profiles for source categorization codes 17 (SCCs). 18 3. Flat profiles. 19 Details of these processes are as follows: 20 Tier 1: CAMD to NEI Emissions Alignment and Scaling 21 Of the 94 major facility stacks within the model domains identified above (11 in Greene 22 County and 45 cross-border and 38 within-state in the St. Louis domain), 35 (11 in Greene

Data for the parameterization of major facility point sources in the two modeling domains

25 Office of Regulatory Information Systems (ORIS) identification code (when provided) and

26 facility total SO₂ emissions. For these stacks the relative hourly profiles were derived from the

County and 7 cross-border and 17 in-state in the St. Louis domain) were able to be matched

directly to sources within the CAMD database. Stack matching was based on the facility name,

27 hourly values in the CAMD database, and the annual emissions totals were taken from the NEI.

⁴⁰ http://www.epa.gov/ttn/chief/emch/projection/emshap30.html

⁴¹ The CAMD database also contains hourly NO₂ emission data for both electric generating units and other types of industrial facilities. In the case of facilities for which CAMD has hourly NO₂ data but not SO₂ data, SO₂ relative temporal profiles could be approximated by NO₂ temporal profiles. However, there were no such cases for MO facilities.

1	That is, hourly emissions in the CAMD database were scaled to match the NEI annual total
2	emissions.

Tier 2: EMS-HAP to NEI Emissions Profiling

Of the 94 major facility stacks within the two MO domains, 38 stacks (all of which are cross-border stacks in the St. Louis domain) could not be matched to a stack in the in the CAMD database, but had SCC values that corresponded to SCCs that have temporal profiles included in the EMS-HAP emissions model. In these cases, the SCC-specific seasonal and hourly variation (SEASHR) values from the EMS-HAP model were used to characterize the temporal profiles of emissions for each hour of a typical day by season and day type.

Tier 3: Other Emissions Profiling

Of the 94 major facility stacks within the two MO model domains, 21 (all from the St. Louis in-state domain) could not be matched to a stack in CAMD database, or to profiles in the EMS-HAP model by SCC code. In these cases, a flat profile of emissions was assumed. That is, emissions were assumed to be constant for all hours of every day, but with an annual total that equals the values from the NEI. A summary of the point source emissions used for the two modeling domains is given in Table 8-5. Appendix B, Table B-3-1 contains all 94 stacks within the modeling domains and the data source used to determine their emissions profiles.

Nearly all of the point sources in both domains were accounted for directly in the dispersion modeling. Table 8-5 shows the point source contribution captured directly within each modeling domain.

Port-Related Sources

Ports were the only non-road sector explicitly simulated in either modeling domain. Only the St. Louis domain had port emissions. All relevant port emissions were directly captured, comprising 51 percent of the total non-road emissions for the domain. Emission profiles for port-related activity were taken from the EMS-HAP model for sectors matching the modeled activity. Table 8-5 shows the port source contribution modeled directly within each modeling domain and compares it to the total non-road emissions.

Non-Point and Background Sources

Non-point polygon area sources were developed to capture non-point commercial/institutional and industrial emissions within the domains, as specified in the NEI.

1 For the St. Louis domain, all non-point emissions were included either in gridded area sources

over St. Louis City and St. Louis County or a polygon area source over St. Charles County, as

3 described above. For the Greene County domain, commercial/institutional and industrial non-

point area source polygons were created to represent the individual census tracts within the

county that captured approximately 87 percent of the relevant emissions countywide from the

NEI. Other non-point sources, as well as on-road mobile and non-road mobile sources were

included in the background source

Because non-point area source and background area source temporal profiles are unknown, profiles were derived that provided a best-fit match between the model predictions and monitor data. Figures 8-4 and 8-5 show the diurnal emissions profiles derived for both the St. Louis and Greene County domains compared to other profiles derived from commonly used emissions models. Table 8-5 shows the non-port source contribution modeled directly within each modeling domain and compares it to the total non-point emissions.⁴²

14

15

16

2

4

5

6

7

8

9

10

11

12

13

Table 8-5. Summary of NEI emission estimates and total emissions used for dispersion modeling in Greene County and St. Louis modeling domains.

Point Sources			Area Sources			Non-road Sources			
Modeling Domain	NEI Emissions (tpy)	Modeled Emissions (tpy)	(%)	NEI Emissions (tpy)	Modeled Emissions (tpy)	(%)	NEI Emissions (tpy)	Modeled Emissions (tpy)	(%)
Greene Co.	9,255	9,047	98%	2,055	1,781	87%	N/A	N/A	N/A
St. Louis	70,016	68,656	98%	15,137	15,137	100 %	3,058	1,559	51%

17

⁴² Table 8-5 does not have the relevant background contribution for each domain. This is because the total background in each domain includes not only the counties in the modeling domain (three in the St. Louis domain and one in the Greene County domain), but also adjacent counties that could influence concentrations within the modeling domain. In those cases, the total countywide emissions are included in the background. Thus, directly expressing those values would be confusing and are thus omitted.

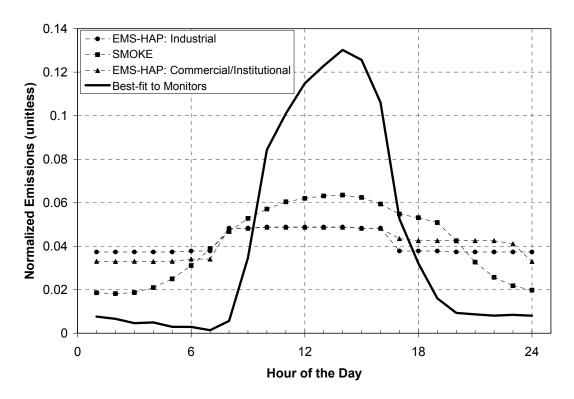


Figure 8-4. Derived best-fit non-point area source diurnal emission profile for the St. Louis domain, compared to other possible profiles.

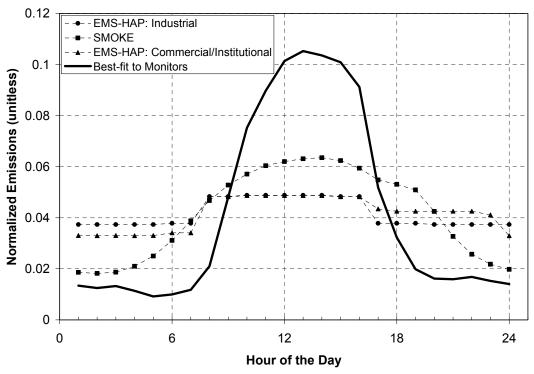


Figure 8-5. Derived best-fit non-point area source diurnal emission profile for the Greene County domain, compared to other possible profiles.

Two sets of receptors were chosen to represent the locations of interest within each of the modeling domains. The first set was selected to represent the locations of the residential population of the modeling domain. These receptors were US Census block centroids in the Greene County and St. Louis modeling domains, (Figures 8-2 and 8-3, respectively), that lie within 20 km (12 miles) of any of the major facility stacks. Each of these receptors was modeled at ground level. A total of 17,703 receptors were selected in the St. Louis domain and a total of 5,359 receptors were selected in the Greene County domain.

The second set of receptors included the locations of the available ambient SO_2 monitors. These receptors were used in evaluating the dispersion model performance. In Greene County, there were five ambient monitors with valid ambient monitoring concentrations (Figure 8-2). Within the three St. Louis counties, there were seven monitors (Figure 8-3).

8.4.5 Modeled Air Quality Evaluation

The hourly SO₂ concentrations estimated from each of the sources within a modeling domain were combined at each receptor. These concentration predictions were then compared with the measured concentrations at ambient SO₂ monitors. Rather than compare concentrations estimated at a single modeled receptor point to the ambient monitor concentrations, a distribution of concentrations was developed for the predicted concentrations for all receptors within a 4 km distance of the monitors. Further, instead of a comparison of central tendency values (mean or median), the modeled and measurement concentration distributions were used for comparison.

As an initial comparison of modeled versus measured air quality, all modeled receptors within 4 km of each ambient monitor location were used to generate a prediction envelope.⁴⁴ This envelope was constructed based on selected percentiles from the modeled concentration distribution at each receptor for comparison to the ambient monitor concentration distribution.

The block centroids used for this analysis are actually population-weighted locations reported in the ESRI data base. They were derived from geocoded addresses within the block taken from the Acxiom Corporation InfoBase household database (Skuta and Wombold 2008; ESRI 2008). These centroids differ from the "internal points" reported by the US Census, which are often referred to as centroids because they are designed to represent the approximate geographic center of the block.

⁴⁴ 500 m to 4 km is the area of representation of a neighborhood-scale monitor, according to EPA guidance.

- The 2.5th and 97.5th percentiles from all monitor distribution percentiles⁴⁵ were selected to create 1
- 2 the lower and upper bounds of the envelope. The full 1-hour distributions for the ambient
- measurement data, the modeled monitor receptor, 46 and the prediction envelope were compared 3
- using their respective cumulative density functions (CDFs). When illustrating the cumulative 4
- percentiles, only concentrations above the 80th percentile 1-hour concentration were shown 5
- 6 because over 80% of the 1-hour SO₂ concentrations were less than 5 ppb (concentrations
- 7 generally not of interest).

11

17

18

19

20

21

22

23

24

25

26

8 A second comparison between the modeled and monitored data was performed to

9 evaluate the diurnal variation in SO₂ concentrations. AERMOD receptor concentrations during

each hour-of-the-day were averaged (i.e., 365 values for hour 1, 365 values for hour 2, and so

- on) to generate an annual average SO₂ concentration for each hour at each modeled receptor.
- 12 Prediction envelopes were constructed similar to that described above from modeled receptors
- 13 located within 4 km of each ambient monitor. The measured ambient monitoring data was also
- 14 averaged to generate the diurnal profile. Then, annual averaged concentrations for the ambient
- 15 measurement data, the modeled monitor receptor, and the prediction envelope were plotted by
- 16 hour-of-the-day for comparison.

8.4.5.1 Greene County Modeled Air Quality Evaluation

For Greene County, there were five monitors used for comparison with the AERMOD concentration estimates. The distribution of the modeled 1-hour SO₂ concentrations estimated for the monitor receptor, the receptor envelope (i.e., all receptors within 4 km of monitor receptor), and the hourly concentration distribution measured at each ambient monitor are provided in Figures 8-6 to 8-8. Data used to generate the figures is provided in Appendix B.

When considering the total hourly distribution or CDFs, most of the monitor concentration distributions are completely bounded by the modeled distributions. At some of the upper percentiles of the distributions, the deviations were of varying direction (over- or underprediction) and magnitude. For example, monitor ID 290770026 (Figure 8-6) exhibits higher

⁴⁵ As an example, suppose there are 1,000 receptors surrounding a monitor, each receptor containing 8,760 hourly values used to create a concentration distribution. Then say the 73rd percentile concentration prediction is to be estimated for each receptor. The lower bound of the 73rd percentile of the modeled receptors would represented by the 2.5th percentile of all the calculated 73rd percentile concentration predictions, i.e., the 25th highest 73rd percentile concentration prediction across the 1,000 73rd percentile values generated from all of the receptors. Note that at any given percentile along either of the envelope bounds as well as at the central tendency distribution (the receptor 50th percentile), the concentration from a different receptor may be used.

46 The *modeled monitor* is the modeled air quality at the ambient monitoring location.

- 1 measured concentrations at the upper percentiles of the distribution that extend above the
- 2 AERMOD prediction envelope, however the deviation occurred beyond the 99th percentile
- 3 (maximum observed =114 ppb, AERMOD P97.5 = 101 ppb). At monitor ID 290770032 (Figure
- 4 8-6), the measured concentrations fall below the prediction envelope, beginning just above the
- 5 95th percentile 1-hour concentration.
- 6 Even though ambient monitors 290770040 and 290770041 (Figure 8-2) are located
- 7 approximately 150 m from one another, they exhibited very different measured concentrations at
- 8 the extreme upper percentiles (Figure 8-7). The greatest difference is in comparing the
- 9 maximum observed concentrations; 203 ppb versus 33 ppb. The AERMOD predictions followed
- a similar pattern at the upper percentiles, i.e., the modeled concentrations for the monitor
- location were greater (50 to 100%) at monitor ID 290770040 when compared with 290770041,
- but not nearly as great as a difference noted at the maximum measured concentrations. The
- 13 AERMOD prediction envelope was similar for both of these monitors, encompassing the
- ambient measured concentrations from the 80th through the 99th percentiles for both, while
- 15 completely enveloping all 1-hour concentrations at monitor ID 290770041.

The pattern in the AERMOD modeled concentrations at the monitor location and the

ambient measurement concentration distribution for monitor ID 290770037 is nearly identical

and the only difference observed is that the measured concentrations are greater at each of the

upper percentiles. Much of the measured distribution falls within the AERMOD prediction

20 envelope, with deviation occurring at the maximum concentration.

The diurnal pattern observed at each of the ambient monitors is represented well by the modeled concentrations; in general concentrations are elevated during the midday hours and lowest during the late-night and early-morning hours. In addition, most of the measured concentrations fall within the AERMOD prediction envelopes at all hours of the day, with a few exceptions. For example, all observed concentrations for monitor ID 290770032 are below that of the upper AERMOD prediction envelope, though at monitor ID 290770026, measured concentrations are above those modeled during the early-morning and late-night hours (Figure 8-6). Much of the deviation during these hours-of-the-day is likely a result of the concentrations at or below the 80th percentile, where measured concentrations were always greater than any of the predicted concentrations at corresponding percentiles of the distribution. While the prediction

18

19

21

22

23

24

25

26

27

28

29

30

31

envelopes encompassed the diurnal pattern observed at monitor IDs 290770040 and 290770041

- 1 (Figure 8-7), the modeled concentrations at the monitor location results were not equally
- 2 representative. The diurnal pattern and magnitude of concentrations was well reproduced at
- 3 monitor ID 290770041, while modeled concentrations at the monitor location during the midday
- 4 and evening hours were greater than the measured concentrations at monitor ID 290770040.

8.4.5.2 St. Louis Modeled Air Quality Evaluation

For St. Louis, there were seven monitors used for comparison with the AERMOD concentration estimates. The distribution of the modeled 1-hour SO₂ concentrations estimated for the monitor receptor, the receptor envelope (i.e., all receptors within 4 km of monitor receptor), and the hourly concentration distribution measured at each ambient monitor are provided in Figures 8-9 to 8-12. Data used to generate the figures is provided in Appendix B.

There are distinct differences in the comparison of modeled versus measured concentration distributions at ambient monitoring locations in St. Louis when compared with Greene County. Most noticeable is the width of the prediction envelopes; St. Louis prediction envelopes were not as wide as those generated for Greene County. This indicates that, in comparison with the Greene County modeling domain, there is less spatial variability in the concentrations modeled at receptors surrounding the ambient monitoring locations in St. Louis. This is likely a result of the emission source contributions; four of five ambient monitors in Green County were primarily influenced by point sources, while most of the concentration contribution in St. Louis monitors was from area source emissions.

The modeled concentrations at the monitor locations and ambient measured concentration distributions showed better overall agreement at the St. Louis monitors, though many of the measured concentrations are outside of the prediction envelopes. For example, at monitor ID 291890006 all measured concentrations up to the 99th percentile fell below the prediction envelope (Figure 8-9) (the maximum was within). Note however that the difference in the measured concentrations was only about 1 ppb when compared with concentrations at any of the envelope percentiles and at most 2 ppb when compared with the modeled concentrations at the monitor receptor. In addition, because most of these under-predictions occur at concentrations well below levels of interest, it is not of great consequence. At the upper percentiles, many of the ambient concentrations fell within the prediction envelopes; 6 of 7 monitors at the maximum percentile were within, 3 of 7 monitors at the 99th percentile were within, and 4 of 7 monitors at the 95th percentile were within the prediction envelopes. Where measured upper percentile

- concentrations were outside of the prediction envelopes, it was consistently beneath the 2.5th 1
- 2 prediction, possibly indicating some over-prediction bias at these monitors at certain percentiles
- 3 of the distribution. When comparing the AERMOD monitor concentrations with the measured
- ambient concentrations between the 80th and 99th percentile of the distribution, most of the 4
- 5 predicted values were greater than the measured concentrations. The magnitude of this over-
- prediction ranged from about 1 to 2 ppb, although one monitor had a 7 ppb difference at the 99th 6
- 7 percentile. Predictions at the maximum concentrations were more balanced; 4 of the 7 monitors
- 8 had over-predictions, while all predictions (under or over) were approximately with 10 to 35 ppb
- 9 of the measured concentrations.
- 10 The diurnal pattern was reproduced at the St. Louis monitoring locations, with some of
- 11 the prediction envelopes encompassing much of the measured ambient concentrations (e.g.,
- 12 Figure 8-9, monitor ID 291890004; Figure 8-11 monitor ID 291897003). Again where deviation
- 13 did occur at a few of the monitors, the contribution of the lower concentrations (i.e., mostly those
- beneath the 90th percentile) likely played a role in the magnitude of the disagreement. This can 14
- 15 be seen at monitor ID 291890006 (Figure 8-10) where most (99%) of the predicted
- 16 concentrations are consistently above the measure concentrations by 1 to 2 ppb. It is not
- 17 surprising to see that the difference in comparing the measured versus modeled diurnal profile at
- 18 every hour-of-the-day is also between 1 to 2 ppb.

8.4.4.3. Using unadjusted AERMOD predicted SO₂ concentrations

20 The SO₂ concentrations estimated using AERMOD do not have significant bias, save for 21

small overestimation primarily observed at the lowest concentrations and some difficulty in

reproducing the maximum concentrations. Most ambient monitoring concentrations fell within

23 the modeled prediction envelopes constructed of modeled receptors surrounding the monitor. In

- 24 generating the modeled air quality, staff made judgments in appropriately modifying model
- 25 inputs including an adjustment of the area source temporal emission profile to improve the
- 26 comparison of the model predictions with the measurement data. Staff went through several
- 27 iterations of evaluating the model performance in each modeling domain following model input
- 28 adjustments to obtain the current modeled air quality results. Given the time and resources to
- 29 perform this assessment, the good agreement in the model-to-monitor comparisons, the degree of
- 30 confidence in the dispersion modeling system, the spatial representation of the monitors
- 31 compared with receptors modeled, and the number of comparisons available, staff did not

19

- 1 perform any further adjustments to the modeled concentrations to improve the relationship
- 2 between modeled versus measured concentration at each monitor. Additional details on the
- 3 staff's reasoning are provided in section 8.11.

Figure 8-6. Comparison of measured ambient monitor SO₂ concentration distribution and diurnal profile with the modeled monitor receptor and receptors within 4 km of monitors 290770026 and 29077032 in Greene County, Mo.

Figure 8-7. Comparison of measured ambient monitor SO₂ concentration distribution and diurnal profile with the modeled monitor receptor and receptors within 4 km of monitors 290770040 and 29077041 in Greene County, Mo.

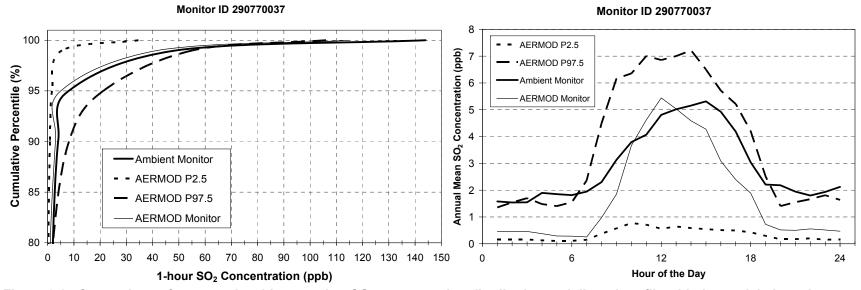


Figure 8-8. Comparison of measured ambient monitor SO₂ concentration distribution and diurnal profile with the modeled monitor receptor and receptors within 4 km of monitor 290770037 in Greene County, Mo.

Figure 8-9. Comparison of measured ambient monitor SO₂ concentration distribution and diurnal profile with the modeled monitor receptor and receptors within 4 km of monitors 291890004 and 291890006 in St Louis, Mo.

Figure 8-10. Comparison of measured ambient monitor SO2 concentration distribution and diurnal profile with the modeled monitor receptor and receptors within 4 km of monitors 291893001 and 291895001 in St Louis, Mo.

Figure 8-11. Comparison of measured ambient monitor SO2 concentration distribution and diurnal profile with the modeled monitor receptor and receptors within 4 km of monitors 291897003 and 295100007 in St Louis, Mo.

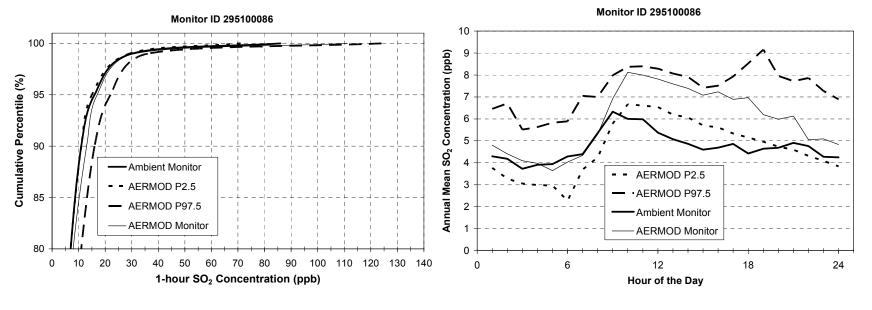


Figure 8-12. Comparison of measured ambient monitor SO2 concentration distribution and diurnal profile with the modeled monitor receptor and receptors within 4 km of monitor 295100086 in St Louis, Mo.

8.5 SIMULATED POPULATION

1 2

The population subgroups included in this exposure assessment are asthmatics and
asthmatic children. Evaluating exposures of the exposure of this group with APEX requires the
estimation of children's asthma prevalence rates. The proportion of the population of children
characterized as being asthmatic was estimated by statistics on asthma prevalence rates recently
used in the NAAQS review for O ₃ (US EPA, 2007d). See Appendix B, Attachment 2 for details
in the derivation. Specifically, an analysis of data provided in the National Health Interview
Survey (NHIS) for 2003 (CDC, 2007) generated age and gender specific asthma prevalence rates
for children ages 0-17. Adult asthma prevalence rates were estimated by gender and for each
particular modeling domain based on Missouri regional data (MO DOH, 2002). Table 8-6
provides a summary of the asthma prevalence used in the exposure analysis, stratified by age and
gender.
The total population simulated within the two modeling domains was approximately 1.4
million persons, of which there was a total simulated population of about 130,000 asthmatics.
The model simulated over 360,000 children ages 5 through 17, of which there were nearly
50,000 asthmatics. The individual populations for each modeling domain and subpopulation of
interest are provided in Table 8-7. For comparison, the MO Department of Health (2003) reports
the following 2003 asthma prevalence rates by county for all ages as follows; Greene (10.2%),
St. Charles (8.8%); St. Louis (5.8%), and St. Louis City (16.4%) which amounts to a county
nonulation-weighted value of 8.8% similar to the 9.3% modeled here using APEX

Table 8-6. Asthma prevalence rates by age and gender used in Greene County and St. Louis modeling domains.

Modeling		Asthma Prevalence (%) ²			
Domain (Region)	Age ¹	Females	Males		
Greene Co.	0	7.0	3.1		
and St. Louis	1	7.1	6.3		
(Midwest)	2	7.3	10.8		
	3	7.5	15.8		
	4	8.1	21.6		
	5	9.5	17.8		
	6	9.2	12.8		
	7	9.0	12.1		
	8	8.6	12.8		
	9	11.0	14.7		
	10	16.2	17.7		
	11	19.6	19.0		
	12	21.2	19.5		
	13	17.0	16.9		
	14	14.0	16.8		
	15	13.3	18.0		
	16	14.0	20.1		
	17	16.5	23.7		
Greene Co.	>17	10.7	6.1		
St. Louis	>17	9.3	5.3		

Notes:

Table 8-7. Population modeled in Greene County and St. Louis modeling domains.

Modeling	Pop	ulation	Asthmatic Population		
Domain	All Ages	Children (5 – 18)	All Ages	Children (5 – 18)	
Green Co.	224,145	54,373	21,948	7,285	
St. Louis	1,151,094	308,939	105,456	41,714	

2

3

4

5

6

7

1

8.5.1 Characterizing Ventilation Rates

Human activities are variable over time, a wide range of activities are possible even within a single hour of the day. The type of activity an individual performs, such as sleeping or jogging, will influence their breathing rate. The ISA indicates that adverse lung function responses associated with short-term peak exposures at levels below 1,000 ppb occurs with

¹ Ages 0-17 from the National Health Interview Survey (NHIS) for 2003 (CDC, 2007); ages >17 from (MO DOH, 2002).

- 1 moderate to heavy exertion levels. Therefore, ventilation rates needed to be defined to further
- 2 characterize exposures of interest. The target ventilation for adults (both a mix of males and
- 3 females) experiencing effects from 5-10 minute SO₂ exposures from most of the controlled
- 4 human exposure studies was between 40-50 L/min. Since there were limited controlled human
- 5 exposure study data available for asthmatic children, the ventilation targets needed to be
- 6 adjusted. As was done in the O₃ NAAQS review (EPA, 2007d), target ventilation rates were
- 7 normalized to body surface area (BSA) to allow for such an extrapolation from adults to
- 8 children. The resulting normalization yields an equivalent ventilation rate (EVR). Since BSA
- 9 was not measured in the controlled human exposure studies and the data were reported as
- grouped, median estimates for males (1.94 m²) and females (1.69 m²) were obtained from EPA
- 11 (1997) and averaged to normalize the target ventilation rates. Therefore, an EVR = 40/1.81 = 22
- 12 L/min-m² was used to characterize the minimum target ventilation rate of interest. Individuals at
- or above an EVR of 22 L/min-m² (children or adult) would be characterized as performing
- activities at or above a moderate ventilation rate.

8.6 CONSTRUCTION OF LONGITUDINAL ACTIVITY SEQUENCES

Exposure models use human activity pattern data to predict and estimate exposure to pollutants. Different human activities, such as spending time outdoors, indoors, or driving, will result in varying pollutant exposure concentrations. To accurately model individuals and their exposure to pollutants, it is critical to understand their daily activities. EPA's CHAD provides data for where people spend time and the activities performed. Typical time-activity pattern data available for inhalation exposure modeling consist of a sequence of location/activity combinations spanning 24-hours, with 1 to 3 diary-days for any single study individual.

The exposure assessment performed here requires information on activity patterns over a full year. Long-term multi-day activity patterns were estimated from single days by combining the daily records using an algorithm that represents the day-to-day correlation of activities for individuals. The algorithm first uses cluster analysis to divide the daily activity pattern records into groups that are similar, and then select a single daily record from each group. This limited number of daily patterns is then used to construct a long-term sequence for a simulated individual, based on empirically-derived transition probabilities. This approach is intermediate between an assumption of no day-to-day correlation (i.e., re-selection of diaries for each time period) and perfect correlation (i.e., selection of a single daily record to represent all days).

1516

17

18

19

20

21

22

23

24

25

26

27

28

29

30

- 1 Details regarding the algorithm and supporting evaluations are provided in Appendix B,
- 2 Attachments 3 and 4.

8.7 CALCULATING MICROENVIRONMENTAL CONCENTRATIONS

Probabilistic algorithms are used to estimate the pollutant concentration associated with each exposure event. The estimated pollutant concentrations account for temporal and spatial variability in ambient (outdoor) pollutant concentration and factors affecting indoor microenvironment, such as a penetration, air exchange rate, and pollutant decay or deposition rate. APEX calculates air concentrations in the various microenvironments visited by the simulated person by using the ambient air data estimated for the relevant blocks/receptors, the user-specified algorithm, and input parameters specific to each microenvironment. The method used by APEX to estimate the microenvironmental concentration depends on the microenvironment, the data available for input to the algorithm, and the estimation method selected by the user. The current version of APEX calculates hourly concentrations in all the microenvironments at each hour of the simulation for each of the simulated individuals using one of two methods: by mass balance or a transfer factors method. Details regarding the algorithms used for estimating specific microenvironments and associated input data derivations are provided in Appendix B.

Briefly, the mass balance method simulates an enclosed microenvironment as a well-mixed volume in which the air concentration is spatially uniform at any specific time. The concentration of an air pollutant in such a microenvironment is estimated using the following processes:

- Inflow of air into the microenvironment
- Outflow of air from the microenvironment
- Removal of a pollutant from the microenvironment due to deposition, filtration, and chemical degradation
- Emissions from sources of a pollutant inside the microenvironment.

A transfer factors approach is simpler than the mass balance model, however, most parameters are derived from distributions rather than single values to account for observed variability. It does not calculate concentration in a microenvironment from the concentration in the previous hour as is done by the mass balance method, and the transfer factors approach

- 1 contains only two parameters. A proximity factor is used to account for proximity of the
- 2 microenvironment to sources or sinks of pollution, or other systematic differences between
- 3 concentrations just outside the microenvironment and the ambient concentrations (at the
- 4 measurements site or modeled receptor). The second parameter, a penetration factor, quantifies
- 5 the amount of outdoor pollutant penetrates into the microenvironment.

8.7.1 Approach for Estimating 5-Minute Maximum SO₂ Concentrations

The 5-minute peak concentrations were estimated probabilistically considering the empirically-derived PMR CDFs developed from recent 5-minute ambient monitoring data (see section 7.2). Thus for every 1-hr concentration estimated at each receptor, an associated 5-minute maximum SO₂ concentration was generated.

The approach is designed to generate the maximum 5-minute SO₂ concentrations to use in evaluating exceedances of the potential health effects benchmarks. In general, it is not an objective to estimate each of the other eleven 5-minute concentrations within the hour with a high degree of certainty. While the occurrence of multiple peak concentrations above benchmark levels within an hour is possible, the potential health effect benchmark levels are related to single peak exposures within a day. The APEX model originally used 1-hour ambient SO₂ concentrations as input prior to the calculation of microenvironmental concentrations. The current APEX model now can use ambient concentrations of almost any time step, including down to 5-minutes. The file size was an issue with this approach however, since each of the thousands of receptor files generated by AERMOD would be increase by a factor of twelve, creating both disk space and processing difficulties. An algorithm was incorporated into the flexible time-step APEX model to estimate the 5-minute maximum SO₂ concentrations real-time using the 1-hour SO₂ concentration, an appropriate PMR (section 7.2), and equation 7-1. The additional eleven 5-minute concentrations within an hour at each receptor were approximated using the following:

$$X = \frac{n\overline{C} - P}{n - 1}$$
 equation (8-1)

where,

X = 5-minute concentration in each of non-peak concentration periods in the hour at a receptor (ppb)

 \overline{C} = 1-hr mean concentration estimated at a receptor (ppb)

P = estimated peak concentration at a receptor (ppb) estimated probabilistically using equation 7-1.
 n = number of time steps within the hour (12)

In addition to the level of the maximum concentration, the actual time of when the contact occurs with a person is also of importance. There is no reason to expect a temporal relationship of the peak concentrations within the hour, thus clock times for peak values were estimated randomly (i.e., any one of the 12 possible time periods within the hour). The PMR assignment also assumes a standard frequency during any hour of the day.

8.7.2 Microenvironments Modeled

In APEX, microenvironments represent the exposure locations for simulated individuals. For exposures to be estimated accurately, it is important to have realistic microenvironments that match closely to the locations where actual people spend time on a daily basis. As discussed above, the two methods available in APEX for calculating pollutant levels within microenvironments were mass balance or a transfer factors approach. Table 8-8 lists the microenvironments used in this study, the calculation method used, and the type of parameters used to calculate the microenvironment concentrations.

Table 8-8. List of microenvironments modeled and calculation methods used.

Microenvironment	Calculation Method	Parameter Types used ¹				
Indoors – Residence	Mass balance	AER and DE				
Indoors – Bars and restaurants	Mass balance	AER and DE				
Indoors – Schools	Mass balance	AER and DE				
Indoors – Day-care centers	Mass balance	AER and DE				
Indoors – Office	Mass balance	AER and DE				
Indoors – Shopping	Mass balance	AER and DE				
Indoors – Other	Mass balance	AER and DE				
Outdoors – Near road	Factors	PR				
Outdoors – Public garage - parking lot	Factors	PR				
Outdoors – Other	Factors	None				
In-vehicle – Cars and Trucks	Factors	PE and PR				
In-vehicle - Mass Transit (bus, subway, train)	Factors	PE and PR				
¹ AER=air exchange rate, DE=decay-deposition rate, PR=proximity factor, PE=penetration factor						

8.7.3 Microenvironment Descriptions

8.7.3.1 Microenvironment 1: Indoor-Residence

The Indoor-Residence microenvironment uses several variables that affect SO₂ exposure:

whether or not air conditioning is present, the average outdoor temperature, the SO₂ removal

rate, and an indoor concentration source.

Air conditioning prevalence rates

Since the selection of an air exchange rate distribution is conditioned on the presence or absence of an air-conditioner, for each modeled area the air conditioning status of the residential microenvironments is simulated randomly using the probability that a residence has an air conditioner. A value of 95.5% was calculated to represent the air conditioning prevalence rate in

both Greene County and St. Louis, using the data and survey weights for St. Louis, MO.

obtained from the American Housing Survey of 2003 (AHS, 2003a; 2003b).

Air exchange rates

1

2

4

5

6

7

8

9

10

11

12

13 14

15

16

17

18

20

24

25

26

27

29

Air exchange rate data for the indoor residential microenvironment were the same used in

APEX for the most recent O₃ NAAQS review (EPA, 2007d; see Appendix B, Attachment 5).

Briefly, data were reviewed, compiled and evaluated from the extant literature to generate

location-specific AER distributions categorized by influential factors, namely temperature and

presence of air conditioning. In general, lognormal distributions provided the best fit, and are

defined by a geometric mean (GM) and standard deviation (GSD). To avoid unusually extreme

simulated AER values, bounds of 0.1 and 10 were selected for minimum and maximum AER,

21 respectively.

Briefly, AER data were reviewed, compiled, and evaluated from the extant literature to

23 generate location-specific AER distributions categorized by influential factors, namely, location,

temperature, and presence of A/C. The AER data obtained was limited in the number of

samples, particularly when considering these influential factors. When categorizing by

temperature, a range of temperatures was used to maintain a reasonable number of samples

within each category to allow for some variability within the category, while still allowing for

differences across categories. Several distribution forms were investigated (i.e., exponential,

log-normal, normal, and Weibull) and in general, lognormal distributions provided the best fit.

30 Fitted lognormal distributions were defined by a geometric mean (GM) and standard deviation

- 1 (GSD). Because no fitted distribution was available specifically for St. Louis or Greene County,
- 2 distributions were selected from other locations thought to have similar characteristics,
- 3 qualitatively considering factors that might influence AERs including the age composition of
- 4 housing stock, construction methods, and other meteorological variables not explicitly treated in
- 5 the analysis, such as humidity and wind speed patterns. To avoid unusually extreme simulated
- 6 AER values, bounds of 0.1 and 10 were selected for minimum and maximum AER, respectively.
- 7 Table 8-9 summarizes the distributions used by A/C prevalence and temperature categories. See
- 8 Appendix B, Attachment 5 for additional details.

Table 8-9. Geometric means (GM) and standard deviations (GSD) for air exchange rates by A/C type and temperature range.

A/C Type ¹	Temp (°C)	N	GM	GSD
Central or	<=10	179	0.9185	1.8589
Room A/C	10-20	338	0.5636	1.9396
	20-25	253	0.4676	2.2011
	25-30	219	0.4235	2.0373
	>30	24	0.5667	1.9447
No A/C	<=10	61	0.9258	2.0836
	10-20	87	0.7333	2.3299
	>20	44	1.3782	2.2757

Notes:

9

10

11

12

13

14

15

16

17

18

19

SO₂ Removal Rate

Staff estimated distributions of indoor SO₂ deposition rates by applying a Monte Carlo sampling approach to configurations of indoor microenvironments of interest. The relative composition of particular surface materials (e.g., painted wall board, wall paper, wool carpet, synthetic carpet, synthetic floor covering, cloth) within various sized buildings were probabilistically modeled to estimate 1,000 SO₂ deposition rates that in turn were used to parameterize lognormal distributions (Table 8-10). The modeling was fundamentally based on a review of SO₂ deposition conducted by Grontoft and Raychaudhuri (2004) for a variety of building material surfaces under differing conditions of relative humidity. Details on the data used and derivation of removal rates are provided in Appendix B, section 4.

¹ All distributions derived from data reported in non-California cities. See Appendix B, Attachment 5 for details in the data used and distribution derivation.

Table 8-10. Final parameter estimates of SO₂ deposition distributions in several indoor microenvironments modeled in APEX.

Microenv-	Heating	g or Air Co	nditioning	ı in Use	(Sumn	Conditioning Not in Use mertime Ambient Morning elative Humidity of 90%)				
ironment	Geom. Mean (hr ⁻¹)	Geom. Stand. Dev. (hr ⁻¹)	Lower Limit (hr ⁻¹)	Upper Limit (hr ⁻¹)	Geom. Mean (hr ⁻¹)	Geom. Stand. Dev. (hr ⁻¹)	Lower Limit (hr ⁻¹)	Upper Limit (hr ⁻¹)		
Residence	3.14	1.11	2.20	5.34	13.41	1.11	10.31	26.96		
Office	3.99	1.04	3.63	4.37	N/A	N/A	N/A	N/A		
School/ Day Care Center	4.02	1.02	3.90	4.21	N/A	N/A	N/A	N/A		
Restaurant	2.36	1.28	1.64	4.17	N/A	N/A	N/A	N/A		
Other Indoors	2.82	1.21	1.71	4.12	N/A	N/A	N/A	N/A		

Notes:

N/A not applicable, assumed by staff to always have A/C in operation.

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

8.7.3.2 Microenvironments 2-7: All Other Indoor Microenvironments

The remaining five indoor microenvironments, which represent Bars and Restaurants, Schools, Day Care Centers, Office, Shopping, and the broadly defined Other Indoor microenvironments, were all modeled using the same data and functions. An air exchange rate

distribution (GM = 1.109, GSD = 3.015, Min = 0.07, Max = 13.8) was based on an indoor air

quality study (Persily et al., 2005). This is the same distribution in APEX used for the most

recent O₃ NAAQS review (EPA, 2007d). See Appendix B, Attachment 5 for details in the data

used and derivation. The SO₂ removal rates were estimated as explained in section 8.7.3.1, and

described in more detail in Appendix B, section 4. The resulting lognormal distributions are

presented in Table 8-10. These microevironments all assumed to all have air-conditioning.

8.7.3.3 Microenvironments 8-10: Outdoor Microenvironments

All outdoor microenvironmental concentrations are well represented by the modeled concentrations. Therefore, both the penetration factor and proximity factor for this microenvironment were set to 1.

8.7.3.4 Microenvironments 11 and 12: In Vehicle- Cars and Trucks, and Mass Transit

There were no available measurement data for SO₂ penetration factors, therefore the penetration factors used were developed from NO₂ data provided in Chan and Chung (2003) and

- 1 used in the recent NO_x NAAQS review (EPA, 2008d). Inside-vehicle and outdoor NO₂
- 2 concentrations were measured with for three ventilation conditions, air-recirculation, fresh air
- 3 intake, and with windows. Mean values range from about 0.6 to just over 1.0, with higher values
- 4 associated with increased ventilation (i.e., window open). A uniform distribution U{0.6, 1.0}
- 5 was selected for the penetration factor for Inside-Cars/Trucks due to the limited data available to
- 6 describe a more formal distribution and the lack of data available to reasonably assign potentially
- 7 influential characteristics such as use of vehicle ventilation systems for each location. Mass
- 8 transit systems, due to the frequent opening and closing of doors, was assigned a uniform
- 9 distribution U{0.8, 1.0} based on the reported mean values for fresh-air intake (0.796) and open
- windows (1.032) on urban streets.

13

14

15

16

17

28 29

30

31

32

equation:

8.8 EXPOSURE MEASURES AND HEALTH RISK CHARACTERIZATION

APEX calculates exposure as a time-series of exposure concentrations that a simulated individual experiences during the simulation period. APEX calculates exposure by identifying concentrations in the microenvironments visited by the person according to the composite diary. In this manner, a time-series of event exposures are found. Then, the time-step exposure concentration at any clock hour during the simulation period is calculated using the following

$$C_{i} = \frac{\sum_{j=1}^{N} C_{time-step (j)} t_{(j)}}{T}$$
 equation (8-2)

19
20 where,

$$C_{i} = \text{Time-step exposure concentration at clock hour } i \text{ of the simulation period (ppm)}$$
23
$$N = \text{Number of events (i.e., microenvironments visited) in time-step } i$$
24
$$C_{time-step(j)} = \text{Time-step concentration in microenvironment } j \text{ (ppm)}$$
26
$$t_{(j)} = \text{Time spent in microenvironment } j \text{ (minutes)}$$
27
$$T = \text{Length of time-step (or 5 minutes in this analysis)}$$

From the time-step exposures, APEX calculates time-series of 5-minute, 1-hour, 24-hour, and annual average exposure concentrations that a simulated individual would experience during the simulation period. APEX then statistically summarizes and tabulates the 5-minute time-step (or daily, or annual average) exposures. From this, APEX can calculate two general types of

- 1 exposure estimates: counts of the estimated number of people whose exposure exceeded a
- 2 specified SO₂ concentration level 1 or more times in a year and the number of times per year that
- 3 they are so exposed; the latter metric is in terms of person-occurrences or person-days. The
- 4 former highlights the number of individuals whose exposure exceeded at least *one or more* times
- 5 per modeling period the health effect benchmark level of interest. APEX can also report counts
- 6 of individuals with multiple exposures. This person-occurrences measure estimates the number
- 7 of times per season that individuals are exposed to the exposure indicator of interest and then
- 8 accumulates these estimates for the entire population residing in an area.

In this exposure assessment, APEX tabulates and displays the two measures for exposures above levels ranging from 0 to 800 ppb by 50 ppb increments for all exposures. These results are tabulated for the population and subpopulations of interest.

8.8.1 Adjustment for Just Meeting the Current and Alternative Standards

We used a different approach to simulate just meeting the current and alternative standards than was used in the Air Quality Characterization (see section 7.2.4). In this case, instead of adjusting upward⁴⁷ the air quality concentrations, to reduce computer processing time, we adjusted the health effect benchmark levels by the same factors described for each specific modeling domain and simulated year (Table 8-11). Since it is a proportional adjustment, the end effect of adjusting concentrations upwards versus adjusting benchmark levels downward within the model is the same. The same follows for where as is concentrations were in excess of an alternative standard level (e.g., 50 ppb for the 99th percentile averaged over three years), only the associated benchmarks are adjusted upwards (i.e., a higher threshold concentration that would simulate lower exposures).

9

10

11

12

13

14

15

16

17

18

19

20

21

⁴⁷ To evaluate the current and most of the alternative standards proposed, ambient concentrations were lower than air quality that would just meet the standards.

Table 8-11. Exposure concentrations and adjusted potential health effect benchmark levels used by APEX to simulate just meeting the current and potential alternative standards in the Greene County and St Louis modeling domains.

Modeling					Expos	ure Cor	ncentrat	ions an	d Adjus	ted Pote	ential He	ealth Eff	ect Ben	chmark	Levels	(ppb) ³		
Domain	Form ¹	Level ²	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
	98	200	20.3	40.5	60.8	81	101.3	121.5	141.8	162	182.3	202.5	222.8	243	263.3	283.5	303.8	324
	99	50	94.3	188.7	283	377.3	471.7	566	660.3	754.7	849	943.3	1037.7	1132	1226.3	1320.7	1415	1509.3
	99	100	47.2	94.3	141.5	188.7	235.8	283	330.2	377.3	424.5	471.7	518.8	566	613.2	660.3	707.5	754.7
Greene	99	150	31.4	62.9	94.3	125.8	157.2	188.7	220.1	251.6	283	314.4	345.9	377.3	408.8	440.2	471.7	503.1
County	99	200	23.6	47.2	70.8	94.3	117.9	141.5	165.1	188.7	212.3	235.8	259.4	283	306.6	330.2	353.8	377.3
	99	250	18.9	37.7	56.6	75.5	94.3	113.2	132.1	150.9	169.8	188.7	207.5	226.4	245.3	264.1	283	301.9
	CS		14.4	28.8	43.2	57.6	72	86.4	100.8	115.2	129.6	144	158.3	172.7	187.1	201.5	215.9	230.3
	AS IS		50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
	98	50	53	106	159	212	265	318	371	424	477	530	583	636	689	742	795	848
	98	100	26.5	53	79.5	106	132.5	159	185.5	212	238.5	265	291.5	318	344.5	371	397.5	424
	98	150	17.7	35.3	53	70.7	88.3	106	123.7	141.3	159	176.7	194.3	212	229.7	247.3	265	282.7
	98	200	13.3	26.5	39.8	53	66.3	79.5	92.8	106	119.3	132.5	145.8	159	172.3	185.5	198.8	212
	98	250	10.6	21.2	31.8	42.4	53	63.6	74.2	84.8	95.4	106	116.6	127.2	137.8	148.4	159	169.6
St. Louis	99	50	63.3	126.7	190	253.3	316.7	380	443.3	506.7	570	633.3	696.7	760	823.3	886.7	950	1013.3
St. Louis	99	100	31.7	63.3	95	126.7	158.3	190	221.7	253.3	285	316.7	348.3	380	411.7	443.3	475	506.7
	99	150	21.1	42.2	63.3	84.4	105.6	126.7	147.8	168.9	190	211.1	232.2	253.3	274.4	295.6	316.7	337.8
	99	200	15.8	31.7	47.5	63.3	79.2	95	110.8	126.7	142.5	158.3	174.2	190	205.8	221.7	237.5	253.3
	99	250	12.7	25.3	38	50.7	63.3	76	88.7	101.3	114	126.7	139.3	152	164.7	177.3	190	202.7
	CS		8	16	24	32	40	48	56	64	72	80	88	96	104	112	120	128
	AS IS		50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800

Notes:

¹ The form of the standard used to adjust the air quality. 98 is the 98th percentile 1-hour daily maximum alternative standard, 99 is the 99th percentile 1-hour daily maximum alternative standard, CS is either the current annual average or 24-hour NAAQS (whichever had the lowest factor), AS IS is unadjusted air quality.

² The level of the potential alternative standards, i.e., the 1-hour daily maximum at the noted percentile of the distribution.

Exposure levels were defined in 50 ppb increments from 0 through 800 ppb even though the selected potential health effect benchmark levels were 100 to 400 ppb in 100 ppb increments.

8.9 EXPOSURE MODELING AND HEALTH RISK CHARACTERIZATION RESULTS

Exposure results are presented for simulated asthmatic populations residing in the two modeling domains in Missouri. Five-minute daily maximum SO₂ exposures were estimated for each day for year 2002. These short-term exposures were evaluated for all asthmatics and asthmatic children when the exposure corresponded with moderate or greater activity levels. The number of daily maximum 5-minute SO₂ exposures that were at or above any level from 0 through 800 ppb in 50 ppb increments was estimated by APEX. Therefore, depending on the concentration level, an individual would have at most one exceedance of a particular level per day, or 365 per year, provided that the person was at a moderate (or higher) exertion level while exposed.

Multiple air quality scenarios were evaluated, including unadjusted air quality (termed as is), air quality adjusted to just meet the current NAAQS, and air quality adjusted to just meet several potential alternative 1-hr daily maximum standards. Exposure results are presented in a series of figures that allow for simultaneous comparison of exposures associated with each air quality scenario. Four types of results are provided for each modeling domain: (1) the number of persons in the simulated subpopulation exposed at or above selected levels 1 or more times in a year, (2) the percent of the simulated subpopulation exposed at or above selected levels 1 or more times in a year, (3) the total number of days in a year the simulated subpopulation is exposed (or person days) at or above selected levels, and (4) the percent of time associated with the exposures at or above the selected levels. Tables summarizing all of the exposure results for each modeling domain, air quality scenario, exposure level, and subpopulation are provided in Appendix B, section 4.

8.9.1 Asthmatic Exposures to 5-minute Daily Maximum SO₂ in Greene County

When considering the lowest 5-minute benchmark level of 100 ppb, approximately one thousand asthmatics are estimated to be exposed at least once in the year 2002 while at moderate or greater exertion and when considering the current standard air quality scenario (top of Figure 8-13). Each of the potential alternative 1-hr standard air quality scenarios as well as the as is air quality scenario result in fewer asthmatics exposed when compared with the current standard scenario, and progressively fewer persons were exposed with decreases in the 1-hour daily maximum concentration levels of the potential alternative standards. The 99th percentile 1-hour

- daily maximum standard levels of 50 and 100 ppb produced the same number of persons with 5-
- 2 minute daily maximum exposures at or above 100 ppb as the as is air quality (i.e., 13). With
- 3 progressive increases in exposure level, there were corresponding decreases in the number of
- 4 individuals exposed. None of the asthmatics had a 5-minute daily maximum exposure above 100
- 5 ppb when considering the as is air quality scenario. Asthmatic children exhibited similar
- 6 patterns in the estimated number of exposures at each of the exposure levels, though comprising
- 7 a large proportion of the total asthmatics exposed (bottom of Figure 8-13).

8 The difference between all asthmatics and asthmatic children is best demonstrated by

9 comparing the percent of the subpopulation exposed. Asthmatic children have nearly double the

percentage of the subpopulation exposed at any of the benchmark levels considered when

compared with that of all asthmatics (Figure 8-14). For example, approximately 1% of asthmatic

children experience at least one 5-minute daily maximum exposure at or above 200 ppb in a year

in considering the current standard scenario, while approximately 0.6% of all asthmatics

experienced a similar exposure. As observed with the numbers of persons exposed, a lower

estimated percent of persons was exposed at the higher benchmark levels, though again, the

current standard scenario contains the greatest percent of asthmatics exposed when compared

with the other air quality scenarios.

11

12

13

14

15

16

18

19

20

21

22

23

24

25

26

27

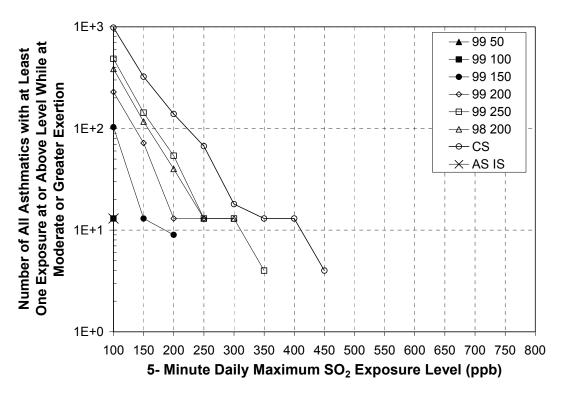
28

29

30

31

The number of person days or occurrences of exposures is greater than the number of persons exposed, indicating that some of the simulated asthmatics had more than one 5-minute daily maximum exposure above selected benchmark levels (Figure 8-15). For example, when considering all asthmatics and the current standard scenario, there were approximately 22 person days with exposures at or above 300 ppb. This corresponds with the 18 asthmatics estimated to experience at least one 5-minute daily maximum SO₂ concentration above this level, indicating that a number of persons had experienced at least 2 benchmark exceedances in the year. For both subpopulations considered, there were no estimated exposures above 300 ppb when considering the 99th percentile 1-hour daily maximum alternative standard level of 200 ppb.


Staff evaluated the microenvironments where the peak exposures frequently occurred. There were very few persons exposed considering the as is air quality, though 99% or greater experienced their 5-minute daily maximum exposure in an outdoor microenvironment (i.e., outdoors or outdoors near-roads) when considering any of the benchmark levels. For the current standard air quality scenario, approximately 7% of persons were exposed to the 100 ppb

- benchmark level indoors (i.e., primarily in the persons residence), though with increasing
- benchmark level (e.g., 300 ppb) the percent of persons with any benchmark exceedances indoors
- 3 approached zero (i.e., > 99% occurred outdoors). The inside vehicle microenvironment also
- 4 comprised a small percent of the cases where the exposures above selected levels occurred; at
- 5 most 2% of benchmark exceedances occurred inside vehicles at some of the lowest benchmark
- 6 levels.

8.9.2 Asthmatic Exposures to 5-minute Daily Maximum SO₂ in St. Louis

The patterns in the number of persons (either asthmatics or asthmatic children) exposed in St. Louis were different to that observed in Greene County; a greater number of persons were estimated exposed in St. Louis at each of the corresponding benchmark levels and air quality scenarios (Figure 8-16). For example, nearly 80,000 asthmatics were estimated to experience at least one 5-minute daily maximum SO₂ concentration at or above 100 ppb when considering the current standard scenario compared to the one thousand asthmatics estimated in Greene County (section 8.9.1). In addition, there were more persons exposed to the higher benchmark levels in St. Louis compared with Greene County. For example, none of the asthmatics were exposed to a 5-minute daily maximum SO₂ concentration above 450 ppb in Greene County considering any of the air quality scenarios. In St. Louis many of the air quality scenarios had persons with exceedances of 450 ppb; the estimated number of persons experiencing at least one 5-minute daily maximum SO₂ concentration above 450 ppb ranged from a low of 16 (the 99th percentile 1-hour daily maximum standard level of 100 ppb) to over 10,000 (the current standard air quality scenario). Note though, in considering the as is air quality scenario, none of the asthmatics in St. Louis had exceedances of a 450 ppb exposure level.

There were also differences in the estimated percent of asthmatics and asthmatic children exposed to concentrations above the benchmark levels in St. Louis when compared with Greene County. For example, over 40% of asthmatic children were estimated to experience a 5-minute daily maximum exposure above 300 ppb in St. Louis considering the current standard air quality scenario, while less than 1% of asthmatic children in Greene County experienced a similar exposure (Figure 8-17). Just as observed with the Greene County estimates though, there were

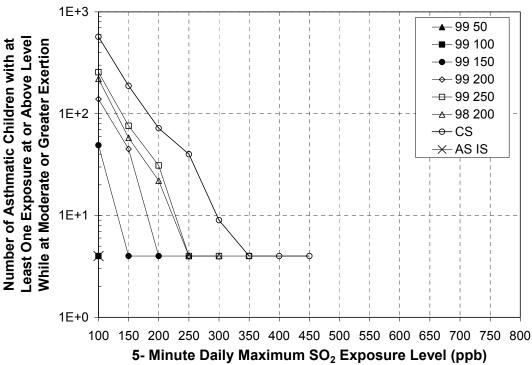
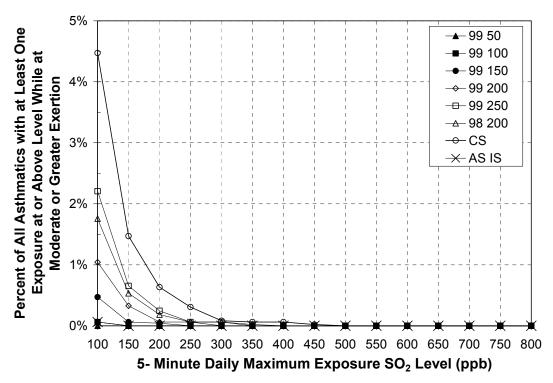



Figure 8-13. Number of all asthmatics (top) and asthmatic children (bottom) with 5-minute daily maximum SO₂ exposures above selected exposure levels in Greene County, year 2002 air quality as is and adjusted to just meeting the current and potential alternative standards.

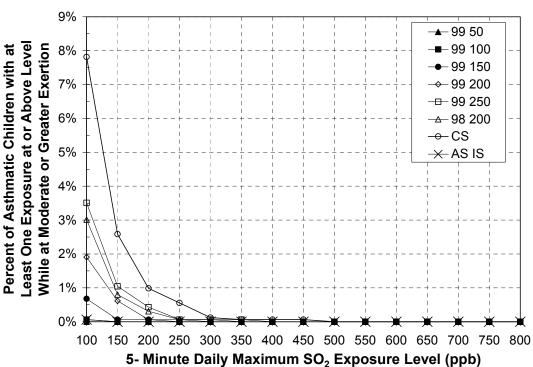
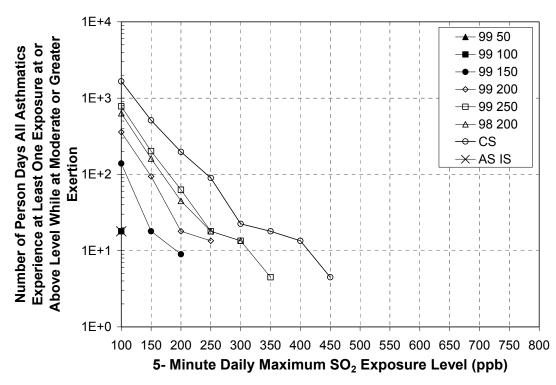



Figure 8-14. Percent of all asthmatics (top) and asthmatic children (bottom) with 5-minute daily maximum SO₂ exposures above selected exposure levels in Greene County, year 2002 air quality as is and adjusted to just meeting the current and potential alternative standards.

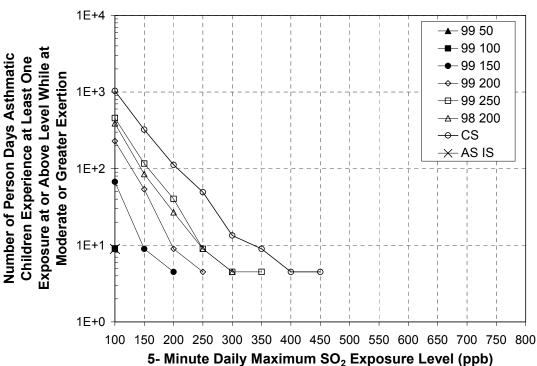


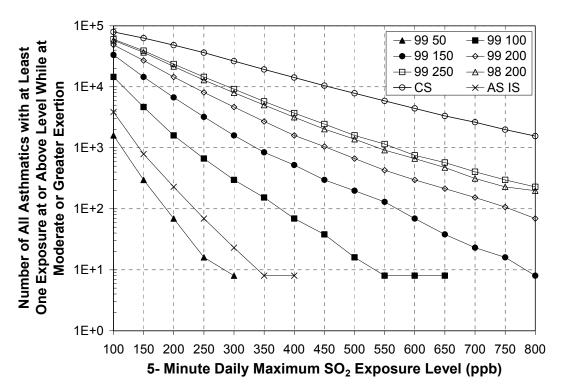
Figure 8-15. Number person days all asthmatics (top) and asthmatic children (bottom) experience 5-minute daily maximum SO₂ exposures above selected exposure levels in Greene County, year 2002 air quality as is and adjusted to just meeting the current and potential alternative standards.

1 decreases in the percent of persons exposed with decreases in the 1-hour daily maximum level of 2 the potential alternative standards. For example, less than 3% of asthmatic children were 3 estimated to have at least one 5-minute daily maximum exposure above 300 ppb when considering a 99th percentile 1-hour daily maximum standard level of 150 ppb. 4 5 The discussion regarding the patterns observed in the number of persons exposed in St. 6 Louis can be extended to the number of person days (i.e., both a greater number and at higher 7 benchmark levels when compared with Greene County). In addition, St. Louis had a greater 8 number of persons with multiple exceedances when compared with Greene County (Figure 8-9 18). For example, given the 22 person days at or above 300 ppb in Greene County experienced 10 by the 18 asthmatics considering the current standard air quality, on average this amounts to 11 approximately 1.2 exposures per year. In contrast, approximately 26,000 asthmatics had nearly 12 50,000 person days at the same benchmark level and air quality scenario in St. Louis; on average 13 each person is estimated to experience 1.9 exceedances in a year. 14 Staff also evaluated the microenvironments where the peak exposures occurred in St. 15 Louis, and again, there were differences when compared with the exposures in Greene County. 16 In St. Louis, there were a greater percentage of benchmark exceedances within indoor and inside 17 vehicle microenvironments, although overall still comprising a small percentage of where the 18 exceedances were occurring. At the 100 ppb benchmark level, approximately 10% of the 19 exposures occur within indoor microenvironments (i.e., principally inside residences) and about 20 5% occur inside vehicles considering as is air quality (Figure 8-19). The percentage increases 21 when considering air quality adjusted to just meeting the current standard, with approximately 22 30% of benchmark exceedances of 100 ppb occurring indoors and 20% occurring inside 23 vehicles. Just beyond the benchmark level of 400 ppb, nearly all of the exceedances occur 24 outdoors when considering the as is air quality, while indoor microenvironments still contribute

March 2009

current standard scenarios.

25


26

27

28

to around 10% of exceedances up to a 5-minute daily maximum exposure level of 800 ppb. For comparison, air quality adjusted to just meet a 99th percentile 1-hour daily maximum standard

level of 150 ppb is also shown, and falls within the range of values provided by the as is and

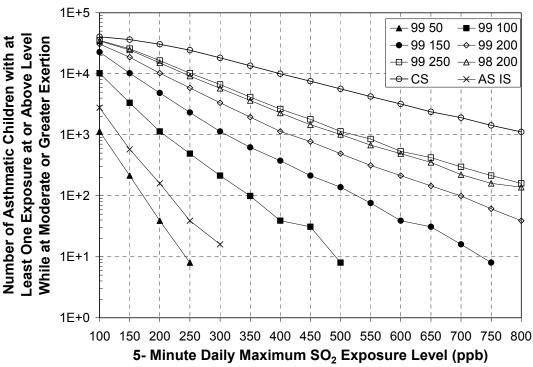
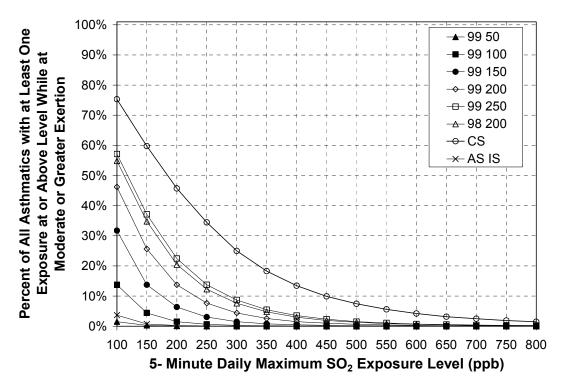



Figure 8-16. Number of all asthmatics (top) and asthmatic children (bottom) with 5-minute daily maximum SO₂ exposures above selected exposure levels in St. Louis, year 2002 air quality as is and adjusted to just meeting the current and potential alternative standards.

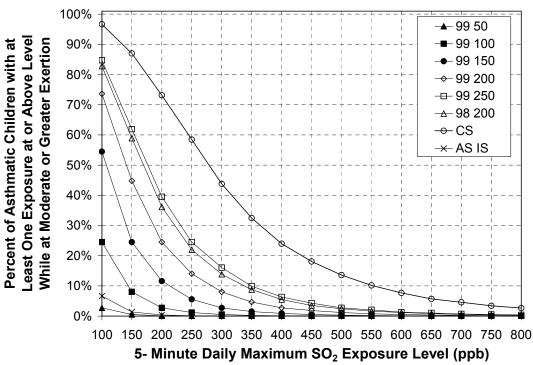
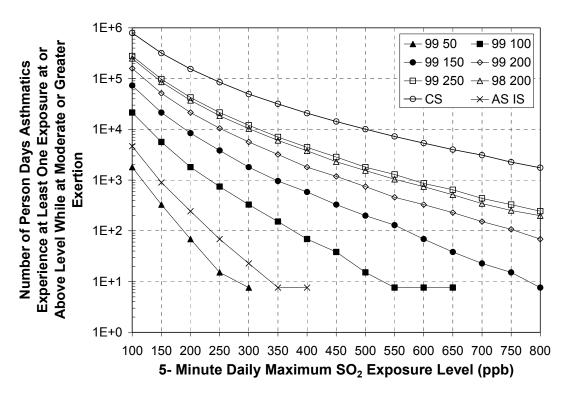



Figure 8-17. Percent of all asthmatics (top) and asthmatic children (bottom) with 5-minute daily maximum SO₂ exposures above selected exposure levels in St. Louis, year 2002 air quality as is and adjusted to just meeting the current and potential alternative standards.

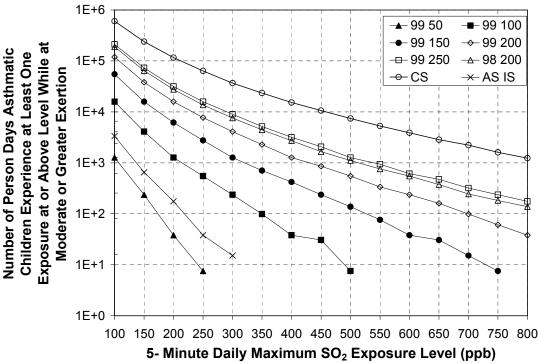
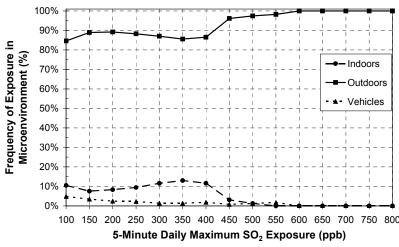
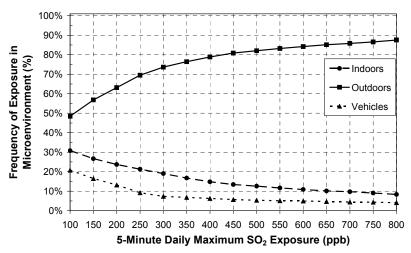




Figure 8-18. Number person days all asthmatics (top) and asthmatic children (bottom) experience 5-minute daily maximum SO₂ exposures above selected exposure levels in St. Louis, year 2002 air quality as is and adjusted to just meeting the current and potential alternative standards.

Air Quality Adjusted to Just Meet the Current Standard

Air Quality Adjusted to Just Meet the 99th %ile 150 ppb Standard

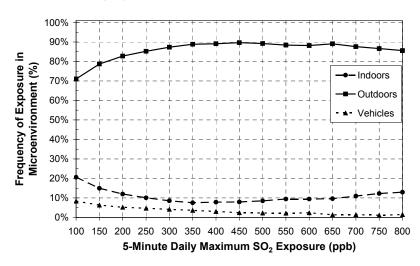


Figure 8-19. The frequency of estimated exposure level exceedances in indoor, outdoor, and vehicle microenvironments given as is air quality (top), air quality adjusted to just meeting the current standard (middle) and that adjusted to just meeting a 99th percentile 1-hour daily maximum standard level of 150 ppb (bottom) in St. Louis.

2

1

8.10 REPRESENTATIVENESS OF EXPOSURE RESULTS

8.10.1 Introduction

Due to time and resource constraints the exposure assessment evaluating the current and alternative standards was only applied to the two locations in Missouri. A natural question is how representative are the estimates from this assessment of exposures in Greene County and St. Louis to other areas in the United States with elevated peak SO₂ concentrations. To address this question, additional data were compiled and analyzed to provide perspective on how representative the exposure modeling results might be for other areas. Because most estimated exceedances were associated with the outdoor microenvironments, this analysis and discussion is centered on time spent outdoors to allow for comparison of the two modeling domains with several other broad regions. In addition, the distribution of asthma prevalence rates in the U.S. is also discussed.

8.10.2 Time spent outdoors

The time spent outdoors by children age 5-17 was calculated from CHAD-Master⁴⁸ for five regions of the country. The U.S. states used in the air quality characterization (Chapter 7) were of interest, which already includes Missouri (representing the two exposure modeling domains). Staff analyzed the outdoor time by broad geographic regions because it was thought that the regional climate would have influence on each population. In addition, most of the location descriptors are already broadly defined to protect the identity of persons in CHAD; finer spatial scale such as at a city-level is uncommon. Table 8-12 has the States used to identify CHAD diaries available to populate a data set for each of the five regions. Staff further separated the diaries by time-of-year (school year versus summer)⁴⁹ and the day-of-week (weekdays versus weekends), both important factors influencing time spent outdoors (Graham and McCurdy, 2004). Summer days were not separated by day of week; staff assumed that the variation in outdoor time during the summer would not be greatly influenced by this factor for children. The results for time spent outdoors in each region are given in the attached Table 8-13.

⁴⁸ Currently available through EPA at mccurdy.tom@epa.gov.

⁴⁹ A traditional school year was considered (months of September-May); summer months included June-August.

Table 8-12. States used to define five regions of the U.S. and characterize CHAD data diaries.

Region	States
Mid-Atlantic (MA)	New York, New Jersey, Delaware, Maryland, District of Columbia, Virginia, West Virginia, Pennsylvania
Midwest (MW)	Ohio, Iowa, Missouri, Illinois, Indiana, Kentucky
Northeast (NE)	Maine, New Hampshire, Vermont, Massachusetts, Connecticut, Rhode Island
Southeast (SE)	North Carolina, South Carolina, Georgia, Florida, Tennessee, Alabama, Mississippi, Arkansas, Louisiana
Southwest (SW)	Nevada, Utah, Colorado, Arizona, New Mexico, Texas, Oklahoma

2

4

5

6

7

8

9

10

11

12

13 14

15

16

17

18

19

20

Participation rates for the selected time of year and day of week groupings were similar for each of the regions. In general, a smaller percent of children spend time outdoors during the school year (about 45-50%) compared to the summer (about 70-77%). There was no apparent pattern in the day-of week participation rates considering the school year days. However, children did spend more time outdoors on weekend days compared to weekdays at all percentiles of the distribution and within all regions. In addition, children consistently spent more time outdoors during summer days within all regions. There were few differences in outdoor time when comparing each of the regions. Children in Northeastern States had the widest range in the distributions for time spent outdoors. In this region of the U.S., children spent the least amount of time outdoors during the school-year days-of-the-week and the greatest amount of time outdoors on average during the summer. Based on this analysis, it is not expected that the results generated for the two Missouri modeling domains would be largely different from results generated in most areas of the U.S. when considering time spent outdoors, though there may be differences in exposures estimated in Northeastern states. ⁵⁰ Depending on when the peak exposure events occur in the year, the exposures estimated in these states may be lower or higher.

⁵⁰ Note however that all of the Northeastern data have the fewest number of person days available, in particular the summer days (n=23).

Table 8-13. Time spent outdoors for children ages 5-17 using CHAD diaries.

			Doe	rs¹		Time Spent Outdoors (minutes)							
Region	Time of Year	Day of Week	(n)	(%)	Mean	SD	Min	Med	P95	Max	GM	GSD	
	school	weekdays	400	45	113	97	1	90	301	700	73	3.0	
MA	3011001	weekends	317	43	158	159	2	120	365	1440	105	2.7	
	summer	all	474	71	193	140	5	165	462	1210	146	2.3	
	school	weekdays	336	42	109	92	2	88	300	550	73	2.7	
MW	3011001	weekends	258	41	152	131	1	116	422	870	102	2.7	
	summer	all	154	71	193	180	5	143	565	1250	131	2.6	
	school	weekdays	70	48	106	89	2	75	290	335	66	3.1	
NE	3011001	weekends	54	43	148	128	15	115	480	574	105	2.4	
	summer	all	23	77	217	148	30	175	465	635	172	2.1	
	school	weekdays	641	49	120	98	2	95	325	555	84	2.6	
SE		weekends	593	52	157	126	1	123	404	810	112	2.5	
	summer	all	244	70	185	147	5	150	480	935	135	2.4	
SW	school	weekdays	253	46	119	106	1	90	315	650	80	2.8	
	3011001	weekends	232	50	162	142	7	120	405	1390	116	2.4	
Notes	summer	all	273	76	187	137	2	150	450	840	136	2.5	

Notes:

8.10.3 Asthma Prevalence

Staff compared regional asthma prevalence statistics for children <18 years in age and all persons. For children, the estimated age-adjusted percents of ever having asthma are presented in Table 8-13 using data from Dey et al. (2004). There are similar prevalence rates for asthmatic children in three of the four regions of the U.S. (Midwest, South, and West), suggesting that exposure analyses conducted in these broader regions may result in similar distributions in the percent of asthmatics exposed to the two Missouri modeling domains used in this assessment. The Northeastern U.S. has a higher percentage of asthmatic children. This suggests that there may be a greater percentage of peak exposures to asthmatic children in the Northeast than compared with the percent modeled in St. Louis or Greene County, holding all other influential variables are constant (e.g., time spent outdoors, a similar air quality distribution).

Staff weighted the BRFSS 2002 state-level adult asthma prevalence rates (self-reported) to generate prevalence rates for five U.S regions (Table 8-15).⁵¹ Similar rates (between 7.6-

¹ Doers are those engaged in the particular activity, in this case those children that had at least 1 minute of outdoor time recorded in their CHAD time-location-activity diary. The participation rate (%) was estimated by the total number of persons in each subgroup (not included). The *n* indicates the person-days of diaries used to calculate the outdoor time statistics.

⁵¹ <u>http://www.cdc.gov/asthma/brfss/02/current/tableC1.htm</u>. Regions were mapped using Table 8-12.

- 1 7.9%) were estimated for three of the five regions (Mid-Atlantic, Midwest, and the Southwest),
- 2 suggesting that exposure analyses conducted in these broader regions may result in similar
- distributions in the percent of asthmatics exposed to the two Missouri modeling domains used in
- 4 this assessment. Consistent with that observed for asthmatic children, the Northeastern U.S. has
- 5 the greatest percent of asthmatic adults. The Southeastern states on average were estimated to
- 6 have the lowest adult asthma prevalence. This suggests that there may be a greater percentage of
- 7 peak exposures to asthmatic adults in the Northeast and a lower percentage of peak exposures in
- 8 the Southeast when compared with the percent modeled in St. Louis or Greene County, holding
- 9 all other influential variables are constant (e.g., time spent outdoors, a similar air quality
- 10 distribution).

Table 8-14. Asthma prevalence rates for children in four regions of the U.S.

Region	Asthma Prevalence ¹ (%)
Northeast	15.2
Midwest	11.6
South	11.9
West	11.1

Notes:

11

Table 8-15. Asthma prevalence rates for adults in five regions of the U.S.

Region ¹	Asthma Prevalence ² (%)
Mid-Atlantic	7.9
Midwest	7.7
Northeast	8.9
Southeast	6.9
Southwest	7.6
	•

Notes:

http://www.cdc.gov/asthma/brfss/02/current/tableC1.htm.

¹ prevalence is based on the question, "Has a doctor or other health professional ever told you that [child's name] had asthma?" (Dey et al., 2004)

¹ Table 8-12 was used in mapping the states to regions.

² state level data obtained from

8.11 UNCERTAINTY ANALYSIS

The methods and the model used in this exposure assessment conform to the most contemporary modeling methodologies available. APEX is a powerful and flexible model that allows for the realistic estimation of air pollutant exposure to individuals. Since it is based on human time-location-activity diaries and accounts for the most important variables known to affect exposure (where people are located and what they are doing), it has the ability to effectively approximate actual exposure conditions. In addition, the input data selected were the best available data to generate the exposure results. However, there are constraints and uncertainties with the modeling approaches and the input data that limit the realism and accuracy of the modeling results.

Uncertainties and assumptions associated with SO_2 specific model inputs, their utilization, and application are discussed in the following sections. Analyses for certain components of APEX performed previously in other NAAQS reviews (see EPA, 2007d; Langstaff, 2007) that are relevant to the SO_2 NAAQS review are only summarized below. This includes a sensitivity analyses performed on the CHAD data base using O_3 exposures and an analysis of the air exchange rate data.

Following the same general approach described in section 7.8 and adapted from WHO (2008), a qualitative analysis of the components contributing to uncertainty in the exposure results was performed. This includes an identification of the important uncertainties, an indication of the potential bias direction, and a scaling of the uncertainty using *low*, *medium*, and *high* categories. Even though uncertainties in AERMOD concentrations predictions are an APEX input uncertainty, they are addressed separately here for clarity. Table 8-16 summarizes the results of the qualitative uncertainty analysis conducted by staff for the SO₂ exposure assessment.

1 2

Table 8-16. Summary of qualitative uncertainty analysis for the exposure assessment.

Source	Туре	Concentration/ Exceedance Bias Direction	Characterization of Uncertainty	
	Algorithms	unknown	Low	
AERMOD	Meteorological data	unknown	Low – Medium	
Inputs and Algorithms	Area source emission profiles, temporal and spatial	both	Medium	
	Population data base	both	Low	
	Commuting data base	both	Low - Medium	
	CHAD data base	both	Low - High	
ADEV	Longitudinal profile	both	Low	
APEX Inputs and	Meteorological data	both	Low	
Algorithms	Air exchange rates	unknown	Medium	
7 ligoria iirio	A/C prevalence	none	Low	
	Indoor decay distribution	unknown	Low	
	Multiple peaks	under	Low - Medium	
	Asthma prevalence rate	unknown	Low	

8.11.1 Dispersion Modeling Uncertainties

Air quality data used in the exposure modeling was determined through use of EPA's recommended regulatory air dispersion model, AERMOD (version 07026 (EPA, 2004)), with meteorological data and emissions data discussed above. Parameterization of meteorology and emissions in the model were made in as accurate a manner as possible to ensure best representation of air quality for exposure modeling. Thus, the resulting air quality values are likely free of systematic errors to the best approximation available through application of modeled data.

An analysis of uncertainty associated with application of a model is generally broken down into two main categories of uncertainty: 1) model algorithms, and 2) model inputs. While it is convenient to discuss uncertainties in this context, it is also important to recognize that there is some interdependence between the two in the sense that an increase in the complexity of model algorithms may entail an increase in the potential uncertainty associated with model inputs.

8.11.1.1 AERMOD Algorithms

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

The AERMOD model was promulgated by in 2006 as a "refined" dispersion model for near-field applications (with plume transport distances nominally up to 50 kilometers), based on a demonstration that the model produces largely unbiased estimates of ambient concentrations across a range of source characteristics, as well as a wide range of meteorological conditions and topographic settings (Perry, *et al.*, 2005; EPA, 2003). While a majority of the 17 field study databases used in evaluating the performance of AERMOD are associated with elevated plumes from stationary sources (typically power plants), a number of evaluations included low-level releases. Moreover, the range of dispersion conditions represented by these evaluation studies provides some confidence that the fundamental dispersion formulations within the model will provide robust performance in other settings.

AERMOD is a steady-state, straight-line plume model, which implies limitations on the model's ability to simulate certain aspects of plume dispersion. For example, AERMOD treats each hour of simulation as independent, with no memory of plume impacts from one hour to the next. As a result, AERMOD may not adequately treat dispersion under conditions of atmospheric stagnation or recirculation when emissions may build up within a region over several hours. This could lead to a bias toward underprediction by AERMOD during such periods. On the other hand, AERMOD assumes that each plume may impact the entire domain for each hour, regardless of whether the actual transport time for a particular source-receptor combination exceeds an hour. While these assumptions imply some degree of physically unrealistic behavior when considering the impacts of an individual plume simulation, their importance in terms of overall uncertainty will vary depending upon the application. The degree of uncertainty attributable to these basic model assumptions is likely to be more significant for individual plume simulations than for a cumulative analysis based on a large inventory. This question deserves further investigation to better define the limits and capabilities of a modeling system such as AERMOD for large scale exposure assessments such as this. The evidence provided by the model-to-monitor comparisons presented in section 8.4.5 is encouraging as to the viability of the approach in this application when adequate meteorological and other inputs are available. However, each modeling domain and inventory will present its own challenges and will require a separate assessment based on the specifics of the application.

One of the improvements in the AERMOD model formulations relative to the ISCST model which it replaced is a more refined treatment of enhanced turbulence and other boundary layer processes associated with the nighttime heat island influence in urban areas. The magnitude of the urban influence in AERMOD is scaled based on the urban population specified by the user. Since the sensitivity of AERMOD model concentrations to the user-specified population is roughly proportional to population to the 1/4th power, this is not a significant source of uncertainty. The population areas of interest for this application are also well-defined, reducing any uncertainty associated with specification of population or with defining the extent of the modeling domain to be treated as urban.

While the AERMOD model algorithms are not considered to be a significant source of uncertainty for this assessment, the representativeness of modeled concentrations for any application are strongly dependent on the quality and representativeness of the model inputs. The main categories of model inputs that may contribute to bias and uncertainty are emission estimates and meteorological data. These issues are addressed in the following sections.

8.11.1.2 Meteorological Inputs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1516

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Details regarding the representativeness of the meteorological data inputs for AERMOD are addressed separately in section 8.4.2. One of the main issues associated with representativeness is the sensitivity of the AERMOD model to the surface roughness of the meteorological tower site used to process the meteorological data for use in AERMOD relative to the surface roughness across the full domain of sources. This issue has been shown to be more significant for low-level sources due to the importance of mechanical shear-stress induced turbulence on dispersion for such sources. A previous application of the AERMOD model to support the REA for the NO₂ NAAQS review (EPA, 2008d) provided an opportunity for a direct assessment of this issue by comparing AERMOD modeled concentrations based on processed meteorological data from the Atlanta Hartsfield airport (ATL) with concentrations based on processed meteorological data from a SEARCH monitoring station located on Jefferson Street (JST) near Georgia Tech. The ATL data were representative of an open exposure, low roughness, site typical for an airport meteorological station. The JST data were representative of a higher roughness exposure more typical of many locations within an urban area. Surface roughness lengths were generally about an order of magnitude higher at the JST site relative to the ATL site. A comparison of AERMOD modeled concentrations for the mobile source NO_x

- 1 inventory, representing near ground-level emissions, showed relatively good agreement in
- 2 modeled concentrations based on the two sets of meteorological inputs, at least for the peak of
- 3 the concentration distribution at four monitor locations across the modeling domain. This
- 4 suggests that the sensitivity of AERMOD model results to variations in surface roughness may
- 5 be less significant than commonly believed, provided that meteorological data inputs are
- 6 processed with surface characteristics appropriate for the meteorological site.

8.11.1.3 Area source temporal and spatial emission profiles

Details regarding the modeling of non-point and background area sources in AERMOD are addressed in Section 8.4.3. In the case of SO2, the area source emissions category for AERMOD represents a cumulative approximation of several small point sources, such as small commercial/industrial boilers, which are too small to be represented as individual sources within the existing emissions inventories. Given the lack of detailed information regarding the location and release characteristics of these small emission sources, estimated emissions are typically aggregated at a county level within the emission inventories. Given these limitations in terms the emission inventory, two of the main uncertainties associated with modeling these sources are the temporal and spatial profiles used in simulating their releases. Lacking detailed location information, the emissions are assumed to be uniformly distributed across a specified area, typically at a county or census tract level since the emissions are aggregated at the county level and allocated spatially using population as one of the surrogates. An additional uncertainty associated with the area source category for SO₂ emissions is the likelihood that the actual emissions may be associated with buoyancy that cannot be explicitly treated the area source algorithm within the dispersion model. At best, the anticipated effect of plume buoyancy can be reflected on average through the release height assigned to the area source.

As discussed in Section 8.4.3, all emissions in the regions of interest were simulated, either through their representative group (point sources, port-related sources, or other non-point area sources) or through cumulative background sources. Staff obtained emission strengths from the 2002 National Emissions Inventory (NEI) however, only annual total emissions at the county level are provided. To better parameterize these emissions for the hourly, census block-level dispersion modeling conducted here, we relied on additional data and an algorithm to optimize model performance based on model-to-monitor comparisons.

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Additional data on the spatial distribution of non-point emissions was used to allocate
county-wide to census tract values for the Greene County domain. Staff used the spatial
allocation factors (SAFs) from EPA's EMS-HAP database. Emissions within each modeled tract
were simulated as uniform over the tract, while emissions outside the modeled tracts and other
residual emissions were characterized as uniform over an entire county. The performance
obtained by using tract-level sources in Greene County was verified by model-monitor
comparisons. In the St. Louis area, model performance evaluations using factors from the EMS-
HAP database made it apparent that some factors were mischaracterizing the allocations. Thus,
in the St. Louis area, spatial bias was avoided by modeling emissions with a uniform density
throughout each of the counties of interest. In both cases, using spatially uniform emissions
resolved to the finest level the input data allows eliminates spatial bias and reduces overall
uncertainty.

Unlike point sources, where the temporal profile was based largely on direct observations via the CAMD database, these non-point emission profiles are based on generalized emissions surrogates and may not well represent specific source or local group of sources. Model performance evaluations of diurnal profiles showed that temporal factors based on these models inadequately represented the true, aggregate, temporal release profile. Unlike spatial allocations, however, uniformly distributing the emissions in time resulted in significantly worse model performance than using these sample profiles. In order to account for these uncertainties in the temporal profiles of area source emissions, an algorithm was developed to determine the optimal temporal emission release profile in each area. Examination of the diurnal profiles of modeled and monitored concentrations with uniform and with EMS-HAP emission profiles for monitors in locations dominated by area sources showed that, while monitored concentrations increased during the daytime, modeled concentrations actually decreased. An examination of the dispersion characteristics showed that increased dilution during the daytime overcame the small increase in emission strength predicted using emissions models such as EMS-HAP that lack locally specific information. Thus, it is reasonable to conclude that emissions in the St. Louis and Greene County areas should show a more pronounced diurnal cycle than is reflected in the standardized temporal profiles.

To determine the most representative average non-point area source emission profile across each modeling domain, we first selected monitors where ambient concentrations were

- 1 expected to be primarily influenced by area sources. Due to their locations relative to sources,
- 2 all but one monitor (290770032) in Greene County indicated ambient concentrations were
- 3 primarily influenced by point source emissions. In St. Louis, all seven ambient monitors
- 4 (291890004, 291890006, 291893001, 291895001, 291897003, 295100007, and 295100086)
- 5 indicated significant influence from area source emissions. Next, simulations were conducted
- 6 with all sources modeled in detail – except area sources, which were modeled with uniform
- 7 emission profiles. A weighting function was then determined based on the modeled error for
- 8 each hour of the day at the one Greene County monitor and as an average of the errors at the
- 9 seven individual St. Louis area monitors. In both cases, the error function was defined as the
- 10 ratio of the total observed concentration, minus the total concentration due to all non-point
- 11 sources, to the concentration predicted by the non-point sources alone. This diurnal error
- 12 function was then normalized such that its average value is unity. Finally, a corrected non-point
- 13 emission profile was determined by combining this normalized weighting function with the
- 14 uniform emission profile.

16

17

18

24

25

26

27

28

29

30

31

This method of determining an appropriate, local, non-point source emission profile has the advantage of preserving total emissions reflected in the emission inventory while deducing what the actual temporal emission profile from these local sources should be, based on the observed trends in each region. Essentially, it derives an emission profile that best agrees with observations when coupled with local meteorology and dispersion. This is justified given the

- 19
- 20 lack of detail regarding emission characteristics of local area sources. Because there is large
- 21 uncertainty in the emission characteristics in the sources being modeled, this approach
- 22 effectively mitigates the effect of that uncertainty on the modeling results by application of a
- 23 systematic approach to minimize discrepancies between predicted and observed values.

8.11.2 Exposure Modeling Uncertainties

8.11.2.1 Population Data Base

The population and commuting data are drawn from U.S. Census data from the year 2000. This is a high quality data source for nationwide population data in the U.S. however, the data do have limitations. The Census used random sampling techniques instead of attempting to reach all households in the U.S., as it has in the past. While the sampling techniques are well established and trusted, they may introduce uncertainty to exposure results. The Census has a quality section (http://www.census.gov/quality/) that discusses these and other issues with

- 1 Census data. It is likely the bias within this data would not affect the results in any particular
- 2 direction, and given the use of the sampled demographics to represent the simulated population,
- 3 it is expected that the uncertainty in the exposure results from this source is low.

8.11.2.2 Commuting Data Base

Commuting pattern data were derived from the 2000 U.S. Census. The commuting data address only home-to-work travel. A few simplifying assumptions needed to be made to allow for practical use of this data base to reflect a simulated individual's commute. First, there were a few commuter identifications that necessitated a restriction of their movement from a home block to a work block. This is not to suggest that they never travelled on roads, only that their home and work blocks were the same. This includes the population not employed outside the home, individuals indicated as commuting within their home block, and individuals that commute over 120 km a day. This could lead to either over- or under-estimations in exposure if they were in fact to visit a block with either higher or lower SO₂ concentrations. Given that the number of individuals who meet these conditions is likely a small fraction of the total population and that the bias is likely in either direction, the overall uncertainty is considered low.

Second, although several of the APEX microenvironments account for time spent in travel, the travel is assumed to always occur in basically a composite of the home and work block. No other provision is made for the possibility of passing through other census blocks during travel. This could also contribute to bias in either direction, dependent on the number of blocks the simulated individual would actually traverse and the spatial variability of the concentration across different blocks. This could potentially affect a large portion of the population, since we expect that at the block level, many persons would have a commute transect that included more than two blocks, although the actual number of persons and the number of blocks per commute and the spatial variability across blocks has not been quantified. In addition, the commuting route (i.e., which roads individuals are traveling on during the commute) is not accounted for. This may bias the exposure results in either direction, with some individual under-estimated and others over-estimated.

Furthermore, the estimation of block-to-block commuter flows relied on the assumption that the frequency of commuting to a workplace block within a tract is proportional to the amount of commercial and industrial land in the block. This assumption may introduce a bias in overestimating exposures if 1) the blocks with greater commercial/industrial land density also

- 1 have greater concentrations when compared with lower density commercial/industrial density
- blocks, and 2) most persons commute to lower commercial/industrial density blocks. It should
- 3 also be noted that recent surveys, notably the National Household Transportation Survey
- 4 (NHTS), have found that most trips taken and most VMT accrued by households are non-work
- 5 trips, particularly social/recreational and shopping-related travel (Hu and Reuscher, 2004). This
- 6 constitutes an unquantified source of uncertainty that is not be addressed by the Census
- 7 commuter dataset. However, because most benchmark exceedances occur outdoors the overall
- 8 impact to uncertainty is likely low.

8.11.2.3 Human Time-Location-Activity Pattern Data

The CHAD time-location activity diaries used are the most comprehensive source of such data and realistically represent where individuals are located and what they are doing. The diaries are sequential records of each persons activities performed and microenvironments visited. There are however, uncertainties in the exposure results as a result of the CHAD diaries used for simulating individuals. First, much of the data used to generate the daily diaries were collected in surveys conducted over 20 years ago. While the trends in people's daily activities may not have changed much over the years, it is certainly possible that some differences do exist such as the amount of time spent outdoors, time spent performing activities at a particular level of exertion, and the microenvironments where moderate or greater exertion is likely to occur. It would be extremely difficult to determine real differences in the distribution of these factors that may influence SO₂ exposure. Much of the data available to test such differences is survey-based. The survey methods used to collect data twenty years ago are not consistent with survey methods used today. If there are observed differences, it is likely an affect of the survey methods rather than changes in population activities.

Second, the CHAD data are taken from numerous surveys that were performed for different purposes. Some of these surveys collected only a single diary-day while others went on for several days. Some of the studies were designed to not be representative of the U.S. population, although a large portion of the data is from National surveys. In addition, study collection periods occur at different times of the year, possibly resulting in seasonal differences. This could add uncertainty to the results if there are characteristics of the survey population that are distinct from the simulated population.

1	The CHAD diaries that are selected from APEX to represent the Greene County and St.
2	Louis population are not all from these cities, the State of Missouri, or from the Midwest, albeit
3	some of the diaries may be. As stated above, most of the diaries are from National surveys,
4	therefore there are diaries from locations other than Greene County and St. Louis that are used to
5	simulate the modeled population. A few of the limitations associated with the use of diaries
6	from different locations or seasons are corrected by the approaches used in the exposure
7	modeling. For example, diaries used are weighted by population demographics (i.e., age and
8	gender) for a particular location and temperature is used as a classification variable to account
9	for its affect on human activities.
10	A sensitivity analysis was recently performed to evaluate the affect of using different
11	CHAD studies has on APEX results for the recent O ₃ NAAQS review (see Langstaff (2007) and
12	EPA (2007d)). Briefly, O ₃ exposure results were generated using APEX with all of the CHAD
13	diaries and compared with results generated from running APEX using only the CHAD diaries
14	from the National Human Activity Pattern Study (NHAPS), a nationally representative study in
15	CHAD. There was agreement between the APEX exposure results for the 12 metropolitan areas
16	evaluated (one of which was St. Louis), whether all of CHAD or only the NHAPS component of
17	CHAD is used. The absolute difference in percent of persons above a particular concentration
18	level ranged from -1% to about 4%, indicating that the exposure model results are not being
19	overly influenced by any single study in CHAD. It is likely that similar results would be
20	obtained here for SO ₂ exposures, although it remains uncertain due to different averaging times
21	(5-minute vs. 8-hour average). This is not to suggest that the uncertainty is low in using all of
22	the CHAD data to represent the Greene County and St. Louis areas, but that similar results would
23	be obtained in using the diaries available, so long as the population was appropriately stratified
24	and certain characteristics influencing exposure were considered.
25	In addition, due to limitations in the data summaries output from the current version of
26	APEX, certain exposure data could only be output for the entire population modeled (i.e., all
27	persons - includes asthmatics and healthy persons of all ages) rather than the particular
28	subpopulation. The exposure results for time spent in microenvironments at or above a potential
29	health effect benchmark level was estimated from the total persons simulated (not just
30	asthmatics) and is assumed by staff to be representative of the asthmatic population in the

modeling results. This is a reasonable modeling assumption because the asthmatic population

- does not have its microenvironmental concentrations and activities estimated any differently
- 2 from those of the total population. There is however uncertainty in the use of all CHAD diaries
- 3 in simulating all individuals without considering the health status of the surveyed population and
- 4 the simulated population if health status affects an important element of how persons are
- 5 exposed. In this assessment it was shown that the most important microenvironments for
- 6 contacting the 5-minute peak concentration were those that were outdoors. Therefore, if there is
- a difference in the time spent outdoors (e.g., total time, time-of-day) between asthmatics and
- 8 healthy individuals, there may be a greater uncertainty in the estimated number of asthamtics
- 9 exposed than if there were no difference.

This assumption of modeling asthmatics similarly to healthy individuals (i.e., using the same time-location-activity profiles) is supported by the findings of van Gent et al. (2007), at least when considering children 7-10 years in age. These researchers used three different activity-level measurement techniques; an accelerometer recording 1-minute time intervals, a written diary considering 15-minute time blocks, and a categorical scale of activity level. Based on analysis of 5-days of monitoring, van Gent et al. (2007) showed no difference in the activity data collection methods used as well as no difference between asthmatic children and healthy children when comparing their activity levels. Activity level is directly correlated with time spent outdoors.

There is also the possibility that information regarding bad air quality may affect the activities performed by the asthmatic population. There has been some research regarding significant "averting behavior" i.e., there is a reduction in time spent outdoors when the individual is informed of the potential for bad air quality days (e.g., Bresnahan, et al. 1997; Mansfield, 2005), though one study reviewed by staff reported no effect on outdoor time (e.g., Yen et. al. 2004). Of the limited studies reviewed by staff, most were focused on the population response to ozone (or smog) air pollution alerts. The strength of the relationship between ozone air quality and the occurrence of short-term SO₂ pollution events modeled here is not known at this time. In addition, being informed of the potential air pollution event was an important factor in whether there was a reported reduction in outdoor time for either asthmatic children or non-asthmatic children (Mansfield et al., 2005). Parents of asthmatic children checked air quality significant, only about 25% of parents of asthmatics checked the air quality on a daily basis

- 1 (Mansfield et. al., 2005). Therefore, if there is averting behavior in response to air pollution
- 2 events, it is largely uncertain the degree to which an asthmatics SO₂ exposure would be altered.
- 3 It is likely that there would be a reduction in the estimated number of asthmatics exposed if there
- 4 were a strong relationship between an ozone air pollution event and an SO₂ air pollution event
- 5 and the frequency of averting behavior was accounted for by APEX, though the reduction is
- 6 likely to be small given the apparently limited degree of awareness.

8.11.2.4 Longitudinal Profile

APEX creates seasonal or annual sequences of daily activities for a simulated individual by sampling human activity data from more than one subject. Each simulated person essentially becomes a composite of several actual people in the underlying activity data. Certain aspects of the personal profiles are held constant, though in reality they change as an individual ages. This is only important for simulations with long timeframes, particularly when simulating young children (e.g., over a year or more).

The cluster algorithm used in constructing longitudinal profiles was evaluated against a sequence of available multiday diaries sets collected as part of the Harvard Southern California Chronic Ozone Exposure Study (Xue et al. 2005, Geyh et al. 2000). Briefly, the activity pattern records were characterized according to time spent in each of 5 aggregate microenvironments: indoors-home, indoors-school, indoors-other, outdoors, and in-transit. The predicted value for each stratum was compared to the value for the corresponding stratum in the actual diary data using a mean normalized bias statistic. See Appendix B, Attachment 3 and 4 for details. The evaluation indicated the cluster algorithm can replicate the observed sequential diary data, with some exceptions. The predicted time-in-microenvironment averages matched well with the observed values. For combinations of microenvironment/age/gender/season, the normalized bias ranges from –35% to +41%. Sixty percent of the predicted averages have bias between –9% and +9%, and the mean bias across any microenvironment ranges from -9% to +4%. Although, on occasion there were large differences in replicating variance across persons and within-person variance subsets, about two-thirds of the predictions for each case were within 30% of the observed time spent in each microenvironment.

The longitudinal approach used in the exposure assessment was an intermediate between random selection of diaries (a new diary used for every day for each person in the year) and perfect correlation (same diary used for every day for each person in the year). The cluster

- algorithm used here was previously compared with two other algorithms, one that used random
- 2 sampling and the other employing diversity (D) and autocorrelation (A) statistics (see EPA,
- 3 2007g for details on this latter algorithm). The number of persons with at least one or more
- 4 exposure to a given O₃ concentration was about 30% less when using the cluster algorithm than
- 5 when using random sampling, while the number of multiple exposures for those persons exposed
- 6 was greater using the cluster algorithm (by about 50%). The algorithm employing the D and A
- 7 statistics exhibited similar patterns, although were lower in magnitude when compared with
- 8 random sampling (about 5% fewer persons with one or more exposures, about 15% greater
- 9 multiple exposures). These exposure results using the cluster algorithm in APEX appeared to be
- the result of a greater correlation of diaries selected in comparison with the other two algorithms.
- 11 This outcome conforms to an expectation of correlation between the daily activities of
- individuals. While the evaluation was performed using 8-hour O₃ as the exposure output it is
- expected that similar results would be obtained for 5-minute SO₂ exposures. That is, the
- characteristics of the diaries that contribute greatly to any pollutant exposure above a given
- threshold (e.g., time spent outdoors, vehicle driving time, time spent indoors) are likely a strong
- 16 component in developing each longitudinal profile. Given these results and that the REA is not
- 17 necessarily focused on health effects resulting from multi-day exposures, the particular
- longitudinal approach used likely contributes minimally to uncertainty. See Appendix B,
- 19 Attachments 3 and 4 for further details in the cluster algorithm and the evaluations performed.

8.11.2.5 Meteorological Data

20

23

24

Meteorological data are taken directly from monitoring stations in the assessment areas.

22 It is assumed that most of the data used are error free and have undergone required quality

assurance review. One strength of these data is that it is relatively easy to see significant errors if

- they appear in the data. Because general climactic conditions are known for the simulated area,
- 25 it would have been apparent upon review if there were outliers in the dataset, and at this time
- 26 none were identified. If there were a bias in the data, it would be expected to be limited in
- 27 extend and randomly occurring, therefore contributing to both under and over-estimations
- equally to a marginal degree. To reduce the number of calms and missing winds in the 1-hour
- 29 MET data, archived one-minute winds for the ASOS stations in each model domain were used to
- 30 calculate hourly average wind speed and directions. This approach reduces the number of
- 31 estimated zero concentrations that would be output by AERMOD if not supplemented by the

additional wind data, thus preventing a downward bias in the predicted 1-hour SO₂ concentrations.

There are limitations in the use of the meteorological data in APEX. APEX only uses one temperature value per day in selecting an appropriate CHAD diary and indoor microenvironment air exchange rate. Because the model does not represent hour-to-hour variations in meteorological conditions throughout the day, there may be uncertainty in some of the exposure estimates for indoor microenvironments (see the next section).

8.11.2.6 Air Exchange Rates (AER)

The residential air exchange rate (AER) distributions used to estimate indoor exposures contribute to uncertainty in the exposure results. Three components of the AER analyzed previously by EPA (2007d) include 1) the extrapolation of air exchange rate distributions between-CMSAs, 2) analysis of within-CMSA uncertainty due to sampling variation, and 3) the uncertainty associated with estimating daily AER distributions from AER measurements with different averaging times. The results of those previous investigations are briefly summarized here. See Appendix B, Attachments 6 and 7 for details in the data used to generate the AER and the uncertainty analyses performed.

Extrapolation of AER among locations

Air exchange rate (AER) distributions were assigned in the APEX model, as described in the indoors-residential microenvironment. Because location-specific AER data for St. Louis and Greene County were not available and that there were no AER data from cities thought to have similar influential characteristics affecting AER⁵², staff constructed an aggregate distribution of the available AER data from cities outside California to represent the distribution of AERs in St. Louis and Greene County (see Appendix B, Attachment 6).

In the absence of location-specific data for the microenvironments modeled by APEX within each model domain, only limited uncertainty analyses were performed. To assess the uncertainty associated with deriving AERs from one city and applying those to another city, between-location uncertainty was evaluated by examining the variation of the geometric means and standard deviations across several cities and originating from several different studies. The evaluation showed a relatively wide variation across different cities in their AER geometric

⁵² Such potential influential factors would include age, composition of housing stock, construction methods used, and other meteorological variables not explicitly treated in the analysis, such as humidity and wind speed patterns.

means and standard deviations, stratified by air-conditioning status, and temperature range. For example, Figure 8-20 Illustrates the GM and GSD of AERs estimated for several cities in the U.S. where A/C was present and within the temperature range of 20-25 °C. The wide range in GM and GSD pairs implies that the modeling results may be very different if the matching of modeled location to a particular study location was changed. For example, the SO₂ exposure estimates may be sensitive to use of an alternative distribution, say those in New York City, compared with results generated using the aggregate non-California AER distributions. It is possible though that the true distribution could be more similar to the selected distribution from all non-California cities than that of the specific locations given the population of available AER data. It is unclear as to the direction of bias given the limited number of data available for comparison. It is possible that the impact to the number of exceedances is low, given that most of the exceedances occurred outdoors for most of the air quality scenarios evaluated.

Geometric mean and standard deviation of air exchange rate
For different cities and studies
Air Conditioner Type: Central or Room A/C
Temperature Range: 20-25 Degrees Celsius

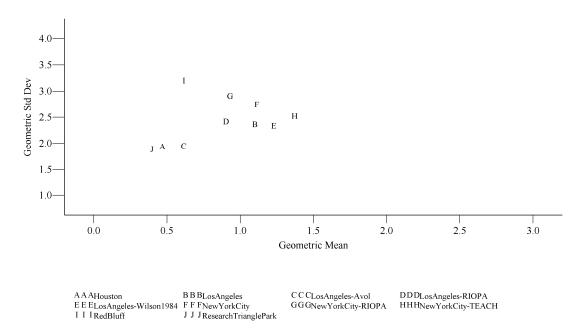


Figure 8-20. Example comparison of estimated geometric mean and geometric standard deviations of AER (h⁻¹) for homes with air conditioning in several cities.

Within location uncertainty

1

21

2 There is also variation in AERs within studies for the same location (e.g., Outside 3 California data), but this is much smaller than the observed variation across different CMSAs. 4 This finding tends to support the approach of combining different studies for a CMSA, where 5 data were available. The within-city uncertainty was assessed by using a bootstrap distribution 6 to estimate the effects of sampling variation on the fitted geometric means and standard 7 deviations for the non-California data used to represent the St. Louis and Greene County AERs. 8 These bootstrap distributions assess the uncertainty due to random sampling variation. They do not address other uncertainties such as the lack of representativeness of the available study data 9 10 or the variation in the lengths of the AER monitoring periods. Because only the GM and GSD 11 were used, the bootstrap analyses does not account for uncertainties about the true distributional 12 shape, which may not necessarily be lognormal. 13 One-thousand bootstrap samples were randomly generated for each AER subset (of size 14 N), producing a set of 1,000 geometric mean (GM) and geometric standard deviation (GSD) pairs. The analysis of the non-California city data used to represent Greene County and St. Louis 15 16 indicated that the GSD uncertainty for a given AER temperature group tended to have a range within ± 0.3 fitted GSD (hr⁻¹), with smaller intervals surrounding the GM (i.e. about ± 0.10 fitted 17 18 GM (hr⁻¹) (Figure 8-21). Broader ranges were generated from the bootstrap simulation for AER 19 distributions used for Greene County and St. Louis homes without A/C (Figure 8-22), although 20 both still within ±0.5 of the fitted GM and GSD values. See Appendix B, Attachment 6 for

further details.

Geometric mean and standard deviation of air exchange rate
Bootstrapped distributions for different cities
City: Outside California
Air Conditioner Type: Central or Room A/C
Temperature Range: 20-25 Degrees Celsius

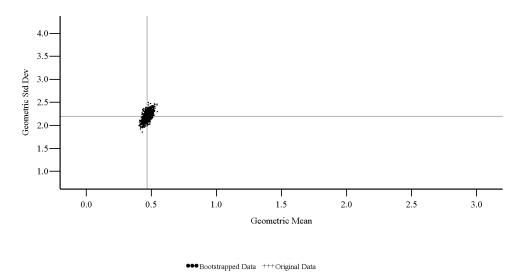


Figure 8-21. Example of boot strap simulation results used in evaluating random sampling variation of AER (h-1) distributions (data from cities outside California).

Geometric mean and standard deviation of air exchange rate Bootstrapped distributions for different cities City: Outside California Air Conditioner Type: No A/C Temperature Range: >20 Degrees Celsius

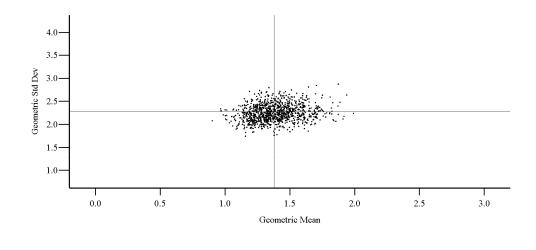


Figure 8-22. Example of boot strap simulation results used in evaluating random sampling variation of AER (h-1) distributions (data from cities outside California).

••• Bootstrapped Data +++ Original Data

8

6 7

1

23

Variation in AER measurement averaging times

1 2

Although the averaging periods for the air exchange rates in the study data varied from one day to seven days, the analyses did not take the measurement duration into account and treated the data as if they were a set of statistically independent daily averages. To investigate the uncertainty of this assumption, correlations between consecutive 24-hour air exchange rates measured at the same house were investigated using data from the Research Triangle Park Panel Study (Appendix B, Attachment 7). The results showed extremely strong correlations, providing support for the simplified approach of treating multi-day averaging periods as if they were 24-hour averages.

8.11.2.7 Air Conditioning Prevalence

Because the selection of an air exchange rate distribution is conditioned on the presence or absence of an air-conditioner, the air conditioning status of the residential microenvironment was simulated randomly using the probability that a residence has an air conditioner, i.e., the residential air conditioner prevalence rate. For this study we used location-specific data for St. Louis (AHS, 2003a; 2003b) and applied that data to Greene County as well. EPA (2007d) details the specification of uncertainty estimates in the form of confidence intervals for the air conditioner prevalence rate, and compares these with prevalence rates and confidence intervals developed from the Residential Energy Consumption Survey (RECS) of 2001 for several aggregate geographic subdivision (e.g., states, multi-state Census divisions and regions) (EIA, 2001).

Briefly, Air conditioning prevalence rates were 95.5% for St. Louis, with reported standard errors of 1.7% (AHS, 2003a; 2003b). Estimated 95% confidence intervals were also small and span approximately 6.5 percentage points (AHS, 2003a; 2003b). The RECS prevalence estimate for Census Divisions was 92% (ranging between 86.4% and 98.4%), while the Census Region prevalence estimate was 83.6% (ranging between 80.0% and 87.2%). This suggests that the air conditioning prevalence used, while likely being representative of a city in Missouri, may be overestimated for non-urban locations. The magnitude of uncertainty associated with the estimated A/C prevalence and the impact to estimated exposures is likely low.

8.11.2.8 Indoor Decay

There may be uncertainty added to the exposure results when considering the estimated parameters, the form (i.e., lognormal) and limits (limited by the bounds of the measurement data) of the distribution used to represent indoor decay. The data used to develop the distribution were obtained from a review of several studies that analyzed SO₂ removal for a variety of building material surfaces (Grontoft and Raychaudhuri, 2004). Potential influential factors such as humidity and air exchange rate were accounted for in developing and applying the removal distributions within the indoor microenvironments. The distributions were based on a large empirical data base and likely well represent expected SO₂ removal within indoor microenvironments.

However, several assumptions were made to characterize the likely materials used within a simulated indoor microenvironment, some of which were data-based, others in the absence of supporting data, were based solely on professional judgment. Staff performed a Monte Carlo simulation using the removal data and 1,000 simulated indoor rooms of buildings to effectively generate a distribution of SO₂ removal rates, weighted by the approximated room configurations and proportion of materials present. There are many assumptions staff made that could be modified with newly available data, particularly where inputs were based on professional judgment. It is largely unknown what the current direction of bias is in the absence of new or refined input data. While some of the assumptions used may add to uncertainty, the magnitude of the uncertainty is likely low given the relative contribution of the indoor microenvironments to exposure concentrations above the potential health effect benchmark levels.

8.11.2.9 Occurrence of Multiple Exceedances Within an Hour

The statistical model described in section 7.2 was used within APEX to estimate a single 5-minute maximum SO₂ concentration for every hour. However, multiple short-term peak concentrations above selected levels are possible within any hour. Analysis of the 5-minute continuous monitoring data indicates that multiple occurrences of 5-minute concentrations above the 100, 200, 300, and 400 ppb within the same hour can be common. Using the continuous monitoring data obtained from years 1997-2007, multiple peak concentrations (i.e., 2 or more) at or above 400 ppb within the same hour occurred with a 61% frequency (Table 8-17). The frequency of multiple exceedances was similar for the lower 5-minute SO₂ concentration levels, where 63, 56, and 53% of the time there were two or more exceedances within the same hour at

- the 100, 200, and 300 ppb benchmark levels, respectively. These results may suggest that a
- 2 single peak approach for estimating the 5-minute daily maximum SO₂ concentrations alone as a
- 3 surrogate for all possible peak exposure events may lead to an underestimate in the number of
- 4 potential exposures.

Table 8-17. Number of multiple exceedances of potential health effect benchmark levels within an hour.

Number of Exceedances of	Numbe	r of Hours witl	n Multiple 5-mir	nute SO ₂
5-minute SO₂ in 1-hour¹	> 100 ppb	> 200 ppb	> 300 ppb	> 400 ppb
1	1248	267	76	26
2	658	122	31	20
3	411	78	21	7
4	257	35	10	5
5	242	28	6	4
6	153	25	4	1
7	125	14	5	1
8	89	11	2	1
9	64	6	3	1
10	49	6	1	1
11	50	3	0	0
12	73	5	1	0
Total	3419	600	160	67

Notes:

5

6

7

8

9

10

11

12

13

14

15

16

17

In using the data in Table 8-17 alone, the potential underestimation bias may be somewhat overstated however, particularly when considering the benchmark levels of 200, 300, and 400 ppb. A detailed analysis of the multiple exceedances by monitor indicated that one of the monitors (ID 420070005) was highly influential in generating the values in Table 8-17, contributing greatly to the multiple peak occurrences at the higher benchmark levels. This Beaver, PA urban-scale monitor is identified as population-based, within a rural setting, and having agricultural land use (Appendix A). Five of eight of the sources located within 20 km of this monitor had SO₂ emissions <250 tpy, one smelter emitting about 7,000 tpy was within 2.5 km, and two power generating facilities located approximately 3.4 and 7.5 km from the monitor had SO₂ emissions of 3,000 and 30,000 tpy, respectively. Of the number of hours having multiple exceedances, monitor 420070005 contributed to 61, 73, and 80% of the hours with multiple peaks >200, >300, and >400 ppb, respectively. Following removal of this monitor from

¹ The analysis is based on the 16 monitors reporting all 5-minute SO₂ concentrations in an hour (n=3,328,725).

the full data set, the occurrence of multiple exceedances of each the 200, 300, and 400 ppb benchmark lowered to approximately 40% of all hours having co-occuring peaks.

This suggests there may be added uncertainty in the exposure results if the continuous monitoring data were used to design an approach for estimating multiple exceedances within an hour. These data were only from 16 ambient monitors, each having a limited number of monitoring years. The analyses above indicated that one of the monitors contributed to most of the hours with multiple peak concentrations. How this one monitor (as well as any other monitor having multiple exceedances) reflects what may occur at the APEX modeled receptors in St. Louis and Greene County (or other different locations) is largely unknown. There is no simple extrapolation possible using the continuous monitoring data because the time of the peak (and hence multiple peak) concentrations modeled are not known with respect to the simulated individuals' time spent outdoors.

The PMR statistical model is based on both concentration and variability measures, implemented by APEX in estimating a single maximum 5-minute SO₂ concentration for every hour at every receptor. This is based on known concentration and variability relationships described in section 7.2. While APEX can model all twelve 5-minute concentrations, staff chose to normalize the eleven remaining 5-minute concentrations within an hour to the 1-hour mean concentration. This decision was based largely on the size of the air quality files used (thousands of receptors across a year) that already required a time consuming post-processing step prior to input in APEX and ultimately, the run time associated with the exposure model simulations. Estimating the 5-minute maximum SO₂ concentrations and the other 11 concentrations within APEX was more efficient than pre-processing all twelve 5-minute SO₂ concentrations.

There is bias in having all eleven other 5-minute SO₂ concentrations normalized to the mean; the exposure simulation could *miss* a persons exposure that might have occurred if in fact there are multiple peak concentrations within the same hour (a likely event given the continuous monitoring data, roughly between 40-60%). The CHAD time-location-activity diaries used in APEX are fixed, that is, the modeled time spent outdoors is based on the actual time (and amount) recorded by the surveyed individual. APEX models exposure on a minute-by-minute basis; if most persons spend time outdoors for a short time (e.g., 5-minutes), then it is possible that persons are not realistically encountering peak concentrations given the normalization of the

eleven 5-minute SO₂ concentrations. Therefore, staff analyzed outdoor activities in the CHAD diaries used by APEX to determine the duration of time spent outdoors for each outdoor event.

Figure 8-23 illustrates the distribution of time spent outdoors, given activity outdoor events defined by clock-hour increments (already part of the CHAD design). Thirty-five percent of all outdoor events are for the entire hour; if the event corresponds with the same hour as a simulated peak concentration, there would be no underestimation bias associated with exposure occurring during these events. Therefore, occurrence of multiple peaks within an hour is potentially not an issue for 35% of the peak exposure events that occur outdoors. However, at each of the other outdoor events, there is a probability of underestimating the exposure, given by the duration of the event divided by 60 minutes. For example, approximately 15% of outdoor events were 30 minutes. If these outdoor events occurred at the time where there was a second estimated peak concentration in the same hour, there is a 50% chance that the exposure is missed. The probability of missing a potential exposure increases with decreasing duration of the outdoor event and, given the data in Figure 8-23, this could be a frequent occurrence (i.e., about 65% of outdoor events may have some probability of missing an exposure). This analysis does not account for multiple outdoor events that may increase an individual's chance of a daily maximum exposure exceedance, regardless of the event duration. It also assumes the each of the outdoor events evaluated have an equal probability of occurring at the time of the peak concentration, which may or may not be the case. In addition, the outdoor time distribution is based on all of the CHAD diary days, potentially not the same distribution of diaries that were used in the APEX exposure simulations.

A better method to determine the potential number of missing exposures is to model the exposures using two input data sets: air quality with all continuous 5-minute measurements, and air quality having the measured 5-minute maximum and the eleven other 5-minute concentrations within the hour normalized to the 1-hour mean. Staff constructed a data set using measurements from the continuous-5 ambient monitoring. While there were two monitors reporting continuous 5-minute measurements in Greene County (monitor IDs 290770037 and 290770026), there were only two years with exceedances of the 200 ppb benchmark level, and no exceedances of the 300 or 400 ppb benchmarks. To explore the maximum effect of multiple peak concentrations within an hour, staff used two years of data from monitor ID 420070005,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

noted above as having the greatest number of benchmark exceedances in a year (years 2002 and 2005 were selected).

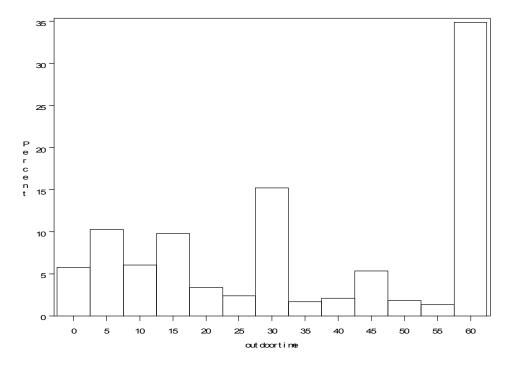


Figure 8-23. Duration of time spent outdoors (in minutes) using all CHAD events

First, staff replaced missing concentrations (approximately 5% of each year) using the time-of-day monthly averaged SO₂ concentration. This data set served as the multiple peak air quality data set to be tested; all measured 5-minute concentrations were used as is. Next, staff constructed a similar data set, only this second data set had the maximum measured 5-minute concentration retained and all other eleven 5-minute concentrations within the hour were normalized using the 1-hour mean. This single peak data set reflects what was being modeled by APEX. Each of the data sets were used as the air quality input to APEX simulation, controlling for all model sampling, the algorithms used, microenvironments modeled, and persons simulated. The only difference in the two runs was the air quality input. Fifty thousand persons were simulated using APEX, 13% of which were asthmatic children. Figure 8-24 illustrates the percent of asthmatic children exposed to selected 5-minute maximum concentrations for each of the two scenarios; a multiple peak scenario and a single maximum peak concentration, using two site-years of continuous monitoring data with the greatest number of benchmark exceedances. As expected, there are more asthmatic children exposed when considering the occurrence of

- 1 multiple peaks in an hour. The difference in the percent of asthmatic children exposed at each of
- 2 the benchmark levels is small, about 2-5 percentage points differ between the two simulations.
- 3 However, considering the percent difference in the numbers of persons exposed at most of the
- 4 benchmarks levels, the simulations using the single peak air quality method had between 20-35%
- 5 fewer persons exposed than the multiple peak simulation. Similar results were generated in
- 6 simulations using the site-year with the 2nd highest number of exceedances only the
- 7 underestimation using the single peak method was about 15-30% (Figure 8-25). Based on these
- 8 analyses, at most the estimated number of persons exposed in St. Louis and Greene County are
- 9 underestimated by 35% when using a single peak method. The actual amount of underestimation
- is likely smaller given that these results were generated using site-years of monitoring data
- having the greatest numbers of exceedances and contributing significantly to the high frequency
- of multiple peak exceedances.
- The location where exposures occur may also be influenced by the presence or absence of
- multiple peak concentrations. In particular, the modeled indoor 5-minute maximum
- 15 concentrations may be markedly diluted if the indoor air exchange rate is low and all eleven
- other 5-minute values within the same hour are normalized to the 1-hour mean concentration.
- 17 APEX estimates all microenvironmental concentrations using a mass balance method for 5-
- 18 minute time-steps (equation 8-2) that accounts for estimated microenvironmental concentrations
- from the previous time-step (EPA, 2009b). While dilution of the indoor air is not an unusual
- circumstance considering the physical process modeled, it is possible that the number of
- 21 exposure events from indoor sources is underestimated when the prior time-step concentration is
- artificially reduced.
- Staff evaluated the microenvironments where peak exposures occurred, by aggregating
- 24 the time 5-minute exposures occurred into three broad microenvironmental groups: indoors,
- outdoors, and in-vehicles. A comparison of the APEX simulations using the two air quality
- input simulations (i.e., multiple peak versus single peak, monitor 420070005 year 2002) and
- 27 considering how often peak exposures occur indoors is presented in Figure 8-26. The
- differences in the percent of indoor exposure exceedances are consistent with the design of the
- 29 model and the particular input data used. For exposures less than the 400 ppb level, a greater
- 30 percent of the overall exposures occur indoors using the single peak method than compared with
- 31 the multiple peak data set. For exposures at or above the 400 ppb level, a smaller percent of the

- 1 overall exposures occur indoors using the single peak method than compared with the multiple
- 2 peak data set. In fact, the multiple peak simulation had indoor peak exposures at levels not
- 3 observed using the single peak method. This is likely a function of the normalized
- 4 concentrations, that when used in the mass balance equation as the prior time-step
- 5 microenvironmental concentration, the microenvironmental concentration at time t is less than
- 6 what would be expected.

10

11

13

15

16

18

While this analysis and its findings are encouraging, context is needed to assign relevance

8 to the current exposure analyses in St. Louis and Greene County. As stated earlier, the data set

used had the greatest number of benchmark exceedances, designed by staff to observe the effect

that multiple peaks within the hour has on estimated exposures. The observed differences in the

contribution from the indoor microenvironment may be more appropriately applied in

discussions regarding air quality scenarios with high concentrations distributions (e.g., air quality

adjusted to just meeting the current standard, Figure 8-19). While the differences in the highest

benchmarks exceedances are likely of greatest interest when investigating the possibility of

missing exposure events, it should be noted that the greatest proportion of exposure events still

occur outdoors (in this simulation, >70% of exposures above 400 ppb occurred outdoors). In

addition, the differences observed at the lower benchmarks indicated the role of indoor exposures

was fairly similar. At most the difference was four percentage points, with the multiple peak

simulation having a consistently lower contribution of exceedances from indoor exposures.

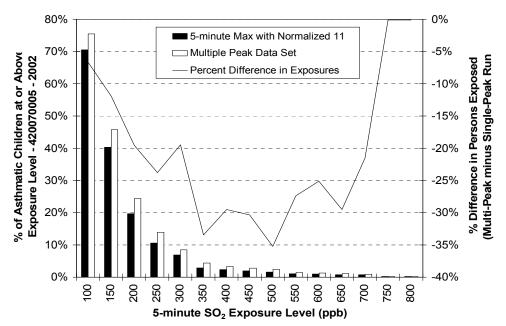


Figure 8-24. Percent of asthmatic children above given exposure level for two APEX simulations: one using multiple peak concentrations in an hour, the other assuming a single peak concentration. Continuous 5-minute monitoring data (ID 42007005, year 2002) were used as the air quality input.

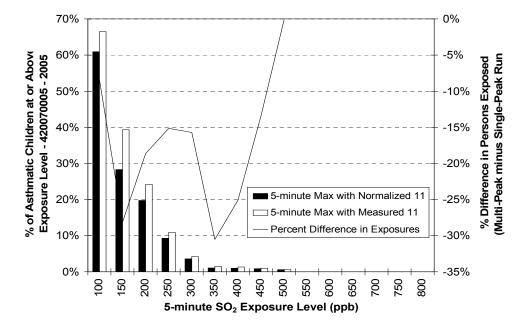


Figure 8-25. Percent of asthmatic children above given exposure level for two APEX simulations: one using multiple peak concentrations in an hour, the other assuming a single peak concentration. Continuous 5-minute monitoring data (ID 42007005, year 2005) were used as the air quality input.

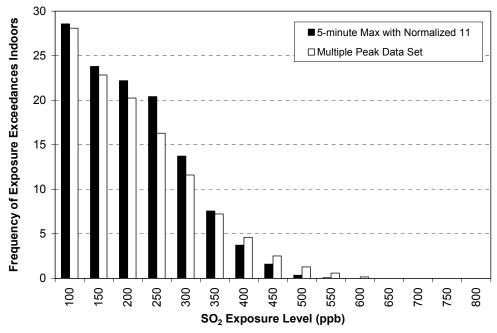


Figure 8-26. Frequency of exposure exceedances indoors for two APEX simulations: one using multiple peak concentrations in an hour, the other assuming a single peak concentration. Continuous 5-minute monitoring data (ID 42007005, year 2002) were used as the air quality input.

8.11.2.10 Asthma Prevalence Rate

The best estimate of asthma prevalence used in this analysis was generated using a comprehensive and widely used data set (CDC, 2007). Staff judged that variability in the asthma prevalence based on age was an important attribute to represent in simulating SO₂ exposures, one of the principal reasons for selection of the particular data set. There are however limitations in using the data that may add to uncertainty in the generated exposure results. The percent of asthmatics simulated by APEX using a combined regional (children by age) and local (adults all ages) prevalence was comparable with an independent estimate of the percent of asthmatics within the four counties modeled (9.3% versus 8.8% of the population, respectively). Therefore, the uncertainty in the overall total percent of asthmatics exposed is likely low, particularly in Greene County. In Greene County, 9.8% of the simulated population was asthmatic and compares well with the 10.2% asthma prevelance reported by MO DOH (2003). However, the asthma prevalence across the three county domain in St. Louis was variable, with St. Louis City County having a high estimated prevalence rate (16.4%) and St Louis County having a much

- lower prevalence rate (5.8%). This variable distribution was not represented in the exposure
- 2 modeling simulation; all children and adults in each of the counties used the data summarized in
- 3 Table 8-6. Therefore in St. Louis County, the asthma prevalence may have been underestimated,
- 4 while in St. Louis County the asthma prevalence may have been overestimated. This may add to
- 5 uncertainty in the total number of asthmatics exposed in St. Louis (not the percent of asthmatics
- 6 exposed), though the direction of bias is largely unknown because individual county level
- 7 exposures are not output by the model.

9.0 HEALTH RISK ASSESSMENT FOR LUNG FUNCTION RESPONSES IN ASTHMATICS ASSOCIATED WITH 5-MINUTE PEAK EXPOSURES

9.1 INTRODUTION

In the previous review, it was clearly established that subjects with asthma are more sensitive to the respiratory effects of SO_2 exposure than healthy individuals (ISA, section 3.1.3.2). As discussed above in section 4.2, asthmatics exposed to SO_2 concentrations as low as 200-300 ppb for 5-10 minutes during exercise have been shown to experience significant bronchoconstriction, measured as an increase in sRaw ($\geq 100\%$) or decrease in FEV₁ ($\geq 15\%$) after correction for exercise-induced responses in clean air. These studies exposed asthmatic volunteers to SO_2 in the absence of other pollutants that often confound associations in the epidemiological literature. Therefore, these controlled human exposure studies provide direct evidence of a causal relationship between exposure to SO_2 and respiratory health effects. Staff judges the controlled human exposure evidence presented in the ISA with respect to lung function effects in exercising asthmatic subjects as providing an appropriate basis for conducting a quantitative risk assessment for this health endpoint and exposure scenario.

A brief description of the approach used to conduct this health risk assessment is presented below. More detailed discussion of the approach can be found in the risk assessment technical support document, included as Appendix C to this document. The goals of this SO₂ risk assessment are: (1) to develop health risk estimates of the number and percent of the asthmatic population that would experience moderate or greater lung function decrements in response to 5-minute daily maximum peak exposures while engaged in moderate or greater exertion for several air quality scenarios (described below); (2) to develop a better understanding of the influence of various inputs and assumptions on the risk estimates; and (3) to gain insights into the risk levels and patterns of risk reductions associated with meeting several alternative 1-hour daily maximum SO₂ standards. Health risks have been estimated for the following three scenarios: (1) recent ambient levels of SO₂, (2) air quality adjusted to simulate just meeting the current 24-hour standard, and (3) air quality adjusted to simulate just meeting several alternative 1-hour standards.

As discussed in Chapter 8, the geographic scope of the assessment includes selected locations encompassing a variety of SO_2 emission source types in two areas within the state of Missouri (i.e., Greene County and St. Louis). These areas were identified based on the results of a preliminary screening of the 5-minute ambient SO_2 monitoring data that were available. The state of Missouri was one of only a few states having both 5-minute maximum and continuous 5-minute SO_2 ambient monitoring, as well as having over 30 1-hour SO_2 monitors in operation at some time during the period from 1997 to 2007. In addition, the air quality characterization, described in Chapter 7, estimated frequent exceedances above the potential health effect benchmark levels at several of the 1-hour ambient monitors. In a ranking of estimated SO_2 emissions reported in the National Emissions Inventory (NEI), Missouri ranked 7th for the number of stacks with > 1000 tpy SO_x emissions out of all U.S. states. These stack emissions were associated with a variety of source types such as electrical power generating units, chemical manufacturing, cement processing, and smelters. For all these reasons, the current SO_2 lung function risk assessment focuses on Missouri and, within Missouri, on those areas within 20 km of a major point source of SO_2 emissions in Greene County and the St. Louis area.

9.2 DEVELOPMENT OF APPROACH FOR 5-MINUTE LUNG FUNCTION RISK ASSESSMENT

The lung function risk assessment is based on the health effects information evaluated in the ISA and discussed above in Chapter 4. The basic structure of the risk assessment reflects the fact that we have available controlled human exposure study data from several studies involving volunteer asthmatic subjects who were exposed to SO₂ concentrations at specified exposure levels while engaged in moderate or greater exertion for 5- or 10-minute exposures. As discussed in the ISA (section 3.1.3.5), among asthmatics, both the magnitude of SO₂-induced lung function decrements and the percent of individuals affected have been shown to increase with increasing 5- to 10-minute SO₂ exposures in the range of 200 to 1,000 ppb. Therefore, for the SO₂ lung function risk assessment we have developed probabilistic *exposure-response* relationships based on these data. The analysis was based on the combined data set consisting of all available individual data that describe the relationship between a measure of personal exposure to SO₂ and measures of lung function recorded in these studies. For the purposes of this risk assessment, all of the individual data, including both 5- and 10-minute exposure duration, were combined and treated as representing 5-minute responses. These probabilistic

- 1 exposure-response relationships were then combined with 5-minute daily maximum peak
- 2 exposure estimates for mild and moderate asthmatics engaged in moderate or greater exertion
- 3 associated with the various air quality scenarios mentioned above. A more detailed description
- 4 of the exposure assessment that was the source of the estimated daily maximum 5-minute peak
- 5 exposures under moderate or greater exertion is provided above in Chapter 8.

9.2.1 General Approach

The major components of the lung function health risk assessment are illustrated in Figure 9-1. As shown in Figure 9-1, under the lung function risk assessment, exposure estimates for mild and moderate asthmatics for a number of different air quality scenarios (i.e., recent year of air quality, just meeting the current 24-hour standard, just meeting alternative standards) are combined with probabilistic exposure-response relationships derived using a combined data base consisting of data from several controlled human exposure studies to develop risk estimates. The air quality and exposure analysis components that are integral to this risk assessment are discussed in greater detail in Chapters 7 and 8 of this document and in the Exposure Assessment TSD. Only the air quality and exposure aspects affecting the scope of the lung function risk assessment are briefly discussed in section 9.2.2. A description of the overall approach to estimating the exposure-response relationship is included in section 9.2.3 below.

Two types of risk measures were generated for the lung function risk assessment. The first type included estimates of the number and percentage of all asthmatics (or asthmatic children) experiencing one or more occurrences of a defined lung function response associated with 5-minute exposures to SO₂ while engaged in moderate or greater exertion under a given air quality scenario. The second type of risk measure generated for each defined lung function response is the number of occurrences of the lung function response in asthmatics (or asthmatic children) in a year associated with 5-minute exposures under moderate or greater exertion under a given air quality scenario. Since asthmatic school age children are a subset of all asthmatics, the risk estimates presented for these two groups should not be combined.

To obtain risk estimates associated with SO_2 concentrations under different scenarios, we estimated expected risk given the personal exposures associated with SO_2 concentrations under each scenario – i.e., associated with

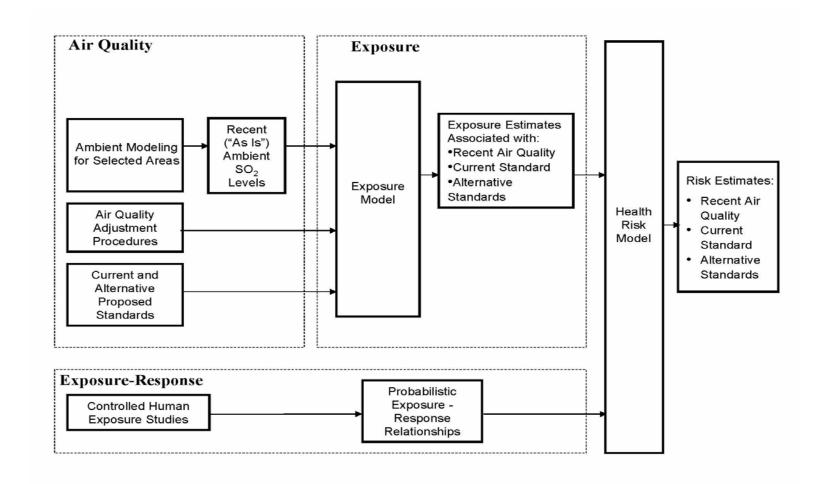


Figure 9-1. Major Components of 5-Minute Peak Lung Function Health Risk Assessment Based on Controlled Human Exposure Studies

- "as is" ambient SO₂ concentrations representing a recent year,
- SO₂ air quality levels simulating just meeting the current 24-hour and annual standards,
 and
 - SO₂ air quality levels simulating just meeting specified alternative 1-hour standards.

Note that, in contrast to the headcount risk estimates calculated for the O_3 health risk assessment, the headcount risk estimates calculated for the SO_2 health risk assessment do not subtract out risk given the personal exposures associated with estimated policy-relevant background ambient SO_2 concentrations. This is because policy-relevant background SO_2 concentrations are estimated to be at most 30 parts per trillion and they contribute less than 1% to present day SO_2 ambient concentrations (ISA, section 2.4.6).

The first measure of risk (i.e., the number or percent of individuals in the designated population to experience at least one lung function response in a year) is calculated as follows:

- 1) From the exposure modeling described in Chapter 8, we obtain the number of individuals exposed at least once to x ppb SO_2 or higher, for x = 0, 50, 100, etc.;
- 2) We then calculate the number of individuals exposed at least once to SO₂ concentrations within each SO₂ exposure bin defined above;
- 3) We then multiply the number of individuals in each exposure bin by the response probability corresponding to the midpoint of the exposure bin; and
- 4) We sum the results across all of the bins.

Because response probabilities are calculated for each of several percentiles of a probabilistic exposure-response distribution, estimated numbers of individuals with at least one SO_2 -related lung function response are similarly percentile-specific. For example, the k^{th} percentile number of individuals, Y_k associated with SO_2 concentrations under a given air quality scenario is:

$$Y_k = \sum_{j=1}^{n} NI_j x (R_k \mid e_j)$$
 (equation 9-1)

30 where:

 e_j = (the midpoint of) the jth category of personal exposure to SO₂, given "as is" ambient SO₂ concentrations;

 NI_j = the number of individuals who highest exposure is to e_j ppb SO₂, given ambient

SO₂ concentrations under the specified air quality scenario.

 $RR_k \mid e_j$ = the kth percentile response rate at SO₂ concentration e_j ; and

n = the number of intervals (categories) of SO₂ personal exposure concentration.

The kth percentile estimate of the total number responding is then calculated by multiplying the

kth percentile risk by the number of people in the relevant population. An example is given in

Table 9-1, for the median (i.e., 50th percentile) risk estimate using personal exposures associated

8 with a 99th percentile 100 ppb 1-hour daily maximum SO₂ standard for asthmatics in the St.

9 Louis modeling domain. We note that this calculation assumes that individuals who do not

respond at the highest SO₂ concentration to which they are exposed will not respond to any lower

SO $_2$ concentrations to which they are exposed.

12

10

1

2

3

4

5

6

7

Table 9-1. Example Calculation of the Number of Asthmatics in St. Louis Engaged in Moderate or Greater Exertion Estimated to Experience At Least One Lung Function Response (Defined as an Increase in sRaw ≥ 100%) Associated with Exposure to SO₂ Concentrations Just Meeting a 99th percentile, 1-Hour 100 ppb Standard

13

	SO ₂ Expos	ure Bin	Number of	Probability of	Estimated Number of
Lower	Upper	Midpoint	Asthmatics with	Response at Midpoint	Asthmatics Experiencing
Bound	Bound		At Least One	SO ₂ Level	at Least One Lung
			Exposure in Bin		Function Response
		(1)	(2)	(3)	$=(2) \times (3)$
0	0.05	0.025	53711	0.00406	218
0.05	0.1	0.075	34236	0.02334	799
0.1	0.15	0.125	9835	0.05162	508
0.15	0.2	0.175	3059	0.08563	262
0.2	0.25	0.225	929	0.12300	114
0.25	0.3	0.275	368	0.16220	60
0.3	0.35	0.325	145	0.20210	29
0.35	0.4	0.375	84	0.24190	20
0.4	0.45	0.425	31	0.28060	9
0.45	0.5	0.475	22	0.31830	7
0.5	0.55	0.525	8	0.35430	3
0.55	0.6	0.575	0	0.38850	0
0.6	0.65	0.625	0	0.42090	0
0.65	0.7	0.675	8	0.45150	4
0.7	0.75	0.725	0	0.46600	0
0.75	0.8	0.775	0	0.49380	0
		Total :	102436	Total:	2032

14 15

1 The second type of risk measure, the number of occurrences of a defined lung function 2 response in the designated population (i.e., asthmatics or asthmatic children) in a year associated 3 with SO₂ concentrations under a given air quality scenario is calculated as follows: 4 1) From the exposure modeling described in Chapter 8, we obtain the number of 5 exposure occurrences among the population at and above each benchmark level (i.e., 6 0,ppb, 50 ppb, 100 ppb, etc.); 7 8 2) We then calculate the number of exposure occurrences within each 50 ppb exposure "bin" (e.g., < 50 ppb, 50-100 ppb, etc.) 53; 9 10 3) We then multiply the number of occurrences in each exposure bin by the response 11 12 probability corresponding to the midpoint of the exposure bin; and 13 14 4) We sum the results across all of the bins. 15 16 Similar to the first type of risk measure discussed above, because response probabilities 17 are calculated for each of several percentiles of a probabilistic exposure-response distribution, estimated numbers of occurrences are similarly percentile-specific. The kth percentile number of 18 19 occurrences, O_k , associated with SO₂ concentrations under a given air quality scenario is: 20 $O_k = \sum_{i=1}^n N_j x (R_k \mid e_j)$ 21 (equation 9-2) 22 23 where: 24 e_i = (the midpoint of) the jth category of personal exposure to SO₂; 25 26 N_i = the number of exposures to e_i ppb SO₂, given ambient SO₂ concentrations under the 27 28 specified air quality scenario; 29 $R_k \mid e_i$ = the kth percentile response probability at SO₂ concentration e_i ; and 30 31 32 n = the number of intervals (categories) of SO₂ personal exposure concentration.

An example calculation is given in Table 9-2.

33 34

 $^{^{53}}$ The final exposure bin was from 0.75 to 0.8 ppm SO₂. In at least one of the alternative standard scenarios, there were a few individuals whose exposure was greater than 0.8 ppm. For anyone whose exposure exceeded 0.8 ppm, we assumed a final bin from 0.8 to 0.85 ppm, and assigned them the midpoint value of that bin, 0.825 ppm. This will result in a slight downward bias in the estimate of risk.

Table 9-2. Example Calculation of Number of Occurrences of Lung Function Response (Defined as an Increase in sRaw ≥ 100%), Among Asthmatics in St. Louis Engaged in Moderate or Greater Exertion Associated with Exposure to SO₂ Concentrations that Just Meet a 99th Percentile 1-Hour, 100 ppb Standard

SC	O ₂ Exposure	e Bin	Number of	Probability of	Expected Number of
Lower	Upper	Midpoint	Exposures	Response at Midpoint	Occurrences of Lung
Bound	Bound			SO ₂ Level	Function Response
		(1)	(2)	(3)	$=(2) \times (3)$
0	0.05	0.025	16519000	0.00406	67067
0.05	0.1	0.075	136621	0.02334	3189
0.1	0.15	0.125	15760	0.05162	814
0.15	0.2	0.175	3826	0.08563	328
0.2	0.25	0.225	1051	0.12300	129
0.25	0.3	0.275	413	0.16220	67
0.3	0.35	0.325	175	0.20210	35
0.35	0.4	0.375	83	0.24190	20
0.4	0.45	0.425	31	0.28060	9
0.45	0.5	0.475	24	0.31830	8
0.5	0.55	0.525	8	0.35430	3
0.55	0.6	0.575	0	0.38850	0
0.6	0.65	0.625	0	0.42090	0
0.65	0.7	0.675	8	0.45150	4
0.7	0.75	0.725	0	0.46600	0
0.75	0.8	0.775	0	0.49380	0
				Expected Number	
Tota	al Number o	of Exposures:	16677000	of Occurrences:	71672

9.2.2 Exposure Estimates

As noted above, exposure estimates used in the lung function risk assessment were obtained from running the APEX exposure model for the population of individuals with asthma for selected locations encompassing a variety of SO₂ emission source types within two areas in the state of Missouri (i.e., St. Louis and Greene County). Chapter 8 provides additional details about the inputs and methodology used to estimate 5-minute daily maximum peak SO₂ exposures while engaged in moderate or greater exertion for the asthmatic population in these two areas. These 5-minute exposure estimates for asthmatic children and adult asthmatics have been combined separately with probabilistic exposure-response relationships for lung function response associated with 5-minute SO₂ exposures. Only the highest 5-minute peak exposure (with moderate or greater exertion) on each day has been considered in the lung function risk assessment, since the controlled human exposure studies have shown an acute-phase response

that was followed by a short refractory period where the individual was relatively insensitive to additional SO₂ challenges.

As described in section 8.8.1, instead of adjusting upward⁵⁴ the air quality concentrations to simulate just meeting the current SO₂ standards and potential alternative 1-hr daily maximum standards, to reduce computer processing time, the exposure assessment simulated exposures associated with just meeting various standards by adjusted the health effect benchmark levels by the same factors described for each specific modeling domain and simulated year (see Table 8-11). Since it is a proportional adjustment, the end effect of adjusting concentrations upwards versus adjusting benchmark levels downward within the model is the same. The same follows for where as is concentrations were in excess of an alternative standard level (e.g., 50 ppb for the 99th percentile averaged over three years), only the associated benchmarks are adjusted upwards (i.e., a higher threshold concentration that would simulate lower exposures).

9.2.3 Exposure-Response Functions

Similar to the approach used in the ozone lung function risk assessment (Abt Associates, 2007), we have used a Bayesian Markov Chain Monte Carlo approach to estimate probabilistic exposure-response relationships for lung function decrements associated with 5-minute daily maximum peak exposures while engaged in moderate or greater exertion using the WinBUGS software (Spiegelhalter et al., 1996). The combined data set includes all available individual data from controlled human exposure studies of mild-to-moderate asthmatic individuals exposed for 5- or 10-minutes while engaged in moderate or greater exertion. As noted above, for the purposes of this risk assessment, all of the individual response data, including both 5- and 10-minute exposure durations, have been combined and treated as representing 5-minute responses. Table 9-2 summarizes the available controlled human exposure data that have been used to develop the probabilistic exposure-response relationships for the lung function risk assessment.

The combined data set from Linn et al. (1987, 1988, 1990), Bethel et al. (1983, 1985), Roger et al. (1985), and Kehrl et al. (1987), summarized in Table 9-2, provide data with which to estimate exposure-response relationships between responses defined in terms of sRaw and 5-

⁵⁴ To evaluate the current and most of the alternative 1-hr standards analyzed, "as is" ambient concentrations were lower than air quality that would just meet the standards.

⁵⁵ See Gleman et al. (1995) or Gilks et al. (1996) for an explanation of these methods.

minute exposures to SO_2 at levels of 200, 250, 300, 400, 500, 600, and 1,000 ppb.⁵⁶ As noted above, two definitions of response have been used: (1) an increase in sRaw \geq 100% and (2) an increase in sRaw \geq 200%.

Likewise, the combined data set from Linn et al. (1987, 1988, 1990), summarized in Table 9-3, provide data with which to estimate exposure-response relationships between responses defined in terms of FEV₁ and 5-minute exposures to SO₂ at levels of 200, 300, 400, and 600 ppb. As noted above, two definitions of response have been used: a decrease in FEV₁ \geq 15% and a decrease in FEV₁ \geq 20%.

Before being used to estimate exposure-response relationships for 5-minute exposures, the data from these controlled human exposure studies were corrected for the effect of exercising in clean air to remove any systematic bias that might be present in the data attributable to an exercise effect and this correction is reflected in the summary of the response data provided in Table 9-3.⁵⁷ Generally, this correction for exercise in clean air is small relative to the total effects measures in the SO₂-exposed cases.

We considered two different functional forms for the exposure-response functions: a 2-parameter logistic model and a probit model. In particular, we used the data in Table 9-3 to estimate the logistic function,

19
$$y(x; \beta, \gamma) = \frac{1}{(1 + e^{\beta + \gamma * \ln(x)})}$$
 (equation 9-3)

and the probit function,

21
$$y(x; \beta, \gamma) = \frac{1}{(2\pi)^{1/2}} \int_{-\infty}^{\beta + \gamma \ln(x)} e^{-t^2/2} dt \qquad \text{(equation 9-4)}$$

_

Data from Magnussen et al. (1990) were not used in the estimation of sRaw exposure-response functions because exposures in this study were conducted using a mouthpiece rather than a chamber.

⁵⁷ Corrections were subject-specific. A correction was made by subtracting the subject's percent change (in FEV₁ or sRaw) under the no-SO₂ protocol from his or her percent change (in FEV₁ or sRaw) under the given SO₂ protocol, and rounding the result to the nearest integer. For example, if a subject's percent change in sRaw under the no-SO₂ protocol was 110.12% and his percent change in sRaw under the 0.6 ppm SO₂ protocol was 185.92%, then his percent change in sRaw *due to SO*₂ is 185.92% - 110.12% = 75.8%, which rounds to 76%.

Table 9-3. Percentage of Asthmatic Individuals in Controlled Human Exposure Studies Experiencing SO₂-Induced Decrements in Lung Function.

SO ₂ Level (PPB)	Exposure Duration	No. of Subjects	Ventilation (L/min)	Lung Funct.	Cumulative Percentage of Responders (Number of Subjects) ¹			Reference	Respiratory Symptoms: Supporting Studies
					≥ 100% ↑	$ \begin{array}{c c} sRaw \\ \geq 100\% \uparrow \geq 200\% \uparrow \geq 300\% \uparrow \\ \hline FEV_1 $			
					≥ 15% ↓	≥ 20% ↓	≥ 30% ↓		
200	10 min	40	~40	sRaw	5% (2)	0	0	Linn et al. (1987) ²	
	10 min	40	~40	FEV ₁	13% (5)	5% (2)	3% (1)	Linn et al. (1987)	
250	5 min	19	~50-60	sRaw	32% (6)	16% (3)	0	Bethel et al. (1985)	
	5 min	9	~80-90	sRaw	22% (2)	0	0		Limited evidence of SO ₂ -induced increases in respiratory symptoms
	10 min	28	~40	sRaw	4% (1)	0	0	Roger et al. (1985)	in some asthmatics: Linn et al.
300	10 min	20	~50	sRaw	10% (2)	5% (1)	5% (1)	Linn et al. (1988) ³	(1983b; 1984; 1987; 1988; 1990), Schacter et al. (1984)
	10 min	21	~50	sRaw	33% (7)	10% (2)	0	Linn et al. (1990) ³	
	10 min	20	~50	FEV ₁	15% (3)	0	0	Linn et al. (1988)	
	10 min	21	~50	FEV ₁	24% (5)	14% (3)	10% (2)	Linn et al. (1990)	
400	10 min	40	~40	sRaw	23% (9)	8% (3)	3% (1)	Linn et al. (1987)	
	10 min	40	~40	FEV ₁	30% (12)	23% (9)	13% (5)	Linn et al. (1987)	Stronger evidence with some statistically significant increases in
500	5 min	10	~50-60	sRaw	60% (6)	40% (4)	20% (2)	Bethel et al. (1983)	respiratory symptoms: Balmes
	10 min	28	~40	sRaw	18% (5)	4% (1)	4% (1)	Roger et al. (1985)	et al. (1987) ⁴ , Gong et al. (1995), Linn et al. (1983b; 1987), Roger
	10 min	45	~30	sRaw	36% (16)	16% (7)	13% (6)	Magnussen et al. (1990) ⁴	et al. (1985)

SO ₂ Level	Exposure Duration	No. of Subjects	Ventilation (L/min)	Lung Funct.	Cumulative P Responders	Cumulative Percentage of Responders			Respiratory Symptoms: Supporting Studies
(PPB)					(Number of S	Subjects) ¹			
						sRaw			
					≥ 100% ↑	≥ 200% ↑	≥ 300% ↑		
						FEV_1			
					≥ 15% ↓	≥ 20% ↓	≥ 30% ↓		
600	10 min	40	~40	sRaw	35% (14)	28% (11)	18% (7)	Linn et al. (1987)	
	10 min	20	~50	sRaw	60% (12)	35% (7)	10% (2)	Linn et al. (1988)	
	10 min	21	~50	sRaw	62% (13)	29% (6)	14% (3)	Linn et al. (1990)	Clear and consistent increases in
	10 min	40	~40	FEV ₁	53% (21)	48% (19)	20% (8)	Linn et al. (1987)	SO ₂ -induced respiratory symptoms: Linn et al.(1984; 1987;
	10 min	20	~50	FEV ₁	55% (11)	55% (11)	5% (1)	Linn et al. (1988)	1988; 1990), Gong et al. (1995),
	10 min	21	~50	FEV ₁	43% (9)	33% (7)	14% (3)	Linn et al. (1990)	Horstman et al. (1988)
1,000	10 min	28	~40	sRaw	50% (14)	25% (7)	14% (4)	Roger et al. (1985)	
	10 min	10	~40	sRaw	60% (6)	20% (2)	0	Kehrl et al. (1987)	

¹Data presented from all references from which individual data were available. Percentage of individuals who experienced greater than or equal to a 100, 200, or 300% increase in specific airway resistance (sRaw), or a 15, 20, or 30% decrease in FEV₁. Lung function decrements are adjusted for effects of exercise in clean air (calculated as the difference between the percent change relative to baseline with excersise/SO₂ and the percent change relative to baseline with excersise/clean air). Quality control of data was performed by two EPA staff scientists.

²Responses of mild and moderate asthmatics reported in Linn et al. (1987) have been combined. Data reported only for the first 10 min period of exercise in the first round of exposures.

³Analysis includes data from only mild (1988) and moderate (1990) asthmatics who were not receiving supplemental medication.

⁴One subject was not exposed to 1,000 ppb due to excessive wheezing and chest tightness experienced at 500 ppb. For this subject, the values used for 500 ppb were also used for 1,000 ppb under the assumptions that the response at 1,000 ppb would be equal to or greater than the response at 500 ppb.

⁵Indicates studies in which exposures were conducted using a mouthpiece rather than a chamber.

Source: ISA, Table 3-1 (EPA, 2008c, p.3-10).

for each of the four lung function responses defined above, where x denotes the SO_2

2 concentration (in ppm) to which the individual is exposed, ln(x) is the natural logarithm

of x, y denotes the corresponding probability of response (increase in sRaw $\geq 100\%$ or \geq

200% or decrease in FEV₁ \geq 15% or \geq 20%), and β and γ are the two parameters whose

5 values are estimated. 58

We assumed that the number of responses, s_i , out of N_i subjects exposed to a given SO_2 concentration, x_i , has a binomial distribution with response probability given by equation (9-3) when we assume the logistic model and equation (9-4) when we assume the probit model. The likelihood function is therefore

11
$$L(\beta, \gamma; data) = \prod_{i} {N_i \choose s_i} y(x_i; \beta, \gamma)^{s_i} [1 - y(x_i; \beta, \gamma)]^{N_i - s_i} . \quad \text{(equation 9-5)}$$

In some of the controlled human exposure studies, subjects were exposed to a given SO₂ concentration more than once. However, because there were insufficient data to estimate subject-specific response probabilities, we assumed a single response probability (for a given definition of response) for all individuals and treated the repeated exposures for a single subject as independent exposures in the binomial distribution.

For each model, we derived a Bayesian posterior distribution using this binomial likelihood function in combination with uniform prior distributions for each of the unknown parameters.⁵⁹ We used 4,000 iterations as the "burn-in" period followed by 10,000 iterations, a number sufficient to ensure convergence of the resulting posterior distribution. Each iteration corresponds to a set of values for the parameters of the logistic or probit exposure-response function.

For any SO₂ concentration, x, we could then derive the n^{th} percentile response value, for any n, by evaluating the exposure-response function at x using each of the 18,000 sets of parameter values. The resulting median (50th percentile) exposure-response functions based on the 2-parameter logistic and probit models are shown

March 2009

⁵⁸ For ease of exposition, the same two Greek letters are used to indicate two unknown parameters in the logistic and probit models; this does not imply, however, that the values of these two parameters are the same in the two models.

⁵⁹ We used the following uniform prior distributions for the 2-parameter logistic model: $\beta \sim U(-10,0)$; and $\gamma \sim U(-10,0)$; we used the following normal prior distributions for the probit model: $\beta \sim N(0,1000)$; and $\gamma \sim N(0,1000)$.

- 1 together, along with the data used to estimate these functions, for increases in sRaw >
- 2 100% and \geq 200% and decreases in FEV₁ \geq 15% and \geq 20% in Figures 9-2, 9-3, 9-4, and
- 3 9-5, respectively. The 2.5th percentile, median, and 97.5th percentile curves, along with
- 4 the response data to which they were fit, are shown separately for each of the eight
- 5 combinations of (four) response definitions and (two) exposure-response models in
- 6 Appendix C.
- We note that there were only limited data with which to estimate the logistic and
- 8 probit exposure-response functions, and that the logistic and probit models both appear to
- 9 fit the data equally well. We also note that since the data being fit has already been
- 10 corrected to account for the lung function response due to exercise in clean air, then the
- response must by definition be zero associated with 0 ppm SO₂ exposure. As one
- observes in Figures 9-2 through 9-5 there is very little difference in the exposure-
- 13 response relationship between the two models, particularly at concentrations at and below
- about 0.6 ppm. Since nearly all of the risk is attributable to exposures below the 0.6 ppm
- level, we have chosen to use the 2-parameter logistic exposure-response functions to
- develop the risk estimates associated with exposure to SO₂ under the different air quality
- 17 scenarios considered.

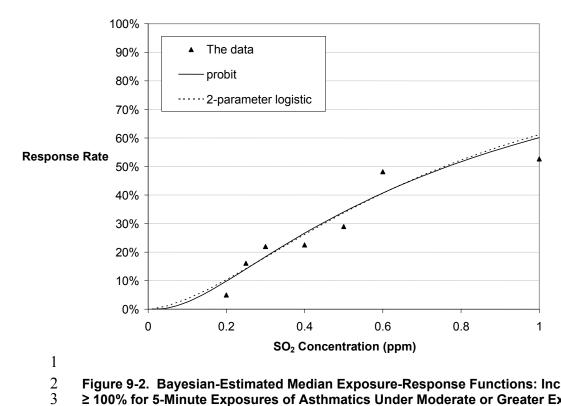
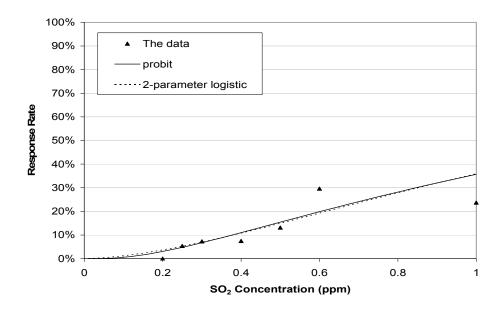



Figure 9-2. Bayesian-Estimated Median Exposure-Response Functions: Increase in sRaw ≥ 100% for 5-Minute Exposures of Asthmatics Under Moderate or Greater Exertion*

March 2009

11 12

13

Figure 9-3. Bayesian-Estimated Median Exposure-Response Functions: Increase in sRaw ≥ 200% for 5-Minute Exposures of Asthmatics Under Moderate or Greater Exertion*

*Derived using method described in text based on all of the individual response data from Linn et al. (1987), Linn et al. (1988), Linn et al. (1990), Bethel et al. (1983), Bethel et al. (1985), Roger et al. (1985), and Kehrl et al. (1987).

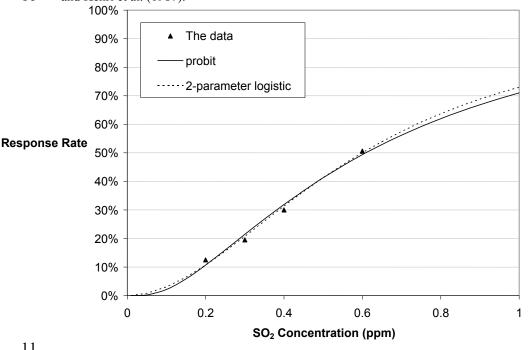


Figure 9-4. Bayesian-Estimated Median Exposure-Response Functions: Decrease in FEV1 > 20% for 5-Minute Exposures of Asthmatics Under Moderate or Greater Exertion*

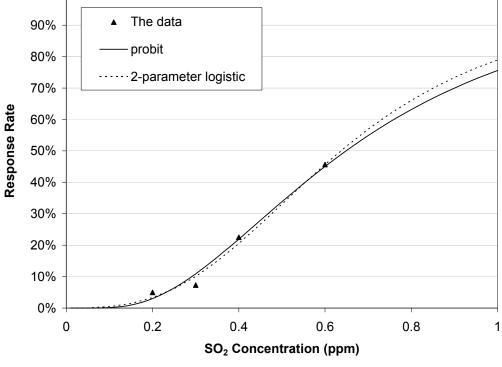


Figure 9-5. Bayesian-Estimated Median Exposure-Response Functions: Decrease in FEV1 > 20% for 5-Minute Exposures of Asthmatics Under Moderate or Greater Exertion*

*Derived using method described in text based on all of the individual response data from Linn et al. (1987), Linn et al. (1988), and Linn et al. (1990).

100%

9.3 LUNG FUNCTION RISK ESTIMATES

1

2 In this section, we present and discuss risk estimates associated with several air 3 quality scenarios, including a recent year of air quality as represented by 2002 monitoring 4 data. In addition, risk estimates are presented for several hypothetical scenarios, 5 equivalent to adjusting air quality upward to simulate just meeting the current annual SO₂ 6 24-hour standard and to adjusting air quality (either up or down) to simulate just meeting 7 potential alternative 98th and 99th percentile daily maximum 1-h standards. As 8 discussed previously in Chapter 5, potential alternative 1-h standards with levels set at 9 50, 100, 150, 200, and 250 ppb have been included in the risk assessment. Only selected 10 risk estimates are presented in this section and additional risk estimates are presented in 11 Appendix C. Throughout this section and Appendix C the uncertainty surrounding risk 12 estimates resulting from the statistical uncertainty in the SO₂ exposure-response 13 relationships due to sampling error is characterized by ninety-five percent credible 14 intervals around estimates of occurrences, number of asthmatics experiencing one or 15 more lung function responses, and percent of total incidence that is SO₂-related. 16 Risk estimates for selected lung function responses for all asthmatics and 17 asthmatic children associated with 5-minute exposures to ambient SO₂ concentrations 18 while engaged in moderate or greater exertion are presented in Tables 9-4 through 9-9. 19 Tables 9-4 through 9-6 are for all asthmatics and Tables 9-7 through 9-9 are for asthmatic 20 children. Each table includes risk estimates for both Greene County and St. Louis, 21 Missouri. As discussed in section 9.2.3, the risk assessment included two types of lung 22 function responses (i.e., sRaw and FEV₁) and two levels of response for each type of lung 23 function response (≥ 100 and 200% increase for sRaw and ≥ 15 and 20% decrease for 24 FEV₁). Risk estimates using sRaw as the measure of lung function response are included 25 in this section and additional risk estimates using FEV_1 as the indicator of lung function 26 response are included in Tables 4-3, 4-4, 4-7, and 4-8 in Appendix C. 27 Tables 9-4 and 9-5 summarize the estimated number and percent of asthmatics 28 that would experience 1 or more lung function responses in a year, where lung function 29 response was defined as $\geq 100\%$ and $\geq 200\%$ increase in sRaw, in all asthmatics 30 associated with ambient 5-minute SO₂ exposures estimated to occur under "as is" air 31 quality (i.e., air quality based on 2002 monitored and modeled SO₂ air quality data) and

- 1 under air quality representing just meeting the current SO₂ standards and several
- 2 alternative 1-hour daily maximum SO₂ standards. Tables 9-7 and 9-8 present the same
- 3 types of estimates for asthmatic children. The median estimates are presented in each
- 4 cell of the table with the 95% credible intervals based on statistical uncertainty
- 5 surrounding the SO₂ coefficient in the exposure-response relationship shown in
- 6 parentheses below the median estimates.
- 7 Tables 9-6 and 9-9 summarize the estimated number of occurrences of two
- 8 defined levels of lung function response ($\geq 100\%$ and $\geq 200\%$ increase in sRaw) in all
- 9 asthmatics and in asthmatic children, respectively, associated with ambient 5-minute SO₂
- exposures estimated to occur under "as is" air quality (i.e., air quality based on 2002
- monitored and modeled SO₂ air quality data) and under air quality representing just
- meeting the current SO₂ standards and several alternative 1-hour daily maximum SO₂
- 13 standards.
- The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per
- million (ppm), not to be exceeded more than once per year, and an annual standard set at
- 16 0.03 ppm, calculated as the arithmetic mean of hourly averages. In St. Louis, SO₂
- 17 concentrations that are predicted to occur if the current standards were just met are
- substantially higher than "as is" air quality (based on 2002 monitoring and modeling
- data) and also substantially higher than they would be under any of the alternative 1-hr
- standards considered in this analysis. Consequently, the levels of response that would be
- seen if the current standard were just met are well above the levels that would be seen
- 22 under the "as is" air quality scenario or under any of the alternative 1-hr standards for
- asthmatics and for asthmatic children, and for all four definitions of lung function
- response. We also note that the only standard resulting in decreases in lung function
- responses relative to the "as is" scenario is the 50 ppb, 99th percentile 1-hr daily
- 26 maximum standard.

Table 9-4. Number of Asthmatics Engaged in Moderate or Greater Exertion Estimated to Experience At Least One Lung Function Response Associated with Exposure to SO₂ Under Alternative Air Quality Scenarios*

Location	"As is" SO ₂	SO ₂ Concentrations	SO₂ Concent	SO ₂ Concentrations that Just Meet Alternative nth Percentile 1-Hr Daily Maximum Standards, with Levels (in ppb) of m (Standard Denoted n/m):									
	Concentrations**	that Just Meet the Current Standards***	99/50	99/100	99/150	99/200	99/250	98/200					
	Response = Increase in sRaw >= 100%												
Greene County,	90	210	80	90	100	120	160	140					
MO	(20 - 390)	(80 - 620)	(20 - 380)	(20 - 390)	(20 - 420)	(30 - 460)	(50 - 520)	(40 - 500)					
St. Louis,	1010	13460	730	1990	3650	5520	7500	7050					
МО	(340 - 3010)	(9740 - 18510)	(220 - 2490)	(860 - 4690)	(1900 - 7100)	(3230 - 9490)	(4770 - 11850)	(4410 - 11320)					
			Response	= Increase in	sRaw >= 200%								
Greene	30	70	30	30	30	40	50	50					
County, MO	(0 - 210)	(20 - 310)	(0 - 210)	(0 - 210)	(0 - 220)	(10 - 240)	(10 - 270)	(10 - 260)					
St. Louis,	330	5520	230	670	1280	2010	2830	2640					
МО	(70 - 1520)	(3400 - 8960)	(40 - 1290)	(210 - 2270)	(510 - 3360)	(940 - 4470)	(1470 - 5590)	(1340 - 5330)					

^{*}Numbers are median (50th percentile) numbers of asthmatics. Numbers in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Numbers are rounded to the nearest ten.

^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{***}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

Table 9-5. Percent of Asthmatics Engaged in Moderate or Greater Exertion Estimated to Experience At Least One Lung Function Response Associated with Exposure to SO₂ Concentrations Under Alternative Air Quality Scenarios*

	"As is" SO ₂	SO ₂ Concentrations	SO ₂ Concentrations that Just Meet Alternative nth Percentile 1-Hr Daily Maximum Standards, with Levels (in ppb) of m (Standard Denoted n/m):										
Location	Concentrations**	that Just Meet the Current Standards***	99/50	99/100	99/150	99/200	99/250	98/200					
	Response = Increase in sRaw >= 100%												
Greene County,	0.4%	1%	0.4%	0.4%	0.5%	0.6%	0.7%	0.7%					
MO	(0.1% - 1.8%)	(0.4% - 2.9%)	(0.1% - 1.8%)	(0.1% - 1.8%)	(0.1% - 2%)	(0.2% - 2.1%)	(0.2% - 2.4%)	(0.2% - 2.3%)					
St. Louis, MO	1%	13.1% (9.5% -	0.7%	1.9%	3.6%	5.4%	7.3%	6.9%					
IVIO	(0.3% - 2.9%)	18.1%)	(0.2% - 2.4%)	(0.8% - 4.6%)	(1.9% - 6.9%)	(3.2% - 9.3%)	(4.7% - 11.6%)	(4.3% - 11.1%)					
			Response	= Increase in sl	Raw >= 200%								
Greene	0.1%	0.3%	0.1%	0.1%	0.2%	0.2%	0.2%	0.2%					
County,													
MO	(0% - 1%)	(0.1% - 1.5%)	(0% - 1%)	(0% - 1%)	(0% - 1%)	(0% - 1.1%)	(0% - 1.3%)	(0% - 1.2%)					
St. Louis,	0.3%	5.4%	0.2%	0.7%	1.3%	2%	2.8%	2.6%					
МО	(0.1% - 1.5%)	(3.3% - 8.7%)	(0% - 1.3%)	(0.2% - 2.2%)	(0.5% - 3.3%)	(0.9% - 4.4%)	(1.4% - 5.5%)	(1.3% - 5.2%)					

^{*}Percents are median (50th percentile) percents of asthmatic children. Percents in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Percents are rounded to the nearest tenth.

^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{***}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

Table 9-6. Number of Occurrences (In Hundreds) of a Lung Function Response Among Asthmatics Engaged in Moderate or Greater Exertion Associated with Exposure to SO₂ Concentrations Under Alternative Air Quality Scenarios*

Location	WAS ISU SO	SO ₂ Concentrations	SO ₂ Concentrations that Just Meet Alternative nth Percentile 1-Hr Daily Maximum Standards, with Levels (in ppb) of m (Standard Denoted n/m):										
	"As is" SO ₂ Concentrations**	that Just Meet the Current Standards***	99/50	99/100	99/150	99/200	99/250	98/200					
	Response = Increase in sRaw >= 100%												
Greene	125	127	125	125	125	126	126	126					
County, MO	(24 - 572)	(25 - 577)	(24 - 572)	(24 - 572)	(24 - 573)	(24 - 573)	(24 - 575)	(24 - 574)					
St Louis MO	657	1672	652	686	762	880	1036	997					
St. Louis, MO	(128 - 2985)	(663 - 4740)	(125 - 2975)	(141 - 3041)	(176 - 3184)	(234 - 3398)	(315 - 3673)	(295 - 3604)					
			Response = Increas	se in sRaw >= 2	00%								
Greene	38	39	38	38	38	38	39	39					
County, MO	(4 - 310)	(4 - 312)	(4 - 310)	(4 - 310)	(4 - 310)	(4 - 310)	(4 - 311)	(4 - 311)					
St. Louis, MO	201	560	199	211	237	278	332	319					
St. Louis, MO	(21 - 1614)	(165 - 2407)	(20 - 1609)	(24 - 1639)	(32 - 1703)	(47 - 1799)	(68 - 1923)	(63 - 1892)					

^{*}Numbers are median (50th percentile) numbers of occurrences. Numbers in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Numbers are rounded to the nearest whole number.

^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{***}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

Table 9-7. Number of Asthmatic Children Engaged in Moderate or Greater Exertion Estimated to Experience At Least One Lung Function Response Associated with Exposure to SO₂ Under Alternative Air Quality Scenarios*

	"Ac ic" 50	SO ₂ Concentrations	SO₂ Concentrations that Just Meet Alternative nth Percentile 1-Hr Daily Maximum Standards, with Levels (in ppb) of m (Standard Denoted n/m):										
Location	"As is" SO ₂ Concentrations**	that Just Meet the Current Standards***	99/50	99/100	99/150	99/200	99/250	98/200					
	Response = Increase in sRaw >= 100%												
Greene County,	30	110	30	30	40	50	70	60					
MO	(10 - 130)	(40 - 270)	(10 - 130)	(10 - 140)	(10 - 150)	(20 - 180)	(30 - 210)	(20 - 200)					
St. Louis,	590	8020	400	1220	2240	3370	4560	4290					
MO	(220 - 1570)	(6080 - 10370)	(130 - 1210)	(560 - 2620)	(1240 - 4010)	(2090 - 5350)	(3060 - 6680)	(2840 - 6390)					
			Response =	Increase in sR	aw >= 200%								
Greene County,	10	40	10	10	10	20	20	20					
MO	(0 - 70)	(10 - 130)	(0 - 70)	(0 - 70)	(0 - 80)	(0 - 90)	(10 - 110)	(10 - 100)					
St. Louis,	190	3380	130	410	800	1250	1750	1640					
MO	(50 - 780)	(2190 - 5070)	(30 - 610)	(140 - 1240)	(340 - 1870)	(620 - 2500)	(970 - 3140)	(890 - 3000)					

^{*}Numbers are median (50th percentile) numbers of asthmatic children. Numbers in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Numbers are rounded to the nearest ten.

^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{***}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

Table 9-8. Percent of Asthmatic Children Engaged in Moderate or Greater Exertion Estimated to Experience At Least One Lung Function Response Associated with Exposure to SO₂ Concentrations Under Alternative Air Quality Scenarios*

	"As is" SO ₂ Concentrations**	SO ₂ Concentrations that Just Meet the Current Standards***	SO ₂ Concentrations that Just Meet Alternative nth Percentile 1-Hr Daily Maximum Standards, with Levels (in ppb) of m (Standard Denoted n/m):							
Location			99/50	99/100	99/150	99/200	99/250	98/200		
	Response = Increase in sRaw >= 100%									
Greene	0.4%	1.4%	0.4%	0.4%	0.5%	0.7%	1%	0.9%		
County, MO	(0.1% - 1.8%)	(0.6% - 3.7%)	(0.1% - 1.8%)	(0.1% - 1.9%)	(0.1% - 2.1%)	(0.2% - 2.4%)	(0.3% - 2.9%)	(0.3% - 2.7%)		
St. Louis,	1.4%	19.2%	0.9%	2.9%	5.4%	8.1%	10.9%	10.3%		
MO		(14.6% -								
IVIO	(0.5% - 3.8%)	24.9%)	(0.3% - 2.9%)	(1.3% - 6.3%)	(3% - 9.6%)	(5% - 12.8%)	(7.3% - 16%)	(6.8% - 15.3%)		
			Response =	Increase in sR	aw >= 200%					
Greene	0.1%	0.5%	0.1%	0.1%	0.2%	0.2%	0.3%	0.3%		
County, MO	(0% - 1%)	(0.1% - 1.8%)	(0% - 1%)	(0% - 1%)	(0% - 1.1%)	(0% - 1.3%)	(0.1% - 1.5%)	(0.1% - 1.4%)		
St. Louis,	0.5%	8.1%	0.3%	1%	1.9%	3%	4.2%	3.9%		
MO	(0.1% - 1.9%)	(5.3% - 12.2%)	(0.1% - 1.5%)	(0.3% - 3%)	(0.8% - 4.5%)	(1.5% - 6%)	(2.3% - 7.5%)	(2.1% - 7.2%)		

^{*}Percents are median (50th percentile) percents of asthmatic children. Percents in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Percents are rounded to the nearest tenth.

^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{***}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

Table 9-9. Number of Occurrences (In Hundreds) of a Lung Function Response Among Asthmatic Children Engaged in Moderate or Greater Exertion Associated with Exposure to SO₂ Concentratons Under Alternative Air Quality Scenarios*

	"As is" SO ₂ Concentrations**	SO ₂ Concentrations that Just Meet the Current Standards***	SO₂ Concentrations that Just Meet Alternative nth Percentile 1-Hr Daily Maximum Standards, with Levels (in ppb) of m (Standard Denoted n/m):							
Location			99/50	99/100	99/150	99/200	99/250	98/200		
	Response = Increase in sRaw >= 100%									
Greene	71	72	71	71	71	71	71	71		
County, MO	(13 - 324)	(14 - 327)	(13 - 324)	(14 - 324)	(14 - 324)	(14 - 325)	(14 - 325)	(14 - 325)		
St. Louis, MO	417	1179	413	439	497	586	704	674		
St. Louis, MO	(81 - 1893)	(484 - 3209)	(80 - 1885)	(91 - 1935)	(118 - 2043)	(162 - 2206)	(222 - 2413)	(207 - 2361)		
			Response = Inci	ease in sRaw >	= 200%					
Greene	22	22	22	22	22	22	22	22		
County, MO	(2 - 175)	(2 - 177)	(2 - 175)	(2 - 175)	(2 - 175)	(2 - 176)	(2 - 176)	(2 - 176)		
St. Louis, MO	128	397	126	135	155	186	227	217		
Gt. Louis, MO	(13 - 1023)	(122 - 1618)	(13 - 1019)	(15 - 1042)	(22 - 1091)	(33 - 1164)	(49 - 1257)	(45 - 1234)		

^{*}Numbers are median (50th percentile) numbers of asthmatics. Numbers in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Numbers are rounded to the nearest whole number.

^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{***}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

As an illustration of the changes in the number of occurrences of sRaw increases $\geq 100\%$ in all asthmatics across the range of standards analyzed in the St. Louis modeling domain, under the current SO_2 standards the median estimate is 117,900. These estimated occurrences decrease for increasingly more stringent alternative 1-hour standards with the 50 ppb, 99th percentile daily maximium 1-hour standard, the most stringent alternative standard analyzed, reducing the median estimated number of occurrences of this lung function response to 41,300. The pattern of reductions observed for all asthmatics is similar to that observed in asthmatic children.

The estimated occurrences of sRaw responses are much lower in Greene County due both to a smaller population as well as fewer exposure occurrences of elevated 5-minute SO₂ concentrations. We also note that the differences in estimated occurrences of lung function responses associated with all of the air quality scenarios analyzed are much smaller for Greene County than in St. Louis. The minimal differences observed in Greene County among the air quality scenarios analyzed is due to the relatively small differences in the distribution of exposures while engaged in moderate or greater exertion among the air quality scenarios analyzed.

Figures 9-7 (a) and (b) show the contribution of different exposure "bins" or intervals to the total estimated occurrences of SO_2 -related lung function responses to 5-minute SO_2 exposures for asthmatics and asthmatic children, respectively, in the St. Louis modeling domain using $\geq 100\%$ increases in sRaw as the indicator of lung function response. Figures 9-8 (a) and (b) show the percent of asthmatics and asthmatic children, respectively, engaged in moderate or greater exertion in St. Louis, MO estimated to experience at least one lung function response in a year, defined as an increase in sRaw $\geq 100\%$, attributable to exposure to SO_2 in each exposure "bin." Figure 9-6 displays the legend for Figures 9-7 and 9-8 indicating the exposure bins used in the figures. Similar figures are included in Appendix C for lung function responses defined in terms of $\geq 15\%$ and $\geq 20\%$ decrements in FEV₁ for both asthmatics and asthmatic children.

As one observes in Figures 9-8 (a) and (b), for total occurrences of lung function response the pattern of the contribution of exposures from different concentration intervals is very similar. Of course the magnitude of occurrences is smaller for asthmatic children since they are a subset of all asthmatics. For the two most stringent alternative standards, nearly all of the SO_2 -related risk is attributable to exposures in the lowest exposure interval (i.e., < 50 ppb), and for the remaining alternative 1-hr standards most of the SO_2 -related risk is attributable to

☐ Attributable to 500 ppb<=SO2

Attributable to 450 ppb<=SO2<500 ppb

Attributable to 400 ppb<=SO2<450 ppb

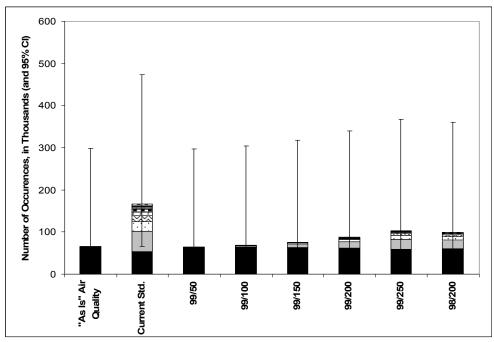
Attributable to 350 ppb<=SO2<400 ppb

Attribuable to 300 ppb<=SO2<350 ppb

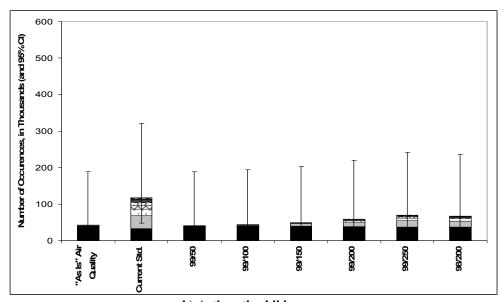
Attributable to 250 ppb<=SO2<300 ppb

Attributable to 200 ppb<=SO2<250 ppb

Attributable to 150 ppb<=SO2<200 ppb

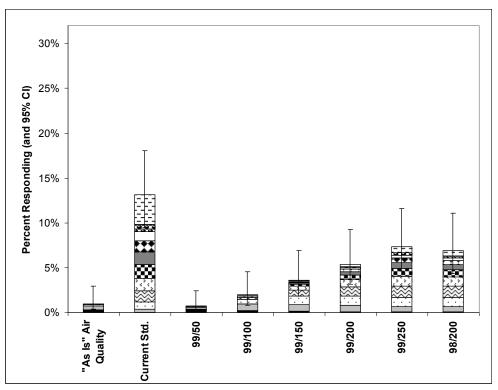

Attributable to 100 ppb<=SO2<150 ppb

Attributable to 50 ppb<=SO2<100 ppb

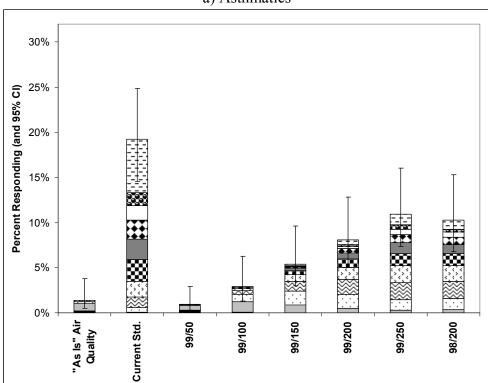

Attributable to 50 ppb<=SO2<100 ppb

Attributable to SO2<50 ppb

Figure 9-6. Legend for Figures 9-7 and 9-8 Showing Total and Contribution of Risk Attributable to SO2 Exposure Ranges.



a) Asthmatics



b) Asthmatic children

Figure 9-7. Estimated Annual Number of Occurrences of Lung Function Response (Defined as ≥ 100% increase in sRaw) for Asthmatics and Asthmatic Children Associated with Short-Term (5-minute) Exposures to SO₂ Concentrations Associated with Alternative Air Quality Scenarios – Total and Contribution of 5-Minute SO₂ Exposure Ranges (see Figure 9-6 for legend).

a) Asthmatics

b) Asthmatic children

Figure 9-8. Estimated Percent of of Asthmatics and Asthmatic Children Experiencing One or More Lung Function Responses (Defined as ≥ 100% increase in sRaw) Per Year Associated with Short-Term (5-minute) Exposures to SO₂ Concentrations Associated with Alternative Air Quality Scenarios – Total and Contribution of 5-Minute SO₂ Exposure Ranges (see Figure 9-6 for legend).

exposures < 100 ppb.

1

23

24

2526

27

28

29

30

31

2 We note that, while in several air quality scenarios the great majority of occurrences of 3 lung function response are in the lowest exposure bin, the numbers of individuals with at least 4 one lung function response attributable to exposures in that lowest bin are typically quite small. 5 This is because the calculation of numbers of individuals with at least one lung function response 6 uses individuals' highest exposure only. While individuals may be exposed mostly to low SO₂ 7 concentrations, many are exposed at least occasionally to higher levels. Thus, the percentage of 8 individuals in a designated population with at least one lung function response associated with 9 SO₂ concentrations in the lowest bin is likely to be very small, since most individuals are 10 exposed at least once to higher SO₂ levels. For example, defining lung function response as an 11 increase in sRaw $\geq 100\%$, under a scenario in which SO₂ concentrations just meet an alternative 1-hour 99th percentile 100 ppb standard, about 93 percent of occurrences of lung function 12 13 response among asthmatics in St. Louis are associated with SO₂ exposures in the lowest 14 exposure bin (0-50 ppb). However, the lowest SO₂ exposure bin accounts for only about 0.2 15 percent of asthmatics estimated to experience at least 1 SO₂-related lung function response. For 16 this very small percent of the population, the lowest exposure bin represents their highest SO₂ 17 exposures under moderate exertion in a year. Thus Figure 9-7(a) shows virtually all of the 18 occurrences among asthmatics in St. Louis associated with the lowest SO₂ exposure bin; 19 however, Figure 9-8 (a) shows a relatively small proportion of asthmatics in St. Louis 20 experiencing at least one response to be experiencing those responses because of exposures in 21 that lowest exposure bin. 22

Finally, we observe that the risks are greater for asthmatic children than all asthmatics in terms of percentage of the population experiencing lung function responses in terms of population responding 1 or more times per year.

9.3 CHARACTERIZING UNCERTAINTY AND VARIABILITY

An important issue associated with any population health risk assessment is the characterization of uncertainty and variability (see section 7.4 for definition of uncertainty and variability). Our approach to characterizing uncertainty includes both qualitative and quantitative elements. From a quantitative perspective, the statistical uncertainty surrounding the estimated SO₂ exposure-response relationships due to sampling error are reflected in the credible intervals that have been provided for the risk estimates in this document. Following the same

1 general approach described in section 7.4 and 8.11, the approach for qualitatively evaluating

2 uncertainty was adapted from guidelines outlining how to conduct a qualitative uncertainty

characterization (WHO, 2008). This includes an identification of the important uncertainties, an

indication of the potential bias direction, and a scaling of the uncertainty using low, medium, and

high categories.

The bias direction indicates how the source of uncertainty was judged to influence estimated lung function responses associated with SO₂ 5-minute exposures, either the estimated number or percent of asthmatics experiencing 1 or more lung function responses and total occurrences are likely "over-" or "under-estimated". In the instance where two or more types or components of uncertainty result in offsetting direction of influence, the bias was judged as "both." An "unknown" bias was assigned where there was no evidence reviewed to judge the uncertainty associated with the source. Table 9-10 provides a summary of the sources of uncertainty identified in the health risk assessment, the level of uncertainty, and the overall judged bias of each. A brief summary discussion regarding those sources of uncertainty not already examined in Chapters 7 and 8 is included in the comments section of Table 9-10.

The 5-minute daily maximum exposure estimates for asthmatics and asthmatic children while engaged in moderate or greater exertion is an important input to the lung function response risk assessment. A qualitative characterization of uncertainties associated with the exposure model and the inputs to the exposure model are summarized in Table 8-13 and discussed in section 8.11.

With respect to variability, the lung function risk assessment incorporates some of the variability in key inputs to the analysis by its use of location-specific inputs for the exposure analysis (e.g., location specific population data, air exchange rates, air quality, and temperature data). The extent to which there may be variability in exposure-response relationships for the populations included in the risk assessment residing in different geographic areas is currently unknown. Temporal variability also is more difficult to address, because the risk assessment focuses on some unspecified time in the future. To minimize the degree to which values of inputs to the analysis may be different from the values of those inputs at that unspecified time, we have used the most current inputs available.

Table 9-10. Characterization of Key Uncertainties in the Lung Function Response Health Risk Assessment for St. Louis and Greene County, Missouri

Uncertainty	Direction of Bias	Level of of Uncertainty	Comments
AERMOD Inputs and Algorithms	Unknown	Low-Medium	See Table 8-13 and section 8.12.1
Exposure Model (APEX) Inputs and Algorithms	Unknown	Medium	See Table 8-13 and section 8.12.2
Spatial representation	Unknown	Medium - High	See discussion in section 7.4.4
Air quality adjustment	Unknown	Medium	See discussion in section 7.4.5
Causality	None	Low	The SO ₂ -related lung function responses have been observed in controlled human exposure studies and, thus there is little uncertainty that SO ₂ exposures are responsible for the observed lung function responses.
Use of 2-parameter logistic model to estimate probabilistic exposure-response relationships	Overestimate	Low – within range of data Medium – for levels well below 200 ppb	It was necessary to estimate responses at SO ₂ levels both within the range of exposure levels tested (i.e., 200 to 1,000 pppb) as well as below the lowest exposure levels used in free-breathing controlled human exposure studies (i.e., below 200 ppb). We have developed probabilistic exposure-response relationships using two different functional forms (i.e., probit and 2-parameter logistic). As shown in Figures 9-2 through 9-5, the two functional forms result in very similar probabilistic exposure-response relationships for the four health response definitions, and therefore, we used only the logistic model to estimate risks. For the risks attributable to exposure levels below 200 ppb, there is greater uncertainty.
Use of 5- and 10- minute lung function response data to estimate 5- minute lung function risk estimates	Overestimate	Low	The 5-minute lung function risk estimates are based on a combined data set from several controlled human exposure studies, most of which evaluated responses associated with 10-minute exposures. However, since some studies which evaluated responses after 5-minute exposures found responses occurring as early as 5-minutes after exposure, we are using all of the 5- and 10-minute exposure data to represent responses associated with 5-minute exposures. We do not believe that this approach appreciably impacts the risk estimates.
Use of exposure- response data from studies of mild/moderate asthmatics to	Underestimate	Medium	The data set that was used to estimate exposure-response relationships included mild and/or moderate asthmatics. There is uncertainty with regard to how well the population of mild and moderate asthmatics included in the series of SO ₂ controlled human exposure studies represent the distribution of mild and moderate asthmatics in the U.S. population. As indicated in the ISA (p. 3-9), the subjects studied

		Level of	Comments
Uncertainty	Direction of Bias	of Uncertainty	
represent all asthmatics			represent the responses "among groups of relatively healthy asthmatics and cannot necessarily be extrapolated to the most sensitive asthmatics in the population who are likely more susceptible to the respiratory effects of exposure to SO ₂ ."
Reproducibility of SO ₂ -induced lung function response	Unknown	Low	The risk assessment assumes that the SO_2 -induced responses for individuals are reproducible. We note that this assumption has some support in that one study (Linn et al., 1987) exposed the same subjects on two occasions to 0.6 ppm and the authors reported a high degree of correlation ($r > 0.7$ for mild asthmatics and $r > 0.8$ for moderate asthmatics, $p < 0.001$), while observing much lower and nonsignificant correlations ($r = 0.0 - 0.4$) for the lung function response observed in the clean air with exercise exposures.
Use of adult asthmatic lung function response data to estimate exposure-response relationships for asthmatic children	Unknown	Low to Medium	Because the vast majority of controlled human exposure studies investigating lung function responses were conducted with adult subjects, the risk assessment relies on data from adult asthmatic subjects to estimate exposure-response relationships that have been applied to all asthmatic individuals, including children. The ISA (section 3.1.3.5) indicates that there is a strong body of evidence that suggests adolescents may experience many of the same respiratory effects at similar SO_2 levels, but recognizes that these studies administered SO_2 via inhalation through a mouthpiece rather than an exposure chamber. This technique bypasses nasal aborption of SO_2 and can result in an increase in lung SO_2 uptake. Therefore, the uncertainty is greater in the risk estimates for asthmatic children.
Exposure history	Unknown	Low	The risk assessment assumes that the SO_2 -induced response on any given day is independent of previous SO_2 exposures. For some pollutants (e.g., ozone) prior exposure history can lead to both enhanced and diminished lung function responses depending on the pattern of exposure. This type of information is not available for SO_2 lung function responses.
Assumed no interaction effect of other co-pollutants on SO ₂ -related lung function responses	Underestimate	Low to Medium	Because the controlled human exposure studies used in the risk assessment involved only SO_2 exposures, it is assumed that estimates of SO_2 -induced health responses are not affected by the presence of other pollutants (e.g., $PM_{2.5}$, O_3 , NO_2).

I

9.4 KEY OBSERVATIONS

1 2

 Presented below are key observations related to the risk assessment for lung function responses in asthmatics and asthmatic children associated with 5-minute exposures to SO₂ while engaged in moderate or greater exertion:

• Lung function responses estimated to result from 5-minute exposures to SO₂ were estimated for two areas in Missouri (i.e., Greene County and St. Louis) for 2002 air quality and for air quality adjusted to simulate just meeting the current suite of annual and 24-hour SO₂ standards and just meeting several alternative 1-hour daily maximum SO₂ standards. While we would expect some differences in estimated SO₂-related lung function responses across different locations due to differences in populations, asthma prevalence rates, location and types of SO₂ sources, and various factors affecting exposure, we believe that the risk estimates do provide a useful perspective on the likely overall magnitude and pattern of lung function responses associated with various SO₂ air quality scenarios in areas within the U.S. that have significant SO₂ point and area sources.

• Only the 50 ppb/99th percentile daily maximum 1-hr standard is estimated to reduce risks in one of the two modeling domains (i.e., St. Louis) relative to the "as is" air quality scenario.

- With respect to total occurrences of lung function responses, where response is defined as ≥ 100% increase in sRaw, most of the estimated risk for the St. Louis modeling domain for the potential 1-hr standard alternatives analyzed is due to exposures at and below 100 ppb and for the most stringent standards analyzed (i.e., 50 and 100 ppb), most of the estimated risk is due to exposures at and below 50 ppb.
- In terms of estimated percentage of asthmatics or asthmatic children experiencing 1 or more lung function responses, risks are greater for asthmatic children and risks are attributed to a broader range of exposure intervals, as high as 500 ppb, for some of the standards considered in the assessment.
- Important uncertainties and limitations associated with the risk assessment which were discussed above in section 9.3 and which should be kept in mind as one considers the quantitative risk estimates include:
 - uncertainties affecting the exposure estimates which are described in section 8.11 and which are an important input to the risk assessment;
 - uncertainties related to how changes in population, activity patterns, air quality, and other factors over time might impact the exposure estimates which are an important input to the risk assessment;
 - uncertainties associated with the air quality adjustment procedure that was used to simulate just meeting the current annual and several alternative 1-h daily maximum standards:

1	- statistical uncertainty due to sampling error which is characterized in the
2	assessment;
3	- uncertainty about the shape of the exposure-response relationship for lung function
4	responses at levels well below 200 ppb, the lowest level examined in free-breathing
5	single pollutant controlled human exposure studies;
6	- uncertainty with respect to how well the estimated exposure-response relationships
7	reflect asthmatics with more severe disease than those tested in chamber studies;
8	- uncertainty about whether the presence of other pollutants in the ambient air would
9	enhance the SO ₂ -related responses observed in the controlled human exposure studies:
10	- uncertainty about the extent to which the risk estimates presented for the two
11	modeled areas in Missouri are representative of other locations in the U.S. with
12	significant SO ₂ point and area sources.

10.0 EVIDENCE- AND EXPOSURE/RISK-BASED CONSIDERATIONS RELATED TO THE PRIMARY SO₂ NAAQS

10.1 INTRODUCTION

This chapter considers the scientific evidence in the ISA (EPA, 2008a) and the air quality, exposure and risk characterization results presented in this document as they relate to the adequacy of the current SO₂ primary NAAQS and potential alternative primary SO₂ standards. The available scientific evidence includes epidemiologic, controlled human exposure, and animal toxicological studies. The SO₂ air quality, exposure, and risk analyses described in Chapters 7-9 of this document include characterization of air quality, exposure, and health risks associated with recent SO₂ concentrations and with SO₂ concentrations adjusted to simulate scenarios just meeting the current suite of standards and potential alternative 1-hour standards. In considering the scientific evidence and the exposure- and risk-based information, we have also considered relevant uncertainties. Section 10.2 of this Chapter presents our general approach to considering the adequacy of the current standards and potential alternative standards. Sections 10.3 and 10.4 focus on evidence- and exposure-/risk-based considerations related to the adequacy of the current 24-hour and annual standards respectively, while section 10.5 focuses on such considerations related to potential alternative standards (in terms of the indicator, averaging time, form, and level).

These considerations are intended to inform the Agency's policy assessment of a range of options with regard to the SO₂ NAAQS. We note that the final decision on retaining or revising the current SO₂ primary standard, taking into account the Agency's policy assessment, is largely a public health policy judgment. A final decision will draw upon scientific information and analyses about health effects, population exposure and risks, and policy judgments about the appropriate response to the range of uncertainties that are inherent in the scientific evidence and analyses. Our approach to informing these judgments, discussed more fully below, is based on a recognition that the available health effects evidence reflects a continuum consisting of ambient levels at which scientists generally agree that health effects are likely to occur through lower levels at which the likelihood and magnitude of the response become increasingly uncertain. This approach is consistent with the requirements of the NAAQS provisions of the Act and with how EPA and the courts have historically interpreted the Act. These provisions require the

- 1 Administrator to establish primary standards that, in the Administrator's judgment, are requisite
- 2 to protect public health with an adequate margin of safety. In so doing, the Administrator seeks
- 3 to establish standards that are neither more nor less stringent than necessary for this purpose.
- 4 The Act does not require that primary standards be set at a zero-risk level but rather at a level
- 5 that avoids unacceptable risks to public health, including the health of at risk populations.

10.2 GENERAL APPROACH

7 This section describes the general approach that staff is taking to inform decisions

regarding the need to retain or revise the current SO₂ NAAQS. The current standards, a 24-hour

average of 0.14 ppm, not to be exceeded more than one time per year, and an annual average of

0.03 ppm were retained by the Administrator in the most recent review completed in 1996 (61

11 FR 25566). The decision to retain the 24-hour standard was largely based on an assessment of

epidemiological studies that supported a likely association between 24-hour average SO₂

exposure and daily mortality, aggravation of bronchitis, and small, reversible declines in

children's lung function (EPA 1982, 1994a). Similarly, the decision to retain the annual standard

(see section 10.4) was largely based on an assessment of epidemiological studies finding an

association between respiratory symptoms/illnesses and annual average SO₂ concentrations (EPA

17 1982, 1994a).

6

8

9

10

15

16

19

20

21

24

The previous review of the SO₂ NAAQS also questioned whether an additional short-

term standard (e.g., 5-minute) was necessary to protect against short-term peak SO₂ exposures.

Based on the scientific evidence, the Administrator judged that repeated exposures to 5-minute

peak levels \geq 600 ppb could pose a risk of significant health effects for asthmatic individuals at

22 elevated ventilation rates (61 FR 25566). The Administrator also concluded that the likely

frequency of such effects should be a consideration in assessing the overall public health risks.

Based upon an exposure analysis conducted by EPA (see section 1.1.3), the Administrator

25 concluded that exposure of asthmatics to SO₂ levels that could reliably elicit adverse health

26 effects was likely to be a rare event when viewed in the context of the entire population of

asthmatics, and therefore did not pose a broad public health problem for which a NAAQS would

be appropriate (61 FR 25566). On May 22, 1996, EPA published its final decision to retain the

29 existing 24-hour and annual standards and not to promulgate a 5-minute standard (61 FR 25566).

The decision not to set a 5-minute standard was ultimately challenged by the American Lung

Association and remanded back to EPA for further explanation on January 30, 1998 by the DC

Court of Appeals (see section 1.1.1). Specifically, the court required EPA to provide additional
rationale to support the Agency judgment that 5-minute peaks of SO_2 do not pose a public health
problem when viewed from a national prospective even though those peaks would likely cause
adverse health effects in a subset of exposed asthmatics.

To inform the range of options that the Agency will consider in the current review of the primary SO₂ NAAQS, the general approach we have adopted builds upon the approaches used in reviews of other criteria pollutants, including the most recent reviews of the Pb, O₃, and PM NAAQS (EPA, 2007i; EPA, 2007e; EPA, 2005). As in these other reviews, we consider the implications of placing more or less weight or emphasis on different aspects of the scientific evidence and the exposure/risk-based information, recognizing that the weight to be given to various elements of the evidence and exposure/risk information is part of the public health policy judgments that the Administrator will make in reaching decisions on the standard.

A series of general questions frames our approach to considering the scientific evidence and exposure/risk-based information. First, our consideration of the scientific evidence and exposure/risk-based information with regard to the adequacy of the current standard is framed by the following questions:

• To what extent does evidence and exposure/risk-based information that has become available since the last review reinforce or call into question evidence for SO₂-associated effects that were identified in the last review?

• To what extent has evidence for different health effects and/or sensitive populations become available since the last review?

• To what extent have uncertainties identified in the last review been reduced and/or have new uncertainties emerged?

• To what extent does evidence and exposure/risk-based information that has become available since the last review reinforce or call into question any of the basic elements of the current standard?

To the extent that the available evidence and exposure/risk-based information suggests it may be appropriate to consider revision of the current standards, we consider that evidence and information with regard to its support for consideration of a standard that is either more or less protective than the current standard. This evaluation is framed by the following questions:

1	
2 3 4 5 6	• Is there evidence that associations, especially causal or likely causal associations, extend to ambient SO ₂ concentrations as low as, or lower than, the concentrations that have previously been associated with health effects? If so, what are the important uncertainties associated with that evidence?
7 8 9 10 11	• Are exposures above benchmark levels and/or health risks estimated to occur in areas that meet the current standard? If so, are the estimated exposures and health risks important from a public health perspective? What are the important uncertainties associated with the estimated risks?
12	
13	To the extent that there is support for consideration of a revised standard, we then
14	consider the specific elements of the standard (indicator for gaseous SOx, averaging time, form,
15	and level) within the context of the currently available information. In so doing, we address the
16	following questions:
17	
18 19 20	\bullet Does the evidence provide support for considering a different indicator for gaseous SO_x ?
21 22	• Does the evidence provide support for considering different averaging times?
23 24 25	• What ranges of levels and forms of alternative standards are supported by the evidence, and what are the associated uncertainties and limitations?
26 27 28 29	• To what extent do specific averaging times, levels, and forms of alternative standards reduce the estimated exposures above benchmark levels and risks attributable to SO ₂ , and what are the uncertainties associated with the estimated exposure and risk reductions?
30	The following discussion addresses the questions outlined above and presents staff's
31	conclusions regarding the scientific evidence and the exposure-/risk-based information
32	specifically as they relate to the current and potential alternative standards. This discussion is
33	intended to inform the Agency's consideration of policy options that will be presented during the
34	rulemaking process, together with the scientific support for such options. Sections 10.3 and 10.4
35	consider the adequacy of the current standards while section 10.5 considers potential alternative
36	standards in terms of indicator, averaging time, form, and level. Each of these sections considers

1 key conclusions as well as the uncertainties associated with the evidence and exposure/risk

2 analyses.

10.3 ADEQUACY OF THE CURRENT 24-HOUR STANDARD

10.3.1 Introduction

In the last review of the SO₂ NAAQS, retention of the 24-hour standard was based largely on epidemiological studies conducted in London in the 1950's and 1960's. The results of those studies suggested an association between 24-hour average levels of SO₂ and increased daily mortality and aggravation of bronchitis when in the presence of elevated levels of PM (53 FR14927). Additional epidemiological evidence suggested that elevated SO₂ levels were associated with the possibility of small, reversible declines in children's lung function (53 FR14927). However, it was noted that in the locations where these epidemiological studies were conducted, high SO₂ levels were usually accompanied by high levels of PM- thus making it difficult to disentangle the individual contribution each pollutant had on these health outcomes. It was also noted that rather than 24-hour average SO₂ levels, the health effects observed in these studies may have been related, at least in part, to the occurrence of shorter-term peaks of SO₂ within a 24-hour period (53 FR14927).

10.3.2 Evidence-based considerations

In discussing the adequacy of the current 24-hour NAAQS, we first note the conclusions presented in the ISA with regard to short-term SO_2 effects on mortality and respiratory morbidity. As mentioned above, the previous review described positive associations between SO_2 and mortality, when in the presence of elevated PM levels. In this review, based on numerous studies conducted since the last review, the ISA characterizes the evidence of an association between short-term (\geq 1-hour) SO_2 levels and mortality as being "suggestive of a causal relationship." The ISA consistently finds positive associations between short-term SO_2 levels and mortality, but these effect estimates are generally diminished in multi-pollutant models- an indication that results may be confounded by the presence of co-pollutants (ISA Table 5-3).

With respect to respiratory morbidity, the previous review of the SO₂ NAAQS described possible associations between 24-hour SO₂ levels and small reversible declines in children's lung function and aggravation of bronchitis. The current ISA concludes that there is sufficient

- evidence to infer "a causal relationship between respiratory morbidity and short-term exposure to
- 2 SO₂ (ISA section 5.2)." The ISA states that the strongest evidence for this judgment is from
- 3 human exposure studies demonstrating increased respiratory symptoms and decreased lung
- 4 function in exercising asthmatics exposed for 5-10 minutes to \geq 200 ppb SO₂ (ISA section 5.2).
- 5 Supporting this conclusion is a larger body of epidemiological studies published since the last
- 6 review observing associations between ≥ 1 -hour SO₂ concentrations and respiratory symptoms,
- 7 ED visits, and hospital admissions (ISA section 5.2).
- 8 In considering the adequacy of the current 24-hour standard, we further note that many
- 9 epidemiological studies demonstrating positive associations between ambient SO₂ and
- 10 respiratory symptoms, ED visits, and hospitalizations were conducted in areas where SO₂
- 11 concentrations met the level of the current 24-hour (as well as the annual; see section 10.4)
- 12 NAAQS. With regard to these epidemiological studies, we note that the ISA characterizes the
- evidence for respiratory effects as consistent and coherent. The evidence is consistent in that
- 14 associations are reported in studies conducted in numerous locations and with a variety of
- methodological approaches (ISA, section 5.2). It is coherent in the sense that respiratory
- symptoms results from short-term (≥ 1-hour) epidemiological studies are generally in agreement
- with respiratory symptom results from controlled human exposure studies of 5-10 minutes.
- 18 These results are also coherent in that the respiratory effects observed in controlled human
- exposure studies of 5-10 minutes provides a basis for a progression of respiratory morbidity that
- 20 could lead to the ED visits and hospitalizations observed in epidemiological studies (ISA section
- 5.2). Moreover, the ISA states that several of the more precise effect estimates in these studies
- are statistically significant (ISA, section 5.2).
- However, it should be noted that interpretation of the epidemiological literature is
- 24 complicated by the fact that SO₂ is but one component of a complex mixture of pollutants
- 25 present in the ambient air. The matter is further complicated by the fact that SO_2 is a precursor
- 26 to sulfate, which can be a principle component of PM. Ultimately, this uncertainty calls into
- 27 question the extent to which effect estimates from epidemiological studies reflect the
- 28 independent contributions of SO₂ to the adverse respiratory outcomes assessed in these studies.
- In order to provide some perspective on this uncertainty, the ISA evaluates epidemiological
- 30 studies that employ multi-pollutant models. The ISA concludes that these analyses indicate that
- 31 although copollutant adjustment has varying degrees of influence on SO₂ effect estimates, the

- 1 effect of SO₂ on respiratory health outcomes appears to be generally robust and independent of
- 2 the effects of gaseous copollutants, including NO₂ and O₃ (ISA, section 5.2). With respect to
- 3 PM₁₀, evidence of an independent SO₂ effect on respiratory health is less consistent, with about
- 4 half of the positive ED visit and hospitalization results becoming negative (although result were
- 5 not statistically significantly negative) after inclusion of PM₁₀ in regression models (ISA section
- 6 3.1.4.6). In epidemiological studies of respiratory symptoms, inclusion of PM₁₀ in multipllutant
- 7 models often resulted in the SO₂ effect estimate losing statistical significance (although the effect
- 8 estimate may have remained positive, and relatively unchanged; ISA section 3.1.4.1). The ISA
- 9 also concludes that SO₂-effect estimates generally remained robust in the limited number of
- studies that included $PM_{2.5}$ and/or $PM_{10-2.5}$ in multipolutant models (ISA section 3.1.4.6). Taken
- together, the ISA finds studies employing multi-pollutant models do suggest that SO₂ has an
- independent effect on respiratory morbidity outcomes (ISA, section 5.2). Thus, the results of
- experimental and epidemiological studies form a plausible and coherent data set that supports a
- relationship between SO₂ exposures and respiratory morbidity endpoints.

10.3.3 Air Quality, exposure and risk-based considerations

In addition to the evidence-based considerations described above, staff has considered the extent to which exposure- and risk-based information can inform decisions regarding the adequacy of the current 24-hour SO₂ standard, taking into account key uncertainties associated with the estimated exposures and risks. For this review, we have employed three approaches. In the first approach, SO₂ air quality levels were used as a surrogate for exposure. In the second approach, modeled estimates of human exposure were developed for all asthmatics and asthmatic children living in Greene County, MO and the St. Louis modeling domain in MO. Notably, this second approach considers time spent in different microenvironments, as well as time spent at elevated ventilation rates. In each of the first two approaches, health risks have been characterized by comparing estimates of air quality or exposure to potential 5-minute health effect benchmarks These benchmarks are based on controlled human exposure studies involving known SO₂ exposure levels and corresponding decrements in lung function, and/or increases in respiratory symptoms in asthmatics at elevated ventilation rates (e.g. while exercising; see section 6.2 for further discussion of benchmark levels). In addition to these analyses, staff also conducted a quantitative risk assessment for lung function responses associated with 5-minute exposures to characterize SO₂-related health risks. This assessment

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

1	combined outputs from the exposure analysis with estimated exposure-response functions
2	derived from the controlled human exposure literature to estimate the number, and percent of
3	exposed asthmatics that would experience moderate or greater lung function responses per year
4	and to estimate the total number of occurrences of these lung function responses per year
5	(Chapter 9).
6	In making judgments as to whether SO ₂ -induced effects should be regarded as adverse to
7	the health of individuals, staff has relied upon the guidelines published by the American
8	Thoracic Society (ATS) (ATS 2000) and conclusions from the ISA. The ATS notes that an air
9	pollution-induced shift in a population distribution of a given health-related endpoint (e.g., lung
10	function) should be considered adverse, even if this shift does not result in the immediate
11	occurrence of illness in any one individual in the population (ATS 2000). The ATS also
12	recommends that transient loss in lung function with accompanying respiratory symptoms
13	attributable to air pollution be considered adverse. However, the ISA cautions that symptom
14	perception is highly variable among asthmatics even during severe episodes of asthmatic
15	bronchoconstriction, and that an asymptomatic decrease in lung function may pose a significant
16	health risk to asthmatic individuals as it is less likely that these individuals will seek treatment
17	(ISA section 3.1.3). In addition, regarding decrements in lung function and respiratory
18	symptoms, we note the following:
19 20 21 22	• 5-30% of exercising asthmatics will experience moderate or greater lung function decrements (i.e. \geq 100% increase in sRaw and/or a \geq 15% decrease in FEV ₁) following exposure to 200- 300 ppb SO ₂ for 5-10 minutes (ISA, section 3.1).
23 24 25 26 27	• 20-60% of exercising asthmatics will experience moderate or greater lung function decrements (i.e ≥ 100% increase in sRaw and/or a ≥ 15% decrease in FEV₁) following exposure to 400- 1000 ppb SO₂ for 5-10 minutes (ISA, Table 5-3).
28 29 30 31	 At concentrations ≥ 400 ppb, moderate or greater statistically significant decrements in lung function are frequently associated with respiratory symptoms (ISA, section 3.1).
32 33	• Over 20 million people in the U.S. have asthma (ISA, for NOx, Table 4.4-1).
34	Overall, based on the ATS guidance mentioned above and the potential size of the population

34

35

affected, staff suggests that the Agency may want to consider moderate or greater SO₂-induced

- lung function decrements (i.e. lung function responses) and/or related increases in respiratory
- 2 symptoms as representing adverse health effects for the asthmatic population.

10.3.3.1 Key Uncertainties

The way in which exposure and risk results will inform ultimate decisions regarding the

5 SO₂ standard will depend upon the weight placed on each of the analyses when uncertainties

- associated with those analyses are taken into consideration. Sources of uncertainty associated
- 7 with each of the analyses (air quality, exposure, and quantitative risk) are briefly presented below
- 8 and are described in more detail in Chapters 7-9 of this document. Although we are discussing
- 9 these uncertainties within the context of the adequacy of the 24-hour standard, they apply equally
- to consideration of the annual, as well as alternative 1-hour standards.
 - Air Quality Analysis

A number of key uncertainties should be considered when interpreting air quality results with regard to decisions on the standards. Such uncertainties are highlighted below, and these, as well as other sources of uncertainty are discussed in greater depth in section 7.4 of this document.

- In order to simulate just meeting the current standards, and many of the alternative 1-hour standards, an upward adjustment of recent ambient SO₂ concentrations was required. We note that this adjustment does not reflect a judgment that levels of SO₂ are likely to increase under the current standard or any of the potential alternative standards under consideration. Rather, these adjustments reflect the fact that the current standard, as well as some of the alternatives under consideration, could allow for such increases in ambient SO₂ concentrations. In adjusting air quality to simulate just meeting these standards, we have assumed that the overall shape of the distribution of SO₂ concentrations would not change. While we believe this is a reasonable assumption in the absence of evidence supporting a different distribution and we note that available analyses support this approach (Rizzo, 2008), we recognize this as an important uncertainty. It may be an especially important uncertainty for those scenarios where considerable upward adjustment is required to simulate just meeting one or more of the standards.
- In recognizing the limited geographic span of monitors reporting 5-minute maximum SO₂ levels, staff developed an approach to statistically estimate 5-minute SO₂ concentrations from 1-hour average SO₂ concentrations. This method uses monitors that reported both 5-minute and 1-hour average SO₂ concentrations and the associated variability in their measurements (from the years 1997-2007) as a surrogate for variability in source characteristics that may impact SO₂ levels at a given monitor. As a result, this method assumes that source emissions present at the time of the measurement are similar to more recent source emissions. This could add uncertainty in the number of estimated exceedances in areas where source emissions have changed. However, peak-to-mean

ratios (PMRs) do not show any apparent trend with monitoring year and have averaged around 1.6 when considering the 5-minute measurement data over the period analyzed. This indicates that the use of the older ambient monitoring data in developing the statistical model used for estimating 5-minute concentrations may have a negligible impact on the predicted concentrations. In addition, there is uncertainty in the extent to which the relationships used to estimate 5-minute maximum concentrations from measured 1-hour average concentrations reflects the actual relationship in the locations and over the time periods of interest. However, we note general agreement between analyses restricted to the subset monitors where 5-minute maximum levels were actually reported, and corresponding analyses where statistically estimated 5-minute maximum concentrations were derived from monitors reporting 1-hour concentrations (e.g. see Figures 7-12 and 7-15). Thus, measured and modeled results in the air quality analysis appear to be in general agreement.

• The human exposure studies that form the basis for potential health effect benchmark levels include mild and moderate asthmatics. For ethical reasons, more severely affected asthmatics are not included in these analyses. This is important because severe asthmatics may be more susceptible than mild or moderate asthmatics to the respiratory effects of SO₂ exposure. Therefore, the potential health effect benchmarks based on these studies could underestimate risks in populations with greater susceptibility. Although approaches to classifying asthma severity differ, some estimates indicate that over half of asthmatics could be classified as moderate or severe (Fuhlbrigge et al., 2002; Stout et al., 2006).

St Louis and Green Counties Exposure Analysis

A number of key uncertainties should be considered when interpreting the St. Louis and Greene County exposure results with regard to decisions on the standards. Such uncertainties are highlighted below, and these, as well as other sources of uncertainty are also discussed in greater depth in section 8.11 of this document.

• Details regarding the modeling of non-point and background area sources in AERMOD are addressed in section 8.4.3. In brief, two of the main uncertainties associated with these sources are the temporal and spatial profiles used in simulating their releases. Staff obtained emission strengths from the 2002 National Emissions Inventory (NEI). However, only annual total emissions at the county level are provided. Thus, to better parameterize these emissions for the hourly, census block-level dispersion modeling, we relied on additional data and an optimization algorithm (described in section 8.4.3). Overall, the uncertainties associated with the temporal and spatial profiles of SO₂ emissions is characterized as a medium uncertainty and is thought to bias concentrations of SO₂ in both directions (see Table 8-13).

 Commuting pattern data were derived from the 2000 U.S. Census. The commuting data
addresses only home-to-work travel. A few simplifying assumptions needed to be made
to allow for practical use of this data base to reflect a simulated individual's commute.
First, there were a few commuter identifications that necessitated a restriction of their
movement from a home block to a work block. This is not to suggest that they never

travelled on roads, only that their home and work blocks were the same. This includes the population not employed outside the home, individuals indicated as commuting within their home block, and individuals that commute over 120 km a day. This could lead to either over- or under-estimations in exposure if they were in fact to visit a block with either higher or lower SO₂ concentrations. Given that the number of individuals who meet these conditions is likely a small fraction of the total population, and that the bias with respect to SO₂ exposures above health benchmark levels is likely in either direction, the overall uncertainty is considered low.

• Although several of the APEX microenvironments account for time spent in travel, the travel is assumed to always occur in basically a composite of the home and work block. No other provision is made for the possibility of passing through other census blocks during travel. This could contribute to bias in SO₂ exposures above benchmark levels in either direction. In addition, the commuting route (i.e., which roads individuals are traveling on during the commute) is not accounted for and this may also contribute to bias in either direction.

 The best estimate of asthma prevalence was generated using a comprehensive data set that provides variability in asthma prevalence rates based on age (CDC, 2007). However, it is possible that this data overestimates asthma prevalence rates in some areas while underestimating it in others. It is unknown how this uncertainty would bias exposure results.

St Louis and Green Counties Quantitative Risk Analysis

A number of key uncertainties should be considered when interpreting the St. Louis and Greene County quantitative risk estimated for lung function responses with regard to decisions on the standards. Such uncertainties are highlighted below, and these, as well as other sources of uncertainty are also discussed in greater depth in section 9.3 of this document.

• It was necessary to estimate responses at SO₂ levels below the lowest exposure levels used in the controlled human exposure studies (i.e., below 200 ppb). We have developed probabilistic exposure-response relationships using two different functional forms (i.e., probit and 2-parameter logistic), but nonetheless there remains greater uncertainty in responses below 0.2 ppm because of the lack of experimental data.

• The risk assessment assumes that the SO₂-induced responses for individuals are reproducible. We note that this assumption has some support in that one study (Linn et al., 1987) exposed the same subjects on two occasions to 600 ppb and the authors reported a high degree of correlation while observing a much lower correlation for the lung function response observed in the clean air with exercise exposure.

 • Because the vast majority of controlled human exposure studies investigating lung function responses were conducted with adult subjects, the risk assessment relies on data from adult asthmatic subjects to estimate exposure-response relationships that have been

applied to all asthmatic individuals, including children. The ISA (section 3.1.3.5) indicates that there is a strong body of evidence that suggests adolescents may experience many of the same respiratory effects at similar SO₂ levels, but recognizes that these studies administered SO₂ via inhalation through a mouthpiece (which can result in an increase in lung SO₂ uptake) rather than an exposure chamber. Therefore, the uncertainty is greater in the risk estimates for asthmatic children.

7 8

9

 Because the controlled human exposure studies used in the risk assessment involved only SO₂ exposures, it is assumed that estimates of SO₂-induced health responses are not affected by the presence of other pollutants (e.g., PM_{2.5}, O₃, NO₂).

10 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

10.3.3.2 Assessment Results

As previously mentioned, the ISA finds the evidence for an association between respiratory morbidity and SO₂ exposure to be "sufficient to infer a causal relationship" (ISA section 5.2) and that the "definitive evidence" for this conclusion comes from the results of controlled human exposure studies demonstrating decrements in lung function and/or respiratory symptoms in exercising asthmatics (ISA, section 5.2). Accordingly, the exposure and risk analyses presented in this document focused on exposures and risks associated with 5-minute peaks of SO₂ in excess of potential health effect benchmark values derived from the human exposure literature. These potential health effect benchmark levels span a range of 100 to 400 ppb. In brief, the 400 ppb benchmark represents the lowest exposure level in free breathing chamber studies at which moderate or greater lung function responses are consistently accompanied by respiratory symptoms in exercising asthmatics. The 100 ppb benchmark takes into consideration that the LOEL for moderate or greater lung function decrements in exercising asthmatics participating in free breathing chamber studies is 200 ppb, but that the asthmatics participating in these studies might not represent the most SO₂ sensitive population (e.g. severe asthmatics are excluded from these studies). Additional discussion concerning the selection of the potential health effect benchmark levels can be found in section 6.2 of this document.

29

30

31

32

33

34

Air Quality Assessment

The results of our air quality assessment provide additional perspective on the public health impacts of exposure to ambient levels of SO₂. In considering these results, we first note that the benchmark values derived from the controlled human exposure literature are associated with a 5-minute averaging time, but very few monitors in the U.S. report measured 5-minute concentrations since it is not required. As a result, staff developed a statistical relationship to

- estimate the highest 5-minute level in an hour, given a reported 1-hour average SO₂
- 2 concentration (see section 7.2.3). Thus, many of the outputs of the air quality analysis are
- 3 presented with respect to statistically estimated 5-minute concentrations in excess of potential
- 4 health effect benchmark values. Results of these analyses, as they relate to the adequacy of the
- 5 current standards, are discussed below.
- A key output of the air quality analysis (i.e. where air quality serves as a surrogate for
- 7 exposure) is the predicted number of statistically estimated 5-minute daily maximum SO₂
- 8 concentrations above benchmark levels given air quality simulated to just meet the level of the
- 9 current 24-hour or annual SO₂ standards, whichever is controlling for a given county. Under this
- scenario, in 40 counties selected for detailed analysis, we note that the predicted mean number of
- 5-minute daily maximum concentrations > 400 ppb ranges from 1-102 days per year, with most
- counties in this analysis experiencing a mean of at least 20 days per year when 5-minute daily
- 13 SO₂ concentrations exceed 400 ppb (Table 7-13). In addition, the predicted mean number of 5-
- minute daily maximum concentrations >200 ppb ranges from 22-171 days per year, with about
- half of the counties in this analysis experiencing ≥ 70 days per year when 5-minute daily
- maximum SO₂ concentrations exceed 400 ppb (Table 7-11).
- 17 Exposure Assessment
- When considering the Missouri exposure results as they relate to the adequacy of the
- 19 current standard, we focus on the number of asthmatics at elevated ventilation rates estimated to
- 20 experience at least one benchmark exceedence given air quality that is adjusted upward to
- simulate just meeting the current 24-hour standard (i.e. the controlling standard in St. Louis). We
- 22 note that in these analyses, if SO₂ concentrations are such that the St Louis area just meets the
- 23 current standard, approximately 13% (~14,000) of asthmatics would be estimated to experience
- 24 at least one SO₂ exposure concentration greater than or equal to the 400 ppb benchmark level
- while at elevated ventilation rates (Figure 8-17). Similarly, approximately 46% (~48,000) of
- asthmatics would be expected to experience at least one SO₂ exposure concentration greater than
- or equal to the 200 ppb benchmark level while at elevated ventilation rates. When the St. Louis
- results are restricted to asthmatic children at elevated ventilation rates, approximately 25%
- $(\sim 10,000)$ and 73% ($\sim 31,000$) of these children would be estimated to experience at least one
- 30 SO₂ exposure concentration greater than or equal to the 400 ppb and 200 ppb benchmark levels,
- 31 respectively (Figure 8-17).

In Greene County, results of the exposure analysis indicate that when air quality is adjusted to just meet the current 24-hour standard, considerably fewer asthmatics are exposed to SO_2 concentrations in excess of benchmark levels. An estimated <0.1% (13) and 0.6% (139) of asthmatics at elevated ventilation rates would be expected to experience at least one SO_2 exposure concentration greater than or equal to the 400 ppb and 200 ppb benchmarks respectively (Figure 8-14). When the Greene County results are restricted to asthmatic children at elevated ventilation rates, approximately <0.1% (4) and 0.9% (72) of these children would be estimated to experience at least one SO_2 exposure concentration greater than or equal to the 400 ppb and 200 ppb benchmark levels respectively (Figure 8-14).

Risk results

When considering the St. Louis risk results as they relate to the adequacy of the current standard, we note the percent of asthmatics at elevated ventilation rates likely to experience at least one lung function response given air quality that is adjusted upward to simulate just meeting the current standards. Under this scenario, 13.1% ($\sim 13,000$) of exposed asthmatics at elevated ventilation rates are estimated to experience at least one moderate lung function response (defined as an increase in sRaw $\geq 100\%$ (Table 9-5)). Furthermore, 5.4% ($\sim 5,500$) of exposed asthmatics at elevated ventilation rates are estimated to experience at least one large lung function response (defined as an increase in sRaw $\geq 200\%$ (Table 9-5)). We also note that estimates from this analysis indicate that the percentage of exposed asthmatic children in the St. Louis modeling domain estimated to experience at least one moderate or large lung function response is somewhat greater than the percentage for the asthmatic population as a whole (Table 9-8).

When considering the Greene County risk results, as in the exposure analysis, we note that compared to St. Louis, there are far fewer exposures in Greene County, and therefore, there are far fewer numbers of asthmatics predicted to have a given lung function response. That is, in Greene County 1% (210) of exposed asthmatics at elevated ventilation rates are estimated to experience at least one moderate lung function response (Table 9-5). Furthermore, 0.3% (70) of exposed asthmatics at elevated ventilation rates are estimated to experience at least one large lung function response (Table 9-5). Similar to St. Louis, the percentage of exposed asthmatic children estimated to experience at least one moderate or large lung function response is greater than the percentage for the asthmatic population as a whole (Table 9-8).

10.3.3.3 Conclusions regarding the adequacy of the 24-hour standard

As noted above, several lines of scientific evidence are relevant to consider when making a decision regarding the adequacy of the current 24-hour standard to protect the public health. These include causality judgments made in the ISA, as well as the human exposure and epidemiological evidence supporting those judgments. In particular, we note that numerous epidemiological studies reporting positive associations between ambient SO_2 and respiratory morbidity endpoints were conducted in locations that met the current 24-hour standard. To the extent that these considerations are emphasized, the adequacy of the current standard to protect the public health would clearly be called into question. This suggests consideration of a revised 24-hour standard and/or that an additional shorter-averaging time standard may be needed to provide additional health protection for sensitive groups, including asthmatics and individuals who spend time outdoors at elevated ventilation rates. Moreover, this conclusion also suggests that an alternative SO_2 standard(s) should protect against health effects ranging from lung function responses and increased respiratory symptoms following 5-10 minute peak SO_2 exposures, to increased respiratory symptoms and respiratory-related ED visits and hospital admissions associated with SO_2 exposures ≥ 1 -hour.

In examining the exposure- and risk-based information with regard to the adequacy of the current 24-hour SO₂ standard to protect the public health, we note that the results described above (and in more detail in Chapters 7-9) indicate risks associated with air quality adjusted upward to simulate just meeting the current standard that can reasonably be judged important from a public health perspective. Therefore, exposure- and risk-based considerations reinforce the scientific evidence in supporting the conclusion that consideration should be given to revising the current 24-hour standard and/or setting a new shorter averaging time standard (e.g. 1-hour) to provide increased public health protection, especially for sensitive groups (e.g. asthmatics), from SO₂-related adverse health effects.

10.4 ADEQUACY OF THE CURRENT ANNUAL STANDARD

10.4.1 Introduction

In the last review of the SO₂ NAAQS, retention of the annual standard was largely based on an assessment of qualitative evidence gathered from a limited number of epidemiological studies. The strongest evidence for an association between annual SO₂ concentrations and adverse health effects in the 1982 AQCD was from a study conducted by Lunn et al (1967). The

- authors found that among children a likely association existed between chronic upper and lower
- 2 respiratory tract illnesses and annual SO₂ levels of 70 -100 ppb in the presence of 230-301 ug/m³
- 3 black smoke. Three additional studies described in the 1986 Second Addendum also suggested
- 4 that long-term exposure to SO₂ was associated with adverse respiratory effects. Notably, studies
- 5 conducted by Chapman et al. (1985) and Dodge et al. (1985) found associations between long-
- 6 term SO₂ concentrations (with or without high particle concentrations) and cough in children and
- 7 young adults. However, it was noted that there was considerable uncertainty associated with
- 8 these studies because they were conducted in locations subject to high, short-term peak SO₂
- 9 concentrations (i.e. locations near point sources); therefore it was difficult to discern whether this
- increase in cough was the result of long-term, low level SO₂ exposure, or repeated short-term
- 11 peak SO₂ exposures.

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

It was concluded in the last review that there was no quantitative rationale to support a specific range for an annual standard (EPA, 1994b). However, it was also found that while no single epidemiological study provided clear quantitative conclusions, there appeared to be some consistency across studies indicating the possibility of respiratory effects associated with long-term exposure to SO₂ just above the level of the existing annual standard (EPA, 1994b). In addition, air quality analyses conducted during the last review indicated that the short-term standards being considered (1-hour and/or 24-hour) could not by themselves prevent long-term concentrations of SO₂ from exceeding the level of the existing annual standard in several large urban areas. Ultimately, both the scientific evidence and the air quality analyses were used by the Administrator to conclude that retaining the existing annual standard was requisite to protect human health.

10.4.2 Evidence-based considerations

The ISA presents numerous studies published since the last review examining possible associations between long-term SO₂ exposure and mortality and morbidity outcomes. This includes discussion of additional epidemiological studies examining possible associations between long-term SO₂ exposure and respiratory effects in children (in part, the basis for retaining the annual standard in the last review; see section 10.4.1). In addition, the ISA presents results from epidemiological and animal toxicological studies published since the last review examining possible associations between long-term ambient SO₂ concentrations and adverse

respiratory, cardiovascular, and birth outcomes, as well as carcinogenesis. The current ISA also discusses the possible association between long-term SO₂ exposure and mortality.

As an initial consideration with regard to the adequacy of the current annual standard, staff notes that the evidence relating long-term (weeks to years) SO₂ exposure to adverse health effects (respiratory morbidity, carcinogenesis, adverse prenatal and neonatal outcomes, and mortality) is judged to be "inadequate to infer the presence or absence of a causal relationship" (ISA, Table 5-3). That is, the ISA finds this health evidence to be of insufficient quantity, quality, consistency, or statistical power to make a determination as to whether SO₂ is truly associated with these health endpoints (ISA Table 1-2). With respect specifically to respiratory morbidity in children, the ISA presents recent epidemiological evidence of an association with long-term exposure to SO₂ (ISA section 3.4.2). However, the ISA finds the strength of these epidemiological studies to be limited because of 1) variability in results across studies with respect to specific respiratory morbidity endpoints, 2) high correlations between long-term average SO₂ and co-pollutant concentrations, particularly PM, and 3) a lack of evaluation of potential confounding (ISA section 3.4.2.1). In addition, the ISA finds that results from animal toxicological studies do not provide strong biological plausibility for an association between long-term ambient SO₂ concentrations and respiratory morbidity (ISA, Table 5-3). Thus, the current evidence does not provide support for an annual SO₂ standard for purposes of protecting against long-term health effects.

We also note that many epidemiological studies demonstrating positive associations between 1- to 24-hour ambient SO₂ concentrations and respiratory symptoms, ED visits, and hospitalizations, were conducted in areas where ambient SO₂ concentrations were well below the current annual NAAQS. This evidence suggests that the current annual standard is not providing adequate protection against health effects associated with shorter-term SO₂ concentrations.

10.4.3 Risk-based considerations

Results of the risk characterization based on the air quality assessment provide additional insight into the adequacy of the current annual standard. Analyses in this document describe the extent to which the current annual standard provides protection against 5-minute peaks of SO₂ in excess of potential health effect benchmark levels. Figure 7-10 counts the number of *measured* 5-minute daily maximum SO₂ concentrations above the 100 -400 ppb benchmark levels for a given annual average SO₂ concentration. None of the monitors in this data set contained annual

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1718

19

20

21

22

23

24

25

26

27

28

29

30

31

- 1 average SO₂ concentrations above the current NAAQS, but several of the monitors in several of
- 2 the years frequently reported 5-minute daily maximum concentrations above the potential health
- 3 effect benchmark levels. Many of these monitors where frequent exceedances are reported had
- 4 annual average SO₂ concentrations between 5 and 15 ppb, with little to no correlation between
- 5 the annual average SO₂ concentration and the number of 5-minute daily maximum
- 6 concentrations above potential health effect benchmark levels. This suggests that the annual
- standard adds little in the way of protection against 5-minute peaks of SO_2 (see section 7.3.1).

10.4.4 Conclusions regarding the adequacy of the current annual standard

As noted, the ISA concludes that the evidence relating long-term (weeks to years) SO_2 exposure to adverse health effects (respiratory morbidity, carcinogenesis, adverse prenatal and neonatal outcomes, and mortality) is "inadequate to infer the presence or absence of a causal relationship" (ISA, Table 5-3). The ISA also reports that many epidemiological studies demonstrating positive associations between short-term (≥ 1 -hour) SO_2 concentrations and respiratory symptoms, as well as ED visits and hospitalizations, were conducted in areas where annual ambient SO_2 concentrations were well below the level of the current annual NAAQS. In addition, analyses conducted in this REA suggest that the current annual standard is not providing protection against 5-10 minute peaks of SO_2 . Taken together, the scientific evidence and the risk and exposure information suggest that the current annual SO_2 standard does not provide adequate protection from the health effects associated with shorter-term exposures to SO_2 and that consideration should be given to revoking the annual standard in conjunction with setting an appropriate short-term standard(s).

10.5 POTENTIAL ALTERNATIVE STANDARDS

10.5.1 Indicator

In the last review, EPA focused on SO₂ as the most appropriate indicator for ambient SO_x. This was in large part because other gaseous sulfur oxides (e.g. SO₃) are likely to be found at concentrations many orders of magnitude lower than SO₂ in the atmosphere, and because most all of the health effects and exposure information was for SO₂. The current ISA has again found this to the case, and while the presence of gaseous SO_x species other than SO₂ has been recognized, no alternative to SO₂ has been advanced as being a more appropriate surrogate for ambient gaseous SO_x. Importantly, controlled human exposure studies and animal toxicology

- studies provide specific evidence for health effects following exposure to SO₂. Epidemiological
- 2 studies also typically report levels of SO₂, as opposed to other gaseous SO_x. Because emissions
- 3 that lead to the formation of SO₂ generally also lead to the formation of other SO_x oxidation
- 4 products, measures leading to reductions in population exposures to SO₂ can generally be
- 5 expected to lead to reductions in population exposures to other gaseous SO_x. Therefore, meeting
- an SO₂ standard that protects the public health can also be expected to provide some degree of
- 7 protection against potential health effects that may be independently associated with other
- 8 gaseous SO_x even though such effects are not discernable from currently available studies
- 9 indexed by SO₂ alone. Given these key points, staff judges that the available evidence supports
- 10 the retention of SO₂ as the indicator in the current review.

10.5.2 Averaging Time

11

13

14

15

19

22

24

25

26

27

28

29

12 The current 24-hour and annual averaging times for the primary SO₂ NAAQS were

originally set in 1971. As previously described, (section 10.3.1) the 24-hour NAAQS was based

on epidemiological studies that observed associations between 24-hour average SO₂ levels and

adverse respiratory effects and daily mortality (EPA 1982, 1994b). The annual standard was

supported by a few epidemiological studies that found an association between adverse

17 respiratory effects and annual average SO₂ concentrations (EPA 1982, 1994b). Based on

currently available evidence, the issue of averaging time is being reconsidered in the current

review. In order to inform these judgments, staff has considered causality judgments from the

- 20 ISA, results from experimental and epidemiological studies, and SO₂ air quality correlations.
- 21 These considerations are described in more detail below.

10.5.2.1 Evidence-based considerations

As an initial consideration regarding the most appropriate averaging time (e.g., short-

term, long-term, or a combination of both) for alternative SO₂ standard(s), we note that the ISA

finds evidence relating long-term (weeks to years) SO₂ exposures to adverse health effects to be

"inadequate to infer the presence or absence of a causal relationship" (ISA, Table 5-3). In

contrast, the ISA judges evidence relating short-term (5-minutes to 24-hours) SO₂ exposure to

respiratory morbidity to be "sufficient to infer a causal relationship" and short-term exposure to

SO₂ and mortality to be "suggestive of a causal relationship" (ISA, Table 5-3). Taken together,

these judgments most directly support standard averaging time(s) that focus protection on SO₂ exposures from 5-minutes to 24-hours.

In considering the level of support available for specific short-term averaging times, we first note the strength of evidence from human exposure and epidemiological studies. Human clinical studies exposed exercising asthmatics to 5-10 minute peak concentrations of SO₂ and consistently found decrements in lung function and/or respiratory symptoms. Importantly, the ISA describes the controlled human exposure studies as being the "definitive evidence" for its causal association between short-term (5-minutes to 24-hours) SO₂ exposure and respiratory morbidity (ISA section 5.2). Supporting the human clinical evidence is a relatively small body of epidemiological evidence describing positive associations between 1-hour maximum SO₂ levels and respiratory symptoms as well as hospital admissions and ED visits for all respiratory causes and asthma (ISA tables 5.4 and 5.5). In addition to the 1-hour epidemiological evidence, there is a considerably larger body of epidemiological studies reporting associations between 24hour average SO₂ levels and respiratory symptoms, as well as hospitalizations and ED visits for all respiratory causes and asthma. However, as in the last review, there remains considerable uncertainty as to whether these associations are due to 24-hour average SO₂ exposures, or exposure (or multiple exposures) to short-term peaks of SO₂ within a 24-hour period. That is, the ISA notes that it is possible that associations observed in these 24-hour studies are being driven, at least in part, by short-term peaks of SO₂. More specifically, when describing epidemiological studies observing associations between ambient SO₂ and respiratory symptoms, the ISA states "that it is possible that these associations are determined in large part by peak exposures within a 24-hour period" (ISA, section 5.2). The ISA also states that the respiratory effects following 5-10 minute SO₂ exposures in controlled human exposure studies provides a basis for a progression of respiratory morbidity that could result in increased ED visits and hospital admissions (ISA, section 5.2).

The controlled human exposure evidence described above provides support for an averaging time that protects against 5-10 minute peak exposures. Results from the epidemiological evidence provides support for both 1-hour and 24-hour averaging times. However, it is worth noting that the effects observed in epidemiological studies may least be in part, especially in 24-hour epidemiological studies, due to shorter-term peaks of SO₂. Overall, the evidence mentioned above suggests that a primary concern with regard to averaging time is

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

- the level of protection provided against 5-10 minute peak SO₂ exposures. Additionally, even
- 2 though there is a greater degree of uncertainty, the evidence described above also suggests it
- 3 would be appropriate to consider the ability of averaging times under consideration to protect
- 4 against both 1-hour daily maximum and 24-hour average SO₂ concentrations.

10.5.2.2 Risk-based considerations

The shortest averaging time for a current primary SO₂ standard is 24-hours. It is therefore instructive to evaluate the potential for a standard based on 24-hour average SO₂ concentrations to provide protection against 5-minute peak SO₂ exposures. Table 10-1 reports the ratio between 99th percentile 5-minute maximum and 99th percentile 24-hour average SO₂ concentrations for 42 monitors reporting measured 5-minute data from 2004-2006. Across this set of monitors in 2004, ratios of 99th percentile 5-minute maximum to 99th percentile 24-hour average SO₂ concentrations spanned a range of 2.0 to 14.1, with an average ratio of 6.7 (Table 10-1). These results suggests that a standard based on 24-hour average SO₂ concentrations would not likely be an effective or efficient approach for addressing 5-minute peak SO₂ concentrations. That is, using a 24-hour average standard to address 5-minute peaks would likely result in over controlling in some areas, while under controlling in others. In addition, it is important to note that this analysis also suggests that a 5-minute standard would not likely be an effective or efficient means for controlling 24-hour average SO₂ concentrations.

Table 10-1 also reports the ratios between 99th percentile 5-minute maximum and 99th percentile1-hour daily maximum SO₂ levels from this set of monitors. Compared to the ratios discussed above (5-minute maximum to 24-hour average), there is far less variability between 5-minute maximum and 1-hour daily maximum ratios. More specifically, 39 of the 42 monitors had 99th percentile 5-minute maximum to 99th percentile 1-hour daily maximum ratios in the range of 1.4 to 2.5 (Table 10-1). The remaining 3 monitors had ratios of 3.6, 4.2 and 4.6 respectively. Overall, this relatively narrow range of ratios suggests that a standard with a 1-hour averaging time would be more efficient and effective at limiting 5-minute peaks of SO₂ than a standard with a 24-hour averaging time. In addition, these results also suggest that a 5-minute standard could be a relatively effective means of controlling 1-hour daily maximum SO₂ concentrations.

Table 10-1 Ratios of 99^{th} percentile 5-minute maximums to 99^{th} percentile 24-hour average and 1-hour daily maximum SO_2 concentrations for monitors reporting measured 5-minute data from years $2004-2006^{60}$

Monitor ID	# of years	5-minute max: 24-	5-minute max:1-hour
1,1011101 12	" or jours	hour average	daily maximum
110010041	1	3.8	1.4
191770005	1	4.1	1.7
290930030	1	2.9	1.2
290930031	1	3.4	1.6
370670022	1	5.5	1.6
120890005	2	9.4	2.2
190330018	2	8.2	2
190450019	2	11.2	3.6
191390016	2	6.9	1.5
191390017	2	9.8	2.2
191390017	2	6.2	1.8
191630015	2	4.5	1.5
191770006	2	3.1	1.3
291630002	2	7	1.8
380130002	2	8.4	1.9
380150002	2	4.8	1.6
380590002	2	5.6	1.9
380590002	2	8.4	1.9
540990003	2	2	1.4
540990004	2	5.9	2
540990005	2	5.3	2
541071002	2	8.1	1.6
051190007	3	4.7	2.2
051390006	3	12	2.3
080310002	3	5.5	1.7
290770026	3	6.6	1.7
290770020	3	8.1	2.2
290990004	3	14.1	2.5
291370001	3	2.4	1.3
301110084	3	5.8	1.6
380070002	3	6.3	2.1
380130004	3	6.1	1.8
380130004	3	4.3	1.6
380250003	3	5.1	1.6
380530003	3	4	1.4
380530002	3	7.9	4.2
380530104	3	11.6	4.6
380570004	3	7.5	2.3
380650002	3	7.3	1.9
381050103	3	9.7	2.5
381050105	3	6.4	2.4
420070005	3	10.5	2.4
T400/0003	ر	10.5	<u> </u>

⁵⁻minute maximum, 1-hour daily maximum, and 24-hour average 99th percentile values were calculated for each year a given monitor was in operation from 2004-2006. If a monitor was in operation for multiple years over that span, 99th percentile values were calculates for each year, averaged, and then the appropriate ratio was determined.

l	As noted, the strongest evidence for SO ₂ -induced respiratory effects is associated with an
2	averaging time of 5-10 minutes. Furthermore, as mentioned above epidemiological studies of
3	respiratory symptoms and ED visits and hospitalizations for all respiratory causes and asthma
4	provide evidence for SO ₂ -associated respiratory effects at averaging times ranging from 1 to 24-
5	hours. Notably, there is a greater degree of uncertainty associated with the epidemiological
6	literature because: (1) results of these studies are generally positive, but often not statistically
7	significant in single pollutant models; (2) only a limited subset of these studies investigated
8	potential confounding by co-pollutants; and (3) it is very possible that associations observed in
9	these studies are being driven at least in part, by short-term peaks of SO ₂ within a 24-hour period.
10	Despite these uncertainties, since the majority of the epidemiological literature is associated with
11	a 24-hour averaging time, staff finds that it would be instructive to evaluate the potential of the
12	1-hour daily maximum standards analyzed in this REA to provide protection against 24-hour
13	average SO ₂ exposures. The 99 th percentile 24-hour average SO ₂ concentrations in cities where
14	key U.S. ED visit and hospitalization studies (for all respiratory causes and asthma) were
15	conducted ranged from 16 ppb to 115 ppb (Thomson, 2009). Moreover, effect estimates that
16	remained statistically significant in multipollutant models with PM were found in cities with 99 th
17	percentile 24-hour average SO ₂ concentrations ranging from approximately 36 ppb to 64 ppb.
18	Table 10-2 suggests that a 99 th percentile 1-hour daily maximum standard set at a level of 50-
19	100 ppb would limit 99 th percentile 24-hour average SO ₂ concentrations observed in
20	epidemiological studies where statistically significant results were observed in multi-pollutant
21	models with PM. That is, given a 50 ppb 99 th percentile 1-hour daily maximum standard, none
22	of the 39 counties analyzed would be expected to have 24-hour average SO_2 concentrations ≥ 36
23	ppb; and, given a 100 ppb 99 th percentile 1-hour daily maximum standard, only 5 of the 39
24	counties (Linn, Union, Bronx, Fairfax, and Wayne) included in this analysis would be estimated
25	to have 99^{th} percentile 24-hour average SO_2 concentrations ≥ 36 ppb. This analysis was also
26	done for the years 2005 and 2006 and similar results were found (Appendix D).

Table 10-2. 99th percentile 24-hour average SO₂ concentrations for 2004 given just meeting the alternative 1-hour daily maximum standards analyzed in the risk assessment (note: concentrations in ppb).

State	County		98 th percentile				
		50	100	150	200	250	200
AZ	Gila	6	12	18	25	31	32
DE	New Castle	12	23	35	47	59	56
FL	Hillsborough	10	20	30	40	50	55
IL	Madison	12	24	36	48	60	56
IL	Wabash	7	13	20	27	33	38
IN	Floyd	8	15	23	31	39	41
IN	Gibson	9	18	27	36	45	41
IN	Lake	12	24	36	48	60	62
IN	Vigo	10	19	29	39	48	48
IA	Linn	21	42	64	85	106	98
IA	Muscatine	17	34	51	68	85	76
MI	Wayne	17	33	50	66	83	74
MO	Greene	12	24	36	48	60	62
MO	Jefferson	9	18	27	36	45	51
NH	Merrimack	17	33	50	66	83	79
NJ	Hudson	19	38	57	76	95	96
NJ	Union	18	36	54	72	90	89
NY	Bronx	23	47	70	93	117	107
NY	Chautauqua	13	27	40	54	67	65
NY	Erie	14	27	41	54	68	61
ОН	Cuyahoga	17	34	51	67	84	80
ОН	Lake	10	19	29	39	48	47
ОН	Summit	12	24	36	48	61	55
OK	Tulsa	16	32	47	63	79	72
PA	Allegheny	12	23	35	47	59	60
PA	Beaver	10	20	30	40	51	49
PA	Northampton	11	23	34	45	56	72
PA	Warren	11	22	33	44	56	56
PA	Washington	15	31	46	62	77	71
TN	Blount	15	31	46	61	77	71
TN	Shelby	17	34	51	68	85	81
TN	Sullivan	8	16	24	32	39	46
TX	Jefferson	9	17	26	35	44	41
VA	Fairfax	23	46	69	92	116	103
WV	Brooke	12	24	37	49	61	62
WV	Hancock	15	29	44	58	73	69
WV	Monongalia	10	20	30	40	50	51
WV	Wayne	30	59	89	119	149	133
VI	St Croix	14	27	41	54	68	101

^{1 2}

3

4

As an additional matter, we note that a 99th percentile 1-hour daily maximum standard at a level of 50-150 ppb could have the effect of maintaining SO₂ concentrations below the level of the current 24-hour and annual standards (see Table 10-3). That is, under these alternative

- standard scenarios (using 2004 air quality data), there would be no counties in this analysis with
- 2 a 2nd highest 24-hour average greater than 140 ppb. Similarly, under these alternative standard
- 3 scenarios, there would be no counties in this analysis with an annual SO₂ concentration in excess
- 4 of the current annual standard (0.03 ppm; see Table 10-4). These analyses were also done with
- 5 air quality from the years 2005 and 2006 and similar results were found (Appendix D).

Table 10-3. 2nd highest 24-hour average SO₂ concentrations (i.e. the current 24-hour standard) for 2004 given just meeting the alternative 1-hour daily maximum standards analyzed in the risk assessment (note: concentrations in ppb).⁶¹

State	County		99	o th percentile le	evels		98 th percentile level
		50	100	150	200	250	200
AZ	Gila	7	14	21	27	34	36
DE	New Castle	12	38	57	76	95	91
FL	Hillsborough	11	23	34	45	57	63
IL	Madison	14	28	42	55	69	65
IL	Wabash	10	19	29	39	48	55
IN	Floyd	8	17	25	34	42	44
IN	Gibson	11	21	32	43	53	48
IN	Lake	15	29	44	58	73	76
IN	Vigo	10	20	30	40	50	50
IA	Linn	28	57	85	113	142	130
IA	Muscatine	17	38	57	75	94	86
MI	Wayne	19	38	56	75	94	84
MO	Greene	17	34	51	67	84	87
MO	Jefferson	11	22	33	45	56	63
NH	Merrimack	18	37	55	74	92	88
NJ	Hudson	21	43	64	86	107	109
NJ	Union	19	38	57	77	96	95
NY	Bronx	25	51	76	102	127	117
NY	Chautauqua	21	42	63	83	104	100
NY	Erie	15	31	46	61	77	69
ОН	Cuyahoga	19	38	58	77	96	91
ОН	Lake	13	27	40	54	67	65
ОН	Summit	17	35	52	70	87	79
OK	Tulsa	19	38	57	76	95	87
PA	Allegheny	13	28	42	56	70	71
PA	Beaver	10	21	31	42	52	51
PA	Northampton	15	30	45	60	75	96
PA	Warren	13	27	40	54	67	68
PA	Washington	16	31	50	67	84	77
TN	Blount	17	34	50	67	84	78
TN	Shelby	19	38	57	76	95	90
TN	Sullivan	10	21	31	42	52	60
TX	Jefferson	13	25	38	50	63	59
VA	Fairfax	26	52	78	104	130	117
WV	Brooke	18	36	54	72	90	91
WV	Hancock	17	35	52	69	86	82
WV	Monongalia	12	24	35	47	59	60
WV	Wayne	33	67	100	134	167	150
VI	St Croix	17	34	51	68	85	126

_

⁶¹ 99th percentile 1-hour daily maximum concentrations were determined for each monitor in a given county for years 2004-2006. These concentrations were averaged, and the monitor with the highest average in a given county was determined. Based on this highest average, all monitors in a given county were adjusted to just meet the potential alternative standards defined above, and for each of the years, the 2nd highest 24-hour maximum concentration was identified. Iron County did not meet completeness criteria for all years and is therefore not part of this analysis.

Table 10-4. Annual average SO₂ concentrations for 2004 given just meeting the alternative 1-hour daily maximum standards analyzed in the risk assessment (note: concentrations in ppb).⁶²

State	County		98 th percentile				
		50	100	99 th percentil 150	200	250	200
AZ	Gila	1.7	3.4	5.1	6.8	8.5	9.0
DE	New Castle	2.0	4.0	6.0	7.9	9.9	9.5
FL	Hillsborough	1.6	3.2	4.7	6.3	7.9	8.7
IL	Madison	1.8	3.6	5.4	7.2	9.0	8.5
IL	Wabash	0.8	1.6	2.3	3.1	3.9	4.4
IN	Floyd	1.8	3.6	5.3	7.1	8.9	9.4
IN	Gibson	1.5	2.9	4.4	5.9	7.3	6.7
IN	Lake	2.0	4.1	6.1	8.2	10.2	10.7
IN	Vigo	1.5	3.1	4.6	6.1	7.7	7.6
IA	Linn	1.8	3.5	5.3	7.0	8.8	8.1
IA	Muscatine	2.5	5.0	7.5	10.0	12.5	11.2
MI	Wayne	2.5	5.1	7.6	10.2	12.7	11.3
MO	Greene	2.0	4.1	6.1	8.2	10.2	10.6
MO	Jefferson	1.5	2.9	4.4	5.8	7.3	8.3
NH	Merrimack	2.2	4.4	6.5	8.7	10.9	10.4
NJ	Hudson	6.4	12.8	19.3	25.7	32.1	32.5
NJ	Union	6.4	12.7	19.1	25.4	31.8	31.4
NY	Bronx	7.6	15.1	22.7	30.2	37.8	34.8
NY	Chautauqua	2.6	5.3	7.9	10.5	13.2	12.7
NY	Erie	3.1	6.1	9.2	12.2	15.3	13.8
ОН	Cuyahoga	3.9	7.7	11.6	15.5	19.3	18.4
ОН	Lake	2.3	4.7	7.0	9.3	11.6	11.2
ОН	Summit	2.6	5.1	7.7	10.2	12.8	11.5
OK	Tulsa	3.9	7.8	11.7	15.5	19.4	17.7
PA	Allegheny	2.9	5.8	8.7	11.6	14.5	14.8
PA	Beaver	2.5	5.1	7.6	10.1	12.7	12.3
PA	Northampton	4.6	9.1	13.7	18.3	22.8	29.1
PA	Warren	2.3	4.5	6.7	9.0	11.2	11.3
PA	Washington	4.3	8.7	13.0	17.4	21.7	20.0
TN	Blount	3.0	6.1	9.1	12.1	15.2	14.0
TN	Shelby	3.5	7.0	10.4	13.9	17.4	16.5
TN	Sullivan	2.1	4.2	6.3	8.4	10.4	12.0
TX	Jefferson	1.3	2.6	3.9	5.3	6.6	6.2
VA	Fairfax	7.7	15.5	23.2	30.9	38.6	34.6
WV	Brooke	4.8	9.6	14.3	19.1	23.9	24.2
WV	Hancock	4.0	8.0	12.0	16.1	20.1	19.1
WV	Monongalia	2.2	4.3	6.5	8.7	10.9	11.1
WV	Wayne	6.1	12.2	18.3	24.4	30.6	27.4
VI	St Croix	1.2	2.4	3.7	4.9	6.1	9.1

_

⁶² 99th percentile 1-hour daily maximum concentrations were determined for each monitor in a given county for years 2004-2006. These concentrations were averaged, and the monitor with the highest average in a given county was determined. Based on this highest average, all monitors in a given county were adjusted to just meet the potential alternative standards defined above, and for each of the years, the annual concentration was calculated. Iron county did not meet completeness criteria for all years and is therefore not part of this analysis.

10.5.2.3 Conclusions regarding averaging time

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Staff finds that the scientific evidence and the air quality analyses most support an averaging time of 1-hour. We first note that the ISA finds a causal relationship between ambient SO₂ exposure and respiratory morbidity, and that this conclusion is based on both human exposure studies of 5-10 minutes, as well as supporting evidence from epidemiological studies ranging from 1 to 24-hours. This evidence suggests that an appropriate averaging time should protect against SO₂ concentrations ranging from 5-minutes to 24-hours. Importantly, the air quality analyses presented above demonstrate that it is likely that an alternative 99th percentile (see form discussion in 10.5.3) 1-hour daily maximum standard at an appropriate level (see level discussion in 10.5.4) will substantially diminish: (1) 5-10 minute peaks of SO₂ shown in human exposure studies to result in respiratory symptoms and/or decrements in lung function in exercising asthmatics, (2) 99th percentile 1-hour daily maximum air quality concentrations in cities observing positive effect estimates in epidemiological studies of hospital admissions and ED visits for all respiratory causes and asthma, and (3) 99th percentile 24-hour average air quality concentrations found in U.S. cities where ED visit and hospitalization studies (for all respiratory causes and asthma) observed statistically significant associations in multi-pollutant models with PM (i.e. 99^{th} percentile 24-hour average SO_2 concentration ≥ 36 ppb). Taken together, staff concludes that a 1-hour daily maximum standard, set at an appropriate level, would likely provide protection against the range of health outcomes associated with averaging times from 5-minutes to 24-hours.

We note that based solely on the controlled human exposure evidence, staff also considered a 5-minute averaging time. Staff's initial view does not favor such an approach. It is legitimate to consider the stability of the design of pollution control programs in considering the elements of a NAAQS, since more stable programs are more effective, and hence result in enhanced public safety. Here, staff has concerns about the stability of a 5-minute averaging time and standard. Specific concerns relate to the number of monitors needed and the placement of such monitors given the temporal and spatial heterogeneity of 5-minute SO₂ concentrations. Moreover, staff is concerned that compared to longer averaging times (e.g. 1-hour, 24-hour), year to year variation in 5-minute SO₂ concentrations is likely to be substantially more temporally and spatially diverse. Consequently, staff initially judges that a 5-minute averaging time would not provide a stable regulatory target and therefore, is not the preferred approach to

provide adequate public health protection. However, as noted above, staff 's provisional view is that a 1-hour averaging time, given an appropriate form (see 10.5.3) and level (see 10.5.4), will adequately control 5-minute SO_2 exposures (see 10.5.4.2) and provide a more stable regulatory target than setting a 5-minute standard.

10.5.3 Form

When evaluating alternative forms in conjunction with specific levels, staff considers the adequacy of the public health protection provided by the combination of level and form to be the foremost consideration. In addition, we recognize that it is important to have a form that is reasonably stable and relatively insulated from the impacts of extreme meteorological events. A standard set with a high degree of instability could have the effect of reducing public health protection because shifting in and out of attainment due to meteorological conditions could disrupt an area's ongoing implementation plans and associated control programs.

Controlled human exposure evidence demonstrates that there is a continuum of SO_2 related health effects in exercising asthmatics following 5-10 minute peak SO_2 exposures. That is, the ISA finds that the percentage of asthmatics affected and the severity of the response increases with increasing SO_2 concentrations. Therefore, as noted in Chapter 5 and consistent with recent reviews of the O_3 and PM NAAQS, we focus this review on concentration-based forms averaged over 3 years. This is because a concentration-based form gives proportionally greater weight to 1-hour daily maximum values when concentrations are well above the level of the standard than to 1-hour daily maximum values when the concentrations are just above the level of the standard. In contrast, an expected exceedance form would give the same weight to a 1-hour daily maximum concentration that just exceeds the level of the standard as to a 1-hour daily maximum concentration that greatly exceeds the level of the standard. Therefore, a concentration-based form better reflects the continuum of health risks posed by increasing SO_2 concentrations (i.e. the percentage of asthmatics affected and the severity of the response increases with increasing SO_2 concentrations). Concentration-based forms also provide greater regulatory stability than a form based on allowing only a single expected exceedance.

In considering specific concentration-based forms, we recognize the importance to minimize the number of days per year that an area could exceed the standard level and still attain the standard. Given this, we have focused on 98th and 99th percentile forms averaged over 3 years. With regard to these alternative forms, staff notes in most locations analyzed, the 99th

- 1 percentile form of a 1-hour daily maximum standard would correspond to the 4th highest daily
- 2 maximum concentration in a year, while a 98th percentile form would correspond approximately
- 3 to the 7th to 8th highest daily maximum concentration in a year (Table 10-5; see Thompson, 2009
- 4 for methods). Staff also notes that the air quality analyses indicate that a 99th percentile form
- 5 could be appreciably more effective at limiting 5-minute peak SO₂ concentrations than a 98th
- 6 percentile form. For example, in all but one of the 40 counties selected for detailed analyses, a
- 7 99th percentile 1-hour daily maximum standard at 200 ppb allows less days per year of 5-minute
- 8 daily maximum SO₂ concentrations > 400 ppb than the corresponding 98th percentile standard
- 9 (see Table 7-11).⁶³ Taken together, staff finds provisionally that the scientific evidence and the
- risk and exposure analyses suggest consideration be given primarily to a 1-hour daily maximum
- standard with a 99th percentile form.

 $^{^{63}}$ In Alleghany County, both a 98th and 99th percentile 1-hour daily maximum standard at 200 ppb would be estimated to allow 2 days of 5-minute daily maximum SO_2 concentrations > 400 ppb.

Table 10-5. SO_2 concentrations (ppm) corresponding to the 2^{nd} - 9^{th} daily maximum and $98^{th}/99^{th}$ percentile forms (2004-2006)

		SO₂ Daily Maximums						Perce	Percentiles		
COUNTY	STATE	2nd	3 rd	4th	5 th	6th	7th	8th	9th	99th	98th
Gila	AZ	0.362	0.329	0.276	0.260	0.247	0.228	0.219	0.211	0.276	0.219
New Castle	DE	0.169	0.150	0.147	0.132	0.129	0.123	0.123	0.117	0.147	0.123
Hillsborough	FL	0.129	0.121	0.117	0.112	0.109	0.095	0.090	0.085	0.117	0.090
Madison	IL	0.163	0.149	0.144	0.138	0.131	0.127	0.123	0.120	0.144	0.123
Wabash	IL	0.213	0.190	0.173	0.165	0.152	0.133	0.129	0.123	0.153	0.127
Floyd	IN	0.208	0.186	0.170	0.157	0.145	0.140	0.129	0.123	0.170	0.130
Gibson	IN	0.256	0.232	0.215	0.201	0.195	0.185	0.184	0.179	*	*
Lake	IN	0.152	0.116	0.107	0.105	0.099	0.095	0.088	0.085	0.107	0.091
Vigo	IN	0.152	0.132	0.125	0.120	0.113	0.110	0.102	0.099	0.125	0.102
Linn	IA	0.107	0.098	0.096	0.094	0.103	0.088	0.097	0.090	0.096	0.080
Muscatine	IA	0.154	0.146	0.135	0.132	0.128	0.122	0.120	0.119	0.135	0.120
Wayne	MI	0.138	0.131	0.127	0.121	0.120	0.116	0.114	0.106		
Greene	MO	0.096	0.088	0.081	0.073	0.065	0.064	0.063	0.059	0.081	0.063
Iron	MO	**	**	**	**	**	**	**	**	**	**
Jefferson	MO	0.503	0.428	0.413	0.338	0.312	0.293	0.280	0.266	0.346	0.250
Merrimack	NH	0.164	0.161	0.151	0.144	0.141	0.132	0.127	0.125	0.151	0.127
Hudson	NJ	0.064	0.062	0.059	0.056	0.052	0.050	0.048	0.047	0.059	0.048
Union	NJ	0.071	0.065	0.057	0.053	0.049	0.047	0.047	0.045	0.057	0.047
Bronx	NY	0.082	0.073	0.070	0.066	0.063	0.062	0.060	0.060	0.063	0.056
Chautauqua	NY	0.108	0.107	0.101	0.098	0.088	0.087	0.084	0.079	0.101	0.084
Erie	NY	0.165	0.153	0.129	0.125	0.123	0.119	0.114	0.111	0.129	0.114
Cuyahoga	OH	0.093	0.087	0.080	0.075	0.073	0.070	0.067	0.066	0.077	0.067
Lake	OH	0.192	0.186	0.175	0.167	0.164	0.148	0.146	0.142	0.175	0.146
Summit	OH	0.170	0.161	0.150	0.141	0.140	0.136	0.133	0.127	0.150	0.133
Tulsa	OK	0.108	0.094	0.081	0.076	0.074	0.071	0.070	0.066	0.081	0.070
Allegheny	PA	0.127	0.117	0.111	0.102	0.096	0.092	0.089	0.088	0.111	0.089
Beaver	PA	0.302	0.250	0.227	0.216	0.200	0.189	0.188	0.179	0.130	0.106
Northampton	PA	0.186	0.172	0.146	0.143	0.124	0.099	0.092	0.086	0.146	0.092
Warren	PA	0.265	0.244	0.226	0.220	0.190	0.182	0.180	0.177	0.226	0.180
Washington	PA	0.120	0.108	0.102	0.096	0.091	0.090	0.089	0.085	0.102	0.089
Blount	TN	0.208	0.200	0.194	0.188	0.182	0.175	0.167	0.162	0.194	0.169
Shelby	TN	0.118	0.096	0.085	0.081	0.078	0.077	0.072	0.070	0.085	0.072
Sullivan	TN	0.237	0.218	0.208	0.190	0.164	0.153	0.145	0.143	0.208	0.145
Jefferson	TX	0.152	0.140	0.129	0.121	0.116	0.113	0.109	0.105	0.129	0.109
Fairfax	VA	0.049	0.045	0.041	0.039	0.039	0.038	0.037	0.035	0.041	0.037
Brooke	WV	0.213	0.178	0.158	0.143	0.138	0.134	0.125	0.120	0.158	0.125
Hancock	WV	0.183	0.170	0.159	0.147	0.145	0.139	0.134	0.131	0.159	0.134
Monongalia	WV	0.225	0.217	0.178	0.170	0.163	0.152	0.141	0.135	0.168	0.139
Wayne	WV	**	**	**	**	**	**	**	**	**	**
St Croix	VI	0.156	0.126	0.086	0.077	0.054	0.049	0.046	0.044	0.050	0.036

10.5.4 Level

In considering alternative standard levels that would provide greater protection than that afforded by the current standard against SO₂-related adverse health effects, staff has taken into account scientific evidence from both experimental and epidemiological studies, as well as the

1

2

3

- 1 uncertainties and limitations in that evidence. In particular, we have considered the extent to
- which controlled human exposure studies provide evidence for a lowest-observed-effects level
- 3 (LOEL) and the extent to which epidemiological studies provide evidence for potential effect
- 4 thresholds and/or for positive associations that extend down to the lower levels of SO₂
- 5 concentrations observed in studies. We note that the scientific evidence can provide insights into
- 6 alternative standard levels only within the context of specific averaging times and forms.
- 7 Therefore, while this section considers the evidence as it relates to alternative levels, such
- 8 considerations assume particular averaging times and forms (see sections 10.5.2 and 10.5.3).

10.5.4.1 Evidence-based consideration

Human Clinical

Controlled human exposure results demonstrate that there is a continuum of SO_2 related health effects following 5-10 minute peak SO_2 exposures in exercising asthmatics. That is, the ISA finds that the percentage of asthmatics affected and the severity of the response increases with increasing SO_2 concentrations. At concentrations ranging from 200 - 300 ppb, the lowest levels tested in free breathing chamber studies, 5-30% percent of exercising asthmatics are likely to experience moderate or greater bronchoconstriction. At concentrations \geq 400 ppb, moderate or greater bronchoconstriction occurs in 20-60% of exercising asthmatics, and compared to exposures at 200- 300 ppb, a larger percentage of subjects experience severe bronchoconstriction. At concentrations \geq 400 ppb, statistically significant moderate or greater bronchoconstriction is frequently accompanied by respiratory symptoms.

With regard to the controlled human exposure evidence as it relates to alternative standard levels, several additional factors must be considered. First, it is important to note that the subjects in human exposure studies do not represent the most SO₂ sensitive asthmatics; that is, these studies included mostly mild and some moderate, but not severe asthmatics. Also, children have not been included in free-breathing controlled human exposure studies, and thus, it is possible asthmatic children represent a population that is more sensitive to the respiratory effects of SO₂ than the individuals who have been examined to date. Moreover, it is important to consider that 5-30% of asthmatics who engaged in moderate or greater exertion experienced bronchoconstriction following exposure to 200- 300 ppb SO₂, which is the lowest level tested in free-breathing chamber studies. Thus, it is likely that a subset of the asthmatic population would also experience bronchoconstriction following exposure to levels lower than 200 ppb. We also

note this effect could have important public health implications due to the large size of the asthmatic population in the United States (see section 3.6).

Epidemiological

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

When evaluating the epidemiologic literature for its potential to inform decisions on standard level, we note that the ISA describes the evidence for the presence of an effects threshold as inconclusive (ISA, section 4.1.3). While some epidemiological studies found the concentration-response relationship to be linear, other studies found a marked increase in SO₂ related respiratory effects at higher SO₂ concentrations (ISA, section 4.1.3). However, the ISA urges caution when interpreting studies finding a marked increase in respiratory effects at higher SO₂ concentrations because these results were based on a few potentially influential data points (i.e., 24-hour SO₂ concentrations above the 90th percentile; ISA, section 4.1.3). In the absence of a clear threshold, our discussion of alternative standard levels will focus on the range of 1-hour daily maximum SO₂ concentrations observed in cities where key U.S. and Canadian epidemiological studies of ED visits and hospitalizations were conducted.

Figures 5-1 to 5-5 (see Chapter 5) show standardized effect estimates and the 98th and 99th percentile concentrations of 1-hour daily maximum SO₂ levels for locations and time periods for which key U.S. (Figures 5-1 to 5-4) and Canadian (Figure 5-5) ED visit and hospitalization studies were conducted. The highest 99th percentile 1-hour daily maximum air quality levels were found in analyses conducted in the cities of Cincinnati (Figure 5-2), Cleveland (Figures 5-2 and 5-4), and New Haven (Figure 5-4). These studies showed positive associations with respiratory-related hospital admissions or ED visits during time periods when 99th percentile 1hour daily maximum SO₂ concentrations ranged from 150 to 457 ppb. Notably, this range of 1hour daily maximum SO₂ levels overlaps considerably with 5-10 minute SO₂ concentrations (≥ 200 ppb) that have consistently been shown in controlled human exposure studies to result in decrements in lung function in exercising asthmatics. Of particular concern are the air quality levels that were found in Cincinnati. The 98th and 99th percentile 1-hour daily maximum SO₂ concentrations were in excess of 400 ppb. Notably, levels \geq 400 ppb have consistently been shown in human clinical studies with 5-10 minute exposures to result in statistically significant moderate or greater bronchoconstriction in the presence of respiratory symptoms in a considerable percentage of exercising asthmatics.

1	With regard to the lowest levels of SO ₂ observed in cities where positive effect estimates
2	were observed in epidemiological studies, we first note that Figure 5-5 contains epidemiological
3	studies reporting associations between ambient SO ₂ concentrations and hospital admissions in
4	Canadian cities where 99 th percentile, 1-hour daily maximum SO_2 levels were \leq 46 ppb.
5	Specifically, 99th percentile, 1-hour daily maximum SO ₂ levels for hospital admission studies
6	conducted in Toronto (Burnett et al., 1997) and Vancouver (Yang et al., 2003) were
7	approximately 21 ppb, and 41 ppb, respectively. Moreover, in a U.S. analysis, Delfino et al.
8	(2003) reported an association between ambient SO ₂ and respiratory symptoms in Hispanic
9	children when the maximum 1-hour SO ₂ concentration in Los Angeles was 26 ppb (ISA Table 5
10	4). However, it should be noted that the Vancouver study was not statistically significant in
11	either single, or multipollutant models with O ₃ , and that the study did not examine the potential
12	for confounding by PM (Figure 5-5; ISA, Table 5-5). In addition, while the Toronto study was
13	statistically significant in a single pollutant model, the effect estimate was substantially
14	diminished and no longer statistically significant in a multi-pollutant model with PM ₁₀ (ISA,
15	Table 5-5). Finally, the epidemiological study conducted in Los Angeles (Delfino et al., 2003;
16	ISA, Table 5-4) was very small (n=22), and did not examine potential confounding by co-
17	pollutants. Thus, staff finds that this evidence considered by itself is not sufficient to warrant
18	consideration of alternative 1-hour daily maximum standards at levels below 50 ppb.
19	In contrast to the epidemiological evidence in cities where 99 th percentile 1-hour daily
20	maximum SO ₂ concentrations were < 47 ppb, staff finds relatively stronger evidence of an
21	association between SO2 and hospital admissions and ED visits for all respiratory causes and
22	asthma in cities where 99^{th} percentile 1-hour daily maximum SO_2 concentrations were ≥ 47 ppb
23	(Figures 5-1 to 5-5). More specifically, the majority of epidemiological studies in this range
24	observed positive associations between ambient SO2 levels and hospital admissions and ED
25	visits for all respiratory causes or asthma. Moreover, although most of these positive effect
26	estimates were not statistically significant, there were some statistically significant results in
27	single pollutant models (Portland, Wilson, 1995; Bronx, NYDOH, 2006; NYC, Ito, 2006; and
28	Schwartz, 1995), as well as limited evidence of statistical significance in multi-pollutant models
29	with PM (Bronx, NYDOH, 2006; NYC, Ito, 2006; New Haven, Schwartz 1995).

10.5.4.2 Exposure- and risk-based considerations

Staff's consideration of exposure- and risk-based information as it relates to alternative levels for the primary SO₂ NAAQS builds upon our conclusions, discussed above in sections 10.3.3.3 and 10.4.4, that the overall body of scientific evidence clearly calls into question the adequacy of the current standards to protect the public health. Therefore, we have judged it appropriate to consider a range of alternative levels that would improve upon the level of protection provided by the current standard. As noted in Chapter 5, this range of levels (50- 250 ppb) is based on results from controlled human exposure and epidemiologic studies. When considering this range of levels given recent air quality, we note that all of the potential alternative 1-hour daily maximum SO₂ standard levels would be estimated to result in counties in the U.S. with air quality above the level of the given alternative standard (Table 10-6; Thompson, 2008). In contrast, given recent air quality, all counties in the U.S. meet the current 24-hour and annual standards. Thus, to varying extents, all potential alternative 1-hour daily maximum standards would represent increased protection against ambient SO₂ concentrations compared to the current standards.

Table 10-6. Percent of counties that may be above the level of alternative standards (based on years 2004-2006)

	Percent of counties,	total and by	region not lik	ely to meet	a given sta	andard			
Alternative Standards and Levels (ppb)	Total Counties (population in millions)	Northeast	Southeast	Industrial Midwest	Upper Midwest	Southwest	Northwest	Southern CA	Outside Regions
Number of counties with monitors	211 (96.5)	52	40	75	19	7	9	6	3
3 year 99 th percentile daily 1-hour max:									
250	1 (0.4)	0	0	1	0	14	0	0	33
200	3 (0.8)	0	3	4	0	14	0	0	33
150	10 (2.4)	2	5	20	5	14	0	0	33
100	22 (13.5)	8	13	47	5	14	0	0	33
50	54 (43.5)	38	55	81	37	14	22	0	33
3 year 98 th percentile daily 1-hou	ır max:								
200	1 (0.4)	0	0	1	0	14	0	0	33

The results of the air quality analyses are presented in Chapter 7 of this document. The
outputs of these analyses include estimates of the number of daily exposures greater than or
equal to benchmark levels. These estimates are based on as-is air quality and air quality that has
been adjusted to simulate just meeting the current and potential alternative standards. In
considering the results presented Chapter 7, we note the following key points with respect to
exceedences of the 200 and 400-ppb benchmark levels. We highlight these benchmark levels
because (1) 400 ppb represents the lowest concentration in human exposure studies where
statistically significant moderate or greater lung function decrements are frequently accompanied
by respiratory symptoms, (2) 200 ppb is the LOEL for moderate or greater decrements in lung
function in free-breathing human exposure studies, and (3) taken together, the human exposure
evidence suggests that the 1-hour daily maximum SO ₂ standard level should be set low enough
to significantly reduce the number of 5-10 minute peaks in excess of 200 ppb, and thus provide
even greater protection against peaks in excess of 400 ppb.

• When air quality is simulated to just meet the current standards in 40 counties selected for detailed analysis, all locations are estimated to have between 21-171 days per year where 5-minute daily maximum SO₂ concentrations exceed 200 ppb. Moreover, most counties are estimated to have ≥ 50 days per year where 5-minute daily maximum SO₂ concentrations exceed 200 ppb (Table 7-11).

• When air quality is simulated to just meeting the current standards in the 40 counties selected for detailed analysis, all locations are estimated to have between 1-102 days per year when 5-minute daily maximum SO₂ concentrations exceed 400 ppb. Moreover, most counties will have > 20 days per year where 5-minute daily maximum SO₂ concentrations exceed 400 ppb (Table 7-13)

 • In all counties selected for detailed analysis, simulating just meeting the 99th percentile alternative standard levels of 50, 100 and 150 ppb results in fewer estimated days per year when 5-minute daily maximum SO₂ concentrations exceed the 200 and 400 ppb benchmarks compared to just meeting the current standards (Tables 7-11 and 7-13).

• In all counties selected for detailed analysis, compared to the current standards, simulating just meeting the 99th percentile alternative standard level of 200 ppb results in fewer estimated days per year when 5-minute daily maximum SO₂ concentrations exceed 200 ppb, and in all but three counties, results in fewer exceedences of the 400 ppb benchmark (under the current, and 200 ppb alternative standards, Bronx, Union, and Fairfax Counties would have the same number of exceedences of the 400 ppb benchmark (Tables 7-11 and 7-13).

- In Bronx, Union, Hudson, and Fairfax Counties simulating just meeting the 99th percentile 1-hour daily maximum standard of 250 ppb results in more exceedences of the 200 ppb benchmark than just meeting the current standard. Similarly, this 250 ppb alternative standard results in these counties experiencing more exceedences of the 400 ppb benchmark than just meeting the current standard (Tables 7-11 and 7-13).
- In all counties selected for detailed analysis, a 99th percentile 1-hour daily maximum standard of 50 ppb would be estimated to result in at most 2 days/year where 5-minute maximum SO_2 concentrations were ≥ 200 ppb, and 0 days/year where 5-minute maximum SO_2 concentrations were ≥ 400 ppb (Tables 7-11 and 7-13).
- In all counties selected for detailed analysis, a 99^{th} percentile 1-hour daily maximum standard of 100 ppb would be estimated to result in at most 13 days/year where 5-minute maximum SO_2 concentrations were ≥ 200 ppb, and at most 2 days/year where 5-minute maximum SO_2 concentrations were ≥ 400 ppb (Tables 7-11 and 7-13).
- In all counties selected for detailed analysis, a 99^{th} percentile 1-hour daily maximum standard of 150 ppb would be estimated to result in at most 24 days/year where 5-minute maximum SO_2 concentrations were ≥ 200 ppb, and at most 7 days/year where 5-minute maximum SO_2 concentrations were ≥ 400 ppb (Tables 7-11 and 7-13).

The results of the St Louis and Greene County exposure assessments are presented in Chapter 8 of this document. In Figures 8-13 through 8-17, we present estimates of the percent and number of asthmatics in St. Louis and Greene Counties expected to experience SO₂ exposure concentrations at or above our potential health benchmark levels for the year 2002, given unadjusted air quality and air quality that has been adjusted to simulate just meeting the current and potential alternative standards. In considering the results presented in those figures, we note the following key points (values in parentheses represent the numbers of asthmatics exposed):

- In St. Louis under the current standards, about 46% (~48,000) and 13% (~14,000) of asthmatics at elevated ventilation rates would be estimated to experience at least one exposure greater than or equal to the 200 ppb and 400 ppb benchmarks, respectively (Figures 8-16 and 8-17).
- In St. Louis, 99th percentile 1-hour daily maximum standards of 50 ppb, 100 ppb, 150 ppb, and 200 ppb would be estimated to result in ≤ 1% (69), 1.5% (~1,600), 6.4% (~7,000) and 13.7% (~14,000), respectively, of asthmatics at elevated ventilation rates experiencing at least one exposure greater than or equal to the 200 ppb benchmark respectively (Figures 8-16 and 8-17).
- In St. Louis, 99th percentile 1-hour daily maximum standards of 50 ppb, 100 ppb and 150 ppb would be estimated to result in <1% of asthmatics at elevated ventilation rates experiencing at least one exposure greater than or equal to the 400 ppb benchmark (Figure 8-17).

March 2009

- In St. Louis, a 99th percentile 1-hour daily maximum standard of 200 ppb would be estimated to result in 1.5% (~1,600) of asthmatics at elevated ventilation rates experiencing at least one exposure greater than or equal to the 400 ppb benchmark (Figures 8-16 and 8-17).
- When results are restricted to asthmatic children, similar trends are found with respect to exceedences of the 200 ppb and 400 ppb benchmark levels under the current and 99th percentile 1-hour daily maximum standards (Figure 8-17).
- In Greene County, although all of the alternative 99th percentile 1-hour daily maximum standards are estimated to be more protective than the current standards, <1% of asthmatics at elevated ventilation rates are estimated to experience at least one exposure greater than or equal to the 200 ppb and 400 ppb benchmarks under all air quality scenarios. At most, 139 and 13 asthmatics at elevated ventilation rates would be expected to experience at least one exposure over the 200 or 400 ppb benchmark respectively (Figures 8-13 and 8-14).
- In Greene County, under the current standards, about 1.0% (72) and <1% (<10) of asthmatic children at elevated ventilation rates would be estimated to experience at least one exposure greater than or equal to the 200 ppb and 400 ppb benchmarks, respectively (Figures 8-13 and 8-14).
- In Greene County, under all of the 1-hour daily maximum alternative standards, <35 asthmatic children at elevated ventilation rates would be estimated to experience at least one exposure greater than or equal to the 200 ppb benchmark (Figure 8-13).

The results of the St Louis and Greene County risk assessment are presented in Chapter 9 of this document. In Tables 9-4 and 9-5 we present estimates of the number and percent of exposed asthmatics likely to experience moderate or greater lung function responses. In considering the results from these tables we note the following key points (values in parentheses represent the numbers of asthmatics):

- In the St. Louis modeling domain the median percentage of exposed asthmatics at elevated ventilation rates estimated to experience at least one moderate decrement in lung function defined as a $\geq 100\%$ increase in sRaw is 13.1% ($\sim 13,500$) under the current standards.
- In the St. Louis modeling domain the median percentage of exposed asthmatics at elevated ventilation rates estimated to experience at least one $\geq 100\%$ increase in sRaw is 0.7% (730), 1.9% (~2,000), 3.6 % (~3,700), and 5.4% (~5,500) given a 50 ppb, 100 ppb, 150 ppb, and 200 ppb 99th percentile 1-hour daily maximum standard, respectively.
- In the St. Louis modeling domain the median percentage of exposed asthmatics at elevated ventilation rates estimated to experience at least one large decrement in lung

March 2009

function defined as a \geq 200% increase in sRaw is 5.4% (~5,500) under the current standard.

• In the St. Louis modeling domain the median percentage of exposed asthmatics at elevated ventilation rates estimated to experience at least one \geq 200% increase in sRaw is 0.2% (230), 0.7% (670) 1.3% (\sim 1,300) and 2% (\sim 2,000) given a 50 ppb, 100 ppb, 150 ppb, and 200 ppb 99th percentile 1-hour daily maximum standard respectively.

• Similar trends are found in the St. Louis modeling domain with respect to the median percentages of exposed asthmatic children at elevated ventilation rates expected to experience at least one ≥ 100% or ≥ 200% increase in sRaw.

• Similar trends are found in the St. Louis modeling domain in exposed asthmatics and asthmatic children at elevated ventilation rates when moderate or large lung function decrements are defined in terms of FEV₁ rather than sRaw (Table 9-8 and Appendix C Tables 4-7, 4-8, 4-11, and 4-12).

• In Greene County under the current standard the median percentage of exposed asthmatics at elevated ventilation rates estimated to experience at least one ≥ 100% increase in sRaw is 1% (210).

• In Greene County the median percentage of exposed asthmatics at elevated ventilation rates estimated to experience at least one ≥ 100% increase in sRaw is 0.4% (80), 0.4% (90), 0.5 % (100), and 0.6% (120) given a 50 ppb, 100 ppb, 150 ppb, and 200 ppb 99th percentile 1-hour daily maximum standard, respectively.

• In Greene County under the current standard the median percentage of exposed asthmatics at elevated ventilation rates estimated to experience at least one \geq 200% increase in sRaw is 0.3% (70).

• In Greene County, using a 2-Parameter Logistic function, the median percentage of exposed asthmatics at elevated ventilation rates estimated to experience at least one ≥ 200% increase in sRaw is 0.1% (30), 0.1% (30), 0.2 % (30), and 0.2% (40) given a 50 ppb, 100 ppb, 150 ppb, and 200 ppb 99th percentile 1-hour daily maximum standard, respectively.

10.5.4.3 Conclusions regarding level

- Taken together, staff provisionally concludes that the evidence and exposure and risk information reasonably support a 1-hour daily maximum standard within a range of 50- 150 ppb.
- 39 Controlled human exposure evidence has consistently demonstrated increases in respiratory
- 40 symptoms and/or decrements in lung function in exercising asthmatics following 5-10 minute
- SO_2 exposures ≥ 200 ppb. At concentrations ≥ 400 ppb, human exposure studies have
- 42 demonstrated that decrements in lung function are frequently accompanied with respiratory

- symptoms. Suggestive evidence for health effects associated with this range of SO₂
 concentrations can also be found in epidemiological studies. That is, our air quality analysis
 based on key U.S. and Canadian hospital admission and ED visit studies identified in the ISA
- 4 indicates positive effect estimates have been observed in cities where 99th percentile 1-hour daily
- 5 maximum SO₂ concentrations were also between 200- 400 ppb. At a minimum, these multiple
- 6 lines of evidence suggest that a 99th percentile 1-hour daily maximum standard should be lower
- 7 than 200 ppb. Moreover, given that the definitive evidence for the ISA's causal determination is
- 8 the controlled human exposure evidence, staff believes that the level of a 1-hour daily maximum
- 9 SO₂ standard should be low enough to significantly limit the number of 5-minute peaks \geq 200
- 10 ppb. Thus, we note results from the air quality and risk analyses indicate that a 1-hour daily
- maximum standard ranging from 50- 150 ppb would provide substantial protection against 5-
- minute peaks \geq 200 ppb. For a given county in our detailed air quality analysis, it is estimated
- that air quality just meeting a 1-hour daily maximum standard set at a level of 50 ppb, 100 ppb,
- or 150 ppb would result in at most 2, 13, or 24 days per year respectively, when 5-minute daily
- maximum SO_2 concentrations would be ≥ 200 ppb (Table 7-11). We also note that results from
- the St. Louis exposure analysis indicate that air quality just meeting a 50 ppb, 100 ppb, or 150
- 17 ppb 1-hour daily maximum standard, respectively, would result in a corresponding < 0.1% (69),
- 18 1.5% (~1,600), or 6.4% (~7,000) of asthmatics at elevated ventilation rates experiencing at least
- one 5-minute daily maximum exposure ≥ 200 ppb. In the Greene County exposure analysis, it is
- 20 estimated that \leq 10 exercising asthmatics would be expected to experience an SO₂ exposure \geq
- 21 200 ppb given a 1-hour daily maximum standard set at 50, 100, or 150 ppb. Finally, results of
- 22 the St. Louis quantitative lung function response risk assessment estimate that the median
- 23 percentage of asthmatics at elevated ventilation rates estimated to experience at least one $\geq 100\%$
- increase in sRaw (a moderate lung function decrement) is 0.7% (730), 1.9% (~2,000) and 3.6%
- 25 (~3,700) given air quality just meeting a 50 ppb, 100 ppb, and 150 ppb 99th percentile 1-hour
- daily maximum standard, respectively.
- 27 In further informing this range of SO₂ standard levels, we again consider the
- epidemiological evidence, as well as the air quality analysis conducted by staff characterizing
- 29 99th percentile 1-hour daily maximum SO₂ concentrations in cities corresponding to key U.S. and
- 30 Canadian epidemiological studies (identified in the ISA). We first note that there are important
- 31 sources of uncertainty associated with the results of the epidemiological literature (see section

- 1 10.5.2.2). However, we also note that the ISA does conclude that SO₂ likely has an independent
- 2 effect on the respiratory outcomes observed in these studies (ISA, section 5.2). As previously
- described, positive associations between ambient SO₂ and hospital admissions and ED visits for
- 4 all respiratory causes and asthma were observed in cities where 99th percentile 1-hour daily
- 5 maximum SO_2 concentrations were \geq 47 ppb. Notably, this range includes three studies where
- 6 statistically significant results in multi-pollutant models with PM were observed. Studies
- 7 conducted in NYC, NY (Ito et al., 2007), Bronx, NY (NYDOH, 2006), and New Haven, CT
- 8 (Schwartz et al., 1995) observed statistically significant results in multi-pollutant models with
- 9 PM when 99th percentile 1-hour daily maximum SO₂ concentrations were 82 ppb, 78 ppb, and
- 10 150 ppb, respectively. However, in Tacoma, WA (Schwartz et al., 1995), when the 99th
- percentile 1-hour daily maximum SO₂ concentration was 100 ppb, the positive SO₂ effect
- estimate was substantially reduced and no longer statistically significant in a multi-pollutant
- model with PM. In addition, we note that several other studies reported positive and sometimes
- statistically significant SO₂ effect estimates in cities where 99th percentile 1-hour SO₂
- 15 concentrations ranged from 70-100 ppb (Figures 5-1 to 5-5). Thus, if the epidemiological results
- are emphasized, they could reasonably support a 99th percentile 1-hour daily maximum standard
- in the lower end of the standard range, that is, from 70 ppb -100 ppb. Moreover, if emphasis is
- placed on the 99th percentile 24-hour average SO₂ concentrations observed in cities where the
- epidemiological studies mentioned above were conducted, we note that a 50 ppb (and to a lesser
- extent the 100 ppb) 99th percentile 1-hour daily maximum standard would likely provide
- 21 protection against the range of 99th percentile 24-hour average SO₂ concentrations in cities where
- statistically significant associations in multi-pollutant models with PM were observed (i.e. \geq 36
- 23 ppb; see section 10.5.2.2).
- In addition to using the epidemiological results, uncertainties in the controlled human
- 25 exposure evidence could also be used to further inform consideration of standards within this 50
- -150 ppb range of alternative standard levels. For example, if emphasis is placed on the
- 27 uncertainty that the participants in human exposure studies do not represent the most SO₂
- sensitive individuals, consideration could be given to a 1-hour daily maximum standard level that
- 29 provides increased protection against peaks < 200 ppb to provide a margin of safety for these
- 30 SO₂ sensitive individuals. In this case, we would note that in the St. Louis exposure analysis,
- compared to a standard level of 100 or 150 ppb, a 1-hour daily maximum standard of 50 ppb

would likely result in substantially fewer asthmatics at elevated ventilation rates experiencing SO₂ concentrations ≥ 100 ppb. That is, given a 50 ppb, 100 ppb, and 150 ppb 1-hour daily maximum standard, 1.5% (~1,600), 13.7%, (~14,000) and 31% (~33,000) of asthmatics at elevated ventilation rates would be expected to experience at least one SO₂ concentrations > 100 ppb.

elevated ventilation rates would be expected to experience at least one SO_2 concentrations ≥ 100

ppb, respectively.

On the other hand, if emphasis is placed on the uncertainties associated with the controlled human exposure results at the lowest levels, it could be argued that the upper end of this range of alternative standard levels could be sufficient to protect public health. That is, the ISA notes that while decrements in lung function have been demonstrated to occur in free breathing chamber studies as low as 200 ppb, it also notes that results of chamber studies exposing exercising asthmatics to 200-300 ppb are not statistically significant, nor are they frequently accompanied with respiratory symptoms (ISA, section 4.1.1). Thus, an argument could be made that a 99^{th} percentile 1-hour daily maximum SO_2 standard should predominantly provide protection against 5-10 minute SO_2 concentrations \geq 400 ppb (i.e. the lowest concentration in free-breathing chamber studies where statistically significant respiratory effects have been observed). In this instance, staff notes that results of the St. Louis exposure analysis indicate that a 99^{th} percentile 1-hour daily maximum standard at levels ranging from 100 -150 ppb, would be estimated to result in <1% (~80) and <1% (~500) of asthmatics at elevated ventilation rates experiencing at least one exposure greater than or equal to the 400 ppb benchmark, respectively (Figure 8-17).

Given the above considerations, staff's initial views are that selecting a level from within this range will be based on the relative weight given to different types of information from the exposure and risk assessment, as well as to the evidence, and the uncertainties associated with the evidence and assessments. Finally, staff recognizes that the particular level selected will also have implications for retaining or revoking the current 24-hour and/or annual standards. That is, if the alternative standard selected would be expected to prevent ambient SO₂ concentrations from exceeding the levels of the current standards, it could reasonably be suggested that the current NAAQS be revoked. However, if the alternative standard selected is not expected to prevent ambient SO₂ concentrations from exceeding the levels of the current standards, it would be appropriate to consider retaining the current NAAQS.

1 2	References
3 4 5 6 7	Abt Associates, 2007. Ozone Health Risk Assessment for Selected Urban Areas. EPA 452/R-07-009. Prepared for Office of Air Quality Planning and Standards, U.S. EPA, Research Triangle Park, NC. July 2007. Available electronically on the internet at: http://www.epa.gov/ttn/naaqs/standards/ozone/s_o3_pr_td.html.
8 9 10	AHS. (2003a). American Housing Survey for 2003. Available at: http://www.census.gov/hhes/www/housing/ahs/ahs.html.
11 12 13	AHS. (2003b). Source and Accuracy Statement for the 2003 AHS-N Data Chart. Available at: http://www.census.gov/hhes/www/housing/ahs/03dtchrt/source.html .
14 15 16	American Thoracic Society. 2000. What Constitutes an Adverse Health Effect of Air Pollution? Am. J. Respir. Crit. Care Med. 161: 665-673.
17 18 19	Balmes JR, Fine JM, Sheppard D. (1987). Symptomatic Bronchoconstriction After Short-Term Inhalation of Sulfur Dioxide. Am Rev Respir Dis 136:1117-21.
20 21 22 23	Bethel RA; Epstein J; Sheppard D; Nadel JA; Boushey HA. (1983) Sulfur dioxide-Induced Bronchoconstriction in Freely Breathing, Exercising, Asthmatic Subjects. Am Rev Respir Dis. 128:987-90.
24 25 26 27	Bethel RA; Sheppard D; Geffroy B; Tam E; Nadel JA; Boushey HA. (1985) Effect of 0.25 ppm Sulfur Dioxide on Airway Resistance in Freely Breathing, Heavily Exercising, Asthmatic Subjects. Am Rev Respir Dis. 131:659-61.
28 29 30	Bresnahan BW, Dickie M, Gerking S. (1997). Averting behavior and urban air pollution. Land Economics. 73(3):340-357.
31 32 33 34	Burnett, R. T.; Cakmak, S.; Brook, J. R.; Krewski, D. (1997a) The Role of Particulate Size and Chemistry in the Association Between Summertime Ambient Air Pollution and Hospitalization for Cardiorespiratory Diseases. Environ. Health Perspect. 105: 614-620.
35 36 37 38	Burnett, R. T.; Smith-Doiron, M.; Stieb, D.; Cakmak, S.; Brook, J. R. (1999) Effects of Particulate and Gaseous Air Pollution on Cardiorespiratory Hospitalizations. Arch. Environ. Health 54: 130-139.
39 40 41 42	Burnett, R. T.; Smith-Doiron, M.; Stieb, D.; Raizenne, M. E.; Brook, J. R.; Dales, R. E.; Leech, J. A.; Cakmak, S.; Krewski, D. (2001) Association Between Ozone and ospitalization for acute respiratory diseases in children less than 2 years of age. Am. J. Epidemiol. 153: 444-452.

1 Burton CS, Stockenius TE, Stocking TS, Carr EL, Austin BS, Roberson RL (1987). Assessment 2 of Exposures of Exercising Asthmatics to Short-term SO2 Levels as a Result of Emissions 3 from U.S. Fossil-fueled Power Plants. Systems Applications Inc., San Rafael, CA. 4 Publication No. 87/176, September 23, 1987. 5 6 Cakmak, S.; Dales, R. E.; Judek, S. 2006. Respiratory Health Effects of Air Pollution Gases: 7 Modification by Education and Income. Arch. Environ. Occup. Health 61: 5-10. 8 9 CDC. (2007). National Center for Health Statistics. National Health Interview Survey (NHIS) 10 Public Use Data Release (2003). Available at: 11 http://www.cdc.gov/nchs/about/major/nhis/quest data related 1997 forward.htm. 12 13 Chan AT and Chung MW. (2003). Indoor-Outdoor Air Quality Relationships in Vehicle: Effect 14 of Driving Environment and Ventilation Modes. Atmos Environ. 37:3795-3808. 15 16 Chappmann (1985). 17 18 EPA. (2004). AERMOD: Description of Model Formulation. Office of Air Quality Planning 19 and Standards, Research Triangle Park, NC. EPA-454/R-03-004. Available at: 20 http://www.epa.gov/scram001/7thconf/aermod/aermod mfd.pdf. 21 22 Chang MC, Sioutas C, Kim S, Gong H, Jr., Linn WS. (2000). Reduction of Nitrate Losses from 23 Filter and Impactor Samplers by Means of Concentration Enrichment. Atmos Environ 34:85-24 98. 25 26 Delfino, R. J.; Gone, H.; Linn, W. S.; Pellizzari, E. D.; Hu, Y. (2003a) Asthma Symptoms in 27 Hispanic Children and Daily Ambient Exposures to Toxic and Criteria Air Pollutants. 28 Environ. Health Perspect. 111: 647-656. 29 30 Dey AN, Schiller JS, Tai DA. (2004). Summary Health Statistics for U.S. Children: National Health Interview Survey, 2002. National Center for Health Statistics. Vital Health Stat 31 32 10(221). 33 34 Dodge, R. et al. (1985). A Longitudinal Study of Children Exposed to Sulfur Oxides. Am. J. 35 Epidemiology 121:720-736. 36 37 EIA. (2001). Residential Energy Consumption Survey of 2001. Energy Information 38 Administration. Available at:

39

40 41 http://www.eia.doe.gov/emeu/recs/recs2001 hc/2001tblhp.html.

1	
2 3 4	EPA. (1982). Air Quality Criteria for Particulate Matter and Sulfur Oxides. In: Agency USEP, editor. Research Triangle Park, NC: Office of Health and Environmental Assessment.
5	
6 7 8 9	EPA. (1986a).Review of the National Ambient Air Quality Standards for Sulfur Oxides: Updated Assessment of Scientific and Technical Information, addendum to the 1982 OAQPS staff paper. Research Triangle Park, NC: Office of Air Quality Planning and Standards, Strategies and Air Standards Division; report no.
	EPA/450/5-86-13. Available from: NTIS, Springfield, VA; PB87-200259/XAB.
10	EPA/450/5-80-15. Available from: N115, Springfield, VA, PB8/-200259/AAB.
11 12 13 14 15 16	EPA. (1986b). Second Addendum to Air Quality Criteria for Particulate Matter and Sulfur Oxides (1982): Assessment of Newly Available Health Effects Information. In: Agency USEPA, editor. Research Triangle Park, NC: Office of Health and Environmental Assessment.
17 18 19 20	EPA. (1986c). An Analysis of Short-Term Sulfur Dioxide Population Exposures in the Vicinity of Utility Power Plants. US EPA Office of Air Quality Planning and Standards, Strategies and Air Standards Division, Research Triangle Park, NC. September 12, 1986.
21 22 23 24 25	EPA. (1994a). Supplement to the Second Addendum (1986) to Air Quality Criteria for Particulate Matter and Sulfur Oxides (1982). In: Agency USEP, editor. report no. EPA-600/FP-93/002 ed. Research Triangle Park, NC: Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office.
26 27 28 29 30	EPA. (1994b). Review of the National Ambient Air Quality Standards for Sulfur Oxides: Assessment of Scientific and Technical Information, Supplement to the 1986 OAQPS Staff Paper Addendum. Research Triangle Park, NC: Office of Air Quality Planning and Standards; report no. EPA-452/R-94/013.
31 32 33	EPA. (2002). Consolidated Human Activities Database (CHAD) Users Guide. Database and documentation available at: http://www.epa.gov/chadnet1/ .
34 35 36 37	EPA. (2003). AERMOD: Latest Features and Evaluation Results. EPA-454/R-03-003. U.S. Environmental Protection Agency, Research Triangle Park, NC. Available at: http://www.epa.gov/scram001/7thconf/aermod/aermod_mep.pdf .
38 39 40	EPA. (2004). AERMOD: Description of Model Formulation. Office of Air Quality Planning and Standards. EPA-454/R-03-004. Available at:

1	EPA. (2005). Review of the National Ambient Air Quality Standards for Particulate Matter:
2	Policy Assessment of Scientific and Technical Information - OAQPS Staff Paper. Research
3	Triangle Park, NC: Office of Air Quality Planning and Standards; report no. EPA-452/R-05-
4	005a. Available at:
5	http://www.epa.gov/ttn/naaqs/standards/pm/data/pmstaffpaper_20051221.pdf
6	
7	EPA. (2007a). SO2 NAAQS Review Plan - Final. In: Agency USEP, editor. Research Triangle
8	Park, NC: National Center for Environmental Assessment.
9	
0	EPA. (2007b). Sulfur Dioxide Health Assessment Plan: Scope and Methods for Exposure and
1	Risk Assessment. In: Agency USEP, editor. Research Triangle Park, NC: Office of Air
2	Quality Planning and Standards, Research Triangle Park.
3	Available at: http://www.epa.gov/ttn/naaqs/standards/so2/s_so2_cr_pd.html .
4	
5	EPA. (2007c). US EPA Air Quality System (AQS). Download Detailed AQS Data. Available
6	at: http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm.
7	
8	EPA. (2007d). Ozone Population Exposure Analysis for Selected Urban Areas (July 2007).
9	Office of Air Quality Planning and Standards, Research Triangle Park, NC. EPA-452/R-07-
20	010. Available at: http://epa.gov/ttn/naaqs/standards/ozone/s_o3_cr_td.html .
21	
22	EPA. (2007e). Review of the National Ambient Air Quality Standards for Ozone: Assessment of
23	Scientific and Technical Information, OAQPS Staff paper. Office of Air Quality Planning
24	and Standards, Research Triangle Park, NC. EPA-452/R-07-007a. Available at:
25	http://epa.gov/ttn/naaqs/standards/ozone/s_o3_cr_sp.html.
26	
27	EPA. (2007f). 2002 National Emissions Inventory Data & Documentation. Office of Air
28	Quality Planning and Standards, Research Triangle Park, NC. Available at:
29	http://www.epa.gov/ttn/chief/net/2002inventory.html.
30	
31	EPA. (2007g). Clean Air Markets - Data and Maps. Office of Atmospheric Programs,
32	Washington, DC. Emissions Prepackaged Data Sets. Available at:
33	http://camddataandmaps.epa.gov/gdm/index.cfm?fuseaction=emissions.wizard.
34	
35	EPA. (2007h). Sulfur Dioxide NAAQS Review - Analyses and Data Sets. Available at:
36	http://staging.epa.gov/ttn/analysis/so2.htm.

1	
2 3 4	EPA. (2007i). Review of the National Ambient Air Quality Standards for Lead: Policy Assessment of Scientific and Technical Information – OAQPS Staff Paper. Office of Air Quality Planning and Standards, Research Triangle Park, NC. EPA-452/R-07-013.
5	Available at:
6	http://www.epa.gov/ttn/naaqs/standards/pm/data/pmstaffpaper 20051221.pdf.
7	
8 9	EPA. (2008a). Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria (Final Report). EPA/600/R-08/047F. September 2008. Available online at:
10	http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=198843.
11	
12 13 14 15	EPA. (2008b). Risk and Exposure Assessment to Support the Review of the SO ₂ Primary National Ambient Air Quality Standard: First Draft. EPA-452/P-08-003. June 2008. Available online at: http://www.epa.gov/ttn/naaqs/standards/so2/s_so2_cr_rea.html .
16 17 18 19 20	EPA. (2008c). Sulfur Dioxide Health Assessment Plan: Scope and Methods for Exposure and Risk Assessment. In: Agency USEPA editor. Research Triangle Park, NC: Office of Air Quality Planning and Standards, Research Triangle Park. Available at: http://www.epa.gov/ttn/naaqs/standards/so2/s_so2_cr_pd.html .
21 22 23 24	EPA. (2008d). Risk and Exposure Assessment to Support the Review of the NO ₂ Primary National Ambient Air Quality Standard. EPA-452/R-08-008a. Available at: http://www.epa.gov/ttn/naaqs/standards/nox/data/20081121_NO2_REA_final.pdf .
25 26 27 28	EPA. (2008e). AERSURFACE User's Guide. EPA-454/B-08-001. U.S. Environmental Protection Agency, Research Triangle Park, NC. Available at: http://www.epa.gov/scram001/7thconf/aermod/aersurface_userguide.pdf
29 30 31 32 33	EPA. (2009a). Total Risk Integrated Methodology (TRIM) - Air Pollutants Exposure Model Documentation (TRIM.Expo / APEX, Version 4.3) Volume I: User's Guide. Office of Air Quality Planning and Standards, Research Triangle Park, NC. January 2009. Available at: http://www.epa.gov/ttn/fera/human_apex.html .
34 35 36 37 38	EPA. (2009b). Total Risk Integrated Methodology (TRIM) - Air Pollutants Exposure Model Documentation (TRIM.Expo / APEX, Version 4.3) Volume II: Technical Support Document Office of Air Quality Planning and Standards, Research Triangle Park, NC. January 2009. Available at: http://www.epa.gov/ttn/fera/human_apex.html .
39 40 41	ESRI. (2008). <i>ESRI Demographic Update Methodology: 2008/2013 (page 8)</i> . Available at: http://www.esri.com/library/whitepapers/pdfs/demographic-update-methodology-2008.pdf

2 3 4	multiple respiratory hospitalizations among the elderly in Vancouver, Canada. Inhalation Toxicol. 18: 1005-1011.
5 6	Gelman et al. (1995). Bayesian Data Analysis. Chapman and Hall, New York.
7 8 9	Geyh AS, Xue J, Ozkaynak H, Spengler JD. (2000). The Harvard Southern California chronic ozone exposure study: Assessing ozone exposure of grade-school-age children in two Southern California communities. <i>Environ Health Persp.</i> 108:265-270.
11 12 13	Gilks, W.R., Richardson, S., and Spiegelhalter, D.J. (Eds). (1996). Markov Chain Monte Carlo in Practice. Chapman and Hall, London, UK.
14 15 16 17	Gong H, Jr., Lachenbruch PA, Harber P, Linn WS. (1995). Comparative Short-term Health Responses to Sulfur Dioxide Exposure and Other Common Stresses in a Panel of Asthmatics. Toxicol Ind Health 11:467-87.
18 19 20	Graham, SE and McCurdy T. (2004). Developing Meaningful Cohorts for Human Exposure models. J Expos Anal Environ Epidemiol. 14(1)23-43.
21 22 23 24	Grontoft T and MR Raychaudhuri. 2004. Compilation of Tables of Surface Deposition Velocities for O3, NO2 and SO2 to a Range of Indoor Surfaces. Atmos Environ. 38:533-544.
25 26 27	Horstman D, Roger LJ, Kehrl H, Hazucha M. (1986). Airway Sensitivity of Asthmatics to Sulfur Dioxide. Toxicol Ind Health 2:289-98.
28 29 30 31	Hu PS and Reuscher TR. (2004). Summary of travel trends. 2001 National Household Travel Survey. US Department of Transportation, Federal Highway Administration. Available at: http://nhts.ornl.gov/2001/pub/STT.pdf
32 33 34 35	Ito, K. (2007) Characterization of PM2.5, Gaseous Pollutants, and Meteorological Interactions in the Context of Time-Series Health Effects Models. J. Expos. Sci. and Environ. Epid. 17: S45-S60.
36 37 38	Jaffe, D. H.; Singer, M. E.; Rimm, A. A. (2003) Air Pollution and Emergency Department Visits for Asthma Among Ohio Medicaid Recipients, 1991-1996. Environ. Res. 91: 21-28.
39 40 41	Kindzierski WB, Ranganathan HKS. (2006). Indoor and outdoor SO2 in a Community Near Oil Sand Extraction and Production Facilities in Northern Alberta. Journal of Environmental Engineering and Science 5:S121-S129.

1 2 3 4 5	Langstaff JE. (2007). OAQPS Staff Memorandum to Ozone NAAQS Review Docket (OAR-2005-0172). Subject: Analysis of Uncertainty in Ozone Population Exposure Modeling. [January 31, 2007]. Available at: http://www.epa.gov/ttn/naaqs/standards/ozone/s_o3_cr_td.html .
6 7 8 9	Langstaff J. (2009). Analysis of Uncertainty in the Statistical Model for Estimating 5-minute Maximum Concentrations of SO ₂ . Sulfur Dioxide NAAQS Review Docket. (OAR-2005-0172.
10 11 12 13	Lin, M.; Chen, Y.; Burnett, R. T.; Villeneuve, P. J.; Krewski, D. (2003) Effect of Short-Term Exposure to Gaseous Pollution on Asthma Hospitalizations in Children: a bi-directional Case-Crossover Analysis. J. Epidemiol. Community Health 57: 50-55.
14 15 16 17 18	Lin, M.; Chen, Y.; Villeneuve, P. J.; Burnett, R. T.; Lemyre, L.; Hertzman, C.; McGrail, K. M.; Krewski, D. (2004a) Gaseous Air Pollutants and Asthma Hopitalization of Children with low household income in Vancouver, British Columbia, Canada. Am. J. Epidemiol. 159: 294-303.
19 20 21 22	Lin, S.; Hwang, SA.; Pantea, C.; Kielb, C.; Fitzgerald, E. (2004b) Childhood Asthma hospitalizations and ambient air sulfur dioxide concentrations in Bronx County, New York. Arch. Environ. Health 59: 266-275.
23 24 25 26	Lin M; Stieb DM; Chen Y. (2005) Coarse Particulate Matter and Hospitalization for Respiratory Infections in Children Younger Than 15 Years in Toronto: A Case-Crossover Analysis. Pediatrics. 116:e235-240.
27 28 29 30	Linn WS, Venet TG, Shamoo DA, Valencia LM, Anzar UT, Spier CE, Hackney JD. (1983). Respiratory Effects of Sulfur Dioxide in Heavily Exercising Asthmatics. A dose-Response Study. Am Rev Respir Dis 127:278-83.
31 32	Linn WS, Avol EL, Shamoo DA, Venet TG, Anderson KR, Whynot JD, Hackney JD. (1984). Asthmatics' Responses to 6-hr Sulfur Dioxide Exposures on Two Successive Days. Arch

Environ Health 39:313-9.

1 2 3	Linn WS, Avol EL, Peng RC, Shamoo DA, Hackney JD. (1987). Replicated Dose-Response Study of Sulfur Dioxide Effects in Normal, Atopic, and Asthmatic Volunteers. Am Rev Respir Dis 136:1127-34.
4	Respir Dis 130.1127 31.
5 6 7	Linn WS, Avol EL, Shamoo DA, Peng RC, Spier CE, Smith MN, Hackney JD. (1988). Effect of Metaproterenol Sulfate on Mild Asthmatics' Response to Sulfur Dioxide Exposure and Exercise. Arch Environ Health 43:399-406.
8 9 10 11 12	Linn WS, Shamoo DA, Peng RC, Clark KW, Avol EL, Hackney JD. (1990). Responses to Sulfur Dioxide and Exercise by Medication-Dependent Asthmatics: Effect of Varying Medication Levels. Arch Environ Health 45:24-30.
13 14 15 16	Luginaah, I. N.; Fung, K. Y.; Gorey, K. M.; Webster, G.; Wills, C. (2005) Association of Ambient Air Pollution with Respiratory Hospitalization in a Government Designated "Area of Concern": the case of Windsor, Ontario. Environ. Health Perspect. 113: 290-296.
17 18 19 20	Magnussen H, Jorres R, Wagner HM, von Nieding G. 1990. Relationship Between the Airway Response to Inhaled Sulfur Dioxide, Isocapnic Hyperventilation, and Histamine in Asthmatic Subjects. Int Arch Occup Environ Health 62:485-91.
21 22 23 24	Mansfield C, Van Houtven G, Johnson FR, Crawford-Brown D. (2005). Behavioral Reactions to Ozone Alerts: What Do They Tell Us About Willingness-to-Pay for Children's Health? Research Update - 6/17/05.
25 26 27 28 29	Meyers S. (1983). Section 107 Designation Policy Summary. Memo to the Directors of Air and Waste Management Division, Regions II-IV, VI-VIII, X and Director of Air Management Division Regions I, V, and IX. US EPA Office of Air Quality Planning and Standards. Apri 21, 1983.
30 31 32 33	McCurdy, T, Glen G, Smith L, Lakkadi Y. (2000). The National Exposure Research Laboratory's Consolidated Human Activity Database. J Exp Anal Environ Epidemiol. 10: 566-578.
34 35 36 37 38	MO Department of Health. 2002. Health Risk Behaviors of Adult Missourians, 2002 Annual Report, Behavioral Risk Factor Surveillance System. Division of Community and Public Health, Bureau of Health Informatics, Available at: http://www.dhss.mo.gov/BRFSS/2002AnnualReport.pdf .
39 40 41	MO DOH. 2003. Health and Preventive Practices Status Report from Missouri County-level Study - Community Data Profiles. Available at: http://www.dhss.mo.gov/CommunityDataProfiles/

1 Mortimer, K. M.; Neas, L. M.; Dockery, D. W.; Redline, S.; Tager, I. B. (2002) The Effect of Air 2 pollution on Inner-city Children with Asthma. Eur. Respir. J. 19: 699-705. 3 4 Neas, L. M.; Dockery, D. W.; Koutrakis, P.; Tollerud, D. J.; Speizer, F. E. (1995) The 5 Association of Ambient Air Pollution with Twice Daily Peak Expiratory Flow Rate 6 Measurements in Children. Am. J. Epidemiol. 141: 111-122. 7 8 Peel, J. L.; Tolbert, P. E.; Klein, M.; Metzger, K. B.; Flanders, W. D.; Knox, T.; Mulholland, J. 9 A.; Ryan, P. B.; Frumkin, H. (2005) Ambient Air Pollution and Respiratory Emergency 10 Department Visits. Epidemiology 16: 164-174. 11 12 Perry SG, Cimorelli AJ, Paine RJ, Brode RW, Weil JC, Venkatram A, Wilson RB, Lee RF, 13 Peters WD. (2005). AERMOD: A Dispersion Model for Industrial Source Applications. 14 Part II: Model Performance against 17 Field Study Databases. J. Appl. Meteor. 44:694-708. 15 16 Persily, A, Gorfain J, Brunner G. (2005). Ventilation design and performance in U.S. office 17 buildings. ASHRAE Journal. April 2005, 30-35. 18 19 Rizzo, M. (2009). Investigation of How Distributions of Hourly Sulfur Dioxide Concentrations 20 Have Changed Over Time in Six Cities. Sulfur Dioxide NAAQS Review Docket. (EPA-21 HQ-OAR-2007-0352. 22 23 Robinson JP, Wiley JA, Piazza T, Garrett K, Cirksena K. (1989). Activity Patterns of California 24 Residents and their Implications for Potential Exposure to Pollution. California Air 25 Resources Board, Sacramento, CA. CARB-A6-177-33. 26 27 Roger LJ, Kehrl HR, Hazucha M, Horstman DH. (1985). Bronchoconstriction in Asthmatics 28 Exposed to Sulfur Dioxide During Repeated Exercise. J Appl Physiol 59:784-91. 29 30 Rosenbaum AS, Hudischewskyj AB, Roberson RL, Burton CS (1992). Estimates of Future 31 Exposures of Exercising Asthmatics to Short-term Elevated SO2 Concentrations Resulting 32 from Emissions of U.S. Fossil-fueled Power Plants: Effects of the 1990 Amendments to the Clean Air Act and a 5-Minute Average Ambient SO2 Standard. Publication No. SYSAPP-33

92/016. April 23, 1992. Docket No. A-84-25, IV-K-37.

Arch Environ Health. 39:34-42.

March 2009

34

35 36

37

38

Schachter EN; Witek TJ, Jr.; Beck GJ; Hosein HB; Colice G; Leaderer BP; Cain W. (1984)

Airway Effects of Low Concentrations of Sulfur Dioxide: Dose-Response Characteristics.

1 2 3 4	Schildcrout, J. S.; Sheppard, L.; Lumley, T.; Slaughter, J. C.; Koenig, J. Q.; Shapiro, G. G. (2006) Ambient Air Pollution and Asthma Exacerbations in Children: An Eight-City Analysis. Am. J. Epidemiol. 164: 505-517.
5 6 7 8	Schwartz, J.; Dockery, D. W.; Neas, L. M.; Wypij, D.; Ware, J. H.; Spengler, J. D.; Koutrakis, P.; Speizer, F. E.; Ferris, B. G., Jr. (1994) Acute Effects of Summer Air Pollution on Respiratory Symptom Reporting in Children. Am. J. Respir. Crit. Care Med. 150: 1234-1242.
9 10 11	Schwartz, J. (1995) Short Term Fluctuations in Air Pollution and Hospital Admissions of the Elderly for Respiratory Disease. Thorax 50: 531-538.
12 13 14	Schwartz J. (1996) Air Pollution and Hospital Admissions for Respiratory Disease. Epidemiology, 7: 20-28.
15 16 17 18 19 20	Science International (1995). Estimate of the Nationwide Exercising Asthmatic Exposure Frequency to Short-term Peak Sulfur Dioxide Concentrations in the Vicinity of Non-Utility Sources. Prepared for National Mining Association by Sciences International, Inc., Alexandria VA. April 1995. Docket No. A-84-25, VIII-D-71.
21 22 23 24	Sheppard reanalysis (2003). Ambient Air Pollution and Nonelderly Asthma Hospital Admissions in Seattle, Washington, 1987-1994. In: Revised analyses of time-series studies of air pollution and health. Special report. Boston, MA: Health Effects Institute; pp. 227-230.
25 26 27 28	Sheppard L, Slaughter JC, Schildcrout J, Liu LJ, Lumley T. (2005). Exposure and Measurement Contributions to Estimates of Acute Air Pollution Effects. J Expo Anal Environ Epidemiol 15:366-76.
29 30 31	Skuta and Wombold. (2008). <i>The Secret Life of Polygons: Understanding the relative accuracy of user-defined areas</i> . Available at: http://www.esri.com/news/arcuser/1008/polygons.html .
32 33 34 35	Smith E. (1994). Subject Data Supplied by the Researchers for the Recent Controlled Human Studies Analyzed in the Staff Paper Supplement and Accompanying Memorandum. Memorandum to Docket No. A-84-25, Item IV-B-5
36 37 38 39	Spier CE, Little DE, Trim SC, Johnson TR, Linn WS, Hackney JD. (1992). Activity Patterns in Elementary and High school Students Exposed to Oxidant Pollution. J Expo Anal Environ Epidemiol. 2:277-293.
40 41 42	Spiegelhalter, D.; Thomas, A.; Best, N.; and Gilks, W. (1996). Bugs .5 Bayesian inference using Gibbs sampling. Manual, version ii. MRC Biostatistics Unit, Institute of Public Health. Cambridge, U.K.

1 Stieb, D. M.; Beveridge, R. C.; Brook, J. R.; Smith-Doiron, M.; Burnett, R. T.; Dales, R. E.; 2 Beaulieu, S.; Judek, S.; Mamedov, A. Air pollution, Aeroallergens and Cardiorespiratory 3 Emergency Department Visits in Saint John, Canada. 2000. J Exposure Anal. Environ. 4 Epidemiol. 10: 461-477. 5 6 Stoeckenius TE, Garelick B, Austin BS, O'Connor K, Pehling JR (1990). Estimates of 7 Nationwide Asthmatic Exposures to Short-term Sulfur Dioxide Concentrations in the 8 Vicinity of Non-Utility Sources. Systems Applications Inc., San Rafael, CA. Publication No. 9 SYSAPP-90/129, December 6, 1990. 10 11 Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. *Journal of* 12 the Royal Statistical Society. Ser.B, 36:111-147. 13 14 Thompson, R (2000). Preliminary Analysis of 5-Minute Maximum Ambient SO2 15 Concentrations. OAOPS. 12/21/00. Office of Air Quality Planning and Standards, U.S. 16 Environmental Protection Agency, Research Triangle Park, NC. Available at: http://www.epa.gov/ttn/amtic/so2data.html. 17 18 19 Thompson, R (2009). Air Quality Statistics for Cities Referenced in Key U.S. and Canadian 20 Hospital Admission and Emergency Department Visits for All Respiratory Causes and 21 Asthma. Office of Air Quality Planning and Standards, U.S. Environmental Protection 22 Agency, Research Triangle Park, NC. Available at: 23 http://www.epa.gov/ttn/naaqs/standards/so2/s so2 cr rea.html. 24 25 Thrall AD, Langstaff JE, Liu MK, Burton CS. (1982). On the Variability in Peak Sulfur 26 Dioxide Concentrations Contained in Longer-Term Averages: An Empirical Study of an 27 Isolated PowerPlant. Systems Applications Inc. 28 29 Tolbert, P. E.; Klein, M.; Peel, J. L.; Sarnat, S. E.; Sarnat, J. A. (2007) Multipollutant Modeling 30 Issues in a Study of Ambient Air Quality and Emergency Department Visits in Atlanta. J. 31 Exposure Sci. Environ. Epidemiol.: 32 33 Trenga CA, Koenig JQ, Williams PV. (1999). Sulphur Dioxide Sensitivity and Plasma 34 Antioxidants in Adult Subjects with Asthma. Occup Environ Med 56:544-7. 35

38 39 40

36

37

WHO. (2008). Harmonization Project Document No. 6. Part 1: Guidance document on characterizing and communicating uncertainty in exposure assessment. Available at: http://www.who.int/ipcs/methods/harmonization/areas/exposure/en/.

controls. Pediatric Pulmonology. 42:1018-1023.

van Gent, R, van der Ent K, van Essen-Zandvliet LEM, Rovers MM, Kimpen JLL, de Meer G,

Klijn PHC. (2007). No difference in physical activity in (un)diagnosed asthma and healthy

42 43

1	Xue J, Liu SV, Ozkaynak H, Spengler J. (2005). Parameter evaluation and model validation of
2	ozone exposure assessment using Harvard Southern California Chronic Ozone Exposure
3	Study Data. J. Air & Waste Manage Assoc. 55:1508–1515.
4	
5	Yang, Q.; Chen, Y.; Shi, Y.; Burnett, R. T.; McGrail, K. M.; Krewski, D. (2003) Association
6	Between Ozone and Respiratory Admissions Among Children and the Elderly in Vancouver
7	Canada. Inhalation Toxicol. 15: 1297-1308.
8	
9	Yen ST, Shaw WD, Eiswerth ME. (2004). Asthma patients' activities and air pollution: a
10	semiparametric censored regression analysis. Review of Economics of the Household.
11	2(1)1569-7152.
12	
13	Zeger SL, Thomas D, Dominici F, Samet JM, Schwartz J, Dockery D, Cohen A. (2000).
14	Exposure Measurement Error in Time-Series Studies of Air Pollution? Official statement of
15	the American Thoracic Society: concepts and consequences. Environ Health Perspect.
16	108:877-685.
17	

Appendix A: Supplement to the SO₂ Air Quality Characterization

This appendix contains supplementary information on the SO₂ ambient monitoring data used in the air quality characterization described in Chapter 7 of the SO₂ REA. Included in this appendix are spatial and temporal attributes important for understanding the relationship between the ambient monitor and those sources affecting air quality measurements.

In section A.1, important spatial characteristics described include the physical locations of the ambient monitors (e.g., U.S. states, counties, territories, and cities). Temporal attributes of interest include, for example, the number of samples collected, sample averaging times, and years of monitoring data available. Attributes of the monitors that reported both the 5-minute maximum and the 1-hour SO₂ concentrations are given in Tables A.1-1 and A.1-2, while the supplemental characteristics of the broader ambient monitoring network are given in Table A.1-3 and A.1-4. The method for calculating the proximity of the ambient monitors follows, along with the distance and emission results summarized in Table A.1-5.

Section A.2 details the analyses performed on simultaneous concentrations, some of which are the result of co-located monitoring instruments, others the result of duplicate reporting. Simultaneous measurements were identified by staff using monitor IDs and multiple concentrations present given the hour-of-day on each available date. Staff estimated a relative percent difference between the simultaneous measurements at each monitor.

Section A-3 has the tables summarizing the COV and GSD peak-to-mean ratio (PMRs). Section A-4 has tables summarizing the individual factors used in adjusting ambient air quality to just meet the current and potential alternative SO₂ air quality standards. Section A-5 summarizes measured 1-hour and 5-minute maximum concentrations at the 98 monitors reporting both averaging times.

1 A-1 Spatial and Temporal Attributes of Ambient SO₂ Monitors

Table A.1-1. Meta-data for ambient monitors reporting 5-minute maximum and corresponding 1-hour SO₂ concentrations.

					Objective				Height	Height Years		
State	County	Mionitor ID	Latitude	Longitude	⁻ 1	Setting ²	Land Use ³	Scale ⁴	(m)	n	First	Last
AR	Pulaski	051190007	34.756111	-92.275833	POP	URB	COM	NEI	4	6	2002	2007
AR	Pulaski	051191002	34.830556	-92.259444	HIC	RUR	FOR	NEI	4	5	1997	2001
AR	Union	051390006	33.215	-92.668889	UNK	URB	COM		4	11	1997	2007
CO	Denver	080310002	39.75119	-104.98762	HIC	URB	COM	NEI	5	10	1997	2006
DC	District of Columbia	110010041	38.897222	-76.952778	POP	URB	RES	NEI		6	2000	2007
DE	New Castle	100031008	39.577778	-75.611111	UNK	RUR	AGR			2	1997	1998
FL	Nassau	120890005	30.658333	-81.463333	HIC	SUB	IND	NEI	2	4	2002	2005
IA	Cerro Gordo	190330018	43.16944	-93.202426	UNK	SUB	RES		4	5	2001	2005
IA	Clinton	190450019	41.823283	-90.211982	UNK	URB	IND	MID		5	2001	2005
IA	Muscatine	191390016	41.419429	-91.070975	UNK	URB	RES		3	5	2001	2005
IA	Muscatine	191390017	41.387969	-91.054504	UNK	SUB	IND		4	5	2001	2005
IA	Muscatine	191390020	41.407796	-91.062646	UNK	SUB	IND		4	5	2001	2005
IA	Scott	191630015	41.530011	-90.587611	HIC	URB	RES	NEI	4	5	2001	2005
IA	Van Buren	191770005	40.689167	-91.994444	UNK	RUR	FOR		3	4	2001	2004
IA	Van Buren	191770006	40.695078	-92.006318	GEN	RUR	FOR		3	2	2004	2005
IA	Woodbury	191930018	42.399444	-96.355833	POP	URB	RES		3	2	2001	2002
LA	West Baton Rouge	221210001	30.501944	-91.209722	HIC	SUB	COM		2	4	1997	2000
MO	Buchanan	290210009	39.731389	-94.8775	GEN	URB	IND	NEI	3	4	1997	2000
МО	Buchanan	290210011	39.731389	-94.868333	GEN	URB	IND	NEI	3	4	2000	2003
MO	Greene	290770026	37.128333	-93.261667	POP	SUB	RES		3	11	1997	2007
MO	Greene	290770037	37.11	-93.251944	POP	RUR	RES		4	11	1997	2007
MO	Iron	290930030	37.466389	-90.69	SRC	RUR	RES	NEI	4	8	1997	2004
MO	Iron	290930031	37.519444	-90.7125	UNK	RUR	AGR		2	8	1997	2004
MO	Jefferson	290990004	38.2633	-90.3785	POP	RUR	IND		3	4	2004	2007
МО	Jefferson	290990014	38.267222	-90.379444	OTH	RUR	RES	NEI	4	5	1997	2001
MO	Jefferson	290990017	38.252778	-90.393333	UNK	SUB	RES		5	4	1998	2001
МО	Jefferson	290990018	38.297694	-90.384333	HIC	SUB	RES	NEI	5	3	2001	2003
МО	Monroe	291370001	39.473056	-91.789167	UNK	RUR	UNK			11	1997	2007
МО	Pike	291630002	39.3726	-90.9144	HIC	RUR	RES	NEI	3	3	2005	2007
МО	Saint Charles	291830010	38.579167	-90.841111	UNK	RUR	AGR		3	2	1997	1998

					Objective				Height	Height Years		s
State	County	Mionitor ID	Latitude	Longitude	1	Setting ²	Land Use ³	Scale⁴	(m)	n	First	Last
МО	Saint Charles	291831002	38.8725	-90.226389	UNK	RUR	AGR		2	4	1997	2000
MT	Yellowstone	301110066	45.788318	-108.459536	SRC	RUR	RES	NEI	3.5	7	1997	2003
MT	Yellowstone	301110079	45.769439	-108.574292	POP	SUB	COM		4.5	4	1997	2003
MT	Yellowstone	301110080	45.777149	-108.47436	UNK	RUR	AGR		4	5	1997	2001
MT	Yellowstone	301110082	45.783889	-108.515	POP	URB	СОМ	NEI	3	3	2001	2003
MT	Yellowstone	301110083	45.795278	-108.455833	SRC	SUB	AGR		4	5	1999	2003
MT	Yellowstone	301110084	45.831453	-108.449964	POP	SUB	RES	NEI	4.5	4	2003	2006
MT	Yellowstone	301112008	45.786389	-108.523056	UNK	URB	RES		3	1	1997	1997
NC	Forsyth	370670022	36.110556	-80.226667	POP	URB	RES	NEI	3	8	1997	2004
NC	New Hanover	371290006	34.268403	-77.956529	GEN	RUR	IND	URB	3	4	1999	2002
ND	Billings	380070002	46.8943	-103.37853	GEN	RUR	AGR	REG	12.2	10	1998	2007
ND	Billings	380070003	46.9619	-103.356699	HIC	RUR	IND	URB	4	1	1997	1997
ND	Burke	380130002	48.9904	-102.7815	SRC	RUR	AGR	REG	4	7	1999	2005
ND	Burke	380130004	48.64193	-102.4018	REG	RUR	AGR	REG	4	5	2003	2007
ND	Burleigh	380150003	46.825425	-100.76821	POP	SUB	RES	URB	4	3	2005	2007
ND	Cass	380171003	46.910278	-96.795	POP	SUB	RES	URB	4	2	1997	1998
ND	Cass	380171004	46.933754	-96.85535	POP	SUB	AGR	URB	3	10	1998	2007
ND	Dunn	380250003	47.3132	-102.5273	GEN	RUR	AGR	REG	4	11	1997	2007
ND	McKenzie	380530002	47.5812	-103.2995	GEN	RUR	AGR	REG	4	9	1997	2007
ND	McKenzie	380530104	47.575278	-103.968889	SRC	RUR	AGR	URB	3	10	1998	2007
ND	McKenzie	380530111	47.605556	-104.017222	SRC	RUR	IND	URB	3	10	1998	2007
ND	Mercer	380570001	47.258853	-101.783035	POP	SUB	RES	NEI	5	3	1997	1999
ND	Mercer	380570004	47.298611	-101.766944	POP	RUR	AGR	URB	4	9	1999	2007
ND	Morton	380590002	46.84175	-100.870059	SRC	SUB	IND	NEI	4	9	1997	2005
ND	Morton	380590003	46.873075	-100.905039	SRC	SUB	IND	NEI	4	8	1998	2005
ND	Oliver	380650002	47.185833	-101.428056	SRC	RUR	AGR	URB	3	11	1997	2007
ND	Steele	380910001	47.599703	-97.899009	GEN	RUR	AGR	REG	3	4	1997	2000
ND	Williams	381050103	48.408834	-102.90765	SRC	RUR	IND	URB	4	6	2002	2007
ND	Williams	381050105	48.392644	-102.910233	SRC	RUR	IND	URB	4	6	2002	2007
PA	Allegheny	420030002	40.500556	-80.071944	POP	SUB	RES	NEI	6	3	1997	1999
PA	Allegheny	420030021	40.413611	-79.941389	POP	SUB	RES	NEI	6	4	1997	2002
PA	Allegheny	420030031	40.443333	-79.990556	POP	URB	COM	NEI	13	3	1997	1999
PA	Allegheny	420030032	40.414444	-79.942222	UNK	SUB	RES		5	3	1997	1999

					Objective				Height Years		s	
State	County	Mionitor ID	Latitude	Longitude	1	Setting ²	Land Use ³	Scale ⁴	(m)	n	First	Last
PA	Allegheny	420030064	40.323611	-79.868333	POP	SUB	RES	NEI	8	4	1997	2002
PA	Allegheny	420030067	40.381944	-80.185556	GEN	RUR	RES	NEI	9	3	1997	1999
PA	Allegheny	420030116	40.473611	-80.077222	POP	SUB	RES	NEI	5	4	1997	2002
PA	Allegheny	420031301	40.4025	-79.860278	HIC	SUB	RES	NEI	9	3	1997	1999
PA	Allegheny	420033003	40.318056	-79.881111	POP	SUB	IND		5	4	1997	2002
PA	Allegheny	420033004	40.305	-79.888889	UNK	SUB	RES		8	3	1997	1999
PA	Beaver	420070002	40.56252	-80.503948	REG	RUR	AGR	REG	3	2	1997	1998
PA	Beaver	420070005	40.684722	-80.359722	POP	RUR	AGR	URB	3	8	1997	2007
PA	Berks	420110009	40.320278	-75.926667	HIC	SUB	RES	NEI	4	3	1997	1999
PA	Cambria	420210011	40.309722	-78.915	HIC	URB	COM	NEI	12	3	1997	1999
PA	Erie	420490003	42.14175	-80.038611	HIC	SUB	COM	NEI	4	3	1997	1999
PA	Philadelphia	421010022	39.916667	-75.188889	HIC	URB	IND	NEI	7	5	1997	2001
PA	Philadelphia	421010048	39.991389	-75.080833	UNK	RUR	RES		5	3	1997	1999
PA	Philadelphia	421010136	39.9275	-75.222778	POP	URB	RES	NEI	4	7	1997	2003
PA	Warren	421230003	41.857222	-79.1375	HIC	SUB	RES	NEI	4	2	1997	1998
PA	Warren	421230004	41.844722	-79.169722	HIC	RUR	FOR	NEI	4	2	1997	1998
PA	Washington	421250005	40.146667	-79.902222	POP	SUB	COM	NEI	2	3	1997	1999
PA	Washington	421250200	40.170556	-80.261389	POP	SUB	RES	NEI	4	3	1997	1999
PA	Washington	421255001	40.445278	-80.420833	REG	RUR	AGR	REG	4	2	1997	1998
SC	Barnwell	450110001	33.320344	-81.465537	SRC	RUR	FOR	URB	3.1	3	2000	2002
SC	Charleston	450190003	32.882289	-79.977538	POP	URB	COM	NEI	4.3	3	2000	2002
SC	Charleston	450190046	32.941023	-79.657187	SRC	RUR	FOR	REG	4	3	2000	2002
SC	Georgetown	450430006	33.362014	-79.294251	SRC	URB	IND	NEI	2.13	3	2000	2002
SC	Greenville	450450008	34.838814	-82.402918	POP	URB	COM	NEI	4	3	2000	2002
SC	Lexington	450630008	34.051017	-81.15495	SRC	SUB	СОМ	NEI	3.35	2	2001	2002
SC	Oconee	450730001	34.805261	-83.2377	REG	RUR	FOR	REG	4.3	3	2000	2002
SC	Richland	450790007	34.093959	-80.962304	OTH	SUB	COM	NEI	3	3	2000	2002
SC	Richland	450790021	33.81468	-80.781135	GEN	RUR	FOR	URB	4.42	3	2000	2002
SC	Richland	450791003	34.024497	-81.036248	POP	URB	COM	MID	4	2	2001	2002
UT	Salt Lake	490352004	40.736389	-112.210278	HIC	RUR	IND			2	1997	1998
WV	Wayne	540990002	38.39186	-82.583923	POP	RUR	IND	NEI	4	1	2002	2002
WV	Wayne	540990003	38.390278	-82.585833	HIC	RUR	RES	NEI	3	4	2002	2005
WV	Wayne	540990004	38.380278	-82.583889	HIC	RUR	RES	NEI	3	4	2002	2005

WV
Note
¹ Ohi

1 2 WV

State | County

Wayne

Wood

es: Objectives are POP=Population Exposure; HIC=Highest Concentration; SRC=Source Oriented; GEN=General/Background; REG=Regional Transport; OTH=Other; UNK=Unknown

Longitude

-82.588889

-81.552367

Objective

HIC

POP

Setting²

RUR

SUB

Years

2002

2001

First Last

2005

2005

Height

(m)

3

4

n

4

5

Scale⁴

NEI

URB

Land Use³

RES

IND

Latitude

38.372222

39.323533

Mionitor ID

540990005

541071002

² Settings are R=Rural; U=Urban and Center City; S=Suburban ³ Land Uses are AGR=Agricultural; COM=Commercial; IND=Industrial; FOR=Forest; RES=Residential; UNK=Unknown

⁴ Scales are NEI=Neighborhood; MID=Middle; URB=URBAN; REG=Regional

Table A.1-2. Population density, concentration variability, and total SO_2 emissions associated with ambient monitors reporting 5-minute maximum and corresponding 1-hour SO_2 concentrations.

			Po	pulation R	esiding Wit	hin:	Analy	sis Bins		Emissions
State	County	Monitor ID	5 km	10 km	15 km	20 km	Population ¹	COV ²	GSD ³	(tpy)⁴
AR	Pulaski	051190007	67784	178348	270266	334649	hi	а	а	20
AR	Pulaski	051191002	45800	109372	230200	310362	mid	а	а	20
AR	Union	051390006	21877	29073	32652	36340	mid	b	а	2527
СО	Denver	080310002	189782	574752	1158644	1608099	hi	b	b	26354
DE	New Castle	100031008	5386	80025	192989	391157	low	b	b	39757
DC	District of Columbia	110010041	216129	813665	1461563	2029936	hi	а	а	18325
FL	Nassau	120890005	17963	21386	38521	48316	mid	С	b	5050
IA	Cerro Gordo	190330018	21247	30341	39284	45105	mid	С	С	10737
ΙA	Clinton	190450019	24561	37638	42404	45947	mid	b	С	9388
IA	Muscatine	191390016	20360	27101	31886	40248	mid	b	b	31137
IA	Muscatine	191390017	11109	27101	31696	36604	mid	b	b	31054
ΙA	Muscatine	191390020	20360	27101	31886	40290	mid	С	С	31054
IA	Scott	191630015	90863	201277	268535	293627	hi	b	С	9415
IA	Van Buren	191770005	994	2252	3764	6984	low	b	b	
IA	Van Buren	191770006	994	2252	3764	6984	low	а	b	
IA	Woodbury	191930018	4449	44815	92956	112802	low	b	С	36833
LA	West Baton Rouge	221210001	21249	137455	239718	366741	mid	b	b	31242
MO	Buchanan	290210009	23253	72613	87121	93365	mid	С	b	3563
МО	Buchanan	290210011	28224	75073	86317	93365	mid	b	b	3563
МО	Greene	290770026	41036	146752	224445	256158	mid	С	b	9206
MO	Greene	290770037	21784	110681	210953	254437	mid	С	b	9206
MO	Iron	290930030	1121	1121	4507	8447	low	С	С	43340
MO	Iron	290930031	0	3799	6585	8436	low	С	b	43340
MO	Jefferson	290990004	15049	33379	64516	124301	mid	С	С	55725
MO	Jefferson	290990014	11967	35082	61963	125932	mid	С	b	55725
MO	Jefferson	290990017	19711	36471	60199	116882	mid	С	b	55725
MO	Jefferson	290990018	12258	41709	79196	170110	mid	С	b	32468
МО	Monroe	291370001	0	1439	2093	5612	low	а	а	
МО	Pike	291630002	645	2077	6916	11249	low	b	b	13495
МО	Saint Charles	291830010	2637	6349	34541	90953	low	b	b	47610
MO	Saint Charles	291831002	4587	95765	273147	431484	low	b	b	67735

			Po	pulation R	esiding Wit	hin:	Analy	sis Bins	;	Emissions
State	County	Monitor ID	5 km	10 km	15 km	20 km	Population ¹	COV ²	GSD ³	(tpy) ⁴
MT	Yellowstone	301110066	27389	79644	98733	107178	mid	b	С	5480
MT	Yellowstone	301110079	61645	89282	102887	114640	hi	b	а	5480
MT	Yellowstone	301110080	33774	86065	104825	108399	mid	b	b	5480
MT	Yellowstone	301110082	58256	94753	103200	106046	hi	b	а	5480
MT	Yellowstone	301110083	27620	76641	98733	109475	mid	b	b	5480
MT	Yellowstone	301110084	22577	59919	97912	110980	mid	b	b	15298
MT	Yellowstone	301112008	61335	95574	103200	106046	hi	b	b	5480
NC	Forsyth	370670022	61669	170320	258102	325974	hi	b	b	3945
NC	New Hanover	371290006	17957	83529	145330	170260	mid	С	С	30020
ND	Billings	380070002	0	0	1887	1887	low	а	а	283
ND	Billings	380070003	0	888	1887	1887	low	а	а	283
ND	Burke	380130002	0	0	0	625	low	b	b	
ND	Burke	380130004	655	655	655	655	low	b	b	426
ND	Burleigh	380150003	49591	67377	83082	84415	mid	b	а	4592
ND	Cass	380171003	48975	134561	144878	154455	mid	b	а	771
ND	Cass	380171004	2118	91149	145789	148002	low	а	b	756
ND	Dunn	380250003	0	0	0	537	low	а	а	5
ND	McKenzie	380530002	0	596	596	596	low	а	а	210
ND	McKenzie	380530104	0	521	521	2283	low	b	а	
ND	McKenzie	380530111	0	0	2283	5771	low	С	а	823
ND	Mercer	380570001	3280	3280	5902	6465	low	b	b	91617
ND	Mercer	380570004	3280	4428	5902	7455	low	b	а	91617
ND	Morton	380590002	17925	67959	75685	84415	mid	С	С	4592
ND	Morton	380590003	10305	31348	75685	82584	mid	b	b	4592
ND	Oliver	380650002	0	0	2057	2670	low	b	b	28565
ND	Steele	380910001	0	934	934	934	low	а	а	
ND	Williams	381050103	0	1259	1259	1827	low	С	b	1605
ND	Williams	381050105	0	1259	1259	1827	low	b	С	1605
PA	Allegheny	420030002	83332	277442	651551	961378	hi	b	b	1964
PA	Allegheny	420030021	170777	560187	921490	1142754	hi	b	b	52447
PA	Allegheny	420030031	183843	580429	877668	1145039	hi	а	b	46957
PA	Allegheny	420030032	174072	558904	922097	1144558	hi	b	b	52447
PA	Allegheny	420030064	64846	201143	520438	943781	hi	b	С	11490

			Po	pulation R	esiding Wit	hin:	Analy	sis Bins	;	Emissions
State	County	Monitor ID	5 km	10 km	15 km	20 km	Population ¹	COV ²	GSD ³	(tpy) ⁴
PA	Allegheny	420030067	13277	86792	324154	610975	mid	а	b	1167
PA	Allegheny	420030116	96820	331624	704601	996267	hi	b	b	1964
PA	Allegheny	420031301	115432	411867	766188	1088115	hi	b	b	52100
PA	Allegheny	420033003	55221	202092	509708	944188	hi	b	С	11490
PA	Allegheny	420033004	38588	170065	461433	904760	mid	b	b	11501
PA	Beaver	420070002	3434	28961	68617	120780	low	b	b	187257
PA	Beaver	420070005	17292	77240	143738	224631	mid	b	С	41385
PA	Berks	420110009	121330	203799	250610	309553	hi	а	b	14817
PA	Cambria	420210011	50440	79710	102905	124592	hi	а	b	16779
PA	Erie	420490003	81199	150626	190212	209983	hi	b	b	4122
PA	Philadelphia	421010022	316944	985213	1726387	2446142	hi	а	b	18834
PA	Philadelphia	421010048	262592	1102727	1938877	2607877	hi	b	b	6214
PA	Philadelphia	421010136	382995	985957	1718068	2381173	hi	b	b	21700
PA	Warren	421230003	14142	19940	25715	32490	mid	b	b	4890
PA	Warren	421230004	13965	18884	28805	33523	mid	b	С	4890
PA	Washington	421250005	31276	68512	111222	183285	mid	а	b	8484
PA	Washington	421250200	32125	52910	83324	118188	mid	b	b	7
PA	Washington	421255001	1359	15854	43364	126091	low	b	b	2566
SC	Barnwell	450110001	0	4022	13647	21554	low	а	а	65
SC	Charleston	450190003	40872	132716	273298	364953	mid	b	b	34934
SC	Charleston	450190046	1103	1103	9529	22255	low	b	а	
SC	Georgetown	450430006	10567	18215	22467	34357	mid	b	b	40841
SC	Greenville	450450008	70221	173012	284047	379022	hi	а	а	1067
SC	Lexington	450630008	42208	131361	257820	355854	mid	b	b	10433
SC	Oconee	450730001	0	2260	11136	26182	low	а	а	5
SC	Richland	450790007	35872	121006	255135	353072	mid	а	а	613
SC	Richland	450790021	1666	4643	13324	33098	low	b	а	40492
SC	Richland	450791003	87097	213836	300874	396116	hi	а	а	12935
UT	Salt Lake	490352004	0	4074	35159	124394	low	а	а	3735
WV	Wayne	540990002	17320	62645	124477	178576	mid	а	b	10172
WV	Wayne	540990003	17320	59989	123349	177744	mid	b	b	10172
WV	Wayne	540990004	16553	54251	122072	179815	mid	b	b	10172
WV	Wayne	540990005	13314	48330	114824	173807	mid	b	b	10172

			Po	pulation Re	esiding Wit	nin:	Analy	sis Bins		Emissions
State	County	Monitor ID	5 km	10 km	15 km	20 km	Population ¹	COV ²	GSD ³	(tpy) ⁴
WV	Wood	541071002	24917	70324	104458	128127	mid	b	b	48124

Notes:

¹ Population bins: low (≤10,000); mid (10,001 to 50,000); hi (>50,000) using population within 5 km of ambient monitor.

² COV bins: a (≤100%); b (>100 to ≤200); c (>200).

³ GSD bins: a (≤2.17); b (>2.17 to ≤2.94); c (>2.94).

⁴ Sum of emissions within 20 km radius of ambient monitor based on 2002 NEI.

Table A.1-3. Meta-data for ambient monitors in the broader SO_2 monitoring network.

											Years	s
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
AL	Colbert	010330044	34.690556	-87.821389	UNK	RUR	AGR			9	1997	2005
AL	Jackson	010710020	34.876944	-85.720833	UNK	RUR	AGR		4	9	1997	2005
AL	Jefferson	010731003	33.485556	-86.915	HIC	SUB	RES	NEI	4	9	1997	2006
AL	Lawrence	010790003	34.589571	-87.109445	UNK	RUR	AGR	URB		2	1998	1999
AL	MOB	010970028	30.958333	-88.028333	HIC	SUB	IND	NEI	4	3	1997	1999
AL	MOB	010972005	30.474674	-88.14114	POP	RUR	AGR	NEI	1	3	2002	2004
AL	Montgomery	011011002	32.40712	-86.256367	HIC	SUB	COM	NEI	6	1	1997	1997
AZ	Gila	040070009	33.399135	-110.858896	SRC	URB	RES			7	1999	2005
AZ	Gila	040071001	33.006179	-110.785797	SRC	URB	IND		4	7	1999	2005
AZ	Maricopa	040130019	33.48385	-112.14257	UNK	SUB	RES			1	1998	1998
AZ	Maricopa	040133002	33.45793	-112.04601	HIC	URB	RES	NEI	11.3	9	1997	2006
AZ	Maricopa	040133003	33.47968	-111.91721	POP	SUB	RES	NEI	5.8	7	1998	2006
AZ	Pima	040191011	32.208333	-110.872222	POP	SUB	RES	NEI	5	9	1998	2006
AZ	Pinal	040212001	32.600479	-110.633598	POP	SUB	RES		4	4	1998	2005
AR	Pulaski	051190007	34.756111	-92.275833	POP	URB	COM	NEI	4	5	2002	2006
AR	Pulaski	051191002	34.830556	-92.259444	HIC	RUR	FOR	NEI	4	5	1997	2001
AR	Union	051390006	33.215	-92.668889	UNK	URB	COM		4	7	1997	2006
CA	Alameda	060010010	37.7603	-122.1925	POP	SUB	RES	NEI		1	2002	2002
CA	Contra Costa	060130002	37.936	-122.0262	SRC	SUB	RES	NEI	8.3	9	1997	2005
CA	Contra Costa	060130006	37.9478	-122.3651	UNK	URB	IND	NEI	8.5	9	1997	2005
CA	Contra Costa	060130010	38.0313	-122.1318	POP	URB	COM	NEI		1	2002	2002
CA	Contra Costa	060131001	38.055556	-122.219722	SRC	SUB	IND		7	8	1997	2004
CA	Contra Costa	060131002	38.010556	-121.641389	UNK	RUR	AGR		7	9	1997	2005
CA	Contra Costa	060131003	37.964167	-122.339167	UNK	URB	COM		6	4	1998	2001
CA	Contra Costa	060131004	37.96028	-122.35667	POP	URB	COM		20	3	2003	2005
CA	Contra Costa	060132001	38.013056	-122.133611	UNK	URB	RES		9	9	1997	2005
CA	Contra Costa	060133001	38.029167	-121.902222	HIC	URB	RES	NEI	7	9	1997	2005
CA	Imperial	060250005	32.676111	-115.483333	UNK	SUB	RES			6	1999	2005
CA	Los Angeles	060371002	34.17605	-118.31712	UNK	URB	COM		5	7	1998	2005
CA	Los Angeles	060371103	34.06659	-118.22688	UNK	URB	RES		11	6	1997	2005
CA	Los Angeles	060374002	33.82376	-118.18921	POP	SUB	RES	NEI	7	9	1997	2005

											Years	S
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
CA	Los Angeles	060375001	33.92288	-118.37026	POP	URB	COM	NEI	2	7	1997	2003
CA	Los Angeles	060375005	33.9508	-118.43043	UPW	SUB	RES	NEI	4	1	2005	2005
CA	Orange	060591003	33.67464	-117.92568	UNK	SUB	RES	MID	6	9	1997	2005
CA	Riverside	060658001	33.99958	-117.41601	POP	SUB	RES	NEI	7	7	1997	2005
CA	Sacramento	060670002	38.712778	-121.38	UNK	SUB	RES		5	7	1997	2006
CA	Sacramento	060670006	38.614167	-121.366944	HIC	SUB	RES	NEI	5	9	1997	2006
CA	San Bernardino	060710012	34.426111	-117.563056	UNK	RUR	COM			1	1997	1997
CA	San Bernardino	060710014	34.5125	-117.33	UNK	SUB	RES		4	3	1997	1999
CA	San Bernardino	060710306	34.51	-117.330556	UNK	SUB	RES		4	7	2000	2006
CA	San Bernardino	060711234	35.763889	-117.396111	OTH	RUR	DES		1	8	1998	2006
CA	San Bernardino	060712002	34.10002	-117.49201	POP	SUB	IND	NEI	5	5	1997	2005
CA	San Bernardino	060714001	34.418056	-117.284722	UNK	SUB	RES			1	1997	1997
CA	San Diego	060730001	32.631231	-117.059075	POP	SUB	RES	NEI	7	9	1997	2005
CA	San Diego	060731007	32.709172	-117.153975	POP	URB	COM	NEI	5	8	1997	2004
CA	San Diego	060732007	32.552164	-116.937772	POP	RUR	MOB	NEI	5	8	1997	2004
CA	San Francisco	060750005	37.766	-122.3991	UNK	URB	IND			9	1997	2005
CA	San Luis Obispo	060791005	35.043889	-120.580278	UNK	RUR	COM		4	5	1997	2001
CA	San Luis Obispo	060792001	35.125	-120.633333	UNK	SUB	RES	NEI	5	5	1997	2002
CA	San Luis Obispo	060792004	35.022222	-120.569444	UNK	RUR	IND		4	9	1997	2006
CA	San Luis Obispo	060794002	35.028333	-120.387222	POP	RUR	RES	REG	4	7	2000	2006
CA	Santa Barbara	060830008	34.462222	-120.024444	POP	RUR	UNK	REG	4	9	1997	2005
CA	Santa Barbara	060831012	34.451944	-120.457778	UNK	RUR	AGR	REG		1	1997	1997
CA	Santa Barbara	060831013	34.725556	-120.427778	UNK	RUR	AGR	NEI		9	1997	2005
CA	Santa Barbara	060831015	34.478056	-120.210833	UNK	RUR	AGR	NEI		1	1997	1997
CA	Santa Barbara	060831016	34.477778	-120.205556	UNK	RUR	AGR	NEI		1	1997	1997
CA	Santa Barbara	060831019	34.475278	-120.188889	UNK	RUR	AGR	NEI		1	1997	1997
CA	Santa Barbara	060831020	34.415278	-119.878611	UNK	RUR	AGR	NEI		6	1997	2005
CA	Santa Barbara	060831025	34.489722	-120.045833	UNK	RUR	AGR	NEI		9	1997	2005
CA	Santa Barbara	060831026	34.479444	-120.0325	UNK	RUR	AGR	NEI		2	1997	1998
CA	Santa Barbara	060831027	34.469167	-120.039444	UNK	RUR	AGR	NEI		2	1997	1998
CA	Santa Barbara	060832004	34.6375	-120.456389	POP	URB	COM	NEI		9	1997	2005
CA	Santa Barbara	060832011	34.445278	-119.827778	POP	SUB	RES	NEI		9	1997	2005
CA	Santa Barbara	060834003	34.596111	-120.630278	UNK	RUR	AGR	NEI		8	1997	2005

											Years	s
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
CA	Santa Cruz	060870003	37.011944	-122.193333	UNK	RUR	RES			9	1997	2006
CA	Solano	060950001	38.052222	-122.144722	UNK	URB	COM		6	1	1997	1997
CA	Solano	060950004	38.1027	-122.2382	UNK	URB	COM		8	9	1997	2005
CA	Ventura	061113001	34.255	-119.1425	HIC	RUR	RES	NEI	4	7	1997	2003
СО	Adams	080010007	39.8	-104.910833	POP	URB	RES	NEI	4	2	2002	2003
СО	Adams	080013001	39.83818	-104.94984	POP	RUR	AGR	NEI	4	9	1997	2005
СО	Denver	080310002	39.75119	-104.98762	HIC	URB	COM	NEI	5	8	1997	2006
СО	El Paso	080416001	38.633611	-104.715556	UNK	RUR	IND		4	4	1997	2000
СО	El Paso	080416004	38.921389	-104.8125	UNK	URB	RES		4	3	1997	1999
СО	El Paso	080416011	38.846667	-104.827222	UNK	URB	RES		3	4	1997	2000
СО	El Paso	080416018	38.811389	-104.751389	UNK	URB	COM		3	3	1998	2000
CT	Fairfield	090010012	41.195	-73.163333	HIC	URB	RES	NEI	3	9	1997	2005
CT	Fairfield	090010017	41.003611	-73.585	UNK	SUB	RES		3	1	1997	1997
CT	Fairfield	090011123	41.399167	-73.443056	UNK	SUB	RES		3	9	1997	2005
CT	Fairfield	090012124	41.063056	-73.528889	HIC	URB	RES	NEI		8	1997	2004
CT	Fairfield	090019003	41.118333	-73.336667	POP	RUR	FOR	NEI		8	1998	2005
CT	Hartford	090031005	42.015833	-72.518056	POP	RUR	AGR	REG	3	2	1997	1998
CT	Hartford	090031018	41.760833	-72.670833	POP	URB	COM	NEI	3	1	1997	1997
CT	Hartford	090032006	41.7425	-72.634444	HIC	SUB	IND	NEI	9	9	1997	2005
CT	New Haven	090090027	41.301111	-72.902778	POP	URB	COM	NEI	3.67	1	2005	2005
CT	New Haven	090091003	41.310556	-72.915556	UNK	SUB	IND		5	1	1997	1997
CT	New Haven	090091123	41.310833	-72.916944	HIC	URB	RES	NEI	5	7	1997	2003
CT	New Haven	090092123	41.550556	-73.043611	POP	URB	MOB	NEI	5	9	1997	2005
CT	New London	090110007	41.361111	-72.08	UNK	SUB	RES		3	2	1997	1998
CT	Tolland	090130003	41.73	-72.213611	UNK	SUB	COM	NEI	3	2	1997	1998
DE	New Castle	100031003	39.761111	-75.491944	HIC	SUB	RES	NEI	4	6	1997	2002
DE	New Castle	100031007	39.551111	-75.730833	UNK	RUR	AGR			3	2002	2006
DE	New Castle	100031008	39.577778	-75.611111	UNK	RUR	AGR			8	1997	2006
DE	New Castle	100031013	39.773889	-75.496389	POP	SUB	RES			2	2004	2006
DE	New Castle	100032002	39.757778	-75.546389	POP	URB	COM	NEI	6	2	1997	1998
DE	New Castle	100032004	39.739444	-75.558056	UNK	URB	COM			6	2000	2006
DC	District of Columbia	110010041	38.897222	-76.952778	POP	URB	RES	NEI		10	1997	2006

											Year	s
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
FL	Broward	120110010	26.128611	-80.167222	HIC	SUB	RES	NEI	4	8	1997	2005
FL	Duval	120310032	30.356111	-81.635556	HIC	SUB	COM	NEI	3	8	1997	2004
FL	Duval	120310080	30.308889	-81.6525	HIC	SUB	COM	MID	3	8	1997	2005
FL	Duval	120310081	30.422222	-81.621111	HIC	SUB	RES	MID	4	8	1997	2005
FL	Duval	120310097	30.367222	-81.594167	POP	SUB	COM	NEI	5	8	1997	2005
FL	Escambia	120330004	30.525	-87.204167	POP	SUB	IND	NEI	4	9	1997	2005
FL	Escambia	120330022	30.544722	-87.216111	HIC	SUB	COM	NEI	6	8	1997	2005
FL	Hamilton	120470015	30.411111	-82.783611	UNK	RUR	IND		3	10	1997	2006
FL	Hillsborough	120570021	27.947222	-82.453333	HIC	RUR	RES	NEI	2	3	1997	1999
FL	Hillsborough	120570053	27.886389	-82.481389	POP	SUB	RES	NEI	4	9	1997	2005
FL	Hillsborough	120570081	27.739722	-82.465278	UNK	UNK	UNK		4	8	1997	2005
FL	Hillsborough	120570095	27.9225	-82.401389	HIC	SUB	COM	NEI	4	9	1997	2005
FL	Hillsborough	120570109	27.856389	-82.383667	POP	SUB	COM	NEI	3	9	1997	2005
FL	Hillsborough	120571035	27.928056	-82.454722	POP	SUB	RES	NEI	4	9	1997	2005
FL	Hillsborough	120574004	27.9925	-82.125833	HIC	SUB	RES	NEI	4	6	2000	2005
FL	Manatee	120813002	27.632778	-82.546111	POP	RUR	IND	NEI	4	5	1999	2004
FL	Miami-Dade	120860019	25.8975	-80.38	POP	UNK	UNK	NEI	4	7	1997	2003
FL	Nassau	120890005	30.658333	-81.463333	HIC	SUB	IND	NEI	2	8	1997	2006
FL	Nassau	120890009	30.686389	-81.4475	HIC	SUB	RES	NEI	4	1	1997	1997
FL	Orange	120952002	28.599444	-81.363056	HIC	URB	COM	NEI	4	9	1997	2005
FL	Palm Beach	120993004	26.369722	-80.074444	HIC	SUB	COM	NEI	10	6	1997	2002
FL	Pinellas	121030023	27.863333	-82.623333	POP	RUR	IND	NEI	4	တ	1997	2005
FL	Pinellas	121033002	27.871389	-82.691667	HIC	SUB	COM	NEI	3	9	1997	2005
FL	Pinellas	121035002	28.09	-82.700833	HIC	RUR	RES	NEI	4	9	1997	2005
FL	Pinellas	121035003	28.141667	-82.739722	HIC	SUB	RES	NEI	4	7	1999	2005
FL	Polk	121050010	27.856111	-82.017778	HIC	RUR	IND	NEI	2	8	1997	2004
FL	Polk	121052006	27.896944	-81.960278	HIC	SUB	IND	NEI	4	6	1997	2002
FL	Putnam	121071008	29.6875	-81.656667	HIC	RUR	IND	NEI		10	1997	2006
FL	Sarasota	121151002	27.299722	-82.524444	HIC	SUB	RES	NEI	5	1	1997	1997
FL	Sarasota	121151005	27.306944	-82.570556	POP	SUB	RES	URB	4	4	1997	2000
FL	Sarasota	121151006	27.350278	-82.48	POP	SUB	RES	NEI	5	4	2000	2003
GA	Baldwin	130090001	33.153258	-83.235807	SRC	RUR	RES	NEI	5	3	1998	2006
GA	Bartow	130150002	34.103333	-84.915278	POP	SUB	AGR	REG	5	5	1997	2004

											Years	s
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
GA	Bibb	130210012	32.805244	-83.543628	POP	RUR	IND	URB	4	3	1998	2003
GA	Chatham	130510019	32.093889	-81.151111	HIC	SUB	IND	URB	4	1	2000	2000
GA	Chatham	130510021	32.06905	-81.048949	SRC	SUB	COM	NEI	10	6	1998	2006
GA	Chatham	130511002	32.090278	-81.130556	POP	URB	IND	NEI	5	3	2004	2006
GA	Dougherty	130950006	31.567778	-84.102778	HIC	SUB	RES	MID	4	1	1998	1998
GA	Fannin	131110091	34.985556	-84.375278	POP	URB	IND	NEI	3	9	1997	2006
GA	Floyd	131150003	34.261113	-85.323018	POP	RUR	RES	NEI	4	10	1997	2006
GA	Fulton	131210048	33.779189	-84.395843	HIC	URB	COM	NEI	5	8	1999	2006
GA	Fulton	131210055	33.720428	-84.357449	POP	SUB	COM	NEI	5	10	1997	2006
GA	Glynn	131270006	31.16953	-81.496046	POP	SUB	RES	NEI	8	1	1999	1999
GA	Muscogee	132150008	32.521099	-84.944695	POP	SUB	RES	NEI	4	2	1999	2005
GA	Richmond	132450003	33.393611	-82.006389	POP	SUB	IND	NEI	4	3	1997	2001
HI	Honolulu	150030010	21.329167	-158.093333	SRC	RUR	IND			9	1997	2005
HI	Honolulu	150030011	21.337222	-158.119167	SRC	RUR	COM	NEI	4	6	2000	2005
HI	Honolulu	150031001	21.310278	-157.858056	POP	URB	COM	NEI	10	7	1998	2004
HI	Honolulu	150031006	21.3475	-158.113333	UNK	RUR	IND			9	1997	2005
ID	Bannock	160050004	42.916389	-112.515833	HIC	RUR	IND	NEI	3	9	1997	2005
ID	Caribou	160290003	42.661298	-111.591443	POP	URB	RES	NEI	3	3	1999	2001
ID	Caribou	160290031	42.695278	-111.593889	SRC	RUR	DES	MIC	4	4	2002	2005
ID	Power	160770011	42.9125	-112.535556	SRC	RUR	IND			1	2004	2004
IL	Adams	170010006	39.93301	-91.404237	POP	URB	COM	NEI	9	10	1997	2006
IL	Champaign	170190004	40.123796	-88.229531	POP	SUB	RES	NEI	5	4	1997	2000
IL	Cook	170310050	41.70757	-87.568574	POP	SUB	IND	NEI	8	10	1997	2006
IL	Cook	170310059	41.6875	-87.536111	HIC	SUB	IND	NEI	10	4	1997	2000
IL	Cook	170310063	41.876969	-87.63433	POP	URB	MOB	NEI	3	10	1997	2006
IL	Cook	170310064	41.790787	-87.601646	POP	SUB	RES	NEI	15	1	1997	1997
IL	Cook	170310076	41.7514	-87.713488	POP	SUB	RES	URB	4	3	2004	2006
IL	Cook	170311018	41.773889	-87.815278	HIC	SUB	IND	NEI	4	8	1997	2004
IL	Cook	170311601	41.66812	-87.99057	POP	SUB	RES	NEI	4	10	1997	2006
IL	Cook	170312001	41.662109	-87.696467	HIC	SUB	IND	NEI	9	7	1997	2003
IL	Cook	170314002	41.855243	-87.75247	POP	SUB	RES	NEI	4	10	1997	2006
IL	Cook	170314201	42.139996	-87.799227	POP	SUB	RES	URB	8	2	2004	2005
IL	Cook	170318003	41.631389	-87.568056	POP	SUB	RES	NEI	4	6	1997	2002

											Years	S
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
IL	DuPage	170436001	41.813049	-88.072827	POP	SUB	AGR	NEI	14	4	1997	2000
IL	La Salle	170990007	41.293015	-89.049425	SRC	SUB	IND	NEI	5	1	2006	2006
IL	Macon	171150013	39.866834	-88.925594	POP	SUB	IND	NEI	5	10	1997	2006
IL	Macoupin	171170002	39.396075	-89.809739	POP	RUR	AGR	REG	5	10	1997	2006
IL	Madison	171190008	38.890186	-90.148031	SRC	SUB	IND	NEI	15	6	1997	2002
IL	Madison	171190017	38.701944	-90.149167	HIC	URB	MOB	NEI	3	4	1997	2000
IL	Madison	171191010	38.828303	-90.058433	SRC	SUB	IND	NEI	5	10	1997	2006
IL	Madison	171193007	38.860669	-90.105851	POP	SUB	IND	NEI	10	10	1997	2006
IL	Madison	171193009	38.865984	-90.070571	SRC	SUB	COM	NEI	7	9	1997	2006
IL	Peoria	171430024	40.68742	-89.606943	POP	SUB	COM	NEI	5	10	1997	2006
IL	Randolph	171570001	38.176278	-89.788459	GEN	RUR	IND	NEI	5	10	1997	2006
IL	Rock Island	171610003	41.511944	-90.514167	HIC	URB	COM	NEI	8	4	1997	2000
IL	Saint Clair	171630010	38.612034	-90.160477	POP	SUB	IND	NEI	5	10	1997	2006
IL	Saint Clair	171631010	38.592192	-90.165081	HIC	SUB	IND	NEI	7	6	1997	2002
IL	Saint Clair	171631011	38.235	-89.841944	SRC	RUR	IND	NEI	5	5	1997	2001
IL	Sangamon	171670006	39.800614	-89.591225	SRC	SUB	IND	NEI	8	10	1997	2006
IL	Tazewell	171790004	40.55646	-89.654028	SRC	SUB	IND	NEI	6	10	1997	2006
IL	Wabash	171850001	38.397222	-87.773611	HIC	URB	MOB	NEI	2	5	1997	2005
IL	Wabash	171851001	38.369444	-87.834444	HIC	RUR	AGR	NEI	2	6	1997	2005
IL	Will	171970013	41.459963	-88.182019	SRC	RUR	IND	NEI	13	10	1997	2006
IN	Daviess	180270002	38.572778	-87.214722	HIC	RUR	AGR	NEI	2	9	1997	2005
IN	Dearborn	180290004	39.092778	-84.855	HIC	SUB	COM	NEI	5	9	1997	2005
IN	Floyd	180430004	38.367778	-85.833056	HIC	RUR	AGR	NEI	5	5	1997	2005
IN	Floyd	180430007	38.273333	-85.836389	SRC	RUR	RES	NEI	4	5	1997	2005
IN	Floyd	180431004	38.308056	-85.834167	POP	SUB	RES	NEI	5	10	1997	2006
IN	Fountain	180450001	39.964167	-87.421389	HIC	RUR	AGR	NEI	2	6	1997	2005
IN	Gibson	180510001	38.361389	-87.748611	HIC	RUR	AGR	NEI	5	5	1997	2005
IN	Gibson	180510002	38.392778	-87.748333	HIC	RUR	AGR	NEI	9	5	1997	2004
IN	Hendricks	180630001	39.876944	-86.473889	HIC	RUR	IND			2	2004	2005
IN	Hendricks	180630002	39.863361	-86.47075	HIC	SUB	COM			2	2004	2005
IN	Hendricks	180630003	39.880833	-86.542194	HIC	SUB	COM			2	2004	2005
IN	Jasper	180730002	41.187778	-87.053333	HIC	RUR	AGR	NEI	3	10	1997	2006
IN	Jasper	180730003	41.135833	-86.987778	HIC	RUR	AGR	URB	3	6	1997	2002

											Years	 S
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale⁴	Height	n	First	Last
IN	Jefferson	180770004	38.776667	-85.407222	HIC	SUB	COM	NEI	5	8	1997	2004
IN	Lake	180890022	41.606667	-87.304722	UNK	URB	IND			8	1998	2005
IN	Lake	180892008	41.639444	-87.493611	HIC	SUB	COM	NEI	5	9	1997	2006
IN	LaPorte	180910005	41.716944	-86.9075	HIC	URB	IND	NEI	4	10	1997	2006
IN	LaPorte	180910007	41.679722	-86.852778	HIC	RUR	RES	NEI	3	6	1997	2002
IN	Marion	180970042	39.646254	-86.248784	POP	RUR	AGR	URB	4	10	1997	2006
IN	Marion	180970054	39.730278	-86.196111	HIC	URB	IND	NEI	9	1	1997	1997
IN	Marion	180970057	39.749019	-86.186314	HIC	URB	RES	NEI	4	10	1997	2006
IN	Marion	180970072	39.768056	-86.16	POP	URB	COM	MID	3	4	1997	2000
IN	Marion	180970073	39.789167	-86.060833	POP	URB	RES	NEI	5	9	1997	2005
IN	Morgan	181091001	39.515	-86.391667	HIC	SUB	RES	NEI	2	2	1997	2005
IN	Perry	181230006	37.99433	-86.763457	UNK	RUR	IND			5	1998	2003
IN	Perry	181230007	37.983773	-86.772202	UNK	RUR	IND			5	1998	2003
IN	Pike	181250005	38.519167	-87.249722	HIC	RUR	AGR	NEI	4	8	1997	2005
IN	Porter	181270011	41.633889	-87.101389	HIC	RUR	IND	NEI	4	10	1997	2006
IN	Porter	181270017	41.621944	-87.116389	HIC	RUR	IND	NEI		6	1997	2002
IN	Porter	181270023	41.616667	-87.145833	HIC	SUB	IND	NEI		6	1997	2002
IN	Spencer	181470002	37.9825	-86.96638	HIC	RUR	AGR	NEI	5	5	1997	2001
IN	Spencer	181470010	37.95536	-87.0318	HIC	RUR	AGR	NEI	5	4	2002	2005
IN	Sullivan	181530004	39.099444	-87.470556	HIC	RUR	AGR	NEI	2	7	1997	2005
IN	Vanderburgh	181630012	38.021667	-87.569444	POP	URB	COM	NEI	5	10	1997	2006
IN	Vanderburgh	181631002	37.9025	-87.671389	UNK	RUR	AGR		9	10	1997	2006
IN	Vigo	181670018	39.486111	-87.401389	POP	URB	RES	NEI	5	10	1997	2006
IN	Vigo	181671014	39.514722	-87.407778	HIC	RUR	COM	NEI	5	8	1997	2005
IN	Warrick	181730002	37.9375	-87.314167	HIC	RUR	IND	NEI	4	5	1997	2006
IN	Warrick	181731001	37.938056	-87.345833	HIC	RUR	IND	NEI	4	4	1997	2002
IN	Wayne	181770006	39.812222	-84.89	HIC	SUB	IND	NEI	5	10	1997	2006
IN	Wayne	181770007	39.795833	-84.880833	HIC	RUR	IND	NEI	9	10	1997	2006
IA	Cerro Gordo	190330018	43.16944	-93.202426	UNK	SUB	RES		4	9	1998	2006
IA	Clinton	190450018	41.824722	-90.212778	UNK	SUB	RES		4	1	1997	1997
IA	Clinton	190450019	41.823283	-90.211982	UNK	URB	IND	MID		10	1997	2006
IA	Clinton	190450020	41.845833	-90.216389	HIC	SUB	COM	URB	7	1	1997	1997
IA	Lee	191110006	40.392222	-91.4	UNK	URB	IND		5	2	1997	1998

											Years	S
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
IA	Lee	191111007	40.5825	-91.4275	UNK	RUR	IND		15	2	1998	2000
IA	Linn	191130028	41.910556	-91.651944	HIC	SUB	COM	NEI	8	5	1997	2001
IA	Linn	191130029	41.974722	-91.666667	HIC	URB	COM	NEI	16	9	1997	2006
IA	Linn	191130031	41.983333	-91.662778	SRC	URB	RES	MID	4	10	1997	2006
IA	Linn	191130032	41.964722	-91.664722	UNK	URB	RES			2	1998	1999
IA	Linn	191130034	41.971111	-91.645278	UNK	URB	RES			2	1998	1999
IA	Linn	191130038	41.941111	-91.633889	SRC	SUB	IND	MID	4.5	8	1999	2006
IA	Linn	191130039	41.934167	-91.6825	SRC	URB	IND			1	2001	2001
IA	Muscatine	191390016	41.419429	-91.070975	UNK	URB	RES		3	10	1997	2006
IA	Muscatine	191390017	41.387969	-91.054504	UNK	SUB	IND		4	10	1997	2006
IA	Muscatine	191390020	41.407796	-91.062646	UNK	SUB	IND		4	10	1997	2006
IA	Scott	191630015	41.530011	-90.587611	HIC	URB	RES	NEI	4	8	1997	2005
IA	Scott	191630017	41.467236	-90.688451	UNK	RUR	IND	NEI	4	1	1997	1997
IA	Van Buren	191770004	40.711111	-91.975278	HIC	RUR	FOR		3	2	1997	1998
IA	Van Buren	191770005	40.689167	-91.994444	UNK	RUR	FOR		3	4	2000	2003
IA	Van Buren	191770006	40.695078	-92.006318	GEN	RUR	FOR		3	2	2005	2006
IA	Woodbury	191930018	42.399444	-96.355833	POP	URB	RES		3	1	2002	2002
KS	Linn	201070002	38.135833	-94.731944	REG	RUR	AGR	REG	4	6	1999	2004
KS	Montgomery	201250006	37.046944	-95.613333	POP	URB	RES	NEI	4	7	1998	2005
KS	Pawnee	201450001	38.17625	-99.108028	POP	SUB	RES	NEI	3	1	1997	1997
KS	Sedgwick	201730010	37.701111	-97.313889	POP	URB	RES	NEI	4	1	1997	1997
KS	Sumner	201910002	37.476944	-97.366389	REG	RUR	RES	REG	4	3	2001	2005
KS	Trego	201950001	38.770278	-99.763611	GEN	RUR	AGR	REG	4	3	2002	2005
KS	Wyandotte	202090001	39.113056	-94.624444	HIC	URB	COM	NEI	15	2	1997	1998
KS	Wyandotte	202090020	39.151389	-94.6175	POP	URB	IND	NEI	9	1	1997	1997
KS	Wyandotte	202090021	39.1175	-94.635556	POP	URB	RES	NEI	4	4	2000	2005
KY	Boyd	210190015	38.465833	-82.621111	POP	URB	RES	NEI	4	3	1997	2000
KY	Boyd	210190017	38.459167	-82.640556	POP	SUB	RES	NEI	3	4	2002	2005
KY	Boyd	210191003	38.388611	-82.6025	POP	SUB	IND	NEI	5	3	1997	1999
KY	Campbell	210370003	39.065556	-84.451944	POP	SUB	RES	NEI	4	6	2000	2005
KY	Campbell	210371001	39.108611	-84.476111	POP	URB	RES	NEI	4	3	1997	1999
KY	Daviess	210590005	37.780833	-87.075556	POP	SUB	COM	NEI	4	9	1997	2005
KY	Fayette	210670012	38.065	-84.5	POP	SUB	RES	NEI	4	9	1997	2005

											Years	s
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
KY	Greenup	210890007	38.548333	-82.731667	POP	SUB	RES	NEI	4	9	1997	2005
KY	Hancock	210910012	37.938889	-86.896944	POP	RUR	RES	NEI	4	7	1998	2004
KY	Henderson	211010013	37.858889	-87.575278	POP	SUB	RES	NEI	4	5	1997	2001
KY	Henderson	211010014	37.871389	-87.463333	POP	RUR	COM	NEI	4	2	2004	2005
KY	Jefferson	211110032	38.1825	-85.861667	HIC	SUB	RES	NEI	4	3	1997	2001
KY	Jefferson	211110051	38.060833	-85.896111	POP	SUB	RES	NEI	4	10	1997	2006
KY	Jefferson	211111041	38.23163	-85.82672	POP	SUB	IND	NEI	5	8	1997	2006
KY	Livingston	211390004	37.070833	-88.334167	HIC	RUR	AGR	NEI	4	9	1997	2005
KY	McCracken	211450001	37.131667	-88.813333	HIC	RUR	IND	NEI	5	3	1997	1999
KY	McCracken	211451024	37.058056	-88.5725	POP	SUB	COM	NEI	4	6	2000	2005
KY	McCracken	211451026	37.040833	-88.541111	POP	SUB	RES	NEI	6	2	1997	1998
KY	Warren	212270008	37.036667	-86.250556	POP	RUR	RES	URB	4	3	2003	2005
LA	Bossier	220150008	32.53626	-93.74891	POP	URB	COM		3	10	1997	2006
LA	Calcasieu	220190008	30.261667	-93.284167	POP	RUR	IND	NEI	5	10	1997	2006
	East Baton											
LA	Rouge	220330009	30.46198	-91.17922	HIC	URB	COM	NEI	5	10	1997	2006
LA	Ouachita	220730004	32.509713	-92.046093	GEN	URB	IND		4	10	1997	2006
LA	St. Bernard	220870002	29.981944	-89.998611	SRC	SUB	RES		2	7	1998	2004
	West Baton	004040004	00 504044	04 000700		OLID	0014			40	4007	0000
LA	Rouge	221210001	30.501944	-91.209722	HIC	SUB	COM		2	10	1997	2006
ME	Androscoggin	230010011	44.089406	-70.214219	HIC	URB	COM	NEI	4	4	1997	2002
ME	Aroostook	230030009	47.351667	-68.303611	UNK	SUB	RES		1	1	1997	1997
ME	Aroostook	230030012	47.354444	-68.314167	UNK	URB	IND		9	1	1997	1997
ME	Aroostook	230031003	47.351667	-68.311389	UNK	SUB	RES		3	1	1997	1997
ME	Aroostook	230031013	46.123889	-67.829722	UNK	URB	COM		4	1	1997	1997
ME	Aroostook	230031018	46.660899	-67.902066	SRC	RUR	IND	NEI		1	2004	2004
ME	Cumberland	230050014	43.659722	-70.261389	HIC	URB	COM	NEI	4	1	1997	1997
ME	Cumberland	230050027	43.661944	-70.265833	HIC	URB	IND	NEI	4	7	2000	2006
ME	Oxford	230172007	44.543056	-70.545833	UNK	SUB	IND		4	8	1997	2004
MD	Allegany	240010006	39.649722	-78.762778	POP	URB	COM	NEI	5	1	1997	1997
MD	Anne Arundel	240032002	39.159722	-76.511667	POP	SUB	RES	NEI	5	4	1999	2002
MD	Baltimore	240053001	39.310833	-76.474444	POP	SUB	RES	NEI	5	2	2004	2005
MD	Baltimore (City)	245100018	39.314167	-76.613333	POP	URB	RES	NEI	4	2	1997	1998

											Year	s
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
MD	Baltimore (City)	245100036	39.265	-76.536667	HIC	URB	RES	NEI	5	1	1997	1997
MA	Bristol	250051004	41.683279	-71.169171	HIC	SUB	COM	NEI	5	9	1997	2006
MA	Essex	250090005	42.709444	-71.146389	HIC	URB	RES	NEI	4	5	1997	2001
MA	Essex	250091004	42.515556	-70.931389	UNK	SUB	RES			1	1997	1997
MA	Essex	250091005	42.525	-70.934167	UNK	SUB	RES			1	1997	1997
MA	Essex	250095004	42.772222	-71.061111	OTH	SUB	RES		9	3	1997	2000
MA	Hampden	250130016	42.108581	-72.590614	POP	URB	COM	NEI	4	9	1997	2006
MA	Hampden	250131009	42.085556	-72.579722	HIC	SUB	RES	NEI	5	3	1997	1999
MA	Hampshire	250154002	42.298279	-72.333904	OTH	RUR	FOR	URB	5	9	1998	2006
MA	Middlesex	250171701	42.474444	-71.111111	UNK	SUB	RES			2	1997	1999
MA	Middlesex	250174003	42.383611	-71.213889	POP	RUR	AGR	NEI	4	2	1997	1998
MA	Suffolk	250250002	42.348873	-71.097163	HIC	URB	COM	NEI	5	8	1997	2006
MA	Suffolk	250250019	42.316394	-70.967773	OTH	RUR	RES		5	9	1997	2005
MA	Suffolk	250250020	42.309417	-71.055573	OTH	URB	COM		5	8	1997	2005
MA	Suffolk	250250021	42.377833	-71.027138	HIC	URB	RES	NEI	4	9	1997	2005
MA	Suffolk	250250040	42.340251	-71.03835	POP	URB	IND	NEI	4	9	1997	2005
MA	Suffolk	250250042	42.3294	-71.0825	POP	URB	COM	NEI	5	5	2001	2006
MA	Suffolk	250251003	42.401667	-71.031111	POP	SUB	RES	NEI	4	3	1997	1999
MA	Worcester	250270020	42.267222	-71.798889	HIC	URB	COM	NEI	3	4	1998	2002
MA	Worcester	250270023	42.263877	-71.794186	POP	URB	COM	URB	4	3	2004	2006
MI	Delta	260410902	45.796667	-87.089444	UNK	RUR	IND			7	1997	2003
MI	Genesee	260490021	43.047224	-83.670159	POP	URB	RES	NEI	4	8	1997	2006
MI	Genesee	260492001	43.168336	-83.461541	GEN	RUR	AGR			1	2004	2004
MI	Kent	260810020	42.984173	-85.671339	POP	URB	IND	NEI	5	8	1997	2005
MI	Macomb	260991003	42.51334	-83.005971	POP	SUB	RES	NEI	3	10	1997	2006
MI	Missaukee	261130001	44.310555	-84.891865	GEN	RUR	FOR			1	2003	2003
MI	St. Clair	261470005	42.953336	-82.456229	HIC	SUB	RES	NEI	4	10	1997	2006
MI	Schoolcraft	261530001	46.288877	-85.950227	GEN	RUR	FOR			1	2005	2005
MI	Wayne	261630001	42.22862	-83.2082	POP	SUB	COM	NEI	4	1	1997	1997
MI	Wayne	261630005	42.267231	-83.132086	HIC	SUB	IND	NEI	4	4	1997	2000
MI	Wayne	261630015	42.302786	-83.10653	HIC	URB	COM	NEI	4	9	1997	2006
MI	Wayne	261630016	42.357808	-83.096033	POP	URB	RES	NEI	4	9	1997	2006
MI	Wayne	261630019	42.43084	-83.000138	POP	SUB	RES	NEI	4	7	1997	2006

											Years	S
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
MI	Wayne	261630025	42.423063	-83.426263	POP	SUB	COM	NEI	4	1	1997	1997
MI	Wayne	261630027	42.292231	-83.106807	HIC	URB	IND	MID	3	3	1997	1999
MI	Wayne	261630033	42.306674	-83.148754	HIC	SUB	IND	MID	5	2	1997	1998
MI	Wayne	261630062	42.340833	-83.0625	POP	URB	RES	NEI	5	1	1997	1997
MI	Wayne	261630092	42.296111	-83.116944	HIC	URB	RES	MID	7	1	1997	1997
MN	Anoka	270031002	45.13768	-93.20772	POP	SUB	RES	URB	4.57	4	2003	2006
MN	Carlton	270176316	46.733611	-92.418889	SRC	RUR	AGR		3	2	2001	2002
MN	Dakota	270370020	44.76323	-93.03255	UNK	RUR	IND	NEI	3	8	1997	2006
MN	Dakota	270370423	44.77553	-93.06299	UNK	RUR	IND	NEI	3.66	9	1997	2006
MN	Dakota	270370439	44.748039	-93.043266	UNK	RUR	IND		4	1	1999	1999
MN	Dakota	270370441	44.7468	-93.02611	UNK	RUR	IND		3	7	2000	2006
MN	Dakota	270370442	44.73857	-93.00496	UNK	RUR	AGR	NEI	3.5	6	2001	2006
MN	Hennepin	270530954	44.980995	-93.273719	HIC	URB	COM	NEI	3	7	1997	2006
MN	Hennepin	270530957	45.021111	-93.281944	HIC	URB	IND	MID	10	6	1997	2002
MN	Koochiching	270711240	48.605278	-93.402222	UNK	URB	IND		10	2	1997	1999
MN	Ramsey	271230864	44.991944	-93.183056	POP	SUB	RES	NEI	6	6	1997	2002
MN	Sherburne	271410003	45.420278	-93.871667	UNK	RUR	AGR			1	1997	1997
MN	Sherburne	271410011	45.394444	-93.8975	UNK	RUR	IND	NEI		2	1997	1998
MN	Sherburne	271410012	45.394444	-93.885	UNK	URB	MOB	NEI		1	1997	1997
MN	Sherburne	271410013	45.369444	-93.898056	UNK	RUR	IND	NEI		2	1997	1998
MN	Washington	271630436	44.84737	-92.9954	UNK	SUB	IND	MID	4.88	9	1997	2006
MN	Wright	271710007	45.329167	-93.835833	UNK	RUR	AGR			1	1997	1997
MS	Harrison	280470007	30.446806	-89.029139	HIC	SUB	RES	NEI	4	8	1997	2004
MS	Hinds	280490018	32.296806	-90.188306	POP	URB	COM	NEI	4	9	1997	2005
MS	Jackson	280590006	30.378425	-88.533985	POP	URB	COM	NEI		7	1997	2006
MS	Lee	280810004	34.263333	-88.759722	UNK	SUB	COM		4	1	1997	1997
MO	Buchanan	290210009	39.731389	-94.8775	GEN	URB	IND	NEI	3	3	1997	1999
MO	Buchanan	290210011	39.731389	-94.868333	GEN	URB	IND	NEI	3	1	2001	2001
MO	Clay	290470025	39.183889	-94.4975	POP	SUB	RES	NEI	4	5	1997	2001
MO	Greene	290770026	37.128333	-93.261667	POP	SUB	RES		3	10	1997	2006
MO	Greene	290770032	37.205278	-93.283333	UNK	URB	RES		3	10	1997	2006
MO	Greene	290770037	37.11	-93.251944	POP	RUR	RES		4	10	1997	2006
MO	Greene	290770040	37.108889	-93.252778	SRC	SUB	RES			4	2003	2006

											Year	s
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
МО	Greene	290770041	37.108611	-93.272222	SRC	SUB	RES			4	2003	2006
МО	Iron	290930030	37.466389	-90.69	SRC	RUR	RES	NEI	4	7	1997	2003
МО	Iron	290930031	37.519444	-90.7125	UNK	RUR	AGR		2	6	1997	2003
МО	Jackson	290950034	39.104722	-94.570556	UNK	URB	COM			9	1997	2006
МО	Jefferson	290990004	38.2633	-90.3785	POP	RUR	IND		3	3	2004	2006
МО	Jefferson	290990014	38.267222	-90.379444	OTH	RUR	RES	NEI	4	4	1997	2000
МО	Jefferson	290990017	38.252778	-90.393333	UNK	SUB	RES		5	2	1999	2000
МО	Jefferson	290990018	38.297694	-90.384333	HIC	SUB	RES	NEI	5	1	2002	2002
МО	Monroe	291370001	39.473056	-91.789167	UNK	RUR	UNK			10	1997	2006
МО	Pike	291630002	39.3726	-90.9144	HIC	RUR	RES	NEI	3	1	2006	2006
МО	Platte	291650023	39.3	-94.7	UNK	SUB	MOB		3	8	1997	2004
МО	Saint Charles	291830010	38.579167	-90.841111	UNK	RUR	AGR		3	1	1997	1997
МО	Saint Charles	291831002	38.8725	-90.226389	UNK	RUR	AGR		2	3	1997	1999
МО	Saint Louis	291890001	38.521667	-90.343611	POP	SUB	RES	NEI	3	1	1997	1997
МО	Saint Louis	291890004	38.5325	-90.382778	POP	SUB	RES	NEI	3	6	1999	2004
МО	Saint Louis	291890006	38.613611	-90.495833	UNK	RUR	RES		4	8	1997	2004
МО	Saint Louis	291890014	38.7109	-90.4759	HIC	RUR	RES	NEI	3	1	2006	2006
МО	Saint Louis	291893001	38.641389	-90.345833	UNK	SUB	COM		4	10	1997	2006
МО	Saint Louis	291895001	38.766111	-90.285833	UNK	SUB	COM		2	8	1997	2004
МО	Saint Louis	291897002	38.727222	-90.379444	POP	SUB	RES	NEI	4	4	1997	2000
МО	Saint Louis	291897003	38.720917	-90.367028	POP	SUB	RES	NEI	4	2	2002	2003
MO	St. Louis City	295100007	38.5425	-90.263611	HIC	URB	RES	NEI	4	10	1997	2006
MO	St. Louis City	295100072	38.624167	-90.198611	POP	URB	COM	NEI	14	4	1997	2000
MO	St. Louis City	295100080	38.682778	-90.246667	UNK	URB	RES		4	3	1997	1999
MO	St. Louis City	295100086	38.672222	-90.238889	POP	URB	RES	NEI	4	7	2000	2006
MT	Cascade	300132000	47.532222	-111.271111	SRC	SUB	AGR		3	3	1997	1999
MT	Cascade	300132001	47.53	-111.283611	SRC	SUB	IND	NEI	3.5	5	2001	2005
MT	Jefferson	300430903	46.557679	-111.918098	UNK	RUR	AGR			4	1997	2000
MT	Jefferson	300430911	46.548056	-111.873333	UNK	RUR	AGR		4	4	1997	2000
MT	Jefferson	300430913	46.534722	-111.861389	UNK	RUR	AGR		4	4	1997	2000
MT	Lewis and Clark	300490702	46.583333	-111.934444	UNK	RUR	AGR		3	4	1997	2000
MT	Lewis and Clark	300490703	46.593889	-111.92	UNK	RUR	RES		3	4	1997	2000
MT	Rosebud	300870700	45.886944	-106.628056	UNK	SUB	RES		4	4	1998	2001

											Years	S
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
MT	Rosebud	300870701	45.901944	-106.637778	UNK	RUR	AGR		5	3	1997	1999
MT	Rosebud	300870702	45.863889	-106.557778	UNK	RUR	AGR		5	2	1997	2000
MT	Rosebud	300870760	45.668056	-106.518889	SRC	RUR	FOR		4	5	1998	2003
MT	Rosebud	300870761	45.603056	-106.464167	SRC	RUR	FOR			5	1997	2003
MT	Rosebud	300870762	45.648333	-106.556667	OTH	RUR	FOR			5	1998	2003
MT	Rosebud	300870763	45.976667	-106.660556	UNK	RUR	IND		3	1	1997	1997
MT	Yellowstone	301110016	45.656389	-108.765833	UNK	RUR	AGR		4	9	1997	2005
MT	Yellowstone	301110066	45.788318	-108.459536	SRC	RUR	RES	NEI	3.5	10	1997	2006
MT	Yellowstone	301110079	45.769439	-108.574292	POP	SUB	COM		4.5	2	2002	2003
MT	Yellowstone	301110080	45.777149	-108.47436	UNK	RUR	AGR		4	4	1997	2000
MT	Yellowstone	301110082	45.783889	-108.515	POP	URB	COM	NEI	3	2	2002	2003
MT	Yellowstone	301110083	45.795278	-108.455833	SRC	SUB	AGR		4	3	2000	2002
MT	Yellowstone	301110084	45.831453	-108.449964	POP	SUB	RES	NEI	4.5	3	2004	2006
MT	Yellowstone	301111065	45.801944	-108.426111	UNK	SUB	RES		4	9	1997	2005
MT	Yellowstone	301112005	45.803889	-108.445556	UNK	SUB	IND		4	တ	1997	2005
MT	Yellowstone	301112006	45.81	-108.413056	OTH	SUB	AGR		3	8	1997	2004
MT	Yellowstone	301112007	45.832778	-108.377778	OTH	RUR	RES		3	တ	1997	2005
NE	Douglas	310550048	41.323889	-95.942778	HIC	URB	RES	NEI	5	1	1997	1997
NE	Douglas	310550050	41.332778	-95.956389	HIC	URB	RES	NEI	6	2	2002	2003
NE	Douglas	310550053	41.297778	-95.9375	POP	URB	IND	NEI	4	4	2002	2006
NE	Douglas	310550055	41.362433	-95.976112	HIC	SUB	RES	NEI	8	2	2005	2006
NV	Clark	320030022	36.390775	-114.90681	REG	RUR	IND	NEI	3.5	5	1998	2002
NV	Clark	320030078	35.46505	-114.919615	REG	RUR	DES	REG	4	2	2001	2002
NV	Clark	320030539	36.144444	-115.085556	POP	SUB	MOB	URB	3.5	8	1998	2005
NV	Clark	320030601	35.978889	-114.844167	POP	SUB	COM	NEI	4	1	2002	2002
NH	Cheshire	330050007	42.930556	-72.277778	UNK	URB	COM	NEI		7	1997	2003
NH	Coos	330070019	44.488611	-71.180278	POP	UNK	UNK	NEI	4	5	1997	2001
NH	Coos	330070022	44.458333	-71.154167	UNK	RUR	IND			1	1997	1997
NH	Coos	330071007	44.596667	-71.516667	POP	URB	IND	NEI	5	4	1997	2001
NH	Hillsborough	330110016	42.992778	-71.459444	HIC	URB	COM	NEI	5	1	1997	1997
NH	Hillsborough	330110019	43.000556	-71.468056	UNK	URB	COM		5	1	2000	2000
NH	Hillsborough	330110020	43.000556	-71.468056	UNK	URB	COM	NEI	5	5	2002	2006
NH	Hillsborough	330111009	42.764444	-71.4675	HIC	URB	COM	NEI	3	3	1997	2001

											Years	S
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
NH	Hillsborough	330111010	42.701944	-71.445	UNK	SUB	IND	MIC	5	6	1997	2002
NH	Merrimack	330130007	43.206944	-71.534167	UNK	URB	COM	NEI		6	1997	2003
NH	Merrimack	330131003	43.177222	-71.4625	UNK	RUR	RES	NEI	3	7	1997	2003
NH	Merrimack	330131006	43.132444	-71.45827	OTH	SUB	RES	NEI	3	4	2003	2006
NH	Merrimack	330131007	43.218491	-71.45827	OTH	URB	COM	URB	9	1	2005	2005
NH	Rockingham	330150009	43.078056	-70.762778	UNK	SUB	COM		3	3	1997	2000
NH	Rockingham	330150014	43.075278	-70.748056	POP	URB	RES	NEI	2	3	2004	2006
NH	Rockingham	330150015	43.0825	-70.761944	POP	SUB	COM	NEI	4	1	2002	2002
NH	Sullivan	330190003	43.364444	-72.338333	UNK	URB	RES	NEI		5	1997	2001
NJ	Atlantic	340010005	39.53024	-74.46069	UNK	RUR	RES		4	8	1997	2005
NJ	Bergen	340035001	40.88237	-74.04217	POP	URB	COM	NEI	4	9	1997	2005
NJ	Burlington	340051001	40.07806	-74.85772	HIC	URB	COM	NEI	4	9	1997	2005
NJ	Camden	340070003	39.92304	-75.09762	POP	SUB	RES	NEI	5	8	1997	2005
NJ	Camden	340071001	39.68425	-74.86149	GEN	RUR	COM	URB	4	9	1997	2005
NJ	Cumberland	340110007	39.42227	-75.0252	UNK	RUR	IND		4	9	1997	2005
NJ	Essex	340130011	40.726667	-74.144167	UNK	URB	IND		4	2	1997	1998
NJ	Essex	340130016	40.722222	-74.146944	POP	URB	IND	NEI	5	1	2002	2002
NJ	Gloucester	340150002	39.80034	-75.21212	UNK	RUR	AGR		4	9	1997	2005
NJ	Hudson	340170006	40.67025	-74.12608	POP	URB	COM	NEI	5	9	1997	2005
NJ	Hudson	340171002	40.73169	-74.06657	HIC	URB	COM	NEI	4	8	1997	2005
NJ	Middlesex	340232003	40.50888	-74.2682	HIC	URB	COM	NEI	5	9	1997	2005
NJ	Morris	340273001	40.78763	-74.6763	UNK	RUR	AGR		5	9	1997	2005
NJ	Union	340390003	40.66245	-74.21474	POP	URB	COM	MID	5	9	1997	2005
NJ	Union	340390004	40.64144	-74.20836	HIC	SUB	IND	NEI	4	တ	1997	2005
NM	Dona Ana	350130008	31.930556	-106.630556	UNK	RUR	AGR		2	6	1997	2002
NM	Dona Ana	350130017	31.795833	-106.5575	SRC	SUB	COM	URB		9	1997	2005
NM	Eddy	350151004	32.855556	-104.411389	SRC	URB	COM	NEI		တ	1997	2005
NM	Grant	350170001	32.759444	-108.131389	UNK	SUB	IND		4	5	1997	2001
NM	Grant	350171003	32.691944	-108.124444	SRC	RUR	IND	NEI		5	1999	2005
NM	Hidalgo	350230005	31.783333	-108.497222	UNK	RUR	UNK		3	5	1997	2001
NM	San Juan	350450008	36.735833	-108.238333	UNK	RUR	DES			6	1997	2002
NM	San Juan	350450009	36.742222	-107.976944	SRC	RUR	IND	NEI		3	1997	2005
NM	San Juan	350450017	36.752778	-108.716667	UNK	RUR	UNK		3	1	1997	1997

											Year	S
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
NM	San Juan	350451005	36.796667	-108.4725	UNK	UNK	UNK		9	7	1997	2005
NY	Albany	360010012	42.68069	-73.75689	HIC	RUR	AGR	NEI	5	10	1997	2006
NY	Bronx	360050073	40.811389	-73.91	UNK	URB	RES		13	2	1997	1998
NY	Bronx	360050080	40.83608	-73.92021	HIC	URB	RES	MID	12	3	1997	1999
NY	Bronx	360050083	40.86586	-73.88075	UNK	URB	COM			6	2001	2006
NY	Bronx	360050110	40.81616	-73.90207	OTH	URB	RES			5	2000	2006
NY	Chautauqua	360130005	42.29073	-79.58958	POP	URB	IND		5	4	1997	2000
NY	Chautauqua	360130006	42.49945	-79.31888	HIC	URB	IND	NEI	4	7	2000	2006
NY	Chautauqua	360130011	42.29073	-79.58658	POP	RUR	AGR	REG	4	10	1997	2006
NY	Chemung	360150003	42.11105	-76.80249	UNK	URB	COM		4	9	1998	2006
NY	Erie	360290005	42.87684	-78.80988	POP	URB	RES	NEI	4	10	1997	2006
NY	Erie	360294002	42.99549	-78.90157	HIC	SUB	IND	NEI	4	10	1997	2006
NY	Erie	360298001	42.818889	-78.840833	HIC	URB	IND	NEI	4	2	1997	1998
NY	Essex	360310003	44.39309	-73.85892	GEN	RUR	FOR	NEI	4	10	1997	2006
NY	Franklin	360330004	44.434309	-74.24601	GEN	RUR	COM			2	2005	2006
NY	Hamilton	360410005	43.44957	-74.51625	POP	RUR	COM	URB	5	10	1997	2006
NY	Herkimer	360430005	43.68578	-74.98538	POP	RUR	FOR	REG	4	8	1997	2006
NY	Kings	360470011	40.73277	-73.94722	HIC	URB	IND	NEI	13	1	1998	1998
NY	Kings	360470076	40.67185	-73.97824	POP	URB	RES		11	2	1997	1999
NY	Madison	360530006	42.73046	-75.78443	POP	RUR	AGR	REG		10	1997	2006
NY	Monroe	360551004	43.16545	-77.55479	POP	SUB	RES	NEI	4	7	1997	2003
NY	Monroe	360551007	43.146198	-77.54813	POP	URB	RES			2	2005	2006
NY	Monroe	360556001	43.161	-77.60357	HIC	URB	COM	NEI	12	7	1997	2003
NY	Nassau	360590005	40.74316	-73.58549	UNK	SUB	COM	NEI	5	9	1997	2006
NY	New York	360610010	40.739444	-73.986111	HIC	URB	RES	NEI	38	2	1997	1999
NY	New York	360610056	40.75917	-73.96651	HIC	URB	COM	MID	10	8	1997	2006
NY	Niagara	360632008	43.08216	-79.00099	POP	SUB	IND	NEI	4	8	1999	2006
NY	Onondaga	360671015	43.05238	-76.0592	POP	SUB	COM	NEI	5	10	1997	2006
NY	Putnam	360790005	41.44151	-73.70762	UNK	RUR	FOR			10	1997	2006
NY	Queens	360810097	40.75527	-73.75861	GEN	URB	RES		12	3	1999	2001
NY	Queens	360810124	40.7362	-73.82317	POP	SUB	RES			5	2002	2006
NY	Rensselaer	360830004	42.78187	-73.46361	OTH	RUR	FOR			3	2002	2004
NY	Rensselaer	360831005	42.72444	-73.43166	GEN	RUR	FOR		5	3	1998	2000

											Years	s
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
NY	Richmond	360850067	40.59733	-74.12619	POP	SUB	RES	NEI	20	3	1997	1999
NY	Schenectady	360930003	42.79963	-73.94019	POP	SUB	RES	NEI	5	10	1997	2006
NY	Suffolk	361030002	40.74529	-73.41919	HIC	SUB	IND	NEI	5	2	1997	1998
NY	Suffolk	361030009	40.8275	-73.05694	UNK	SUB	RES			7	2000	2006
NY	Ulster	361111005	42.1438	-74.49414	POP	RUR	COM	URB	5	9	1997	2006
NC	Alexander	370030003	35.903611	-81.184167	GEN	SUB	COM	URB		2	1999	2003
NC	Beaufort	370130003	35.3575	-76.779722	SRC	RUR	IND	NEI	3	3	1997	1999
NC	Beaufort	370130004	35.377241	-76.748997	HIC	RUR	FOR	NEI	3	2	1997	1998
NC	Beaufort	370130006	35.377778	-76.766944	SRC	RUR	IND	NEI	3	5	2001	2006
NC	Chatham	370370004	35.757222	-79.159722	GEN	RUR	AGR	MIC		2	1998	2001
NC	Cumberland	370511003	34.968889	-78.9625	POP	SUB	COM	NEI		2	1999	2006
NC	Davie	370590002	35.809289	-80.559115	GEN	SUB	IND			2	1997	2000
NC	Duplin	370610002	34.954823	-77.960781	GEN	URB	RES	NEI		1	1999	1999
NC	Edgecombe	370650099	35.988333	-77.582778	GEN	RUR	AGR	REG	4	2	1999	2004
NC	Forsyth	370670022	36.110556	-80.226667	POP	URB	RES	NEI	3	8	1997	2004
NC	Johnston	371010002	35.590833	-78.461944	GEN	RUR	AGR	URB		1	1999	1999
NC	Lincoln	371090004	35.438556	-81.27675	GEN	RUR	RES	NEI		2	1997	2000
NC	Martin	371170001	35.81069	-76.89782	GEN	RUR	AGR	URB	5	2	1998	2001
NC	Mecklenburg	371190034	35.248611	-80.766389	POP	SUB	RES	NEI	5	2	1997	1998
NC	Mecklenburg	371190041	35.2401	-80.785683	POP	URB	RES	NEI	5	6	2000	2006
NC	New Hanover	371290002	34.364167	-77.838611	POP	RUR	AGR	URB	3	1	2005	2005
NC	New Hanover	371290006	34.268403	-77.956529	GEN	RUR	IND	URB	3	10	1997	2006
NC	Northampton	371310002	36.48438	-77.61998	SRC	RUR	COM	URB		2	1997	2000
NC	Person	371450003	36.306965	-79.09197	GEN	RUR	AGR	URB	4	2	1998	2004
NC	Pitt	371470099	35.583333	-77.598889	GEN	RUR	COM	REG		2	1997	2000
NC	Swain	371730002	35.435509	-83.443697	GEN	SUB	RES	NEI		2	1998	2004
ND	Billings	380070002	46.8943	-103.37853	GEN	RUR	AGR	REG	12.2	5	2000	2006
ND	Billings	380070111	47.296667	-103.095556	HIC	RUR	IND	NEI	4	1	1997	1997
ND	Burke	380130002	48.9904	-102.7815	SRC	RUR	AGR	REG	4	6	2000	2005
ND	Burke	380130004	48.64193	-102.4018	REG	RUR	AGR	REG	4	3	2004	2006
ND	Burleigh	380150003	46.825425	-100.76821	POP	SUB	RES	URB	4	1	2006	2006
ND	Cass	380171003	46.910278	-96.795	POP	SUB	RES	URB	4	1	1997	1997
ND	Cass	380171004	46.933754	-96.85535	POP	SUB	AGR	URB	3	8	1999	2006

											Years	s
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
ND	Dunn	380250003	47.3132	-102.5273	GEN	RUR	AGR	REG	4	10	1997	2006
ND	McKenzie	380530002	47.5812	-103.2995	GEN	RUR	AGR	REG	4	6	1997	2006
ND	McKenzie	380530104	47.575278	-103.968889	SRC	RUR	AGR	URB	3	9	1998	2006
ND	McKenzie	380530111	47.605556	-104.017222	SRC	RUR	IND	URB	3	7	2000	2006
ND	McLean	380550113	47.606667	-102.036389	POP	RUR	AGR	URB	3	6	1998	2003
ND	Mercer	380570001	47.258853	-101.783035	POP	SUB	RES	NEI	5	1	1997	1997
ND	Mercer	380570004	47.298611	-101.766944	POP	RUR	AGR	URB	4	8	1999	2006
ND	Mercer	380570102	47.325	-101.765833	SRC	RUR	IND	URB	3	10	1997	2006
ND	Mercer	380570118	47.371667	-101.780833	SRC	RUR	IND	URB	3	10	1997	2006
ND	Mercer	380570123	47.385725	-101.862917	SRC	RUR	IND	URB	4	10	1997	2006
ND	Mercer	380570124	47.400619	-101.92865	SRC	RUR	IND	URB	4	10	1997	2006
ND	Morton	380590002	46.84175	-100.870059	SRC	SUB	IND	NEI	4	8	1997	2004
ND	Morton	380590003	46.873075	-100.905039	SRC	SUB	IND	NEI	4	6	1999	2004
ND	Oliver	380650002	47.185833	-101.428056	SRC	RUR	AGR	URB	3	9	1997	2006
ND	Steele	380910001	47.599703	-97.899009	GEN	RUR	AGR	REG	3	2	1997	1999
ND	Williams	381050103	48.408834	-102.90765	SRC	RUR	IND	URB	4	9	1997	2006
ND	Williams	381050105	48.392644	-102.910233	SRC	RUR	IND	URB	4	9	1997	2005
ОН	Adams	390010001	38.795	-83.535278	POP	SUB	RES	NEI	5	10	1997	2006
OH	Allen	390030002	40.772222	-84.051944	POP	UNK	AGR	URB	6	10	1997	2006
OH	Ashtabula	390071001	41.959444	-80.5725	POP	SUB	RES	URB	8	10	1997	2006
OH	Belmont	390133002	39.968056	-80.7475	POP	SUB	IND	NEI	6	7	2000	2006
OH	Butler	390170004	39.383333	-84.544167	POP	SUB	COM	NEI	7	10	1997	2006
OH	Butler	390171004	39.53	-84.3925	POP	SUB	COM	NEI	4	10	1997	2006
OH	Clark	390230003	39.855556	-83.9975	POP	RUR	AGR	NEI	4	10	1997	2006
OH	Clermont	390250021	38.961273	-84.09445	HIC	URB	RES	URB	5	8	1997	2004
OH	Columbiana	390290016	40.634722	-80.546389	POP	SUB	RES	NEI	7	1	1997	1997
OH	Columbiana	390290022	40.635	-80.546667	POP	SUB	COM	MIC	6	5	2002	2006
OH	Columbiana	390292001	40.620278	-80.580833	POP	URB	COM	NEI	20	1	1998	1998
OH	Cuyahoga	390350038	41.476944	-81.681944	HIC	URB	IND	NEI	4	9	1997	2006
OH	Cuyahoga	390350045	41.471667	-81.657222	POP	URB	IND	NEI	4	10	1997	2006
OH	Cuyahoga	390350060	41.493955	-81.678542	POP	URB	COM	NEI	4	10	1997	2006
OH	Cuyahoga	390350065	41.446389	-81.661944	HIC	URB	RES	NEI	5	9	1998	2006
ОН	Cuyahoga	390356001	41.504722	-81.623889	POP	SUB	COM	NEI	6	6	1997	2002

											Years	S
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
ОН	Franklin	390490004	39.992222	-83.041667	HIC	SUB	COM	NEI	5	3	1997	1999
ОН	Franklin	390490034	40.0025	-82.994444	POP	URB	COM	NEI	4	9	1997	2006
ОН	Gallia	390530002	38.944167	-82.112222	POP	SUB	RES	NEI	10	5	2002	2006
ОН	Hamilton	390610010	39.214931	-84.690723	POP	RUR	IND	NEI	5	9	1998	2006
ОН	Hamilton	390612003	39.228889	-84.448889	HIC	SUB	IND	NEI	3	1	1997	1997
ОН	Jefferson	390810016	40.362778	-80.615556	POP	URB	COM	NEI	10	4	1999	2002
ОН	Jefferson	390810017	40.366104	-80.615002	HIC	URB	COM	NEI	3	3	2004	2006
ОН	Jefferson	390811001	40.321944	-80.606389	HIC	URB	IND	MID	6	6	1998	2003
ОН	Lake	390850003	41.673056	-81.4225	UNK	SUB	RES	NEI	5	10	1997	2006
ОН	Lake	390853002	41.7225	-81.241944	HIC	SUB	COM	MID	16	10	1997	2006
ОН	Lawrence	390870006	38.520278	-82.666667	POP	SUB	RES	NEI	8	9	1998	2006
ОН	Lorain	390930017	41.368056	-82.110556	POP	URB	COM	NEI	6	3	2001	2003
ОН	Lorain	390930026	41.471667	-82.143611	POP	SUB	IND	NEI	5	6	1997	2002
ОН	Lorain	390931003	41.365833	-82.108333	HIC	URB	COM	NEI	9	3	1997	1999
ОН	Lucas	390950008	41.663333	-83.476667	HIC	URB	IND	NEI	8	7	1998	2006
ОН	Lucas	390950024	41.644167	-83.546667	POP	URB	IND	NEI	8	8	1999	2006
ОН	Mahoning	390990009	41.098333	-80.651944	HIC	URB	COM	NEI	6	3	1997	1999
ОН	Mahoning	390990013	41.096111	-80.658611	GEN	URB	RES	NEI	6	7	2000	2006
ОН	Meigs	391051001	39.037778	-82.045556	POP	SUB	RES	URB	4	10	1997	2006
ОН	Montgomery	391130025	39.758333	-84.2	HIC	URB	COM	NEI	3	7	1997	2003
ОН	Morgan	391150003	39.631667	-81.673056	HIC	RUR	AGR	URB	5	9	1997	2005
ОН	Morgan	391150004	39.634221	-81.670038	SRC	RUR	AGR	URB	4	1	2006	2006
ОН	Scioto	391450013	38.754167	-82.9175	HIC	SUB	IND	MID	10	10	1997	2006
ОН	Scioto	391450020	38.609048	-82.822911	HIC	RUR	FOR	NEI	4	2	2005	2006
ОН	Scioto	391450022	38.588034	-82.834973	UPW	RUR	IND	NEI	4	2	2005	2006
ОН	Stark	391510016	40.827778	-81.378611	HIC	SUB	RES	NEI	5	7	1997	2003
ОН	Summit	391530017	41.063333	-81.468611	HIC	SUB	IND	NEI	4	10	1997	2006
ОН	Summit	391530022	41.080278	-81.516389	POP	URB	COM	NEI	3	10	1997	2006
ОН	Tuscarawas	391570003	40.516389	-81.476389	POP	URB	IND	URB	5	6	1997	2002
ОН	Tuscarawas	391570006	40.511416	-81.639149	POP	RUR	RES	NEI	10	3	2004	2006
OK	Cherokee	400219002	35.85408	-94.985964	REG	RUR	RES	NEI	3	4	2001	2005
OK	Kay	400710602	36.705328	-97.087656	UNK	URB	RES		4	8	1997	2005
OK	Kay	400719003	36.662778	-97.074444	POP	RUR	RES	NEI	3	2	2002	2003

											Year	s
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
OK	Kay	400719010	36.956222	-97.03135	GEN	RUR	AGR	NEI	3	2	2004	2005
OK	Mayes	400979014	36.228408	-95.249943	GEN	RUR	AGR	NEI	3	1	2005	2005
OK	Muskogee	401010167	35.793134	-95.302235	SRC	RUR	COM	NEI	5	9	1997	2005
OK	Oklahoma	401090025	35.553056	-97.623611	POP	SUB	RES	URB	4	4	1999	2002
OK	Oklahoma	401091037	35.614131	-97.475083	POP	SUB	RES	URB	4	2	2004	2005
OK	Ottawa	401159004	36.922222	-94.838889	UNK	RUR	RES	NEI		3	2001	2004
OK	Tulsa	401430175	36.149877	-96.011664	UNK	SUB	IND	NEI	4	9	1997	2005
OK	Tulsa	401430235	36.126945	-95.998941	SRC	URB	IND	MID	4	9	1997	2005
OK	Tulsa	401430501	36.16127	-96.015784	UNK	URB	COM			6	2000	2005
PA	Allegheny	420030002	40.500556	-80.071944	POP	SUB	RES	NEI	6	8	1997	2006
PA	Allegheny	420030010	40.445577	-80.016155	POP	URB	COM	URB	4	9	1998	2006
PA	Allegheny	420030021	40.413611	-79.941389	POP	SUB	RES	NEI	6	7	1997	2006
PA	Allegheny	420030031	40.443333	-79.990556	POP	URB	COM	NEI	13	3	1997	1999
PA	Allegheny	420030032	40.414444	-79.942222	UNK	SUB	RES		5	2	1997	1998
PA	Allegheny	420030064	40.323611	-79.868333	POP	SUB	RES	NEI	8	10	1997	2006
PA	Allegheny	420030067	40.381944	-80.185556	GEN	RUR	RES	NEI	9	9	1997	2006
PA	Allegheny	420030116	40.473611	-80.077222	POP	SUB	RES	NEI	5	7	1997	2005
PA	Allegheny	420031301	40.4025	-79.860278	HIC	SUB	RES	NEI	9	4	1997	2000
PA	Allegheny	420033003	40.318056	-79.881111	POP	SUB	IND		5	7	1997	2005
PA	Allegheny	420033004	40.305	-79.888889	UNK	SUB	RES		8	4	1997	2000
PA	Beaver	420070002	40.56252	-80.503948	REG	RUR	AGR	REG	3	10	1997	2006
PA	Beaver	420070004	40.635575	-80.230605	HIC	URB	IND	NEI	4	2	1997	1998
PA	Beaver	420070005	40.684722	-80.359722	POP	RUR	AGR	URB	3	10	1997	2006
PA	Beaver	420070014	40.747796	-80.316442	POP	URB	RES	URB	4	10	1997	2006
PA	Berks	420110009	40.320278	-75.926667	HIC	SUB	RES	NEI	4	9	1997	2005
PA	Berks	420110100	40.335278	-75.922778	UNK	URB	COM		4	2	1997	1998
PA	Blair	420130801	40.535278	-78.370833	POP	SUB	IND	NEI	6	10	1997	2006
PA	Bucks	420170012	40.107222	-74.882222	POP	SUB	RES	NEI	2	10	1997	2006
PA	Cambria	420210011	40.309722	-78.915	HIC	URB	COM	NEI	12	10	1997	2006
PA	Centre	420270100	40.811389	-77.877028	POP	RUR	AGR	NEI	3	3	2004	2006
PA	Dauphin	420430401	40.245	-76.844722	HIC	RUR	COM	NEI	4	10	1997	2006
PA	Delaware	420450002	39.835556	-75.3725	HIC	URB	IND	NEI	4	10	1997	2006
PA	Delaware	420450109	39.818715	-75.413973	UNK	URB	IND			3	1997	1999

											Years	s
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
PA	Erie	420490003	42.14175	-80.038611	HIC	SUB	COM	NEI	4	10	1997	2006
PA	Indiana	420630004	40.56333	-78.919972	POP	RUR	COM	NEI	3	2	2005	2006
PA	Lackawanna	420692006	41.442778	-75.623056	HIC	SUB	RES	NEI	4	10	1997	2006
PA	Lancaster	420710007	40.046667	-76.283333	HIC	SUB	IND	NEI	4	10	1997	2006
PA	Lawrence	420730015	40.995848	-80.346442	POP	SUB	IND	NEI	4	10	1997	2006
PA	Lehigh	420770004	40.611944	-75.4325	POP	SUB	COM	NEI	3	10	1997	2006
PA	Luzerne	420791101	41.265556	-75.846389	POP	SUB	RES	NEI	4	9	1997	2005
PA	Lycoming	420810100	41.2508	-76.9238	POP	URB	RES	URB	3.5	5	2002	2006
PA	Lycoming	420810403	41.246111	-76.989722	POP	URB	COM	NEI	8	4	1997	2000
PA	Mercer	420850100	41.215014	-80.484779	POP	URB	COM	NEI	3	9	1997	2006
PA	Montgomery	420910013	40.112222	-75.309167	POP	SUB	RES	NEI	4	10	1997	2006
PA	Northampton	420950025	40.628056	-75.341111	POP	SUB	COM	NEI	3	9	1998	2006
PA	Northampton	420950100	40.676667	-75.216667	UNK	SUB	IND		3	2	1997	1998
PA	Northampton	420958000	40.692224	-75.237156	POP	SUB	RES	NEI	4	7	2000	2006
PA	Perry	420990301	40.456944	-77.165556	GEN	RUR	UNK	REG	4	10	1997	2006
PA	Philadelphia	421010004	40.008889	-75.097778	POP	URB	RES	NEI	7	8	1997	2004
PA	Philadelphia	421010022	39.916667	-75.188889	HIC	URB	IND	NEI	7	2	1997	1998
PA	Philadelphia	421010024	40.076389	-75.011944	UNK	SUB	IND		4	2	1997	1998
PA	Philadelphia	421010027	40.010556	-75.151944	UNK	URB	MOB		5	2	1997	1998
PA	Philadelphia	421010029	39.957222	-75.173056	POP	URB	COM	NEI	11	8	1997	2004
PA	Philadelphia	421010047	39.944722	-75.166111	POP	URB	RES	NEI	4	2	1997	1998
PA	Philadelphia	421010048	39.991389	-75.080833	UNK	RUR	RES		5	2	1997	1998
PA	Philadelphia	421010055	39.922517	-75.186783	POP	URB	RES	NEI	4	1	2005	2005
PA	Philadelphia	421010136	39.9275	-75.222778	POP	URB	RES	NEI	4	7	1997	2004
PA	Schuylkill	421070003	40.820556	-76.212222	POP	RUR	RES	NEI	4	9	1998	2006
PA	Warren	421230003	41.857222	-79.1375	HIC	SUB	RES	NEI	4	10	1997	2006
PA	Warren	421230004	41.844722	-79.169722	HIC	RUR	FOR	NEI	4	10	1997	2006
PA	Washington	421250005	40.146667	-79.902222	POP	SUB	COM	NEI	2	10	1997	2006
PA	Washington	421250200	40.170556	-80.261389	POP	SUB	RES	NEI	4	10	1997	2006
PA	Washington	421255001	40.445278	-80.420833	REG	RUR	AGR	REG	4	10	1997	2006
PA	Westmoreland	421290008	40.304694	-79.505667	POP	SUB	COM	URB	4	9	1998	2006
PA	York	421330008	39.965278	-76.699444	HIC	SUB	RES	NEI	4	10	1997	2006
RI	Providence	440070012	41.825556	-71.405278	POP	URB	COM	NEI	20	10	1997	2006

											Years	s
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
RI	Providence	440071005	41.878333	-71.378889	HIC	URB	RES	NEI	6	1	1997	1997
RI	Providence	440071009	41.823611	-71.411667	HIC	URB	COM	NEI	3	10	1997	2006
SC	Aiken	450030003	33.342226	-81.788731	HIC	SUB	RES	URB	4.02	2	1997	1998
SC	Barnwell	450110001	33.320344	-81.465537	SRC	RUR	FOR	URB	3.1	10	1997	2006
SC	Charleston	450190003	32.882289	-79.977538	POP	URB	COM	NEI	4.3	10	1997	2006
SC	Charleston	450190046	32.941023	-79.657187	SRC	RUR	FOR	REG	4	8	1997	2006
SC	Georgetown	450430006	33.362014	-79.294251	SRC	URB	IND	NEI	2.13	7	1997	2006
SC	Greenville	450450008	34.838814	-82.402918	POP	URB	COM	NEI	4	9	1997	2006
SC	Greenville	450450009	34.899141	-82.31307	WEL	SUB	RES	NEI	4	2	2005	2006
SC	Lexington	450630008	34.051017	-81.15495	SRC	SUB	COM	NEI	3.35	9	1997	2006
SC	Oconee	450730001	34.805261	-83.2377	REG	RUR	FOR	REG	4.3	9	1997	2006
SC	Orangeburg	450750003	33.29959	-80.442218	SRC	RUR	FOR	NEI	3.2	1	2003	2003
SC	Richland	450790007	34.093959	-80.962304	OTH	SUB	COM	NEI	3	7	1999	2006
SC	Richland	450790021	33.81468	-80.781135	GEN	RUR	FOR	URB	4.42	4	2002	2005
SC	Richland	450791003	34.024497	-81.036248	POP	URB	COM	MID	4	10	1997	2006
SC	Richland	450791006	33.817902	-80.826596	GEN	RUR	FOR	MIC	5	2	1997	1999
SD	Custer	460330132	43.5578	-103.4839	REG	RUR	FOR	REG	3.35	2	2005	2006
SD	Jackson	460710001	43.74561	-101.941218	GEN	RUR	AGR	REG	3	2	2005	2006
SD	Minnehaha	460990007	43.537626	-96.682001	POP	URB	RES	NEI	4	3	2004	2006
TN	Anderson	470010028	36.027778	-84.151389	UNK	SUB	RES		3	8	1997	2006
TN	Blount	470090002	35.775	-83.965833	HIC	RUR	COM	MID	4	8	1997	2006
TN	Blount	470090006	35.768056	-83.976667	HIC	SUB	RES	MID	4	8	1997	2006
TN	Blount	470090101	35.63149	-83.943512	GEN	RUR	FOR	REG	10	1	1999	1999
TN	Bradley	470110102	35.283164	-84.759371	UNK	URB	RES			8	1997	2006
TN	Coffee	470310004	35.582222	-86.015556	UNK	RUR	AGR		4	1	1998	1998
TN	Davidson	470370011	36.205	-86.744722	POP	URB	RES	NEI	13	10	1997	2006
TN	Hawkins	470730002	36.366944	-82.977778	UNK	RUR	AGR		1	6	1998	2004
TN	Humphreys	470850020	36.051944	-87.965	UNK	RUR	AGR		4	8	1997	2006
TN	McMinn	471070101	35.29733	-84.75076	HIC	SUB	AGR	NEI	4	8	1997	2005
TN	Montgomery	471250006	36.520056	-87.394167	UNK	RUR	IND	NEI	3	10	1997	2006
TN	Montgomery	471250106	36.504529	-87.396675	HIC	RUR	RES	MID	4	10	1997	2006
TN	Polk	471390003	35.026111	-84.384722	POP	SUB	COM	NEI	8	9	1997	2005
TN	Polk	471390007	34.988333	-84.371667	POP	URB	COM	NEI	1	9	1997	2005

											Years	S
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
TN	Polk	471390008	34.995833	-84.368333	UNK	RUR	RES		3	3	1998	2000
TN	Polk	471390009	34.989722	-84.383889	UNK	RUR	IND		4	3	1997	2000
TN	Roane	471450009	35.947222	-84.522222	UNK	SUB	RES		4	6	1998	2005
TN	Shelby	471570034	35.0434	-90.0136	HIC	SUB	RES	NEI	3	4	2002	2005
TN	Shelby	471570043	35.087778	-90.025278	HIC	SUB	COM	NEI	3	2	1997	1998
TN	Shelby	471570046	35.272778	-89.961389	POP	SUB	IND	URB		10	1997	2006
TN	Shelby	471571034	35.087222	-90.133611	UNK	RUR	AGR	MID	3	10	1997	2006
TN	Stewart	471610007	36.389722	-87.633333	OTH	RUR	AGR		3	7	1997	2005
TN	Sullivan	471630007	36.534804	-82.517078	HIC	SUB	RES	NEI	3	9	1998	2006
TN	Sullivan	471630009	36.513971	-82.560968	HIC	RUR	RES	NEI	3	10	1997	2006
TN	Sumner	471651002	36.341667	-86.398333	OTH	RUR	AGR		3	7	1997	2004
TX	Cameron	480610006	25.892509	-97.493824	HIC	URB	COM	NEI		3	1998	2000
TX	Dallas	481130069	32.819952	-96.860082	POP	URB	COM	NEI	6	10	1997	2006
TX	Ellis	481390015	32.436944	-97.025	HIC	SUB	AGR	NEI	4	9	1998	2006
TX	Ellis	481390016	32.482222	-97.026944	GEN	SUB	AGR	NEI	4	7	1998	2006
TX	Ellis	481390017	32.473611	-97.0425	OTH	RUR	RES			1	2005	2005
TX	El Paso	481410037	31.768281	-106.501253	POP	URB	COM	NEI	3	9	1998	2006
TX	El Paso	481410053	31.758504	-106.501023	HIC	URB	COM	NEI	5	8	1999	2006
TX	El Paso	481410058	31.893928	-106.425813	POP	URB	RES	NEI	5	5	2001	2005
TX	Galveston	481670005	29.385236	-94.931526	HIC	URB	RES	NEI		2	2005	2006
TX	Galveston	481671002	29.398611	-94.933333	HIC	SUB	RES	NEI	5	7	1997	2003
TX	Gregg	481830001	32.37871	-94.711834	GEN	RUR	RES	NEI	4	6	2000	2005
TX	Harris	482010046	29.8275	-95.283611	POP	SUB	RES	NEI	4	8	1997	2006
TX	Harris	482010051	29.623611	-95.473611	SRC	SUB	RES	NEI	4	8	1997	2006
TX	Harris	482010059	29.705833	-95.281111	HIC	SUB	RES	NEI	6	1	1997	1997
TX	Harris	482010062	29.625833	-95.2675	POP	SUB	RES	NEI	5	9	1997	2006
TX	Harris	482010070	29.735129	-95.315583	GEN	SUB	RES	NEI	11	6	2001	2006
TX	Harris	482011035	29.733713	-95.257591	POP	SUB	IND	NEI	6	9	1997	2006
TX	Harris	482011050	29.583032	-95.015535	HIC	SUB	RES	MID	11	5	2002	2006
TX	Jefferson	482450009	30.036446	-94.071073	HIC	SUB	RES	NEI	6.31	10	1997	2006
TX	Jefferson	482450011	29.89403	-93.987898	SRC	URB	IND	NEI	4	10	1997	2006
TX	Jefferson	482450020	30.06607	-94.077383	SRC	URB	IND	NEI	5	8	1998	2006
TX	Kaufman	482570005	32.564969	-96.31766	HIC	SUB	COM	NEI	5	6	2001	2006

											Years	S
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
TX	Nueces	483550025	27.76534	-97.434272	POP	URB	RES	NEI	4	9	1997	2005
TX	Nueces	483550026	27.832409	-97.555381	HIC	URB	RES	NEI	6	8	1998	2005
TX	Nueces	483550032	27.804482	-97.431553	POP	SUB	RES		4	8	1998	2005
UT	Cache	490050004	41.731111	-111.8375	POP	URB	COM		4	3	2003	2005
UT	Davis	490110001	40.886389	-111.882222	POP	SUB	COM		3	6	1997	2002
UT	Davis	490110004	40.902967	-111.884467	POP	SUB	RES	NEI	4	2	2004	2005
UT	Salt Lake	490350012	40.8075	-111.921111	UNK	SUB	IND		4	6	1999	2004
UT	Salt Lake	490351001	40.708611	-112.094722	HIC	SUB	RES	NEI	6	9	1997	2005
UT	Salt Lake	490352004	40.736389	-112.210278	HIC	RUR	IND			7	1997	2003
VT	Chittenden	500070003	44.478889	-73.211944	HIC	URB	COM	NEI	4	3	1997	1999
VT	Chittenden	500070014	44.4762	-73.2106	POP	URB	COM	MID		1	2004	2004
VT	Rutland	500210002	43.608056	-72.982778	POP	URB	COM	NEI	4	7	1997	2005
VA	Charles	510360002	37.343294	-77.260034	HIC	SUB	RES	NEI	5	10	1997	2006
VA	Fairfax	510590005	38.893889	-77.465278	POP	RUR	AGR	NEI	4	9	1997	2006
VA	Fairfax	510590018	38.7425	-77.0775	UNK	SUB	RES		4	1	1997	1997
VA	Fairfax	510591004	38.868056	-77.143056	UNK	SUB	COM		11	4	1997	2000
VA	Fairfax	510591005	38.837517	-77.163231	POP	SUB	RES			4	2003	2006
VA	Fairfax	510595001	38.931944	-77.198889	UNK	SUB	RES		4	9	1998	2006
VA	Madison	511130003	38.521944	-78.436111	UNK	RUR	FOR			3	2000	2003
VA	Roanoke	511611004	37.285556	-79.884167	HIC	SUB	RES	NEI	4	10	1997	2006
VA	Rockingham	511650002	38.389444	-78.914167	POP	RUR	AGR	NEI	7	6	1998	2003
VA	Rockingham	511650003	38.47732	-78.81904	POP	SUB	COM	NEI	6	2	2005	2006
VA	Alexandria City	515100009	38.810833	-77.044722	POP	URB	RES	NEI	10	10	1997	2006
VA	Hampton City	516500004	37.003333	-76.399167	HIC	SUB	RES	NEI	4	10	1997	2006
VA	Norfolk City	517100023	36.850278	-76.257778	POP	URB	COM	NEI	5	8	1997	2004
VA	Richmond City	517600024	37.562778	-77.465278	HIC	URB	COM	NEI	5	8	1999	2006
WA	Clallam	530090010	48.113333	-123.399167	UNK	SUB	RES		4	1	1997	1997
WA	Clallam	530090012	48.0975	-123.425556	UNK	SUB	RES	NEI	5	5	1999	2004
WA	King	530330057	47.563333	-122.3406	HIC	SUB	IND	NEI	11	2	1997	1998
WA	King	530330080	47.568333	-122.308056	POP	URB	RES	URB	5	4	2001	2004
WA	Pierce	530530021	47.281111	-122.374167	HIC	SUB	RES	NEI	5	1	1997	1997
WA	Pierce	530530031	47.2656	-122.3858	POP	SUB	IND	NEI	5	1	1997	1997
WA	Skagit	530570012	48.493611	-122.551944	UNK	SUB	RES		5	1	1997	1997

											Year	s
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ⁴	Height	n	First	Last
WA	Skagit	530571003	48.486111	-122.549444	UNK	RUR	IND		3	1	1997	1997
WA	Snohomish	530610016	47.983333	-122.209722	UNK	URB	COM		4	1	1997	1997
WA	Whatcom	530730011	48.750278	-122.482778	UNK	URB	IND		12	1	1998	1998
WV	Brooke	540090005	40.341023	-80.596635	POP	SUB	IND	NEI	4	10	1997	2006
WV	Brooke	540090007	40.389655	-80.586235	POP	RUR	RES	NEI	4	10	1997	2006
WV	Cabell	540110006	38.424133	-82.4259	POP	SUB	COM	NEI	13.6	10	1997	2006
WV	Greenbrier	540250001	37.819444	-80.5125	UNK	RUR	AGR		4	1	1997	1997
WV	Hancock	540290005	40.529021	-80.576067	POP	SUB	RES	URB	4	10	1997	2006
WV	Hancock	540290007	40.460138	-80.576567	POP	RUR	RES	URB		10	1997	2006
WV	Hancock	540290008	40.61572	-80.56	POP	SUB	RES	NEI	5	10	1997	2006
WV	Hancock	540290009	40.427372	-80.592318	POP	SUB	RES	NEI		10	1997	2006
WV	Hancock	540290011	40.394583	-80.612017	POP	SUB	RES	NEI		10	1997	2006
WV	Hancock	540290014	40.43552	-80.600579	POP	SUB	RES	MID		7	1997	2003
WV	Hancock	540290015	40.618353	-80.540616	POP	URB	RES	URB	4	10	1997	2006
WV	Hancock	540290016	40.411944	-80.601667	HIC	SUB	RES		4	7	1997	2003
WV	Hancock	540291004	40.421539	-80.580717	HIC	SUB	RES	NEI	3	10	1997	2006
WV	Kanawha	540390004	38.343889	-81.619444	POP	SUB	COM	NEI	8	2	1997	1998
WV	Kanawha	540390010	38.3456	-81.628317	POP	URB	COM	URB	13	6	2001	2006
WV	Kanawha	540392002	38.416944	-81.846389	HIC	SUB	IND	NEI	4	1	1997	1997
WV	Marshall	540511002	39.915961	-80.733858	POP	SUB	RES	URB	4	10	1997	2006
WV	Monongalia	540610003	39.649367	-79.920867	POP	SUB	COM	URB	4.6	10	1997	2006
WV	Monongalia	540610004	39.633056	-79.957222	UNK	SUB	RES			4	1997	2000
WV	Monongalia	540610005	39.648333	-79.957778	UNK	SUB	RES	URB	10.7	9	1997	2005
WV	Ohio	540690007	40.12043	-80.699265	HIC	SUB	RES	NEI	8	6	1997	2002
WV	Wayne	540990002	38.39186	-82.583923	POP	RUR	IND	NEI	4	6	1997	2002
WV	Wayne	540990003	38.390278	-82.585833	HIC	RUR	RES	NEI	3	8	1997	2005
WV	Wayne	540990004	38.380278	-82.583889	HIC	RUR	RES	NEI	3	8	1997	2005
WV	Wayne	540990005	38.372222	-82.588889	HIC	RUR	RES	NEI	3	8	1997	2005
WV	Wood	541071002	39.323533	-81.552367	POP	SUB	IND	URB	4	10	1997	2006
WI	Brown	550090005	44.516667	-87.993889	POP	URB	RES	NEI	11	7	1997	2005
WI	Dane	550250041	43.100833	-89.357222	POP	URB	RES	NEI	5	2	1997	1998
WI	FOR	550410007	45.56498	-88.80859	GEN	RUR	FOR	REG	6	2	2004	2005
WI	Marathon	550730005	45.028333	-89.652222	HIC	RUR	FOR	MID	5	3	1997	1999

											Years	S
State	County	Monitor ID	Latitude	Longitude	Objective ¹	Setting ²	Land Use ³	Scale ^⁴	Height	n	First	Last
WI	Milwaukee	550790007	43.047222	-87.920278	POP	URB	COM	NEI	7	4	1997	2000
WI	Milwaukee	550790026	43.061111	-87.9125	POP	URB	COM	NEI	9	4	2002	2005
WI	Milwaukee	550790041	43.075278	-87.884444	HIC	URB	RES	NEI	7	4	1997	2001
WI	Oneida	550850996	45.645278	-89.4125	UNK	URB	IND		6	9	1997	2005
WI	Sauk	551110007	43.435556	-89.680278	GEN	RUR	FOR	REG	6	1	2003	2003
WI	Vilas	551250001	46.048056	-89.653611	GEN	RUR	FOR	REG	15	1	2003	2003
WI	Wood	551410016	44.3825	-89.819167	POP	URB	RES	NEI	7	2	1998	1999
WY	Campbell	560050857	44.277222	-105.375	SRC	RUR	IND	NEI	4	3	2002	2004
PR	Barceloneta	720170003	18.436111	-66.580556	UNK	RUR	RES		3	5	1997	2005
PR	Bayamon	720210004	18.412778	-66.132778	HIC	SUB	IND	NEI		6	1997	2004
PR	Bayamon	720210006	18.416667	-66.150833	POP	SUB	IND	NEI	3	7	1997	2005
PR	Catano	720330004	18.430556	-66.142222	UNK	SUB	RES		4	7	1997	2005
PR	Catano	720330007	18.444722	-66.116111	POP	URB	RES	NEI	2	1	2002	2002
PR	Catano	720330008	18.440028	-66.127076	POP	URB	COM			1	2005	2005
PR	Catano	720330009	18.449964	-66.149043	POP	URB	RES			1	2005	2005
PR	Guayama	720570009	17.966844	-66.188014	SRC	RUR	COM	NEI	4	4	2002	2005
PR	Salinas	721230001	17.963002	-66.254749	SRC	RUR	AGR			1	2004	2004
VI	St Croix	780100006	17.706944	-64.780556	HIC	RUR	IND	NEI	4	5	1998	2004
VI	St Croix	780100011	17.719167	-64.775	HIC	RUR	IND	NEI	4	5	1997	2004
VI	St Croix	780100013	17.7225	-64.776667	POP	SUB	RES	NEI		5	1999	2004
VI	St Croix	780100014	17.734444	-64.783333	POP	RUR	AGR	NEI	4	5	1999	2004
VI	St Croix	780100015	17.741667	-64.751944	SRC	RUR	AGR	NEI	4	4	2000	2004

Notes:

Objectives are POP=Population Exposure; HIC=Highest Concentration; SRC=Source Oriented; GEN=General/Background; REG=Regional Transport; OTH=Other; UNK=Unknown; UPW=Upwind Background; WEL=Welfare Related Impacts
 Settings are R=Rural; U=Urban and Center City; S=Suburban
 Land Uses are AGR=Agricultural; COM=Commercial; IND=Industrial; FOR=Forest; RES=Residential; UNK=Unknown; DES=Desert; MOB=Mobile.
 Scales are NEI=Neighborhood; MID=Middle; URB=URBAN; REG=Regional; MIC=Micro

Table A.1-4. Population density, concentration variability, and total SO_2 emissions associated with ambient monitors in the broader SO_2 monitoring network.

				Population Re	esiding within	:	Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
AL	Colbert	010330044	2195	7954	25394	62838	low	С	а	50041
AL	Jackson	010710020	1902	8137	19317	29686	low	С	b	45357
AL	Jefferson	010731003	76802	196682	344386	489181	hi	b	b	6478
AL	Lawrence	010790003	3952	28674	73092	91057	low	b	b	8937
AL	Mobile	010970028	5966	7758	17087	39111	low	С	С	66130
AL	Mobile	010972005	3017	18106	52682	111608	low	b	а	1187
AL	Montgomery	011011002	45389	156786	213606	259730	mod	а	а	3650
AR	Pulaski	051190007	67784	178348	270266	334649	hi	а	а	20
AR	Pulaski	051191002	45800	109372	230200	310362	mod	а	а	20
AR	Union	051390006	21877	29073	32652	36340	mod	b	а	2527
AZ	Gila	040070009	7801	14076	17280	17633	low	b	b	
AZ	Gila	040071001	1359	1359	3098	5401	low	С	С	18438
AZ	Maricopa	040130019	197458	613618	1036233	1447648	hi	а	b	186
AZ	Maricopa	040133002	144581	490123	980730	1612687	hi	а	а	185
AZ	Maricopa	040133003	91955	340325	829051	1518806	hi	а	а	180
AZ	Pima	040191011	111215	354473	561487	639921	hi	а	а	3119
AZ	Pinal	040212001	4375	7679	9577	10125	low	С	а	
CA	Alameda	060010010	236320	532827	841443	1342267	hi	а	а	369
CA	Contra Costa	060130002	136288	303088	445297	598861	hi	b	а	15056
CA	Contra Costa	060130006	119088	231479	471471	968983	hi	b	а	5032
CA	Contra Costa	060130010	29809	123220	403137	685185	mod	а	а	17834
CA	Contra Costa	060131001	53051	181259	321500	610171	hi	b	а	19592
CA	Contra Costa	060131002	4033	39708	117118	173196	low	а	а	79
CA	Contra Costa	060131003	146336	256417	420619	856435	hi	а	а	5032
CA	Contra Costa	060131004	125350	233220	433669	876585	hi	а	а	5032
CA	Contra Costa	060132001	34743	155226	433934	807706	mod	а	а	17834
CA	Contra Costa	060133001	64019	152758	303597	478310	hi	b	а	8105
CA	Imperial	060250005	27033	31895	56234	84405	mod	b	С	7
CA	Los Angeles	060371002	167653	827729	2001363	3286038	hi	а	а	51
CA	Los Angeles	060371103	378843	1618324	3027507	4530714	hi	а	а	551

				Population Re	esiding within:		Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
CA	Los Angeles	060374002	240505	913176	1850549	3218392	hi	а	b	5869
CA	Los Angeles	060375001	276378	890302	2071144	3561110	hi	а	а	6282
CA	Los Angeles	060375005	94836	652173	1628468	2848126	hi	а	а	2304
CA	Orange	060591003	200253	744882	1303743	1829713	hi	а	а	68
CA	Riverside	060658001	78757	360234	734267	1141466	hi	а	а	299
CA	Sacramento	060670002	92433	328190	645533	916197	hi	а	а	5
CA	Sacramento	060670006	132584	472019	866437	1180898	hi	а	а	58
CA	San Bernardino	060710012	6720	17620	29756	69717	low	а	а	8
CA	San Bernardino	060710014	58937	114149	193928	224008	hi	а	а	251
CA	San Bernardino	060710306	59772	114149	193046	224008	hi	а	а	251
CA	San Bernardino	060711234	0	0	1911	1911	low	а	а	290
CA	San Bernardino	060712002	89732	314392	650533	1142460	hi	а	а	203
CA	San Bernardino	060714001	40799	114888	174610	219525	mod	а	а	32
CA	San Diego	060730001	168237	528890	866015	1177835	hi	а	а	21
CA	San Diego	060731007	169117	616102	1097387	1449106	hi	а	а	34
CA	San Diego	060732007	9376	15849	218480	452120	low	а	а	21
CA	San Francisco	060750005	433367	827164	1227784	1729715	hi	а	а	399
CA	San Luis Obispo	060791005	4725	56677	85064	152491	low	С	b	3755
CA	San Luis Obispo	060792001	39236	55657	61709	121393	mod	а	а	3755
CA	San Luis Obispo	060792004	2135	34056	113260	162669	low	b	С	3755
CA	San Luis Obispo	060794002	0	51508	95245	141786	low	b	b	3755
CA	Santa Barbara	060830008	655	1678	17486	67965	low	а	а	118
CA	Santa Barbara	060831012	0	0	960	3201	low	а	а	1109
CA	Santa Barbara	060831013	6617	41576	59590	89777	low	а	а	1109
CA	Santa Barbara	060831015	0	0	2391	17826	low	а	а	18
CA	Santa Barbara	060831016	0	0	4034	17826	low	а	а	18
CA	Santa Barbara	060831019	0	0	4689	17826	low	а	а	18
CA	Santa Barbara	060831020	39222	71015	117832	170206	mod	а	а	118
CA	Santa Barbara	060831025	655	1678	11216	56132	low	а	а	118
CA	Santa Barbara	060831026	655	1678	15659	63963	low	а	а	118
CA	Santa Barbara	060831027	655	1678	13618	62298	low	b	а	118
CA	Santa Barbara	060832004	38688	49356	58271	59279	mod	а	а	1109
CA	Santa Barbara	060832011	55496	105491	170865	181894	hi	а	а	118

				Population Re	esiding within:	<u> </u>	Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
CA	Santa Barbara	060834003	0	0	8430	51692	low	а	а	1109
CA	Santa Cruz	060870003	0	6016	51831	124792	low	а	а	722
CA	Solano	060950001	27872	130319	359105	620107	mod	а	а	17821
CA	Solano	060950004	102003	166693	247861	374613	hi	а	а	17763
CA	Ventura	061113001	47248	227525	401656	427503	mod	а	b	19
CO	Adams	080010007	45071	360261	903964	1344766	mod	b	b	24028
CO	Adams	080013001	81896	334611	784343	1205604	hi	b	b	23817
СО	Denver	080310002	189782	574752	1158644	1608099	hi	b	b	26354
CO	El Paso	080416001	0	24520	54194	111518	low	b	b	5010
CO	El Paso	080416004	84979	242841	368203	430076	hi	а	а	8547
СО	El Paso	080416011	97849	288563	407401	448545	hi	b	b	8547
СО	El Paso	080416018	93065	266008	388801	438812	hi	а	а	8537
CT	Fairfield	090010012	164887	291072	393358	528453	hi	b	b	4671
CT	Fairfield	090010017	30184	188214	330125	672435	mod	b	b	757
CT	Fairfield	090011123	72689	126452	191805	277225	hi	а	b	
CT	Fairfield	090012124	121109	209567	343909	476656	hi	b	b	766
CT	Fairfield	090019003	28181	151905	313449	546288	mod	b	b	5039
CT	Hartford	090031005	33414	147625	319902	484462	mod	а	b	1268
CT	Hartford	090031018	152497	329646	523045	693079	hi	а	b	113
CT	Hartford	090032006	91965	333744	510929	671515	hi	а	b	83
CT	New Haven	090090027	140329	290735	389117	529118	hi	b	b	4761
CT	New Haven	090091003	156879	293853	414381	552021	hi	b	b	5085
CT	New Haven	090091123	154781	292598	417546	557442	hi	b	b	5085
CT	New Haven	090092123	104191	189838	276310	447334	hi	а	b	430
CT	New London	090110007	58457	97870	141173	182476	hi	а	а	3898
CT	Tolland	090130003	23441	47285	78649	115317	mod	а	а	
DC	District of Columbia	110010041	216129	813665	1461563	2029936	hi	а	а	18325
DE	New Castle	100031003	68790	223079	369450	603736	hi	b	b	33133
DE	New Castle	100031007	14297	67478	178295	274942	mod	b	b	34382
DE	New Castle	100031008	5386	80025	192989	391157	low	b	b	39757
DE	New Castle	100031013	79498	221315	386624	618604	hi	b	b	33133
DE	New Castle	100032002	111236	245832	400217	624587	hi	b	b	28868
DE	New Castle	100032004	111609	245173	411000	600168	hi	b	b	59518

			I	Population Re	siding within:		Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
FL	Broward	120110010	173204	475485	953527	1459284	hi	С	а	19178
FL	Duval	120310032	81831	270954	439516	620929	hi	b	b	38010
FL	Duval	120310080	70468	288474	506828	704506	hi	b	b	38015
FL	Duval	120310081	23862	152805	305323	463770	mod	С	b	38001
FL	Duval	120310097	59980	225163	418997	600591	hi	b	b	38010
FL	Escambia	120330004	43464	133022	233520	303319	mod	b	b	43573
FL	Escambia	120330022	32534	122295	223566	291695	mod	С	b	43573
FL	Hamilton	120470015	582	1733	6459	12479	low	b	а	2264
FL	Hillsborough	120570021	90125	287073	539627	762352	hi	С	b	89751
FL	Hillsborough	120570053	54303	140247	307460	668911	hi	b	b	89830
FL	Hillsborough	120570081	5101	24672	48751	228142	low	b	b	122051
FL	Hillsborough	120570095	28554	192630	493886	719140	mod	С	b	65362
FL	Hillsborough	120570109	11493	81649	287436	509661	mod	С	b	65352
FL	Hillsborough	120571035	63839	244436	463185	764479	hi	b	b	89751
FL	Hillsborough	120574004	32134	66598	149341	346648	mod	b	а	8617
FL	Manatee	120813002	2043	18810	82190	281383	low	b	b	365
FL	Miami-Dade	120860019	54755	283528	685044	1386189	hi	а	а	235
FL	Nassau	120890005	17963	21386	38521	48316	mod	С	С	5050
FL	Nassau	120890009	8627	18803	27645	59574	low	b	b	5050
FL	Orange	120952002	85060	389159	808816	1031221	hi	b	а	46
FL	Palm Beach	120993004	54596	222249	446441	718156	hi	b	а	235
FL	Pinellas	121030023	40222	180398	488170	901428	mod	b	С	24819
FL	Pinellas	121033002	74280	310490	633807	907997	hi	b	С	24813
FL	Pinellas	121035002	58164	184586	401002	655181	hi	b	b	30797
FL	Pinellas	121035003	48341	174960	304905	492683	mod	b	b	30797
FL	Polk	121050010	1499	21899	60024	142707	low	b	а	21475
FL	Polk	121052006	8128	49090	125120	198136	low	b	b	21989
FL	Putnam	121071008	10853	21601	35511	44711	mod	b	b	29894
FL	Sarasota	121151002	78620	180672	237782	332704	hi	b	b	
FL	Sarasota	121151005	28895	140026	244918	356779	mod	b	а	
FL	Sarasota	121151006	65360	188269	295631	386824	hi	b	а	143
GA	Baldwin	130090001	7410	22059	44230	50761	low	С	b	73950
GA	Bartow	130150002	1628	15879	50084	91503	low	С	а	162418

			i	Population Re	siding within:		Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
GA	Bibb	130210012	5430	38736	102539	153254	low	b	а	2694
GA	Chatham	130510019	24119	107149	188444	220328	mod	b	b	19069
GA	Chatham	130510021	47852	121273	183343	220814	mod	b	b	19069
GA	Chatham	130511002	40337	113925	186077	222588	mod	С	b	19069
GA	Dougherty	130950006	28572	73138	101552	117779	mod	b	а	6773
GA	Fannin	131110091	3943	9432	19045	24026	low	С	b	1900
GA	Floyd	131150003	2671	22348	46960	74655	low	С	b	32455
GA	Fulton	131210048	139962	429736	806001	1253530	hi	b	b	30375
GA	Fulton	131210055	103612	409533	779857	1209013	hi	b	b	30375
GA	Glynn	131270006	22992	38643	61789	67649	mod	b	а	2464
GA	Muscogee	132150008	63822	167389	234866	254253	hi	b	а	6960
GA	Richmond	132450003	30694	124609	206847	298992	mod	b	а	20025
HI	Honolulu	150030010	24951	89592	181585	344307	mod	а	а	15617
HI	Honolulu	150030011	16119	58440	160177	277456	mod	а	а	15617
HI	Honolulu	150031001	197479	344436	483321	672198	hi	b	а	3130
HI	Honolulu	150031006	16676	66976	180191	300444	mod	b	а	15617
IA	Cerro Gordo	190330018	21247	30341	39284	45105	mod	С	С	10737
IA	Clinton	190450018	24561	37638	42404	45947	mod	b	b	9388
IA	Clinton	190450019	24561	37638	42404	45947	mod	b	С	9388
IA	Clinton	190450020	25544	36227	41370	48214	mod	b	b	9388
IA	Lee	191110006	11675	18308	24246	25010	mod	b	С	29
IA	Lee	191111007	1202	11474	20995	34036	low	b	С	208
IA	Linn	191130028	9112	77687	143283	189856	low	b	а	15400
IA	Linn	191130029	72325	146914	168250	179312	hi	b	b	15400
IA	Linn	191130031	76896	148919	170320	179312	hi	С	b	15400
IA	Linn	191130032	66674	131315	169310	183904	hi	b	а	15400
IA	Linn	191130034	63548	146044	170320	185547	hi	С	b	15400
IA	Linn	191130038	30007	108042	163636	180807	mod	С	С	15400
IA	Linn	191130039	30134	106631	160903	180968	mod	b	а	15400
IA	Muscatine	191390016	20360	27101	31886	40248	mod	С	С	31137
IA	Muscatine	191390017	11109	27101	31696	36604	mod	b	b	31054
IA	Muscatine	191390020	20360	27101	31886	40290	mod	С	С	31054
IA	Scott	191630015	90863	201277	268535	293627	hi	b	С	9415

				Population Re	siding within:		Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
IA	Scott	191630017	3486	43003	159186	245960	low	С	а	14841
IA	Van Buren	191770004	0	2252	3764	7809	low	а	b	
IA	Van Buren	191770005	994	2252	3764	6984	low	b	b	
IA	Van Buren	191770006	994	2252	3764	6984	low	а	b	
IA	Woodbury	191930018	4449	44815	92956	112802	low	b	b	36833
ID	Bannock	160050004	16523	57823	64147	69313	mod	b	С	1609
ID	Caribou	160290003	0	1351	3211	4218	low	С	b	12572
ID	Caribou	160290031	0	604	3211	3211	low	С	С	12572
ID	Power	160770011	7702	50773	64147	69313	low	b	а	1609
IL	Adams	170010006	40173	49711	54168	64300	mod	b	b	3859
IL	Champaign	170190004	91239	126127	134689	152309	hi	b	b	362
IL	Cook	170310050	162765	649556	1310508	1997666	hi	b	b	42308
IL	Cook	170310059	67237	496359	1055079	1759830	hi	b	b	36403
IL	Cook	170310063	307232	1205813	2476802	3318024	hi	b	b	23944
IL	Cook	170310064	299183	965573	1758392	2786664	hi	b	b	50763
IL	Cook	170310076	289574	1034471	2000564	2971446	hi	а	b	33488
IL	Cook	170311018	113572	617444	1657665	3102521	hi	b	b	24023
IL	Cook	170311601	23495	167647	466741	1000711	mod	b	b	45681
IL	Cook	170312001	138992	604707	1380464	2117578	hi	b	b	39578
IL	Cook	170314002	406933	1482581	2777797	3752141	hi	b	b	24553
IL	Cook	170314201	63731	232428	627873	1254146	hi	b	b	659
IL	Cook	170318003	111959	456791	1004517	1682955	hi	b	b	30075
IL	DuPage	170436001	83416	401929	787802	1266818	hi	b	b	35837
IL	La Salle	170990007	4862	26956	37974	63052	low	С	С	3561
IL	Macon	171150013	54806	92426	103292	112667	hi	b	b	13757
IL	Macoupin	171170002	0	5005	16518	19043	low	b	а	
IL	Madison	171190008	36580	84254	152472	330907	mod	b	b	67657
IL	Madison	171190017	37113	201161	536687	950679	mod	b	b	35077
IL	Madison	171191010	9382	70816	176153	323143	low	b	b	26719
IL	Madison	171193007	32393	71861	172196	353090	mod	b	b	72660
IL	Madison	171193009	27788	69631	136629	273179	mod	b	b	72512
IL	Peoria	171430024	76341	167513	232727	269180	hi	b	С	73334
IL	Randolph	171570001	5095	10038	16360	29336	low	С	b	26296

				Population Re	esiding within	:	Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy)⁴
IL	Rock Island	171610003	87160	228445	275180	296786	hi	b	а	9449
IL	Saint Clair	171630010	48405	274406	621019	999843	mod	b	b	13346
IL	Saint Clair	171631010	49630	269778	593969	973751	mod	b	b	13346
IL	Saint Clair	171631011	1148	9915	18231	27769	low	С	b	26296
IL	Sangamon	171670006	41165	123641	154447	171401	mod	С	b	10849
IL	Tazewell	171790004	32800	50160	99136	194767	mod	С	b	73270
IL	Wabash	171850001	8738	9493	13312	27993	low	С	b	127357
IL	Wabash	171851001	1069	10899	11617	21643	low	С	b	127357
L	Will	171970013	12237	66320	171777	249868	mod	b	b	46347
IN	Daviess	180270002	905	9377	21937	32380	low	b	С	65217
IN	Dearborn	180290004	11932	21347	69595	151228	mod	b	b	151052
IN	Floyd	180430004	17205	86512	201325	363262	mod	b	С	52000
IN	Floyd	180430007	65510	228353	408246	607160	hi	b	b	67211
IN	Floyd	180431004	45432	169258	351938	532952	mod	С	b	66977
IN	Fountain	180450001	788	2536	9505	19361	low	С	b	55655
IN	Gibson	180510001	792	10900	18174	30700	low	С	b	127357
IN	Gibson	180510002	6276	9493	16779	29981	low	С	С	127357
IN	Hendricks	180630001	4657	29661	66108	183728	low	С	b	
IN	Hendricks	180630002	7481	31567	79685	205437	low	b	b	147
IN	Hendricks	180630003	1776	11450	41400	79693	low	b	b	
IN	Jasper	180730002	991	8080	16959	28865	low	b	а	27494
IN	Jasper	180730003	1688	4551	12127	20725	low	b	b	27494
IN	Jefferson	180770004	11228	22061	32050	36387	mod	b	b	38198
IN	Lake	180890022	40318	152401	292371	500754	mod	b	b	50716
IN	Lake	180892008	97669	293157	745205	1339901	hi	b	b	36590
IN	LaPorte	180910005	28928	42982	60818	97304	mod	b	b	12499
IN	LaPorte	180910007	29106	54698	82651	112181	mod	b	b	9198
IN	Marion	180970042	19283	109791	306701	564512	mod	b	b	51880
IN	Marion	180970054	53595	301941	612446	863127	hi	b	b	51077
IN	Marion	180970057	79478	349455	640054	909257	hi	b	b	51077
IN	Marion	180970072	115856	380088	684608	922620	hi	b	b	51096
IN	Marion	180970073	100599	357454	585925	880596	hi	b	b	50949
IN	Morgan	181091001	4178	26279	53331	105208	low	b	С	18019

			ı	Population Re	siding within:		Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
IN	Perry	181230006	6348	13158	20298	30372	low	С	С	56262
IN	Perry	181230007	6153	15700	19228	29270	low	b	С	56262
IN	Pike	181250005	3991	7372	12598	29314	low	b	а	65217
IN	Porter	181270011	12202	44110	101993	210946	mod	b	b	39173
IN	Porter	181270017	14162	59080	118122	223900	mod	b	b	29995
IN	Porter	181270023	13645	79678	136098	256849	mod	b	b	29975
IN	Spencer	181470002	1935	4701	13255	32146	low	b	b	109391
IN	Spencer	181470010	2483	5934	14936	32405	low	b	b	60394
IN	Sullivan	181530004	1735	8313	15494	25746	low	а	а	27810
IN	Vanderburgh	181630012	45373	141869	184521	225094	mod	b	b	9032
IN	Vanderburgh	181631002	1289	30177	123286	201383	low	b	b	9032
IN	Vigo	181670018	50963	82314	98561	115726	hi	b	b	65055
IN	Vigo	181671014	25046	72089	100022	118986	mod	b	С	65055
IN	Warrick	181730002	2200	27584	60538	123354	low	b	b	109088
IN	Warrick	181731001	11943	28798	80348	155370	mod	b	b	109088
IN	Wayne	181770006	34483	51601	59606	71062	mod	b	С	12892
IN	Wayne	181770007	31811	48948	59606	72278	mod	b	С	12892
KS	Linn	201070002	1728	3741	4705	6412	low	b	а	
KS	Montgomery	201250006	9331	14142	17807	21677	low	b	b	1873
KS	Pawnee	201450001	5329	6038	6038	6038	low	а	а	
KS	Sedgwick	201730010	102842	276624	380868	426333	hi	а	а	806
KS	Sumner	201910002	1476	13125	56924	120034	low	b	а	806
KS	Trego	201950001	0	0	578	578	low	а	а	
KS	Wyandotte	202090001	63756	288005	588511	868652	hi	b	а	19433
KS	Wyandotte	202090020	41751	237368	491118	742170	mod	b	а	19433
KS	Wyandotte	202090021	61336	271585	571758	840225	hi	b	а	19427
KY	Boyd	210190015	31077	78140	124766	179511	mod	b	b	11909
KY	Boyd	210190017	34804	79205	119732	161810	mod	b	b	11933
KY	Boyd	210191003	14960	58723	117154	181371	mod	b	b	10172
KY	Campbell	210370003	67933	285451	616440	910551	hi	b	b	74986
KY	Campbell	210371001	153388	421973	754366	1016145	hi	b	b	5111
KY	Daviess	210590005	25889	70609	81162	92902	mod	b	b	60963
KY	Fayette	210670012	92980	195446	267016	309266	hi	а	b	626

				Population Re	siding within:		Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
KY	Greenup	210890007	19411	45899	85066	109294	mod	b	b	4806
KY	Hancock	210910012	3345	4280	20931	39607	low	b	b	109458
KY	Henderson	211010013	21591	35051	126144	202537	mod	b	b	9026
KY	Henderson	211010014	2594	30452	135741	194289	low	b	b	109476
KY	Jefferson	211110032	49825	208276	375535	586335	mod	b	b	86910
KY	Jefferson	211110051	13446	52332	121743	257453	mod	b	b	39110
KY	Jefferson	211111041	81560	281755	485759	676730	hi	b	b	68947
KY	Livingston	211390004	1695	8508	15337	31298	low	b	b	1775
KY	McCracken	211450001	1336	15733	28279	64951	low	b	b	61380
KY	McCracken	211451024	17904	48907	63098	83436	mod	b	а	1760
KY	McCracken	211451026	9706	42285	62036	82624	low	b	b	1760
KY	Warren	212270008	1865	8137	23083	68407	low	а	а	52
LA	Bossier	220150008	43077	149478	247738	295731	mod	а	а	153
LA	Calcasieu	220190008	12932	68406	137949	154942	mod	b	b	53630
LA	East Baton Rouge	220330009	76518	193981	321486	408305	hi	С	b	39378
LA	Ouachita	220730004	24260	87999	116037	131643	mod	а	а	2166
LA	St. Bernard	220870002	97021	407863	672107	856519	hi	b	b	7543
LA	West Baton Rouge	221210001	21249	137455	239718	366741	mod	b	b	31242
MA	Bristol	250051004	89767	169077	221707	372963	hi	b	b	44817
MA	Essex	250090005	125952	225058	376322	598605	hi	b	b	1626
MA	Essex	250091004	123377	309194	545716	906225	hi	а	b	20202
MA	Essex	250091005	109921	314258	523212	870238	hi	b	b	20170
MA	Essex	250095004	57974	128881	316108	422519	hi	а	а	1235
MA	Hampden	250130016	136483	296109	450050	532663	hi	а	b	7360
MA	Hampden	250131009	127283	278577	447646	541476	hi	b	b	2065
MA	Hampshire	250154002	5182	23547	50329	123102	low	а	b	859
MA	Middlesex	250171701	109401	512228	1210094	1773702	hi	b	b	7670
MA	Middlesex	250174003	164954	629764	1334022	1860034	hi	b	b	7254
MA	Suffolk	250250002	486825	1141656	1582622	1955479	hi	а	b	7999
MA	Suffolk	250250019	6913	437626	1118549	1681211	low	а	а	7791
MA	Suffolk	250250020	320320	899106	1461574	1895175	hi	а	а	8024
MA	Suffolk	250250021	243006	887256	1488386	1966520	hi	а	а	7921
MA	Suffolk	250250040	261273	962956	1475999	1921168	hi	b	а	7952

			i	Population Re	siding within:	<u> </u>	Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
MA	Suffolk	250250042	441455	1048879	1536036	1941989	hi	а	а	7987
MA	Suffolk	250251003	260061	829040	1436251	1951612	hi	b	b	22045
MA	Worcester	250270020	155688	248143	316330	404489	hi	а	а	690
MA	Worcester	250270023	151851	252264	318317	403312	hi	а	а	690
MD	Allegany	240010006	28416	49750	66814	79171	mod	а	а	1363
MD	Anne Arundel	240032002	40618	134276	372761	829885	mod	b	b	64947
MD	Baltimore	240053001	99648	383980	785111	1155009	hi	b	b	97428
MD	Baltimore (City)	245100018	360916	823207	1195508	1472306	hi	а	а	65129
MD	Baltimore (City)	245100036	105632	490543	1004531	1351499	hi	а	b	97338
ME	Androscoggin	230010011	46561	61938	83767	101615	mod	b	b	283
ME	Aroostook	230030009	3403	4534	6561	9030	low	b	b	90
ME	Aroostook	230030012	3403	4534	6561	9030	low	b	b	90
ME	Aroostook	230031003	3403	4534	6561	9030	low	С	b	90
ME	Aroostook	230031013	6476	6476	10298	11213	low	b	b	48
ME	Aroostook	230031018	2387	8245	15656	21187	low	b	b	772
ME	Cumberland	230050014	65123	122951	151066	187005	hi	b	b	3201
ME	Cumberland	230050027	67865	124508	153138	190157	hi	b	b	3201
ME	Oxford	230172007	5903	10118	12717	17231	low	а	а	499
MI	Delta	260410902	7503	26225	28725	31746	low	а	а	4222
MI	Genesee	260490021	94710	227235	323367	388490	hi	b	b	166
MI	Genesee	260492001	4058	17555	47495	126929	low	b	b	127
MI	Kent	260810020	122533	294283	453477	553989	hi	а	а	541
MI	Macomb	260991003	116002	549258	1171414	1769656	hi	b	b	718
MI	Missaukee	261130001	0	2308	7840	14456	low	а	а	58
MI	St. Clair	261470005	32599	64545	82832	98014	mod	b	С	1572
MI	Schoolcraft	261530001	0	0	0	1389	low	b	b	
MI	Wayne	261630001	151437	338726	682793	1135095	hi	b	b	64065
MI	Wayne	261630005	86804	350207	804947	1386398	hi	b	b	64412
MI	Wayne	261630015	98193	423093	975303	1647773	hi	b	С	34236
MI	Wayne	261630016	203577	654802	1283000	1934280	hi	b	b	34225
MI	Wayne	261630019	210099	695836	1189529	1756001	hi	b	b	31238
MI	Wayne	261630025	81534	280589	668415	1150319	hi	b	b	81
MI	Wayne	261630027	79205	384693	915619	1574294	hi	b	С	64407

				Population Re	esiding within:		Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
MI	Wayne	261630033	150194	544634	1115397	1730610	hi	b	b	34236
MI	Wayne	261630062	123532	491879	1104610	1743263	hi	b	b	34225
MI	Wayne	261630092	96517	429048	973432	1618949	hi	b	b	64407
MN	Anoka	270031002	57502	226660	496686	903982	hi	b	а	13324
MN	Carlton	270176316	9236	17582	28511	56009	low	b	а	362
MN	Dakota	270370020	3854	64533	221239	432974	low	b	b	9155
MN	Dakota	270370423	8572	101147	265053	574966	low	b	а	13685
MN	Dakota	270370439	1487	55052	218201	411081	low	b	а	8949
MN	Dakota	270370441	1487	36683	191183	384938	low	b	а	8639
MN	Dakota	270370442	2705	24656	153752	332905	low	b	а	5567
MN	Hennepin	270530954	224357	608888	1082178	1517123	hi	b	b	21921
MN	Hennepin	270530957	157024	542309	1022041	1489863	hi	b	а	18443
MN	Koochiching	270711240	6444	8075	8923	10210	low	С	а	67
MN	Ramsey	271230864	112909	599029	1052764	1510602	hi	b	а	20773
MN	Sherburne	271410003	5629	7667	35016	50427	low	а	а	26742
MN	Sherburne	271410011	5629	9806	29985	51661	low	b	а	26742
MN	Sherburne	271410012	5629	9806	29774	50884	low	а	а	26742
MN	Sherburne	271410013	0	10957	33889	58410	low	а	а	26742
MN	Washington	271630436	46665	149177	354337	679510	mod	b	b	11441
MN	Wright	271710007	5377	28368	39511	77671	low	а	а	26794
MO	Buchanan	290210009	23253	72613	87121	93365	mod	С	b	3563
MO	Buchanan	290210011	28224	75073	86317	93365	mod	b	b	3563
MO	Clay	290470025	40627	163217	366686	617013	mod	b	а	25233
MO	Greene	290770026	41036	146752	224445	256158	mod	С	b	9206
MO	Greene	290770032	96594	180831	208384	244406	hi	а	а	9206
MO	Greene	290770037	21784	110681	210953	254437	mod	С	b	9206
MO	Greene	290770040	18988	109888	210953	254437	mod	b	а	9206
MO	Greene	290770041	24455	120781	213312	256766	mod	а	а	9206
МО	Iron	290930030	1121	1121	4507	8447	low	С	С	43340
МО	Iron	290930031	0	3799	6585	8436	low	С	b	43340
МО	Jackson	290950034	84236	310816	605775	921037	hi	С	b	19433
МО	Jefferson	290990004	15049	33379	64516	124301	mod	С	С	55725
МО	Jefferson	290990014	11967	35082	61963	125932	mod	С	b	55725

			ı	Population Re	siding within:		Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
МО	Jefferson	290990017	19711	36471	60199	116882	mod	С	b	55725
МО	Jefferson	290990018	12258	41709	79196	170110	mod	С	b	32468
МО	Monroe	291370001	0	1439	2093	5612	low	а	а	
МО	Pike	291630002	645	2077	6916	11249	low	b	b	13495
МО	Platte	291650023	2159	36438	113990	238276	low	а	а	11030
МО	Saint Charles	291830010	2637	6349	34541	90953	low	b	b	47610
МО	Saint Charles	291831002	4587	95765	273147	431484	low	b	b	67735
МО	Saint Louis	291890001	95190	327257	630767	966432	hi	b	b	24466
МО	Saint Louis	291890004	61422	315539	647834	1020228	hi	b	b	22816
МО	Saint Louis	291890006	68741	235858	488837	927852	hi	b	b	190
МО	Saint Louis	291890014	48016	223506	550275	1005593	mod	b	b	265
МО	Saint Louis	291893001	117492	487564	929037	1305061	hi	b	b	10737
МО	Saint Louis	291895001	108578	358731	617042	941386	hi	b	b	66892
МО	Saint Louis	291897002	82790	336688	729925	1170973	hi	b	b	697
МО	Saint Louis	291897003	88786	383007	764342	1192267	hi	b	b	7262
МО	St. Louis City	295100007	107568	375790	678820	979578	hi	b	b	24933
МО	St. Louis City	295100072	101305	393971	726063	1097105	hi	b	b	13346
МО	St. Louis City	295100080	154740	463092	861774	1168442	hi	b	b	13502
МО	St. Louis City	295100086	145966	473923	857733	1177204	hi	b	b	13486
MS	Harrison	280470007	18607	88520	139495	181694	mod	С	b	25071
MS	Hinds	280490018	54986	171385	273630	332464	hi	b	а	256
MS	Jackson	280590006	39463	49647	65034	75787	mod	b	b	34318
MS	Lee	280810004	24421	44442	61390	74867	mod	а	а	
MT	Cascade	300132000	40281	64778	68296	70181	mod	b	b	702
MT	Cascade	300132001	42971	64778	70181	70181	mod	С	b	702
MT	Jefferson	300430903	1767	25076	47509	49340	low	b	b	234
MT	Jefferson	300430911	0	11616	36425	49340	low	С	b	234
MT	Jefferson	300430913	0	6845	27041	47509	low	С	b	234
MT	Lewis and Clark	300490702	10126	38881	49340	49340	mod	С	С	234
MT	Lewis and Clark	300490703	7706	31421	48723	49340	low	b	С	234
MT	Rosebud	300870700	2353	2353	2353	3131	low	b	а	16735
MT	Rosebud	300870701	2353	2353	3131	3131	low	b	а	16735
MT	Rosebud	300870702	0	2353	2353	3131	low	b	а	16735

				Population Re	siding within:		Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
MT	Rosebud	300870760	0	0	643	2928	low	С	а	
MT	Rosebud	300870761	0	643	3524	3524	low	b	а	
MT	Rosebud	300870762	0	0	2928	2928	low	а	а	
MT	Rosebud	300870763	0	1536	3131	3131	low	а	а	16735
MT	Yellowstone	301110016	8526	9747	14953	39121	low	b	С	
MT	Yellowstone	301110066	27389	79644	98733	107178	mod	b	С	5480
MT	Yellowstone	301110079	61645	89282	102887	114640	hi	b	а	5480
MT	Yellowstone	301110080	33774	86065	104825	108399	mod	b	b	5480
MT	Yellowstone	301110082	58256	94753	103200	106046	hi	b	а	5480
MT	Yellowstone	301110083	27620	76641	98733	109475	mod	b	b	5480
MT	Yellowstone	301110084	22577	59919	97912	110980	mod	b	b	15298
MT	Yellowstone	301111065	13350	59574	97912	110980	mod	b	b	5480
MT	Yellowstone	301112005	24420	68288	97912	109475	mod	b	b	5480
MT	Yellowstone	301112006	11205	46767	86788	110980	mod	b	С	15298
MT	Yellowstone	301112007	5391	26316	69446	104067	low	b	С	15298
NC	Alexander	370030003	7574	16738	40689	80547	low	а	а	
NC	Beaufort	370130003	1085	1762	5519	8488	low	а	а	4730
NC	Beaufort	370130004	0	1762	6616	8488	low	b	а	4730
NC	Beaufort	370130006	0	1762	6616	8488	low	b	b	4730
NC	Chatham	370370004	4146	12138	23134	72477	low	а	а	474
NC	Cumberland	370511003	32970	108671	203822	280713	mod	а	а	1477
NC	Davie	370590002	4799	16224	44277	93569	low	а	а	7795
NC	Duplin	370610002	850	6058	12866	29813	low	а	а	414
NC	Edgecombe	370650099	0	11321	25673	51492	low	а	а	325
NC	Forsyth	370670022	61669	170320	258102	325974	hi	b	b	3945
NC	Johnston	371010002	9854	32163	67759	129979	low	а	а	29
NC	Lincoln	371090004	10568	32515	62768	125735	mod	а	а	10
NC	Martin	371170001	573	5282	14427	26518	low	а	а	3426
NC	Mecklenburg	371190034	90874	276915	474624	629520	hi	b	а	1030
NC	Mecklenburg	371190041	105796	295729	494494	647110	hi	b	b	821
NC	New Hanover	371290002	2584	20636	67021	127088	low	b	а	29923
NC	New Hanover	371290006	17957	83529	145330	170260	mod	b	b	30020
NC	Northampton	371310002	12284	29917	38134	46966	mod	а	а	2416

			i	Population Re	siding within:		Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
NC	Person	371450003	2620	8081	24203	41995	low	b	b	96752
NC	Pitt	371470099	5860	10688	23742	72588	low	а	а	28
NC	Swain	371730002	3268	8992	15036	18230	low	а	а	
ND	Billings	380070002	0	0	1887	1887	low	а	а	283
ND	Billings	380070111	0	0	0	0	low	b	а	
ND	Burke	380130002	0	0	0	625	low	b	b	
ND	Burke	380130004	655	655	655	655	low	b	b	426
ND	Burleigh	380150003	49591	67377	83082	84415	mod	b	а	4592
ND	Cass	380171003	48975	134561	144878	154455	mod	b	а	771
ND	Cass	380171004	2118	91149	145789	148002	low	а	b	756
ND	Dunn	380250003	0	0	0	537	low	а	а	5
ND	McKenzie	380530002	0	596	596	596	low	а	а	210
ND	McKenzie	380530104	0	521	521	2283	low	С	а	
ND	McKenzie	380530111	0	0	2283	5771	low	С	а	823
ND	McLean	380550113	0	632	698	698	low	b	а	
ND	Mercer	380570001	3280	3280	5902	6465	low	b	b	91617
ND	Mercer	380570004	3280	4428	5902	7455	low	b	а	91617
ND	Mercer	380570102	1574	4428	5902	7455	low	b	b	91617
ND	Mercer	380570118	0	1574	6898	7455	low	b	b	91617
ND	Mercer	380570123	0	557	3837	5981	low	b	b	91617
ND	Mercer	380570124	557	557	557	3903	low	b	b	91617
ND	Morton	380590002	17925	67959	75685	84415	mod	С	С	4592
ND	Morton	380590003	10305	31348	75685	82584	mod	b	b	4592
ND	Oliver	380650002	0	0	2057	2670	low	b	b	28565
ND	Steele	380910001	0	934	934	934	low	а	а	
ND	Williams	381050103	0	1259	1259	1827	low	b	а	1605
ND	Williams	381050105	0	1259	1259	1827	low	b	С	1605
NE	Douglas	310550048	50168	209209	371395	532173	hi	С	b	31850
NE	Douglas	310550050	45166	187855	367828	525602	mod	b	а	31850
NE	Douglas	310550053	82663	264396	424100	578351	hi	С	b	31850
NE	Douglas	310550055	13902	109385	299381	473231	mod	b	а	11535
NH	Cheshire	330050007	16719	30003	39998	53389	mod	а	b	81
NH	Coos	330070019	9280	13603	14203	14928	low	b	С	638

			ı	Population Re	siding within:		Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
NH	Coos	330070022	8360	12552	14928	14928	low	b	b	638
NH	Coos	330071007	2438	2438	6025	8364	low	С	b	18
NH	Hillsborough	330110016	107911	145660	196209	270491	hi	b	b	30806
NH	Hillsborough	330110019	104650	140235	189502	266391	hi	b	b	30806
NH	Hillsborough	330110020	104650	140235	189502	266391	hi	b	b	30806
NH	Hillsborough	330111009	72131	130360	219169	438168	hi	а	а	454
NH	Hillsborough	330111010	37423	145620	333540	467236	mod	b	b	772
NH	Merrimack	330130007	27595	54309	75576	101847	mod	b	b	30833
NH	Merrimack	330131003	8787	45710	74945	138179	low	С	С	30833
NH	Merrimack	330131006	8066	35862	104656	218207	low	b	С	30833
NH	Merrimack	330131007	9351	43118	73240	98696	low	b	b	30833
NH	Rockingham	330150009	25227	48762	88743	157669	mod	b	b	13706
NH	Rockingham	330150014	25984	48762	78775	148875	mod	b	b	13706
NH	Rockingham	330150015	25227	48762	92738	152363	mod	b	b	13706
NH	Sullivan	330190003	11339	17306	34644	48414	mod	а	а	220
NJ	Atlantic	340010005	6123	33910	71617	160179	low	а	а	
NJ	Bergen	340035001	209619	973093	3404473	5751193	hi	а	b	27848
NJ	Burlington	340051001	71953	261206	561157	1133142	hi	b	b	15099
NJ	Camden	340070003	193686	806251	1761045	2534030	hi	b	b	10733
NJ	Camden	340071001	8015	46392	121996	262931	low	а	b	17
NJ	Cumberland	340110007	26454	77939	109030	160091	mod	а	b	646
NJ	Essex	340130011	209592	1133321	2811759	5933785	hi	а	b	27424
NJ	Essex	340130016	200779	1136145	2763272	5837087	hi	b	b	27638
NJ	Gloucester	340150002	32432	107924	537340	1392192	mod	b	b	26452
NJ	Hudson	340170006	158136	930071	3370494	5894707	hi	а	b	27538
NJ	Hudson	340171002	343775	1754575	5021807	8159098	hi	а	b	29856
NJ	Middlesex	340232003	95281	371119	839280	1615249	hi	а	b	1675
NJ	Morris	340273001	13515	60394	181888	361716	mod	b	b	38
NJ	Union	340390003	221266	868022	1790660	3314852	hi	а	b	23181
NJ	Union	340390004	194256	750485	1727936	3277263	hi	а	а	23146
NM	Dona Ana	350130008	10195	49347	114220	181522	mod	а	а	37
NM	Dona Ana	350130017	40832	158545	258940	387481	mod	С	b	574
NM	Eddy	350151004	12050	12050	14785	16465	mod	b	b	4233

			ı	Population Re	siding within:		Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
NM	Grant	350170001	4292	6951	21790	23982	low	С	b	263
NM	Grant	350171003	1429	5721	9904	24316	low	С	b	263
NM	Hidalgo	350230005	0	0	0	0	low	С	С	
NM	San Juan	350450008	22921	41258	51483	68906	mod	b	а	17344
NM	San Juan	350450009	2930	18431	32213	58595	low	b	а	585
NM	San Juan	350450017	0	6492	10898	10936	low	b	b	
NM	San Juan	350451005	491	2247	11772	16909	low	b	С	50191
NV	Clark	320030022	0	0	0	10778	low	а	а	178
NV	Clark	320030078	0	0	2836	2836	low	а	а	
NV	Clark	320030539	226197	557934	933583	1236711	hi	а	а	
NV	Clark	320030601	13570	22316	71616	97845	mod	а	а	
NY	Albany	360010012	108841	255221	371301	484970	hi	b	b	362
NY	Bronx	360050073	1215989	3522226	5762144	8036800	hi	а	b	27101
NY	Bronx	360050080	1278526	3040232	5159927	7489995	hi	а	b	26825
NY	Bronx	360050083	1162835	2294809	4245952	6315293	hi	а	b	6659
NY	Bronx	360050110	1205886	3444711	5621679	7878863	hi	а	а	26965
NY	Chautauqua	360130005	3605	6928	15645	22519	low	b	С	
NY	Chautauqua	360130006	14144	29535	39906	47684	mod	С	b	52177
NY	Chautauqua	360130011	3605	6928	15645	22519	low	b	С	
NY	Chemung	360150003	41915	68619	82014	101244	mod	а	а	404
NY	Erie	360290005	150194	458758	680793	839570	hi	b	b	40734
NY	Erie	360294002	80118	328976	575596	768392	hi	С	С	41722
NY	Erie	360298001	66153	237799	503575	729503	hi	b	b	40659
NY	Essex	360310003	492	2054	7005	10934	low	b	b	
NY	Franklin	360330004	0	2880	5697	11358	low	b	b	
NY	Hamilton	360410005	0	0	454	2054	low	b	С	
NY	Herkimer	360430005	2043	2043	2043	2043	low	b	С	
NY	Kings	360470011	1301071	3958499	6872002	8807020	hi	а	b	29050
NY	Kings	360470076	1173879	3316779	5595972	7596057	hi	а	b	28686
NY	Madison	360530006	806	4985	7448	17313	low	b	b	
NY	Monroe	360551004	149439	384621	579436	665760	hi	b	b	50379
NY	Monroe	360551007	129608	381741	570995	669909	hi	b	а	50379
NY	Monroe	360556001	222716	407438	582031	678777	hi	b	b	50379

				Population Re	esiding within:	<u> </u>	Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
NY	Nassau	360590005	172837	677944	1424915	2365352	hi	b	b	1806
NY	New York	360610010	1062324	3421130	6487922	8988411	hi	а	b	28873
NY	New York	360610056	1289280	3673609	6607580	8980807	hi	а	а	29021
NY	Niagara	360632008	60505	96530	176040	348603	hi	b	а	40748
NY	Onondaga	360671015	56156	207136	329787	395331	hi	а	а	3280
NY	Putnam	360790005	15437	57790	111398	223357	mod	b	С	
NY	Queens	360810097	378415	1589364	3438261	7138176	hi	а	b	8183
NY	Queens	360810124	823992	2441512	5839274	8419326	hi	b	b	8043
NY	Rensselaer	360830004	1987	5975	22806	118285	low	b	С	379
NY	Rensselaer	360831005	1222	6357	19071	69278	low	b	С	188
NY	Richmond	360850067	282277	653196	2026407	4371801	hi	а	b	24733
NY	Schenectady	360930003	100404	157970	233426	383092	hi	а	а	96
NY	Suffolk	361030002	80740	526254	950326	1417428	hi	а	b	1404
NY	Suffolk	361030009	101641	341308	551178	802861	hi	а	b	7344
NY	Ulster	361111005	755	1541	7851	10684	low	b	С	
ОН	Adams	390010001	4630	6792	15822	22444	low	b	b	19670
ОН	Allen	390030002	15401	67353	90874	114512	mod	b	b	3977
ОН	Ashtabula	390071001	11409	17288	23848	42433	mod	b	b	8655
ОН	Belmont	390133002	17529	41346	95392	120821	mod	b	С	138904
ОН	Butler	390170004	68823	163124	276076	487924	hi	b	b	9979
ОН	Butler	390171004	47209	96458	152032	287701	mod	b	b	13912
ОН	Clark	390230003	19786	66337	175311	410155	mod	b	b	2034
ОН	Clermont	390250021	7297	20144	53435	96496	low	b	b	91822
ОН	Columbiana	390290016	21336	46769	67377	101068	mod	b	b	186262
ОН	Columbiana	390290022	21336	46769	67377	101068	mod	b	С	186262
ОН	Columbiana	390292001	25779	43920	64319	92597	mod	b	b	179205
ОН	Cuyahoga	390350038	136697	547523	932680	1214114	hi	b	b	7403
ОН	Cuyahoga	390350045	151001	564795	962245	1221356	hi	b	b	7403
ОН	Cuyahoga	390350060	116933	512974	907112	1201852	hi	b	b	7403
ОН	Cuyahoga	390350065	132176	562942	968826	1244026	hi	b	b	7403
ОН	Cuyahoga	390356001	191842	529243	883601	1165619	hi	b	b	74869
ОН	Franklin	390490004	133697	467572	806703	1042146	hi	b	b	450
ОН	Franklin	390490034	157233	482749	868013	1090438	hi	b	b	450

			i	Population Re	siding within:	<u> </u>	Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
ОН	Gallia	390530002	1087	13134	30170	49474	low	b	b	190311
ОН	Hamilton	390610010	15310	124569	345879	632705	mod	b	С	92654
ОН	Hamilton	390612003	71390	325799	683493	1079723	hi	b	b	7257
ОН	Jefferson	390810016	28019	70995	96550	122094	mod	b	С	223185
ОН	Jefferson	390810017	30069	71838	96408	122094	mod	b	С	223185
ОН	Jefferson	390811001	21833	53684	91514	119322	mod	b	С	78071
ОН	Lake	390850003	48791	145694	238216	407417	mod	b	b	72266
ОН	Lake	390853002	40430	92415	141902	209471	mod	b	С	4799
ОН	Lawrence	390870006	26563	71376	94538	131453	mod	b	b	11400
ОН	Lorain	390930017	58361	129195	249878	362235	hi	b	b	495
ОН	Lorain	390930026	54867	114602	202571	298148	hi	b	b	53
ОН	Lorain	390931003	58580	124277	251182	365323	hi	b	b	495
ОН	Lucas	390950008	62606	205665	356815	487567	hi	b	b	37337
ОН	Lucas	390950024	134960	319708	466184	528531	hi	b	b	37450
ОН	Mahoning	390990009	79207	210961	293714	378289	hi	b	b	21074
ОН	Mahoning	390990013	78376	214611	294367	375287	hi	b	b	21074
ОН	Meigs	391051001	5440	15029	21812	31834	low	b	b	190311
ОН	Montgomery	391130025	123978	304826	511565	645130	hi	b	b	9652
ОН	Morgan	391150003	1122	3168	9162	22426	low	С	С	115526
ОН	Morgan	391150004	1122	3168	9871	24252	low	С	b	115526
ОН	Scioto	391450013	15699	47369	61292	77940	mod	b	b	
ОН	Scioto	391450020	4530	11216	45697	87756	low	b	С	4351
ОН	Scioto	391450022	3469	12081	40548	82103	low	b	С	4351
ОН	Stark	391510016	99075	208779	291216	350367	hi	а	b	1269
ОН	Summit	391530017	104817	292059	470747	574282	hi	b	С	11053
ОН	Summit	391530022	140332	329963	454363	570258	hi	b	b	11053
ОН	Tuscarawas	391570003	26914	40238	61526	85938	mod	b	b	2579
ОН	Tuscarawas	391570006	2710	15439	38518	72765	low	b	b	2556
OK	Cherokee	400219002	993	22584	28182	36130	low	С	а	
OK	Kay	400710602	25029	31461	31461	36740	mod	b	b	7003
OK	Kay	400719003	6614	29697	32746	35459	low	b	b	7003
OK	Kay	400719010	1123	3516	16273	20121	low	b	а	
OK	Mayes	400979014	1947	14224	26265	29243	low	а	b	19079

			ı	Population Re	siding within:		Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
OK	Muskogee	401010167	5633	39252	56271	64455	low	b	b	30011
OK	Oklahoma	401090025	78654	254952	384825	552894	hi	а	а	182
OK	Oklahoma	401091037	46197	141934	258441	459371	mod	а	а	182
OK	Ottawa	401159004	6272	22614	29716	37508	low	b	а	62
OK	Tulsa	401430175	53094	207546	357175	485641	hi	b	С	9377
OK	Tulsa	401430235	65020	235972	405434	515780	hi	b	С	9377
OK	Tulsa	401430501	46840	187023	333482	468989	mod	b	b	9377
PA	Allegheny	420030002	83332	277442	651551	961378	hi	b	b	1964
PA	Allegheny	420030010	168140	536314	842237	1114184	hi	а	b	4688
PA	Allegheny	420030021	170777	560187	921490	1142754	hi	b	b	52447
PA	Allegheny	420030031	183843	580429	877668	1145039	hi	а	b	46957
PA	Allegheny	420030032	174072	558904	922097	1144558	hi	b	b	52447
PA	Allegheny	420030064	64846	201143	520438	943781	hi	b	b	11490
PA	Allegheny	420030067	13277	86792	324154	610975	mod	а	b	1167
PA	Allegheny	420030116	96820	331624	704601	996267	hi	b	b	1964
PA	Allegheny	420031301	115432	411867	766188	1088115	hi	b	b	52100
PA	Allegheny	420033003	55221	202092	509708	944188	hi	b	С	11490
PA	Allegheny	420033004	38588	170065	461433	904760	mod	b	b	11501
PA	Beaver	420070002	3434	28961	68617	120780	low	b	b	187257
PA	Beaver	420070004	35152	104660	203430	317823	mod	а	а	41170
PA	Beaver	420070005	17292	77240	143738	224631	mod	b	С	41385
PA	Beaver	420070014	36335	82468	134467	220614	mod	b	b	44003
PA	Berks	420110009	121330	203799	250610	309553	hi	b	b	14817
PA	Berks	420110100	118553	202746	254794	310286	hi	а	b	14774
PA	Blair	420130801	44392	72996	94779	124536	mod	b	b	441
PA	Bucks	420170012	85719	324327	638218	1212911	hi	а	b	15117
PA	Cambria	420210011	50440	79710	102905	124592	hi	b	b	16779
PA	Centre	420270100	60659	76595	96267	107078	hi	а	b	4359
PA	Dauphin	420430401	86638	219394	324647	384070	hi	а	b	857
PA	Delaware	420450002	74840	237232	510590	1091830	hi	а	b	38833
PA	Delaware	420450109	59762	209503	446058	812243	hi	а	b	38470
PA	Erie	420490003	81199	150626	190212	209983	hi	а	а	4122
PA	Indiana	420630004	1110	8662	23057	57759	low	b	b	14389

				Population Re	esiding within:		Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
PA	Lackawanna	420692006	68522	144913	189515	246604	hi	а	b	66
PA	Lancaster	420710007	97205	174296	254789	344292	hi	b	b	375
PA	Lawrence	420730015	40803	57962	81815	118770	mod	b	b	28854
PA	Lehigh	420770004	133092	298181	395772	501878	hi	а	b	9143
PA	Luzerne	420791101	68639	157363	215050	265123	hi	а	b	467
PA	Lycoming	420810100	15088	60400	83910	108961	mod	b	b	83
PA	Lycoming	420810403	41897	69102	80935	103969	mod	а	b	83
PA	Mercer	420850100	40443	69465	96468	184589	mod	b	b	28
PA	Montgomery	420910013	91275	239337	706445	1623890	hi	а	b	4794
PA	Northampton	420950025	79756	173911	398867	513651	hi	а	b	12167
PA	Northampton	420950100	71422	118395	209567	317220	hi	а	b	32680
PA	Northampton	420958000	71626	133639	228524	330629	hi	b	b	32714
PA	Perry	420990301	6450	13169	26326	49400	low	b	b	
PA	Philadelphia	421010004	400078	1147634	1971579	2631448	hi	b	b	6228
PA	Philadelphia	421010022	316944	985213	1726387	2446142	hi	а	b	18834
PA	Philadelphia	421010024	197076	588104	1351349	2063868	hi	b	b	1663
PA	Philadelphia	421010027	472813	1348135	2026206	2632847	hi	а	b	6246
PA	Philadelphia	421010029	484661	1229942	1999611	2574304	hi	b	b	17550
PA	Philadelphia	421010047	410380	1153434	1989848	2573573	hi	а	b	17536
PA	Philadelphia	421010048	262592	1102727	1938877	2607877	hi	b	b	6214
PA	Philadelphia	421010055	341893	1020004	1774411	2476647	hi	а	b	18848
PA	Philadelphia	421010136	382995	985957	1718068	2381173	hi	b	b	21700
PA	Schuylkill	421070003	19152	30388	59370	100508	mod	а	b	4987
PA	Warren	421230003	14142	19940	25715	32490	mod	b	b	4890
PA	Warren	421230004	13965	18884	28805	33523	mod	b	С	4890
PA	Washington	421250005	31276	68512	111222	183285	mod	а	а	8484
PA	Washington	421250200	32125	52910	83324	118188	mod	а	b	7
PA	Washington	421255001	1359	15854	43364	126091	low	b	b	2566
PA	Westmoreland	421290008	35656	82661	148990	213978	mod	а	b	72
PA	York	421330008	85574	156166	216656	284208	hi	b	b	80487
PR	Barceloneta	720170003	29823	83433	134176	243828	mod	b	а	
PR	Bayamon	720210004	192976	679576	1002864	1292141	hi	b	b	
PR	Bayamon	720210006	208167	587003	956783	1256603	hi	b	b	

				Population Re	siding within:	1	Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
PR	Catano	720330004	154575	583552	958456	1233122	hi	b	b	
PR	Catano	720330007	95500	576841	983702	1219701	hi	b	b	
PR	Catano	720330008	99778	594607	972270	1238188	hi	b	b	
PR	Catano	720330009	110439	457427	883511	1164315	hi	b	b	
PR	Guayama	720570009	12086	49373	90444	174005	mod	а	а	
PR	Salinas	721230001	20645	31312	68199	174332	mod	b	b	
RI	Providence	440070012	223521	487990	638092	816597	hi	а	b	2228
RI	Providence	440071005	148802	390751	615465	809993	hi	b	b	2265
RI	Providence	440071009	226940	493584	646894	821476	hi	а	b	2253
SC	Aiken	450030003	752	6505	18533	55485	low	а	а	21498
SC	Barnwell	450110001	0	4022	13647	21554	low	а	а	65
SC	Charleston	450190003	40872	132716	273298	364953	mod	b	b	34934
SC	Charleston	450190046	1103	1103	9529	22255	low	b	а	
SC	Georgetown	450430006	10567	18215	22467	34357	mod	b	b	40841
SC	Greenville	450450008	70221	173012	284047	379022	hi	а	b	1067
SC	Greenville	450450009	56686	151862	279293	356410	hi	b	а	1082
SC	Lexington	450630008	42208	131361	257820	355854	mod	b	b	10433
SC	Oconee	450730001	0	2260	11136	26182	low	а	а	5
SC	Orangeburg	450750003	2904	7856	14446	24656	low	b	а	7166
SC	Richland	450790007	35872	121006	255135	353072	mod	а	а	613
SC	Richland	450790021	1666	4643	13324	33098	low	b	b	40492
SC	Richland	450791003	87097	213836	300874	396116	hi	b	а	12935
SC	Richland	450791006	1666	5435	15920	47548	low	b	а	42894
SD	Custer	460330132	0	0	3940	4686	low	b	а	
SD	Jackson	460710001	0	0	0	0	low	а	а	
SD	Minnehaha	460990007	65647	119287	138918	147218	hi	b	а	496
TN	Anderson	470010028	11872	59225	153931	292415	mod	С	b	44761
TN	Blount	470090002	28887	70731	105939	198408	mod	b	С	4263
TN	Blount	470090006	36020	72290	104178	189214	mod	b	b	4263
TN	Blount	470090101	0	12650	44702	81010	low	b	а	4263
TN	Bradley	470110102	2540	11940	46188	84762	low	b	а	5437
TN	Coffee	470310004	1286	9718	23113	35158	low	b	а	
TN	Davidson	470370011	77459	228349	410925	583532	hi	а	b	8019

			ſ	Population Re	siding within:		Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
TN	Hawkins	470730002	6748	14441	22457	39857	low	С	С	35493
TN	Humphreys	470850020	2474	6672	13621	23460	low	С	b	111597
TN	McMinn	471070101	2540	11940	37322	84929	low	b	а	5501
TN	Montgomery	471250006	21032	79399	112883	139621	mod	а	а	1330
TN	Montgomery	471250106	16569	74449	109087	138438	mod	а	а	1330
TN	Polk	471390003	1613	9042	14124	24537	low	b	а	1900
TN	Polk	471390007	2491	9432	19726	24026	low	С	b	1900
TN	Polk	471390008	2491	9432	17401	25902	low	а	а	1900
TN	Polk	471390009	2491	10239	17235	24026	low	b	а	1900
TN	Roane	471450009	8848	21677	37175	57683	low	С	а	77881
TN	Shelby	471570034	74216	277713	497847	695164	hi	а	а	21675
TN	Shelby	471570043	94449	325228	534950	751299	hi	а	b	21675
TN	Shelby	471570046	18782	113964	273306	473443	mod	b	а	3945
TN	Shelby	471571034	886	97506	277857	484234	low	b	b	21847
TN	Stewart	471610007	787	4566	8854	20362	low	b	а	16682
TN	Sullivan	471630007	28689	78826	112565	153445	mod	b	С	30097
TN	Sullivan	471630009	28254	77403	117095	151856	mod	b	С	30156
TN	Sumner	471651002	5070	38555	53602	119241	low	С	b	34373
TX	Cameron	480610006	70071	151247	160048	167993	hi	а	а	
TX	Dallas	481130069	93552	455917	991123	1609774	hi	а	а	307
TX	Ellis	481390015	6089	13876	35210	113413	low	b	b	7972
TX	Ellis	481390016	7883	18193	68740	191352	low	b	С	7972
TX	Ellis	481390017	5723	17592	50332	152699	low	С	b	7972
TX	El Paso	481410037	56009	182473	337222	522824	hi	b	b	574
TX	El Paso	481410053	49083	163206	325118	519008	mod	b	b	574
TX	El Paso	481410058	78658	126481	299419	524259	hi	b	а	614
TX	Galveston	481670005	37427	62491	98724	182464	mod	b	b	7976
TX	Galveston	481671002	38619	65658	98768	196215	mod	b	b	7976
TX	Gregg	481830001	1349	17138	52116	105781	low	С	b	66443
TX	Harris	482010046	65125	350122	756166	1283440	hi	b	а	17583
TX	Harris	482010051	123431	372470	896497	1380154	hi	b	а	26
TX	Harris	482010059	151412	475338	902121	1392348	hi	b	С	25608
TX	Harris	482010062	73770	352818	695432	1108749	hi	b	b	25677

			ı	Population Re	siding within		Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
TX	Harris	482010070	153479	511407	991134	1610993	hi	b	b	24501
TX	Harris	482011035	99581	451485	891195	1287766	hi	b	b	25635
TX	Harris	482011050	23794	83705	224120	405297	mod	а	а	11195
TX	Jefferson	482450009	33143	87386	182005	237033	mod	b	С	13807
TX	Jefferson	482450011	13164	93985	121116	140687	mod	b	С	26962
TX	Jefferson	482450020	35739	101563	177284	223336	mod	b	С	1362
TX	Kaufman	482570005	6583	9190	28396	43226	low	а	а	
TX	Nueces	483550025	99888	186846	231717	280479	hi	b	b	7954
TX	Nueces	483550026	16215	28033	92841	177008	mod	b	а	8056
TX	Nueces	483550032	48320	128230	228351	272861	mod	b	b	7954
UT	Cache	490050004	49600	64094	80592	86020	mod	а	а	5
UT	Davis	490110001	56718	82741	178141	311810	hi	b	b	2807
UT	Davis	490110004	52464	83909	154925	295333	hi	b	а	2807
UT	Salt Lake	490350012	57910	183684	370433	630857	hi	b	а	2807
UT	Salt Lake	490351001	31709	107346	260423	522228	mod	b	а	5832
UT	Salt Lake	490352004	0	4074	35159	124394	low	b	а	3735
VA	Charles	510360002	3370	32169	76679	176978	low	b	b	86717
VA	Fairfax	510590005	34561	183637	408647	687195	mod	а	b	156
VA	Fairfax	510590018	87725	293189	730360	1388941	hi	а	b	18204
VA	Fairfax	510591004	215952	660586	1410007	2092422	hi	а	а	18303
VA	Fairfax	510591005	203219	670880	1238334	1844099	hi	а	а	18405
VA	Fairfax	510595001	80603	358173	1098236	2041931	hi	а	а	17221
VA	Madison	511130003	1316	4823	13930	28417	low	b	С	7
VA	Roanoke	511611004	33161	123148	197615	235072	mod	а	а	677
VA	Rockingham	511650002	17897	58020	76316	85276	mod	а	а	277
VA	Rockingham	511650003	13821	47577	71219	92912	mod	а	а	235
VA	Alexandria City	515100009	137533	622283	1320784	1894197	hi	b	b	18293
VA	Hampton City	516500004	73011	182507	356676	601943	hi	b	b	4274
VA	Norfolk City	517100023	124263	379455	703082	871632	hi	b	b	36499
VA	Richmond City	517600024	109306	309672	524083	656099	hi	b	b	2675
VI	St Croix	780100006	0	0	0	0	low	b	С	
VI	St Croix	780100011	0	0	0	0	low	b	С	
VI	St Croix	780100013	0	0	0	0	low	С	С	

				Population Re	esiding within:	:	Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
VI	St Croix	780100014	0	0	0	0	low	С	С	
VI	St Croix	780100015	0	0	0	0	low	С	С	
VT	Chittenden	500070003	50990	89229	110853	133530	hi	b	а	6
VT	Chittenden	500070014	54166	87471	110853	133749	hi	а	а	6
VT	Rutland	500210002	21330	30052	35316	46525	mod	b	С	
WA	Clallam	530090010	17871	26073	30255	37672	mod	b	b	756
WA	Clallam	530090012	20830	27014	30036	36843	mod	b	а	756
WA	King	530330057	131605	394412	730218	1093083	hi	а	а	1203
WA	King	530330080	116769	423064	811856	1157199	hi	b	а	1203
WA	Pierce	530530021	68072	250876	548806	839357	hi	b	b	538
WA	Pierce	530530031	55628	275358	555755	820805	hi	b	а	538
WA	Skagit	530570012	3580	22573	32120	70660	low	b	b	8951
WA	Skagit	530571003	1733	21622	32120	75069	low	b	b	8951
WA	Snohomish	530610016	46071	152230	303720	432356	mod	а	а	381
WA	Whatcom	530730011	60525	83632	111425	126291	hi	а	а	4391
WI	Brown	550090005	79060	158940	201226	215144	hi	b	b	23888
WI	Dane	550250041	79610	189421	306132	353861	hi	b	b	9049
WI	Forest	550410007	1330	3913	5514	6669	low	b	а	5
WI	Marathon	550730005	5095	42173	61417	93151	low	С	а	12120
WI	Milwaukee	550790007	248317	606921	865925	1037293	hi	b	b	15753
WI	Milwaukee	550790026	214859	572784	834939	1014161	hi	b	а	15753
WI	Milwaukee	550790041	137816	455868	765734	964876	hi	b	b	15753
WI	Oneida	550850996	8351	17018	17018	23821	low	С	С	2304
WI	Sauk	551110007	2743	15039	24240	43368	low	b	а	63
WI	Vilas	551250001	934	934	8639	10755	low	а	а	
WI	Wood	551410016	19525	33790	43315	50360	mod	С	b	14245
WV	Brooke	540090005	25010	64711	92813	118070	mod	b	b	78071
WV	Brooke	540090007	30794	70187	95823	120385	mod	b	b	223185
WV	Cabell	540110006	50835	88879	125923	164495	hi	b	b	7504
WV	Greenbrier	540250001	2158	9273	18280	23902	low	а	а	
WV	Hancock	540290005	6006	23418	77160	125873	low	b	b	176554
WV	Hancock	540290007	14924	44311	83167	128126	mod	b	b	148520
WV	Hancock	540290008	24095	49351	63727	91485	mod	b	b	186262

				Population Re	esiding within	:	Analy	sis Bins		Emissions
State	County	Monitor ID	5km	10km	15km	20km	Population ¹	COV ²	GSD ³	(tpy) ⁴
WV	Hancock	540290009	20946	61117	90717	115283	mod	b	b	148404
WV	Hancock	540290011	31890	76198	95992	115162	mod	b	b	223185
WV	Hancock	540290014	22857	58620	89998	120724	mod	b	b	148520
WV	Hancock	540290015	20793	45848	65851	102031	mod	b	b	186262
WV	Hancock	540290016	19278	70483	96151	114992	mod	b	b	169771
WV	Hancock	540291004	24761	63677	91977	115615	mod	b	b	169771
WV	Kanawha	540390004	46977	80511	120631	164476	mod	b	b	6115
WV	Kanawha	540390010	48231	83340	123101	172217	mod	b	b	6115
WV	Kanawha	540392002	21694	61059	111812	164912	mod	b	b	113491
WV	Marshall	540511002	13403	32048	55054	95735	mod	b	С	138904
WV	Monongalia	540610003	43902	65672	80405	98315	mod	b	b	91984
WV	Monongalia	540610004	44079	63708	80385	98966	mod	b	b	97887
WV	Monongalia	540610005	46591	61019	77800	99544	mod	b	b	96396
WV	Ohio	540690007	20818	60048	91967	126981	mod	b	b	74781
WV	Wayne	540990002	17320	62645	124477	178576	mod	а	b	10172
WV	Wayne	540990003	17320	59989	123349	177744	mod	b	b	10172
WV	Wayne	540990004	16553	54251	122072	179815	mod	b	b	10172
WV	Wayne	540990005	13314	48330	114824	173807	mod	b	b	10172
WV	Wood	541071002	24917	70324	104458	128127	mod	b	b	48124
WY	Campbell	560050857	3288	11413	23902	25752	low	b	b	10106

Notes:

Population bins: low (≤10,000); mid (10,001 to 50,000); hi (>50,000) using population within 5 km of ambient monitor.

COV bins: a (≤100%); b (>100 to ≤200); c (>200).

GSD bins: a (≤2.17); b (>2.17 to ≤2.94); c (>2.94).

Sum of emissions within 20 km radius of ambient monitor based on 2002 NEI.

A.1.2 Analysis of SO₂ Emission Sources Surrounding Ambient Monitors

Distances of the 5-minute and 1-hour ambient monitoring sites to stationary sources emitting SO₂ were estimated using data from the 2002 National Emissions Inventory¹ (NEI). The NEI database reports emissions of SO₂ in tons per year (tpy) for 98,667 unique emission sources at various points of release. The release locations were all taken from the latitude longitude values within the NEI. First, all SO₂ emissions were summed for identical latitude and longitude entries while retaining source codes for the emissions (e.g., Standard Industrial Code (SIC), or North American Industrial Classification System (NAICS)). Therefore, any facility containing similar emission processes were summed at the stack location, resulting in 32,521 observations. These data were then screened for sources with emissions greater than 5 tpy, yielding 6,104 unique SO₂ emission sources. Locations of these stationary source emissions were compared with ambient monitoring locations using the following formula:

14
$$d = \arccos(\sin(lat_1) \times \sin(lat_2) + \cos(lat_1) \times \cos(lat_2) \times \cos(lon_2 - lon_1)) \times r$$
15 where
16 $d = \text{distance (kilometers)}$
17 $lat_1 = \text{latitude of a monitor (radians)}$
18 $lat_2 = \text{latitude of source emission (radians)}$
19 $lon_1 = \text{longitude of monitor (radians)}$
20 $lon_2 = \text{longitude of source emission (radians)}$
21 $r = \text{approximate radius of the earth (or 6,371 km)}$

Location data for monitors and sources provided in the AQS and NEI data bases were given in units of degrees therefore, these were first converted to radians by dividing by $180/\pi$. For each monitor, source emissions within 20 km of the monitor were retained.

Table A.1-5 contains the summary of the distance of stationary source emissions to each of the monitors in the broader SO₂ monitoring network. There were varying numbers of sources emitting >5 tpy of SO₂ and located within a 20 km radius for many of the monitors. Some of the monitors are point-source oriented, that is, sited to measure ambient concentrations potentially

⁻

¹ 2002 National Emissions Inventory Data & Documentation. Office of Air Quality Planning and Standards, Research Triangle Park, NC. Available at: http://www.epa.gov/ttn/chief/net/2002inventory.html.

- 1 influenced by a specific single sources (e.g., Missouri monitor IDs 290210009, 290210011,
- 2 290930030), or by several sources (e.g., Pennsylvania monitor IDs 420030021, 420030031) of
- 3 varying emission strength. A few of the monitors contained no source emissions >5 tpy (e.g.,
- 4 Iowa monitor IDs 191770005, 191770006).

Table A.1-5. Distance of ambient SO_2 monitors (all used in analysis) to stationary sources emitting > 5 tons of SO_2 per year, within a 20 kilometer distance of monitoring site, and SO_2 emissions associated with those stationary sources.

		SO ₂ e	missions (tpy) from	sources	within 20	km of mo	nitor ¹	Dista	nce of I	nonitor	to SO ₂ 6	mission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
010330044	3	16680	28821	30	30	51	49960	49960	6.0	0.7	5.5	5.5	5.9	6.8	6.8
010710020	3	15119	25004	98	98	1276	43983	43983	5.7	2.4	3.1	3.1	6.2	7.8	7.8
010731003	43	151	227	5	5	38	786	982	11.4	5.5	1.1	1.2	13.1	16.8	19.8
010790003	5	1787	3416	6	6	58	7852	7852	8.4	1.7	5.5	5.5	8.6	9.8	9.8
010970028	10	6613	13057	14	14	214	38917	38917	7.5	5.8	1.4	1.4	6.1	19.1	19.1
010972005	9	132	154	5	5	72	440	440	7.7	2.1	4.3	4.3	7.2	10.1	10.1
011011002	4	913	1183	180	180	403	2663	2663	12.7	7.2	4.5	4.5	13.2	19.9	19.9
040070009	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
040071001	2	9219	10723	1637	1637	9219	16801	16801	1.3	0.5	0.9	0.9	1.3	1.6	1.6
040130019	8	23	19	10	10	19	69	69	11.0	3.6	5.6	5.6	10.2	16.9	16.9
040133002	9	21	19	10	10	14	69	69	10.8	6.6	1.9	1.9	11.2	19.2	19.2
040133003	9	20	19	6	6	14	69	69	12.5	4.7	5.5	5.5	12.4	18.5	18.5
040191011	1	3119		3119	3119	3119	3119	3119	6.1	0.0	6.1	6.1	6.1	6.1	6.1
040212001	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
051190007	1	20		20	20	20	20	20	6.3	0.0	6.3	6.3	6.3	6.3	6.3
051191002	1	20		20	20	20	20	20	13.7	0.0	13.7	13.7	13.7	13.7	13.7
051390006	6	421	689	8	8	22	1689	1689	7.7	4.2	1.9	1.9	8.8	11.7	11.7
060010010	7	53	66	5	5	14	187	187	8.9	5.4	1.2	1.2	9.0	16.8	16.8
060130002	15	1004	2007	6	6	58	7009	7009	13.5	2.8	9.6	9.6	13.3	17.8	17.8
060130006	9	559	789	5	5	38	1829	1829	13.0	6.4	2.5	2.5	15.0	19.3	19.3
060130010	15	1189	1977	6	6	419	7009	7009	8.3	5.6	1.6	1.6	6.4	19.7	19.7
060131001	13	1507	2036	6	6	793	7009	7009	10.1	5.9	0.2	0.2	9.9	19.8	19.8
060131002	3	26	21	6	6	25	48	48	11.7	1.4	10.1	10.1	12.4	12.7	12.7
060131003	9	559	789	5	5	38	1829	1829	12.6	4.8	5.4	5.4	12.2	19.0	19.0
060131004	9	559	789	5	5	38	1829	1829	12.8	5.7	4.1	4.1	13.5	19.1	19.1
060132001	15	1189	1977	6	6	419	7009	7009	8.8	5.4	2.3	2.3	6.7	19.9	19.9
060133001	16	507	1104	6	6	48	4337	4337	9.8	6.1	0.7	0.7	11.4	18.6	18.6
060250005	1	7		7	7	7	7	7	18.0	0.0	18.0	18.0	18.0	18.0	18.0
060371002	3	17	7	10	10	17	24	24	6.8	2.1	4.7	4.7	6.9	8.8	8.8
060371103	15	37	36	7	7	29	119	119	13.8	5.1	6.3	6.3	12.5	19.8	19.8
060374002	32	183	313	5	5	46	1503	1503	10.4	5.2	4.1	4.1	9.3	19.5	19.5
060375001	31	203	342	5	5	61	1503	1503	13.4	5.9	3.7	3.7	16.4	19.6	19.6

		SO ₂ e	missions ((tpy) from	sources	within 2	0 km of mo	nitor ¹	Dista	nce of r	nonitor	to SO ₂ 6	emission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
060375005	12	192	332	6	6	33	1119	1119	9.1	5.9	2.3	2.3	6.0	19.8	19.8
060591003	7	10	5	5	5	7	18	18	13.9	5.7	5.3	5.3	15.6	19.7	19.7
060658001	4	75	76	17	17	50	181	181	16.8	4.7	9.8	9.8	18.8	19.6	19.6
060670002	1	5		5	5	5	5	5	14.8	0.0	14.8	14.8	14.8	14.8	14.8
060670006	1	58		58	58	58	58	58	9.7	0.0	9.7	9.7	9.7	9.7	9.7
060710012	1	8		8	8	8	8	8	11.9	0.0	11.9	11.9	11.9	11.9	11.9
060710014	2	126	132	32	32	126	219	219	8.0	3.0	5.9	5.9	8.0	10.1	10.1
060710306	2	126	132	32	32	126	219	219	8.1	3.3	5.7	5.7	8.1	10.4	10.4
060711234	3	97	85	6	6	110	175	175	4.9	5.8	1.3	1.3	1.9	11.7	11.7
060712002	2	102	112	22	22	102	181	181	13.2	2.9	11.2	11.2	13.2	15.3	15.3
060714001	1	32		32	32	32	32	32	6.5	0.0	6.5	6.5	6.5	6.5	6.5
060730001	1	21		21	21	21	21	21	4.0	0.0	4.0	4.0	4.0	4.0	4.0
060731007	3	11	9	5	5	7	21	21	12.9	1.3	11.8	11.8	12.5	14.4	14.4
060732007	1	21		21	21	21	21	21	16.4	0.0	16.4	16.4	16.4	16.4	16.4
060750005	6	66	83	5	5	39	224	224	13.3	6.2	1.8	1.8	15.2	18.3	18.3
060791005	7	536	1369	6	6	24	3642	3642	1.0	0.2	8.0	8.0	1.0	1.5	1.5
060792001	7	536	1369	6	6	24	3642	3642	10.5	0.2	10.2	10.2	10.4	10.9	10.9
060792004	7	536	1369	6	6	24	3642	3642	2.5	0.1	2.3	2.3	2.6	2.7	2.7
060794002	7	536	1369	6	6	24	3642	3642	18.4	0.1	18.3	18.3	18.5	18.5	18.5
060830008	3	39	43	10	10	18	89	89	9.7	6.2	2.8	2.8	11.3	14.9	14.9
060831012	2	554	357	302	302	554	807	807	16.5	0.1	16.4	16.4	16.5	16.5	16.5
060831013	2	554	357	302	302	554	807	807	14.1	0.1	14.1	14.1	14.1	14.2	14.2
060831015	1	18		18	18	18	18	18	15.6	0.0	15.6	15.6	15.6	15.6	15.6
060831016	1	18		18	18	18	18	18	15.2	0.0	15.2	15.2	15.2	15.2	15.2
060831019	1	18		18	18	18	18	18	13.7	0.0	13.7	13.7	13.7	13.7	13.7
060831020	3	39	43	10	10	18	89	89	7.3	8.2	2.0	2.0	3.2	16.7	16.7
060831025	3	39	43	10	10	18	89	89	10.9	8.9	0.8	0.8	14.2	17.7	17.7
060831026	3	39	43	10	10	18	89	89	9.9	8.0	0.9	0.9	12.6	16.2	16.2
060831027	3	39	43	10	10	18	89	89	10.3	7.7	1.7	1.7	12.8	16.4	16.4
060832004	2	554	357	302	302	554	807	807	4.2	0.1	4.2	4.2	4.2	4.2	4.2
060832011	3	39	43	10	10	18	89	89	10.4	8.4	3.9	3.9	7.5	20.0	20.0
060834003	2	554	357	302	302	554	807	807	16.4	0.1	16.4	16.4	16.4	16.5	16.5
060870003	1	722		722	722	722	722	722	8.0	0.0	0.8	0.8	0.8	8.0	8.0
060950001	13	1371	2071	6	6	790	7009	7009	7.1	3.3	2.1	2.1	7.5	13.8	13.8
060950004	12	1480	2124	6	6	791	7009	7009	13.0	4.9	5.5	5.5	13.6	19.6	19.6
061113001	2	9	3	7	7	9	11	11	10.4	5.1	6.8	6.8	10.4	14.0	14.0

		SO ₂ e	missions (tpy) from	sources	within 2	km of mo	nitor¹	Dista	nce of r	nonitor	to SO ₂ e	emission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
080010007	24	1001	3352	8	8	25	15958	15958	9.8	6.1	2.4	2.4	8.2	19.7	19.7
080013001	20	1191	3657	8	8	28	15958	15958	8.3	5.8	1.6	1.6	5.9	19.8	19.8
080310002	24	1098	3356	6	6	28	15958	15958	9.2	4.5	3.9	3.9	7.0	19.5	19.5
080416001	3	1670	2857	7	7	34	4969	4969	6.2	8.6	0.8	0.8	1.8	16.1	16.1
080416004	3	2849	4920	7	7	10	8530	8530	13.0	3.9	10.7	10.7	10.9	17.6	17.6
080416011	3	2849	4920	7	7	10	8530	8530	9.9	7.6	2.5	2.5	9.6	17.7	17.7
080416018	2	4268	6026	7	7	4268	8530	8530	6.8	0.5	6.5	6.5	6.8	7.2	7.2
090010012	11	425	1198	5	5	21	4024	4024	6.1	4.9	2.1	2.1	4.8	19.7	19.7
090010017	3	252	423	5	5	11	741	741	9.6	6.4	5.7	5.7	6.2	17.0	17.0
090011123	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
090012124	4	192	366	5	5	10	741	741	7.4	6.0	2.3	2.3	6.5	14.4	14.4
090019003	10	504	1257	5	5	10	4024	4024	13.2	5.1	4.0	4.0	14.0	19.5	19.5
090031005	28	45	106	5	5	12	522	522	14.2	3.6	3.0	3.0	14.2	19.9	19.9
090031018	7	16	9	5	5	15	30	30	7.7	6.3	1.9	1.9	3.7	18.4	18.4
090032006	6	14	7	5	5	15	25	25	4.5	5.1	0.5	0.5	1.8	11.4	11.4
090090027	8	595	1388	5	5	32	4012	4012	6.3	7.3	1.0	1.0	3.1	18.6	18.6
090091003	9	565	1302	5	5	43	4012	4012	7.4	8.2	0.7	0.7	2.6	19.7	19.7
090091123	9	565	1302	5	5	43	4012	4012	7.3	8.2	8.0	0.8	2.7	19.7	19.7
090092123	5	86	96	9	9	28	198	198	9.0	5.7	0.8	0.8	8.9	15.2	15.2
090110007	6	650	1088	7	7	110	2755	2755	8.4	3.0	3.3	3.3	8.7	12.7	12.7
090130003	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
100031003	34	975	1619	5	5	112	6720	6720	9.0	5.2	1.5	1.5	8.1	19.8	19.8
100031007	11	3126	6528	15	15	103	19923	19923	10.5	2.2	9.1	9.1	9.8	16.2	16.2
100031008	24	1657	4554	5	5	60	19923	19923	10.9	6.9	2.2	2.2	13.9	19.7	19.7
100031013	34	975	1619	5	5	112	6720	6720	9.1	4.8	2.8	2.8	8.3	18.9	18.9
100032002	36	802	1272	5	5	97	5051	5051	10.2	6.2	1.1	1.1	9.4	19.7	19.7
100032004	39	1526	3681	5	5	116	19923	19923	10.9	6.2	1.3	1.3	11.1	19.8	19.8
110010041	13	1410	4437	7	7	24	16141	16141	11.7	6.5	0.6	0.6	11.5	19.8	19.8
120110010	8	2397	6653	17	17	41	18861	18861	11.0	6.1	5.1	5.1	7.5	19.2	19.2
120310032	14	2715	5784	5	5	287	20908	20908	9.0	4.2	1.3	1.3	9.1	18.5	18.5
120310080	15	2534	5617	5	5	257	20908	20908	12.0	4.7	1.1	1.1	13.3	19.7	19.7
120310081	13	2923	5965	5	5	317	20908	20908	7.9	4.6	1.3	1.3	6.5	15.5	15.5
120310097	14	2715	5784	5	5	287	20908	20908	9.2	4.7	3.1	3.1	7.7	19.5	19.5
120330004	6	7262	14101	6	6	330	35417	35417	9.3	4.2	4.9	4.9	8.9	14.6	14.6
120330022	6	7262	14101	6	6	330	35417	35417	7.6	4.4	2.4	2.4	8.4	12.3	12.3
120470015	3	755	1268	18	18	27	2218	2218	3.0	0.5	2.6	2.6	2.7	3.6	3.6

		SO ₂ e	missions (tpy) from	sources	within 20	km of mo	nitor¹	Dista	nce of r	nonitor		mission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
120570021	18	4986	11445	6	6	341	47103	47103	11.6	6.5	1.4	1.4	14.3	18.2	18.2
120570053	19	4728	11180	6	6	104	47103	47103	10.8	3.5	5.9	5.9	12.1	17.3	17.3
120570081	18	6781	13097	6	6	1116	47103	47103	14.4	4.5	8.1	8.1	15.1	19.6	19.6
120570095	17	3845	11285	6	6	61	47103	47103	10.1	6.2	2.5	2.5	14.2	19.3	19.3
120570109	16	4084	11610	6	6	83	47103	47103	9.9	4.0	6.7	6.7	7.4	19.9	19.9
120571035	18	4986	11445	6	6	341	47103	47103	10.6	5.8	1.6	1.6	12.9	16.3	16.3
120574004	3	2872	4949	11	11	19	8587	8587	14.2	8.5	4.4	4.4	18.9	19.3	19.3
120813002	5	73	93	6	6	9	208	208	7.2	8.3	0.7	0.7	2.2	16.5	16.5
120860019	7	34	45	5	5	12	130	130	9.6	5.8	2.6	2.6	6.9	19.1	19.1
120890005	4	1262	1594	11	11	765	3509	3509	4.5	5.0	1.1	1.1	2.5	12.0	12.0
120890009	4	1262	1594	11	11	765	3509	3509	4.2	4.6	1.1	1.1	2.4	11.0	11.0
120952002	5	9	4	5	5	10	14	14	13.8	2.8	10.1	10.1	13.6	17.6	17.6
120993004	6	39	38	5	5	32	103	103	12.0	3.1	7.0	7.0	12.0	16.7	16.7
121030023	7	3546	7041	6	6	104	18822	18822	7.4	6.4	2.3	2.3	3.7	19.6	19.6
121033002	6	4136	7521	23	23	156	18822	18822	10.3	4.2	3.5	3.5	10.0	15.4	15.4
121035002	2	15398	21767	7	7	15398	30790	30790	13.6	0.1	13.5	13.5	13.6	13.7	13.7
121035003	2	15398	21767	7	7	15398	30790	30790	9.8	4.0	7.0	7.0	9.8	12.6	12.6
121050010	9	2386	2929	6	6	1210	8587	8587	10.4	3.1	3.7	3.7	10.8	14.4	14.4
121052006	13	1691	2627	6	6	230	8587	8587	11.9	6.2	2.7	2.7	13.7	19.9	19.9
121071008	3	9965	12565	12	12	5799	24083	24083	5.8	3.4	2.6	2.6	5.6	9.3	9.3
121151002	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
121151005	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
121151006	2	71	90	7	7	71	135	135	15.8	0.8	15.2	15.2	15.8	16.4	16.4
130090001	2	36975	52282	6	6	36975	73943	73943	11.3	5.4	7.5	7.5	11.3	15.1	15.1
130150002	4	40604	80047	21	21	862	160673	160673	10.4	5.2	2.5	2.5	13.0	13.0	13.0
130210012	11	245	468	6	6	17	1576	1576	10.1	5.2	1.5	1.5	8.8	19.9	19.9
130510019	14	1362	2664	8	8	235	7969	7969	7.1	4.1	0.4	0.4	6.6	12.0	12.0
130510021	14	1362	2664	8	8	235	7969	7969	6.8	4.4	1.4	1.4	7.2	14.0	14.0
130511002	14	1362	2664	8	8	235	7969	7969	6.2	3.4	1.6	1.6	6.6	10.0	10.0
130950006	4	1693	2220	5	5	932	4905	4905	6.3	5.3	2.2	2.2	4.4	14.1	14.1
131110091	1	1900		1900	1900	1900	1900	1900	1.6	0.0	1.6	1.6	1.6	1.6	1.6
131150003	8	4057	9625	5	5	101	27594	27594	1.4	0.4	1.1	1.1	1.2	2.3	2.3
131210048	7	4339	10445	68	68	169	27993	27993	10.3	2.1	8.4	8.4	9.2	14.0	14.0
131210055	7	4339	10445	68	68	169	27993	27993	15.1	3.3	8.0	8.0	15.6	18.1	18.1
131270006	3	821	948	14	14	586	1865	1865	3.6	2.8	1.8	1.8	2.2	6.8	6.8
132150008	4	1740	3214	8	8	197	6559	6559	12.5	2.6	10.1	10.1	12.4	15.1	15.1

		SO ₂ e	missions (tpy) from	sources	within 20	km of mo	onitor¹	Dista	nce of ı	nonitor	to SO ₂ e	emission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
132450003	15	1335	2379	8	8	545	8275	8275	8.0	1.4	4.7	4.7	8.2	10.0	10.0
150030010	7	2231	2339	79	79	1566	6978	6978	5.0	4.6	2.5	2.5	3.3	15.3	15.3
150030011	7	2231	2339	79	79	1566	6978	6978	5.7	5.3	2.2	2.2	4.1	17.5	17.5
150031001	3	1043	1509	6	6	350	2774	2774	10.1	8.2	0.7	0.7	13.8	15.7	15.7
150031006	7	2231	2339	79	79	1566	6978	6978	6.1	4.8	1.8	1.8	5.0	16.5	16.5
160050004	2	804	606	376	376	804	1233	1233	1.3	0.1	1.2	1.2	1.3	1.4	1.4
160290003	13	967	2904	7	7	33	10544	10544	2.9	0.4	2.7	2.7	2.8	4.3	4.3
160290031	13	967	2904	7	7	33	10544	10544	1.4	1.1	8.0	0.8	1.2	4.9	4.9
160770011	2	804	606	376	376	804	1233	1233	8.0	0.1	0.7	0.7	0.8	8.0	8.0
170010006	4	965	614	392	392	817	1834	1834	4.8	4.5	1.9	1.9	2.9	11.5	11.5
170190004	3	121	182	10	10	21	331	331	1.8	0.9	8.0	0.8	2.3	2.4	2.4
170310050	47	900	1775	5	5	65	5951	8443	11.0	5.0	2.1	3.4	10.2	19.7	19.8
170310059	40	910	1928	5	5	65	7381	8443	7.5	5.2	1.5	1.5	5.8	19.3	19.5
170310063	23	1041	1800	5	5	17	6229	6229	11.0	6.8	0.9	0.9	9.3	19.7	19.7
170310064	50	1015	1902	5	5	51	6229	8443	14.6	4.1	3.9	6.4	16.4	19.9	19.9
170310076	36	930	1976	5	5	26	8443	8443	13.2	4.0	4.9	4.9	13.3	19.7	19.7
170311018	26	924	1721	5	5	16	6229	6229	10.7	6.8	0.5	0.5	11.6	19.8	19.8
170311601	12	3807	5540	7	7	1090	15934	15934	14.1	6.4	4.0	4.0	18.5	19.3	19.3
170312001	43	920	1807	5	5	64	6229	8443	16.5	3.2	3.4	8.4	17.7	19.3	19.9
170314002	25	982	1738	5	5	17	6229	6229	9.0	3.1	3.9	3.9	9.5	18.5	18.5
170314201	4	165	230	7	7	77	498	498	18.0	3.0	13.4	13.4	19.4	19.7	19.7
170318003	36	835	1797	5	5	70	8443	8443	8.8	2.4	2.9	2.9	8.4	14.7	14.7
170436001	12	2986	5690	6	6	17	15934	15934	16.5	5.1	1.5	1.5	18.1	19.8	19.8
170990007	4	890	1527	6	6	189	3178	3178	7.2	6.1	0.5	0.5	6.7	14.8	14.8
171150013	11	1251	2596	22	22	164	8032	8032	3.3	2.3	1.8	1.8	3.2	9.9	9.9
171170002	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
171190008	15	4510	11972	6	6	111	45960	45960	10.1	3.7	3.2	3.2	9.5	19.7	19.7
171190017	40	877	2339	6	6	117	9663	12063	9.5	6.6	0.5	0.7	11.2	19.0	19.6
171191010	28	954	2564	6	6	183	12063	12063	10.5	6.8	0.7	0.7	15.6	18.4	18.4
171193007	28	2595	8875	6	6	214	45960	45960	12.2	6.9	2.4	2.4	16.1	18.9	18.9
171193009	26	2789	9193	6	6	247	45960	45960	12.4	7.5	2.9	2.9	14.7	19.8	19.8
171430024	10	7333	11752	5	5	67	35748	35748	13.2	5.8	1.3	1.3	15.5	18.8	18.8
171570001	2	13148	18554	28	28	13148	26268	26268	6.4	0.4	6.0	6.0	6.4	6.7	6.7
171610003	10	945	1612	7	7	169	4963	4963	11.4	5.6	2.3	2.3	12.3	17.2	17.2
171630010	30	445	1152	6	6	68	6250	6250	9.3	4.1	1.3	1.3	9.6	18.5	18.5
171631010	30	445	1152	6	6	68	6250	6250	10.4	4.3	1.1	1.1	11.7	19.4	19.4

		SO ₂ e	missions (tpy) from	sources	within 20) km of mo	nitor ¹	Dista	nce of r	nonitor	to SO ₂ e	mission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
171631011	2	13148	18554	28	28	13148	26268	26268	4.0	0.6	3.6	3.6	4.0	4.4	4.4
171670006	5	2170	3169	9	9	202	7210	7210	7.3	3.6	4.9	4.9	5.6	13.5	13.5
171790004	6	12212	13311	22	22	10290	35748	35748	5.4	5.2	0.8	8.0	3.6	13.8	13.8
171850001	3	42452	25439	27097	27097	28443	71817	71817	2.9	0.1	2.8	2.8	2.9	3.1	3.1
171851001	3	42452	25439	27097	27097	28443	71817	71817	5.9	0.1	5.8	5.8	5.8	6.0	6.0
171970013	19	2439	6269	6	6	37	25224	25224	6.6	4.8	1.1	1.1	5.2	18.6	18.6
180270002	6	10869	16456	9	9	2241	41536	41536	6.3	0.6	5.8	5.8	6.0	7.3	7.3
180290004	7	21579	32930	174	174	1574	85699	85699	4.2	4.1	1.2	1.2	3.4	12.8	12.8
180430004	8	6500	10778	12	12	484	23995	23995	13.4	3.1	8.8	8.8	12.3	17.7	17.7
180430007	10	6721	10131	12	12	516	23995	23995	9.2	6.4	1.1	1.1	7.3	19.9	19.9
180431004	9	7442	10470	12	12	798	23995	23995	10.0	3.5	5.0	5.0	9.8	14.7	14.7
180450001	3	18552	32099	10	10	28	55617	55617	9.8	8.7	4.5	4.5	5.1	19.8	19.8
180510001	3	42452	25439	27097	27097	28443	71817	71817	2.0	0.1	1.8	1.8	2.0	2.1	2.1
180510002	3	42452	25439	27097	27097	28443	71817	71817	2.9	0.0	2.9	2.9	2.9	3.0	3.0
180630001	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
180630002	1	147		147	147	147	147	147	19.2	0.0	19.2	19.2	19.2	19.2	19.2
180630003	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
180730002	4	6874	1422	6085	6085	6204	9002	9002	4.3	1.0	3.5	3.5	4.0	5.8	5.8
180730003	4	6874	1422	6085	6085	6204	9002	9002	10.2	1.2	9.5	9.5	9.7	12.1	12.1
180770004	2	19099	1297	18182	18182	19099	20016	20016	4.3	0.1	4.3	4.3	4.3	4.4	4.4
180890022	50	1014	1502	5	6	188	5951	6318	14.1	4.0	0.8	1.8	14.6	19.8	19.9
180892008	39	938	1945	5	5	72	8443	8443	6.4	4.1	1.6	1.6	5.6	17.6	17.6
180910005	3	4166	4640	20	20	3301	9178	9178	9.1	9.7	0.4	0.4	7.3	19.6	19.6
180910007	2	4599	6476	20	20	4599	9178	9178	6.0	0.8	5.4	5.4	6.0	6.5	6.5
180970042	22	2358	6820	5	5	36	30896	30896	11.2	2.9	7.8	7.8	11.0	17.0	17.0
180970054	20	2554	7138	5	5	23	30896	30896	3.3	2.3	0.9	0.9	2.4	9.2	9.2
180970057	20	2554	7138	5	5	23	30896	30896	4.2	2.0	0.9	0.9	4.3	9.8	9.8
180970072	21	2433	6980	5	5	19	30896	30896	6.9	3.5	0.8	0.8	6.6	18.7	18.7
180970073	20	2547	7141	5	5	18	30896	30896	13.7	2.3	6.2	6.2	14.5	15.3	15.3
181091001	3	6006	9709	242	242	561	17216	17216	4.3	2.4	2.1	2.1	4.0	6.9	6.9
181230006	8	7033	17145	7	7	38	49028	49028	7.7	4.3	2.8	2.8	7.0	14.3	14.3
181230007	8	7033	17145	7	7	38	49028	49028	6.8	4.2	2.1	2.1	5.7	13.1	13.1
181250005	6	10869	16456	9	9	2241	41536	41536	3.0	4.7	0.9	0.9	1.1	12.7	12.7
181270011	23	1703	2266	20	20	1062	9178	9178	6.7	6.2	2.2	2.2	3.6	18.7	18.7
181270017	22	1363	1612	20	20	1029	6318	6318	5.4	5.7	2.0	2.0	2.6	17.8	17.8
181270023	21	1427	1623	23	23	1062	6318	6318	4.1	4.4	1.1	1.1	2.4	14.6	14.6

		SO ₂ e	missions (tpy) from	sources	within 20) km of mo	nitor ¹	Dista	nce of r	nonitor	to SO ₂ e	mission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
181470002	7	15627	24405	7	7	66	53196	53196	13.0	3.6	8.0	8.0	15.0	16.6	16.6
181470010	4	15099	25616	20	20	3589	53196	53196	12.3	6.6	3.3	3.3	14.0	17.9	17.9
181530004	3	9270	8089	10	10	12846	14955	14955	12.1	6.4	4.8	4.8	14.7	16.8	16.8
181630012	5	1806	2589	5	5	382	6004	6004	13.1	7.7	3.1	3.1	18.0	19.6	19.6
181631002	5	1806	2589	5	5	382	6004	6004	8.5	5.3	3.4	3.4	9.5	16.5	16.5
181670018	6	10842	25028	12	12	417	61901	61901	6.8	3.6	5.0	5.0	5.5	14.1	14.1
181671014	6	10842	25028	12	12	417	61901	61901	6.8	5.9	1.9	1.9	5.5	17.3	17.3
181730002	8	13636	16457	50	50	3559	41049	41049	2.9	0.4	2.5	2.5	3.0	3.3	3.3
181731001	8	13636	16457	50	50	3559	41049	41049	3.0	0.5	2.5	2.5	2.9	3.7	3.7
181770006	2	6446	9089	19	19	6446	12873	12873	2.1	1.4	1.1	1.1	2.1	3.1	3.1
181770007	2	6446	9089	19	19	6446	12873	12873	3.2	2.5	1.4	1.4	3.2	5.0	5.0
190330018	4	2684	3305	20	20	1934	6850	6850	3.9	3.7	0.4	0.4	3.2	8.8	8.8
190450018	2	4694	839	4101	4101	4694	5287	5287	1.4	0.9	0.7	0.7	1.4	2.0	2.0
190450019	2	4694	839	4101	4101	4694	5287	5287	1.3	1.0	0.6	0.6	1.3	2.0	2.0
190450020	2	4694	839	4101	4101	4694	5287	5287	3.4	0.6	3.0	3.0	3.4	3.8	3.8
191110006	1	29		29	29	29	29	29	3.7	0.0	3.7	3.7	3.7	3.7	3.7
191111007	2	104	105	29	29	104	179	179	13.3	6.3	8.8	8.8	13.3	17.7	17.7
191130028	7	2200	2428	12	12	1954	5480	5480	5.8	2.4	2.8	2.8	6.7	8.8	8.8
191130029	7	2200	2428	12	12	1954	5480	5480	3.8	3.1	0.5	0.5	4.0	9.2	9.2
191130031	7	2200	2428	12	12	1954	5480	5480	4.3	3.2	0.5	0.5	4.7	9.3	9.3
191130032	7	2200	2428	12	12	1954	5480	5480	3.5	2.7	0.6	0.6	3.1	8.8	8.8
191130034	7	2200	2428	12	12	1954	5480	5480	3.6	2.5	0.2	0.2	2.9	7.4	7.4
191130038	7	2200	2428	12	12	1954	5480	5480	3.9	1.9	0.6	0.6	4.2	6.2	6.2
191130039	7	2200	2428	12	12	1954	5480	5480	4.6	3.0	1.1	1.1	4.2	10.3	10.3
191390016	5	6227	6934	83	83	3790	15901	15901	8.7	6.9	2.4	2.4	7.4	19.2	19.2
191390017	4	7763	6956	463	463	7345	15901	15901	3.8	3.6	0.6	0.6	3.1	8.5	8.5
191390020	4	7763	6956	463	463	7345	15901	15901	4.9	4.4	0.9	0.9	4.0	10.4	10.4
191630015	7	1345	1810	17	17	336	4963	4963	9.5	5.0	1.1	1.1	11.7	15.1	15.1
191630017	7	2120	3515	17	17	303	8983	8983	9.6	4.2	1.1	1.1	11.2	13.6	13.6
191770004	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
191770005	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
191770006	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
191930018	4	9208	10818	15	15	7845	21127	21127	6.4	4.3	0.7	0.7	7.1	10.7	10.7
201070002	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
201250006	4	468	464	11	11	428	1006	1006	5.8	9.3	0.5	0.5	1.6	19.7	19.7
201450001	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0

		SO ₂ e	missions (tpy) from	sources	within 2	0 km of mo	nitor¹	Dista	nce of r	nonitor	to SO ₂ e	emission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
201730010	3	269	448	6	6	15	785	785	11.4	3.1	9.0	9.0	10.2	14.9	14.9
201910002	3	269	448	6	6	15	785	785	16.3	2.4	13.6	13.6	17.3	18.0	18.0
201950001	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
202090001	14	1388	2341	6	6	34	7625	7625	9.2	5.9	3.5	3.5	7.1	19.8	19.8
202090020	14	1388	2341	6	6	34	7625	7625	9.0	6.1	0.6	0.6	7.7	18.9	18.9
202090021	13	1494	2402	6	6	40	7625	7625	8.6	5.5	3.4	3.4	6.6	19.1	19.1
210190015	9	1323	2058	25	25	401	6285	6285	12.3	5.5	1.6	1.6	14.6	17.7	17.7
210190017	10	1193	1983	25	25	343	6285	6285	12.8	5.4	2.9	2.9	13.8	19.5	19.5
210191003	8	1271	2194	25	25	343	6285	6285	9.3	5.4	1.3	1.3	9.9	15.4	15.4
210370003	11	6817	20950	12	12	268	69953	69953	12.0	3.0	8.1	8.1	10.8	17.8	17.8
210371001	11	465	664	12	12	213	1848	1848	8.5	3.4	4.2	4.2	7.5	15.5	15.5
210590005	4	15241	25506	26	26	3871	53196	53196	7.4	6.8	2.2	2.2	5.5	16.5	16.5
210670012	3	209	316	12	12	42	573	573	3.2	2.2	1.2	1.2	2.7	5.6	5.6
210890007	5	961	1147	25	25	401	2589	2589	10.9	6.2	5.1	5.1	7.6	19.8	19.8
210910012	9	12162	22226	7	7	38	53196	53196	10.4	5.1	1.2	1.2	10.6	18.9	18.9
211010013	4	2256	2755	5	5	1508	6004	6004	10.2	5.5	2.0	2.0	12.7	13.3	13.3
211010014	10	10948	15581	5	5	2980	41049	41049	12.9	1.4	11.5	11.5	12.8	16.6	16.6
211110032	14	6208	8948	38	38	516	23995	23995	11.4	5.6	2.4	2.4	13.7	18.3	18.3
211110051	12	3259	5326	38	38	168	14977	14977	10.6	7.5	1.6	1.6	14.6	18.7	18.7
211111041	11	6268	9779	12	12	234	23995	23995	9.1	7.3	1.3	1.3	7.7	19.3	19.3
211390004	4	444	869	6	6	11	1747	1747	8.0	6.9	3.1	3.1	5.4	17.9	17.9
211450001	7	8769	13010	174	174	7435	37077	37077	7.5	3.4	2.0	2.0	9.4	11.2	11.2
211451024	3	587	1005	6	6	7	1747	1747	18.2	2.1	15.8	15.8	19.3	19.5	19.5
211451026	3	587	1005	6	6	7	1747	1747	15.3	2.2	12.7	12.7	16.5	16.7	16.7
212270008	1	52		52	52	52	52	52	19.1	0.0	19.1	19.1	19.1	19.1	19.1
220150008	2	77	21	62	62	77	91	91	8.7	0.1	8.6	8.6	8.7	8.8	8.8
220190008	16	3352	5531	6	6	184	18851	18851	7.6	6.1	1.2	1.2	5.8	16.7	16.7
220330009	28	1406	3913	6	6	45	18680	18680	5.8	5.6	1.5	1.5	3.2	20.0	20.0
220730004	1	2166		2166	2166	2166	2166	2166	10.1	0.0	10.1	10.1	10.1	10.1	10.1
220870002	18	419	846	8	8	52	3009	3009	8.8	4.2	0.5	0.5	7.8	19.0	19.0
221210001	28	1116	3650	6	6	33	18680	18680	5.4	4.7	2.4	2.4	3.4	18.1	18.1
230010011	9	31	41	5	5	23	140	140	6.6	4.3	1.3	1.3	6.5	13.3	13.3
230030009	1	90		90	90	90	90	90	1.9	0.0	1.9	1.9	1.9	1.9	1.9
230030012	1	90		90	90	90	90	90	1.0	0.0	1.0	1.0	1.0	1.0	1.0
230031003	1	90		90	90	90	90	90	1.3	0.0	1.3	1.3	1.3	1.3	1.3
230031013	3	16	17	5	5	7	36	36	4.7	4.5	1.4	1.4	2.8	9.9	9.9

		SO ₂ e	missions (tpy) from	sources	within 2	0 km of mo	nitor¹	Dista	nce of ı	nonitor	to SO ₂ e	emission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
230031018	4	193	233	7	7	133	499	499	8.5	5.6	0.3	0.3	10.3	13.0	13.0
230050014	12	267	628	5	5	16	2091	2091	6.1	4.8	1.2	1.2	5.0	16.8	16.8
230050027	12	267	628	5	5	16	2091	2091	6.0	4.7	8.0	8.0	4.8	16.6	16.6
230172007	2	249	344	6	6	249	492	492	1.0	0.1	1.0	1.0	1.0	1.1	1.1
240010006	2	681	685	197	197	681	1166	1166	8.9	4.0	6.0	6.0	8.9	11.7	11.7
240032002	20	3247	9622	5	5	21	39974	39974	11.9	4.5	2.7	2.7	13.3	19.9	19.9
240053001	22	4429	11101	5	5	27	39974	39974	11.9	3.3	4.6	4.6	12.1	19.2	19.2
245100018	21	3101	9402	5	5	22	39974	39974	9.1	4.6	1.4	1.4	7.6	16.7	16.7
245100036	21	4635	11331	5	5	22	39974	39974	6.6	3.3	1.6	1.6	6.8	16.0	16.0
250051004	24	1867	8085	6	6	31	39593	39593	7.5	6.7	0.1	0.1	3.8	18.9	18.9
250090005	25	65	148	6	6	26	762	762	9.6	6.6	0.3	0.3	9.2	19.9	19.9
250091004	23	878	3071	5	5	16	14132	14132	11.3	6.3	8.0	8.0	12.8	20.0	20.0
250091005	22	917	3137	5	5	16	14132	14132	11.2	6.3	0.7	0.7	11.9	18.6	18.6
250095004	14	88	197	8	8	25	762	762	8.6	4.2	0.7	0.7	10.1	14.7	14.7
250130016	34	216	907	5	5	14	5282	5282	7.6	5.2	0.5	0.5	7.4	19.2	19.2
250131009	32	65	148	5	5	13	671	671	8.4	4.7	1.7	1.7	7.4	18.9	18.9
250154002	12	72	113	6	6	29	363	363	15.8	3.4	9.1	9.1	16.8	19.7	19.7
250171701	55	139	678	5	5	15	640	5007	13.3	4.6	0.4	2.9	15.0	19.4	20.0
250174003	57	127	663	5	5	13	460	5007	12.2	4.0	0.6	5.6	12.4	19.5	19.7
250250002	62	129	639	5	5	14	640	5007	9.6	6.1	0.7	1.1	8.6	19.5	19.7
250250019	50	156	710	5	5	14	640	5007	12.0	3.8	0.7	4.2	12.0	18.1	18.4
250250020	58	138	660	5	5	15	640	5007	10.0	5.0	1.1	3.0	9.1	19.2	19.2
250250021	58	137	660	5	5	14	640	5007	10.6	4.7	1.8	3.4	9.3	19.5	20.0
250250040	59	135	654	5	5	14	640	5007	10.2	5.3	1.0	1.4	9.5	19.5	19.8
250250042	60	133	649	5	5	14	640	5007	9.4	5.8	0.5	0.7	9.1	19.1	19.3
250251003	58	380	1952	5	5	15	5007	14132	11.0	4.6	1.0	2.1	10.4	19.3	19.4
250270020	28	25	35	6	6	12	178	178	5.0	5.9	0.1	0.1	2.8	19.5	19.5
250270023	28	25	35	6	6	12	178	178	5.1	5.8	0.6	0.6	2.9	19.1	19.1
260410902	3	1407	1264	671	671	685	2867	2867	2.5	1.5	0.8	0.8	3.3	3.4	3.4
260490021	4	42	24	7	7	48	63	63	10.9	4.5	4.2	4.2	13.1	13.1	13.1
260492001	2	64	79	7	7	64	120	120	19.0	0.4	18.8	18.8	19.0	19.3	19.3
260810020	9	60	96	9	9	12	280	280	10.5	5.6	4.3	4.3	10.6	19.4	19.4
260991003	3	239	287	10	10	148	560	560	14.0	3.4	10.2	10.2	15.2	16.7	16.7
261130001	1	58		58	58	58	58	58	10.3	0.0	10.3	10.3	10.3	10.3	10.3
261470005	3	524	431	31	31	715	826	826	8.7	5.9	3.8	3.8	6.9	15.2	15.2
261530001	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0

		SO ₂ e	missions (tpy) from	sources	within 20	km of mo	nitor¹	Dista	nce of r	nonitor	to SO ₂ e	emission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
261630001	36	1780	5390	5	5	109	30171	30171	10.9	4.0	5.4	5.4	9.6	20.0	20.0
261630005	34	1894	5529	5	5	117	30171	30171	6.1	5.4	1.2	1.2	4.4	19.0	19.0
261630015	32	1070	2436	5	5	117	8913	8913	5.5	4.2	1.5	1.5	3.8	17.9	17.9
261630016	31	1104	2469	5	5	121	8913	8913	9.0	2.7	3.6	3.6	8.6	17.0	17.0
261630019	23	1358	2828	10	10	121	8913	8913	17.3	4.5	3.7	3.7	18.9	19.8	19.8
261630025	6	13	14	5	5	9	42	42	14.8	2.4	11.2	11.2	15.2	17.8	17.8
261630027	33	1952	5605	5	5	121	30171	30171	5.5	5.2	0.4	0.4	3.9	19.7	19.7
261630033	32	1070	2436	5	5	117	8913	8913	5.0	4.5	0.4	0.4	4.2	15.8	15.8
261630062	31	1104	2469	5	5	121	8913	8913	9.0	2.9	3.1	3.1	8.5	17.2	17.2
261630092	33	1952	5605	5	5	121	30171	30171	5.4	5.1	0.9	0.9	3.0	19.9	19.9
270031002	10	1332	4067	5	5	11	12904	12904	14.3	4.4	4.7	4.7	15.5	18.9	18.9
270176316	5	72	84	5	5	26	190	190	13.7	6.8	2.2	2.2	16.4	19.7	19.7
270370020	15	610	1015	9	9	104	3071	3071	11.9	6.1	0.9	0.9	12.4	19.6	19.6
270370423	17	805	1227	9	9	205	3821	3821	11.6	5.5	0.4	0.4	12.4	18.8	18.8
270370439	14	639	1047	9	9	79	3071	3071	12.5	5.8	2.6	2.6	13.1	20.0	20.0
270370441	12	720	1114	9	9	79	3071	3071	11.6	5.7	1.6	1.6	12.6	19.0	19.0
270370442	11	506	873	9	9	54	2869	2869	12.2	5.5	2.3	2.3	13.8	18.8	18.8
270530954	24	913	2729	5	5	48	12904	12904	10.9	5.8	0.6	0.6	12.2	19.0	19.0
270530957	21	878	2877	5	5	12	12904	12904	10.7	5.3	0.9	0.9	10.9	18.3	18.3
270711240	1	67		67	67	67	67	67	0.3	0.0	0.3	0.3	0.3	0.3	0.3
271230864	27	769	2540	5	5	46	12904	12904	12.0	4.8	3.9	3.9	12.6	19.7	19.7
271410003	1	26742		26742	26742	26742	26742	26742	4.9	0.0	4.9	4.9	4.9	4.9	4.9
271410011	1	26742		26742	26742	26742	26742	26742	1.7	0.0	1.7	1.7	1.7	1.7	1.7
271410012	1	26742		26742	26742	26742	26742	26742	1.8	0.0	1.8	1.8	1.8	1.8	1.8
271410013	1	26742		26742	26742	26742	26742	26742	1.1	0.0	1.1	1.1	1.1	1.1	1.1
271630436	21	545	997	7	7	104	3821	3821	11.1	5.6	0.9	0.9	11.4	18.4	18.4
271710007	2	13397	18873	52	52	13397	26742	26742	11.8	6.5	7.2	7.2	11.8	16.3	16.3
280470007	2	12535	17718	6	6	12535	25064	25064	6.5	7.9	0.9	0.9	6.5	12.1	12.1
280490018	5	51	45	15	15	30	128	128	7.3	5.4	3.2	3.2	6.0	16.6	16.6
280590006	7	4903	10049	12	12	96	27207	27207	7.0	4.9	3.3	3.3	5.4	17.3	17.3
280810004	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
290210009	1	3563		3563	3563	3563	3563	3563	0.7	0.0	0.7	0.7	0.7	0.7	0.7
290210011	1	3563		3563	3563	3563	3563	3563	0.9	0.0	0.9	0.9	0.9	0.9	0.9
290470025	15	1682	2364	6	6	105	7625	7625	11.9	4.8	2.8	2.8	10.8	18.2	18.2
290770026	4	2302	2728	5	5	1772	5657	5657	8.2	4.5	2.3	2.3	9.3	11.8	11.8
290770032	4	2302	2728	5	5	1772	5657	5657	7.8	3.9	3.0	3.0	8.5	11.0	11.0

		SO ₂ e	missions ((tpy) from	sources	within 20) km of mo	onitor ¹	Dista	nce of r	nonitor	to SO ₂ 6	mission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
290770037	4	2302	2728	5	5	1772	5657	5657	9.2	6.1	0.6	0.6	11.0	14.0	14.0
290770040	4	2302	2728	5	5	1772	5657	5657	9.2	6.2	0.5	0.5	11.0	14.1	14.1
290770041	4	2302	2728	5	5	1772	5657	5657	8.6	5.5	1.2	1.2	9.7	13.8	13.8
290930030	1	43340		43340	43340	43340	43340	43340	1.7	0.0	1.7	1.7	1.7	1.7	1.7
290930031	1	43340		43340	43340	43340	43340	43340	4.6	0.0	4.6	4.6	4.6	4.6	4.6
290950034	14	1388	2341	6	6	34	7625	7625	8.7	4.9	1.4	1.4	8.1	15.4	15.4
290990004	5	11145	10277	243	243	15223	23258	23258	9.7	7.4	0.2	0.2	11.4	17.1	17.1
290990014	5	11145	10277	243	243	15223	23258	23258	9.8	7.4	0.7	0.7	11.9	17.5	17.5
290990017	5	11145	10277	243	243	15223	23258	23258	10.2	7.1	1.6	1.6	10.6	17.3	17.3
290990018	4	8117	8927	243	243	7889	16447	16447	8.3	6.6	1.4	1.4	8.2	15.3	15.3
291370001	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
291630002	2	6747	934	6087	6087	6747	7408	7408	7.3	6.6	2.7	2.7	7.3	12.0	12.0
291650023	4	2757	3602	19	19	1693	7625	7625	17.8	1.3	16.0	16.0	18.1	19.1	19.1
291830010	1	47610		47610	47610	47610	47610	47610	1.7	0.0	1.7	1.7	1.7	1.7	1.7
291831002	15	4516	11970	6	6	136	45960	45960	12.6	3.4	4.3	4.3	13.5	17.3	17.3
291890001	14	1748	4547	8	8	35	16447	16447	14.8	4.4	6.4	6.4	15.9	19.7	19.7
291890004	9	2535	5610	8	8	13	16447	16447	14.0	3.1	9.8	9.8	15.2	18.2	18.2
291890006	7	27	48	6	6	8	136	136	14.7	4.6	8.4	8.4	15.7	19.9	19.9
291890014	8	33	47	6	6	10	136	136	11.9	6.2	3.2	3.2	11.3	19.7	19.7
291893001	29	370	1164	6	6	60	6250	6250	15.2	4.2	5.1	5.1	16.0	20.0	20.0
291895001	35	1911	7823	6	6	111	45960	45960	15.1	3.1	6.7	6.7	15.9	20.0	20.0
291897002	14	50	75	6	6	16	277	277	13.2	5.7	3.9	3.9	14.6	20.0	20.0
291897003	18	403	1461	6	6	37	6250	6250	14.1	5.4	3.5	3.5	16.2	19.4	19.4
295100007	19	1312	3936	8	8	50	16447	16447	12.5	6.0	0.5	0.5	14.0	19.6	19.6
295100072	30	445	1152	6	6	68	6250	6250	8.8	3.8	2.0	2.0	9.7	19.2	19.2
295100080	34	397	1088	6	6	61	6250	6250	10.7	4.3	0.4	0.4	10.5	19.7	19.7
295100086	32	421	1118	6	6	68	6250	6250	9.8	3.9	1.7	1.7	10.0	18.6	18.6
300132000	2	351	481	11	11	351	691	691	4.1	3.6	1.5	1.5	4.1	6.7	6.7
300132001	2	351	481	11	11	351	691	691	4.1	4.9	0.7	0.7	4.1	7.5	7.5
300430903	1	234		234	234	234	234	234	3.3	0.0	3.3	3.3	3.3	3.3	3.3
300430911	1	234		234	234	234	234	234	4.5	0.0	4.5	4.5	4.5	4.5	4.5
300430913	1	234		234	234	234	234	234	4.9	0.0	4.9	4.9	4.9	4.9	4.9
300490702	1	234		234	234	234	234	234	6.2	0.0	6.2	6.2	6.2	6.2	6.2
300490703	1	234		234	234	234	234	234	7.3	0.0	7.3	7.3	7.3	7.3	7.3
300870700	1	16735		16735	16735	16735	16735	16735	19.8	0.0	19.8	19.8	19.8	19.8	19.8
300870701	1	16735		16735	16735	16735	16735	16735	19.0	0.0	19.0	19.0	19.0	19.0	19.0

		SO ₂ e	missions ((tpy) from	sources	within 20) km of mo	nitor ¹	Dista	nce of r	nonitor	to SO ₂ 6	mission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
300870702	1	16735		16735	16735	16735	16735	16735	19.8	0.0	19.8	19.8	19.8	19.8	19.8
300870760	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
300870761	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
300870762	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
300870763	1	16735		16735	16735	16735	16735	16735	15.2	0.0	15.2	15.2	15.2	15.2	15.2
301110016	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
301110066	4	1370	1322	75	75	1135	3135	3135	3.1	0.5	2.6	2.6	3.1	3.7	3.7
301110079	4	1370	1322	75	75	1135	3135	3135	7.8	3.0	5.8	5.8	6.7	12.2	12.2
301110080	4	1370	1322	75	75	1135	3135	3135	2.4	1.8	0.9	0.9	1.9	5.0	5.0
301110082	4	1370	1322	75	75	1135	3135	3135	3.4	2.7	1.7	1.7	2.3	7.3	7.3
301110083	4	1370	1322	75	75	1135	3135	3135	3.4	0.7	2.7	2.7	3.4	4.4	4.4
301110084	6	2550	2627	75	75	1976	7415	7415	10.3	6.6	3.1	3.1	7.4	18.6	18.6
301111065	4	1370	1322	75	75	1135	3135	3135	4.7	2.7	0.7	0.7	5.7	6.7	6.7
301112005	4	1370	1322	75	75	1135	3135	3135	4.1	1.8	1.5	1.5	4.6	5.7	5.7
301112006	6	2550	2627	75	75	1976	7415	7415	10.1	7.2	1.1	1.1	7.6	18.8	18.8
301112007	6	2550	2627	75	75	1976	7415	7415	11.4	3.9	4.7	4.7	11.2	15.3	15.3
310550048	5	6370	9218	6	6	58	20257	20257	12.7	7.5	0.5	0.5	13.6	19.3	19.3
310550050	5	6370	9218	6	6	58	20257	20257	13.4	7.5	1.0	1.0	14.7	19.6	19.6
310550053	5	6370	9218	6	6	58	20257	20257	11.3	5.7	3.3	3.3	10.6	18.0	18.0
310550055	3	3845	6637	6	6	20	11509	11509	13.0	7.3	4.7	4.7	16.1	18.2	18.2
320030022	4	45	27	16	16	44	75	75	3.9	0.0	3.8	3.8	3.9	3.9	3.9
320030078	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
320030539	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
320030601	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
330050007	1	81		81	81	81	81	81	0.3	0.0	0.3	0.3	0.3	0.3	0.3
330070019	1	638		638	638	638	638	638	1.7	0.0	1.7	1.7	1.7	1.7	1.7
330070022	1	638		638	638	638	638	638	2.3	0.0	2.3	2.3	2.3	2.3	2.3
330071007	2	9	4	6	6	9	12	12	0.6	0.1	0.6	0.6	0.6	0.7	0.7
330110016	3	10269	10386	149	149	9754	20902	20902	17.3	1.3	16.5	16.5	16.6	18.8	18.8
330110019	3	10269	10386	149	149	9754	20902	20902	17.0	2.3	15.7	15.7	15.7	19.6	19.6
330110020	3	10269	10386	149	149	9754	20902	20902	17.0	2.3	15.7	15.7	15.7	19.6	19.6
330111009	11	41	42	6	6	20	149	149	12.7	6.0	4.4	4.4	14.7	19.0	19.0
330111010	16	48	42	6	6	38	149	149	13.0	3.0	7.2	7.2	12.0	19.0	19.0
330130007	4	7708	9906	41	41	4945	20902	20902	7.3	3.9	1.4	1.4	9.0	9.6	9.6
330131003	4	7708	9906	41	41	4945	20902	20902	7.7	5.4	4.0	4.0	5.6	15.4	15.4
330131006	4	7708	9906	41	41	4945	20902	20902	8.2	8.8	1.3	1.3	5.8	19.8	19.8

		SO ₂ e	missions (tpy) from	sources	within 2	0 km of mo	onitor ¹	Dista	nce of i	nonitor	to SO ₂ 6	emission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
330131007	4	7708	9906	41	41	4945	20902	20902	9.3	2.1	7.5	7.5	8.6	12.3	12.3
330150009	9	1523	2990	6	6	52	8057	8057	9.0	6.9	2.0	2.0	4.4	19.2	19.2
330150014	9	1523	2990	6	6	52	8057	8057	9.6	7.0	1.0	1.0	5.5	19.9	19.9
330150015	9	1523	2990	6	6	52	8057	8057	8.9	7.1	1.9	1.9	4.1	19.5	19.5
330190003	2	110	81	53	53	110	168	168	2.5	1.7	1.3	1.3	2.5	3.7	3.7
340010005	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
340035001	61	457	2442	6	6	22	2302	18958	14.8	3.7	2.2	5.2	15.7	19.7	19.9
340051001	21	719	3104	5	5	35	14266	14266	10.7	6.7	1.5	1.5	12.3	19.9	19.9
340070003	60	179	644	5	5	25	2378	4450	9.7	3.4	2.0	2.8	9.6	17.2	19.9
340071001	2	8	1	8	8	8	9	9	10.2	0.5	9.9	9.9	10.2	10.5	10.5
340110007	4	161	198	28	28	81	456	456	7.5	6.6	1.8	1.8	5.7	16.8	16.8
340130011	59	465	2471	5	6	25	1845	18958	13.1	4.9	1.6	2.2	14.2	19.2	19.4
340130016	61	453	2431	5	6	25	1845	18958	13.4	5.0	1.8	2.7	14.3	19.8	19.9
340150002	50	529	1281	5	6	44	4450	6720	13.2	3.7	2.1	4.6	12.9	19.2	19.7
340170006	59	467	2471	5	5	25	1845	18958	13.0	4.6	2.0	3.2	13.5	19.9	19.9
340171002	71	421	2267	5	5	18	2302	18958	11.9	5.0	8.0	8.0	11.6	19.7	19.8
340232003	21	80	206	6	6	16	958	958	8.6	4.6	1.8	1.8	9.2	15.8	15.8
340273001	2	19	8	13	13	19	25	25	17.7	3.1	15.5	15.5	17.7	19.8	19.8
340390003	38	610	3074	5	5	19	18958	18958	11.5	5.3	2.3	2.3	12.4	20.0	20.0
340390004	38	609	3075	5	5	19	18958	18958	11.2	5.6	0.7	0.7	12.1	19.9	19.9
350130008	1	37		37	37	37	37	37	17.9	0.0	17.9	17.9	17.9	17.9	17.9
350130017	13	44	92	5	5	11	345	345	14.8	4.0	1.7	1.7	15.7	17.7	17.7
350151004	4	1058	973	168	168	983	2099	2099	8.6	8.4	0.9	0.9	8.7	16.1	16.1
350170001	1	263		263	263	263	263	263	6.1	0.0	6.1	6.1	6.1	6.1	6.1
350171003	1	263		263	263	263	263	263	1.5	0.0	1.5	1.5	1.5	1.5	1.5
350230005	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
350450008	7	2478	2496	11	11	2554	5919	5919	17.2	3.5	11.9	11.9	19.2	19.3	19.3
350450009	2	293	378	25	25	293	560	560	3.3	2.0	2.0	2.0	3.3	4.7	4.7
350450017	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
350451005	8	6274	10983	11	11	2630	32847	32847	6.1	3.8	3.2	3.2	3.5	11.9	11.9
360010012	9	40	46	7	7	20	153	153	10.8	5.2	3.5	3.5	9.0	18.0	18.0
360050073	68	399	2309	5	6	22	2302	18958	10.0	4.9	3.4	3.4	9.1	19.2	19.7
360050080	66	406	2344	5	6	18	2302	18958	10.6	5.0	1.8	3.0	9.6	19.5	19.9
360050083	56	119	355	6	6	19	1129	2302	11.2	5.6	1.6	1.8	11.3	19.6	19.6
360050110	67	402	2326	5	6	21	2302	18958	10.1	4.9	2.7	2.8	9.0	19.2	19.7
360130005	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0

		SO ₂ e	missions (tpy) from	sources	within 20	km of mo	onitor ¹	Dista	nce of r	nonitor	to SO ₂ e	emission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
360130006	1	52177		52177	52177	52177	52177	52177	2.0	0.0	2.0	2.0	2.0	2.0	2.0
360130011	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
360150003	2	202	270	11	11	202	393	393	10.2	13.6	0.6	0.6	10.2	19.9	19.9
360290005	10	4073	12273	8	8	182	38999	38999	10.2	4.7	2.5	2.5	11.1	15.4	15.4
360294002	16	2608	9706	8	8	166	38999	38999	10.4	6.2	1.6	1.6	12.3	18.3	18.3
360298001	9	4518	12932	8	8	247	38999	38999	13.5	5.6	4.6	4.6	14.7	19.0	19.0
360310003	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
360330004	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
360410005	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
360430005	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
360470011	77	377	2178	5	5	18	2302	18958	10.3	5.5	0.7	1.9	10.8	19.2	19.7
360470076	67	428	2333	5	5	17	2302	18958	11.6	4.8	2.3	3.1	11.5	19.4	19.9
360530006	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
360551004	4	12595	14519	8	8	11988	26395	26395	11.0	4.2	7.6	7.6	10.0	16.5	16.5
360551007	4	12595	14519	8	8	11988	26395	26395	11.3	4.1	6.4	6.4	11.9	15.0	15.0
360556001	4	12595	14519	8	8	11988	26395	26395	10.5	6.8	5.2	5.2	8.5	19.8	19.8
360590005	12	151	301	6	6	26	1057	1057	11.8	4.8	1.9	1.9	11.8	19.1	19.1
360610010	77	375	2178	5	5	17	2302	18958	10.4	5.4	0.3	1.4	11.1	19.4	19.6
360610056	76	382	2192	5	5	18	2302	18958	9.9	5.4	0.3	1.4	10.6	19.9	19.9
360632008	13	3134	10777	8	8	118	38999	38999	9.3	7.3	0.3	0.3	12.2	19.8	19.8
360671015	4	820	1602	8	8	24	3223	3223	5.9	4.3	1.9	1.9	5.2	11.5	11.5
360790005	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
360810097	60	136	358	5	6	22	1129	2302	14.8	4.0	2.9	5.0	15.5	19.9	20.0
360810124	66	122	342	5	6	21	1129	2302	12.5	4.0	2.1	2.3	12.4	19.5	20.0
360830004	3	126	106	10	10	153	217	217	18.4	1.8	16.3	16.3	19.3	19.6	19.6
360831005	2	94	124	6	6	94	182	182	17.6	1.6	16.5	16.5	17.6	18.8	18.8
360850067	48	515	2737	5	6	17	1845	18958	14.0	4.0	5.5	6.2	14.2	19.6	19.9
360930003	4	24	26	6	6	14	62	62	9.5	6.6	2.0	2.0	9.7	16.5	16.5
361030002	9	156	344	6	6	19	1057	1057	9.3	5.8	1.9	1.9	7.3	18.2	18.2
361030009	10	734	2013	11	11	42	6453	6453	11.3	5.7	2.0	2.0	11.9	19.3	19.3
361111005	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
370030003	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
370130003	1	4730		4730	4730	4730	4730	4730	2.2	0.0	2.2	2.2	2.2	2.2	2.2
370130004	1	4730		4730	4730	4730	4730	4730	2.7	0.0	2.7	2.7	2.7	2.7	2.7
370130006	1	4730		4730	4730	4730	4730	4730	1.1	0.0	1.1	1.1	1.1	1.1	1.1
370370004	4	119	71	12	12	148	165	165	17.2	3.7	11.8	11.8	18.6	19.9	19.9

		SO ₂ e	missions (tpy) from	sources	within 20) km of mo	nitor ¹	Dista	nce of I	nonitor	to SO ₂ 6	mission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
370511003	5	295	264	17	17	173	675	675	15.8	2.5	11.5	11.5	16.5	17.9	17.9
370590002	4	1949	3658	13	13	175	7432	7432	15.3	4.3	10.4	10.4	15.6	19.6	19.6
370610002	5	83	132	6	6	36	317	317	12.3	4.9	4.1	4.1	13.1	17.0	17.0
370650099	1	325		325	325	325	325	325	16.1	0.0	16.1	16.1	16.1	16.1	16.1
370670022	9	438	848	5	5	46	2591	2591	6.3	5.7	1.2	1.2	3.9	17.8	17.8
371010002	2	15	4	12	12	15	17	17	10.3	7.5	5.0	5.0	10.3	15.6	15.6
371090004	1	10		10	10	10	10	10	10.7	0.0	10.7	10.7	10.7	10.7	10.7
371170001	2	1713	2329	66	66	1713	3360	3360	6.6	7.8	1.1	1.1	6.6	12.2	12.2
371190034	12	86	121	5	5	11	320	320	13.3	4.7	6.3	6.3	12.8	19.8	19.8
371190041	12	68	103	5	5	11	320	320	12.7	5.0	6.3	6.3	12.2	19.8	19.8
371290002	9	3325	6800	6	6	313	20865	20865	14.5	4.9	2.3	2.3	15.4	19.0	19.0
371290006	12	2502	5987	6	6	50	20865	20865	6.9	4.8	0.6	0.6	7.1	14.5	14.5
371310002	3	805	759	16	16	871	1529	1529	4.2	1.8	2.1	2.1	5.1	5.3	5.3
371450003	3	32251	54874	5	5	1136	95610	95610	18.8	0.5	18.4	18.4	18.7	19.3	19.3
371470099	2	14	3	12	12	14	16	16	1.3	0.0	1.3	1.3	1.3	1.3	1.3
371730002	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
380070002	1	283		283	283	283	283	283	11.4	0.0	11.4	11.4	11.4	11.4	11.4
380070111	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
380130002	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
380130004	1	426		426	426	426	426	426	18.6	0.0	18.6	18.6	18.6	18.6	18.6
380150003	1	4592		4592	4592	4592	4592	4592	9.8	0.0	9.8	9.8	9.8	9.8	9.8
380171003	3	257	226	15	15	294	462	462	7.7	6.9	3.0	3.0	4.6	15.7	15.7
380171004	2	378	119	294	294	378	462	462	9.0	1.1	8.2	8.2	9.0	9.7	9.7
380250003	1	5		5	5	5	5	5	13.9	0.0	13.9	13.9	13.9	13.9	13.9
380530002	1	210		210	210	210	210	210	17.3	0.0	17.3	17.3	17.3	17.3	17.3
380530104	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
380530111	2	411	522	42	42	411	781	781	16.1	0.1	16.1	16.1	16.1	16.2	16.2
380550113	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
380570001	2	45808	55924	6264	6264	45808	85352	85352	2.5	2.6	0.7	0.7	2.5	4.3	4.3
380570004	2	45808	55924	6264	6264	45808	85352	85352	2.7	2.0	1.3	1.3	2.7	4.1	4.1
380570102	2	45808	55924	6264	6264	45808	85352	85352	5.4	2.3	3.8	3.8	5.4	7.0	7.0
380570118	2	45808	55924	6264	6264	45808	85352	85352	10.7	2.2	9.1	9.1	10.7	12.2	12.2
380570123	2	45808	55924	6264	6264	45808	85352	85352	14.3	1.4	13.3	13.3	14.3	15.3	15.3
380570124	2	45808	55924	6264	6264	45808	85352	85352	18.6	1.0	17.9	17.9	18.6	19.3	19.3
380590002	1	4592		4592	4592	4592	4592	4592	2.6	0.0	2.6	2.6	2.6	2.6	2.6
380590003	1	4592		4592	4592	4592	4592	4592	5.1	0.0	5.1	5.1	5.1	5.1	5.1

		SO ₂ e	missions (tpy) from	sources	within 20	km of mo	onitor¹	Dista	nce of r	nonitor	to SO ₂ e	emission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
380650002	1	28565		28565	28565	28565	28565	28565	8.5	0.0	8.5	8.5	8.5	8.5	8.5
380910001	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
381050103	1	1605		1605	1605	1605	1605	1605	2.8	0.0	2.8	2.8	2.8	2.8	2.8
381050105	1	1605		1605	1605	1605	1605	1605	1.8	0.0	1.8	1.8	1.8	1.8	1.8
390010001	1	19670		19670	19670	19670	19670	19670	11.4	0.0	11.4	11.4	11.4	11.4	11.4
390030002	9	442	535	16	16	45	1469	1469	8.5	0.4	7.9	7.9	8.3	9.3	9.3
390071001	5	1731	3761	12	12	34	8458	8458	17.3	0.6	16.6	16.6	17.2	18.2	18.2
390133002	5	27781	23029	795	795	35454	56009	56009	14.5	5.1	6.0	6.0	15.8	19.8	19.8
390170004	11	907	1265	56	56	233	3998	3998	14.7	6.9	0.9	0.9	18.5	19.3	19.3
390171004	9	1546	2186	56	56	309	6275	6275	6.5	6.5	1.7	1.7	3.3	19.8	19.8
390230003	4	509	349	105	105	492	946	946	12.2	6.1	5.8	5.8	12.0	19.2	19.2
390250021	6	15304	28111	26	26	145	69953	69953	15.0	2.7	12.7	12.7	14.1	18.7	18.7
390290016	9	20696	19955	18	18	24766	59928	59928	12.7	3.6	7.2	7.2	13.5	18.1	18.1
390290022	9	20696	19955	18	18	24766	59928	59928	12.7	3.6	7.2	7.2	13.6	18.2	18.2
390292001	8	22401	20621	18	18	25596	59928	59928	11.4	4.1	4.6	4.6	10.8	19.3	19.3
390350038	10	740	916	15	15	382	2453	2453	9.8	4.9	1.9	1.9	11.7	14.3	14.3
390350045	10	740	916	15	15	382	2453	2453	10.1	5.5	1.2	1.2	10.4	15.8	15.8
390350060	10	740	916	15	15	382	2453	2453	10.4	5.7	1.0	1.0	13.3	15.5	15.5
390350065	10	740	916	15	15	382	2453	2453	9.8	4.3	2.0	2.0	9.8	14.5	14.5
390356001	13	5759	16867	8	8	382	61629	61629	13.8	7.1	1.7	1.7	16.8	20.0	20.0
390490004	6	75	74	5	5	64	192	192	8.7	3.4	2.9	2.9	9.2	12.9	12.9
390490034	6	75	74	5	5	64	192	192	9.5	3.0	3.4	3.4	10.4	11.5	11.5
390530002	6	31718	26583	9	9	29551	74452	74452	7.0	7.4	1.0	1.0	3.6	16.5	16.5
390610010	10	9265	26865	12	12	537	85699	85699	16.1	3.0	8.6	8.6	16.8	19.7	19.7
390612003	11	660	817	12	12	268	2164	2164	8.7	5.5	0.4	0.4	8.0	19.4	19.4
390810016	17	13129	20063	10	10	361	59928	59928	9.5	7.1	1.7	1.7	5.6	19.0	19.0
390810017	17	13129	20063	10	10	361	59928	59928	9.6	6.9	2.0	2.0	5.9	18.6	18.6
390811001	13	6005	15392	10	10	234	53414	53414	4.9	5.6	0.3	0.3	2.9	18.0	18.0
390850003	6	12044	24426	8	8	2390	61629	61629	9.1	4.2	5.6	5.6	7.4	15.2	15.2
390853002	3	1600	2615	18	18	163	4618	4618	5.3	6.0	1.1	1.1	2.6	12.3	12.3
390870006	8	1425	2178	25	25	343	6285	6285	13.7	6.0	2.2	2.2	15.5	19.3	19.3
390930017	3	165	241	6	6	47	442	442	11.4	2.2	8.9	8.9	12.5	12.8	12.8
390930026	2	27	29	6	6	27	47	47	3.3	0.5	3.0	3.0	3.3	3.6	3.6
390931003	3	165	241	6	6	47	442	442	11.6	2.1	9.2	9.2	12.5	13.1	13.1
390950008	9	4149	4513	204	204	3712	13581	13581	8.1	5.5	2.5	2.5	4.5	14.6	14.6
390950024	10	3745	4443	113	113	2406	13581	13581	11.4	6.4	3.9	3.9	9.5	18.6	18.6

		SO ₂ e	missions (tpy) from	sources	within 20	km of mo	onitor ¹	Dista	nce of r	nonitor	to SO ₂ e	mission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
390990009	10	2107	5350	6	6	353	17244	17244	12.4	7.3	2.0	2.0	15.6	19.6	19.6
390990013	10	2107	5350	6	6	353	17244	17244	12.4	7.5	1.7	1.7	15.8	19.6	19.6
391051001	6	31718	26583	9	9	29551	74452	74452	13.6	2.2	11.6	11.6	13.0	17.8	17.8
391130025	6	1609	2326	105	105	753	6275	6275	13.4	5.4	7.3	7.3	13.4	19.4	19.4
391150003	2	57763	38696	30401	30401	57763	85125	85125	4.8	0.2	4.6	4.6	4.8	4.9	4.9
391150004	2	57763	38696	30401	30401	57763	85125	85125	5.1	0.3	4.9	4.9	5.1	5.3	5.3
391450013	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
391450020	3	1450	1306	25	25	1737	2589	2589	9.6	6.9	4.6	4.6	6.7	17.5	17.5
391450022	3	1450	1306	25	25	1737	2589	2589	8.4	7.5	2.8	2.8	5.4	16.9	16.9
391510016	7	181	213	10	10	43	510	510	6.6	1.5	4.5	4.5	5.9	8.7	8.7
391530017	4	2763	2244	863	863	2091	6009	6009	5.0	2.4	1.4	1.4	6.0	6.6	6.6
391530022	4	2763	2244	863	863	2091	6009	6009	3.9	0.7	3.0	3.0	4.1	4.6	4.6
391570003	7	368	741	15	15	38	2017	2017	12.0	6.4	0.6	0.6	13.3	18.6	18.6
391570006	6	426	795	15	15	38	2017	2017	6.4	6.1	0.4	0.4	5.3	14.2	14.2
400219002	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
400710602	2	3502	457	3178	3178	3502	3825	3825	3.4	2.3	1.8	1.8	3.4	5.0	5.0
400719003	2	3502	457	3178	3178	3502	3825	3825	1.8	2.0	0.4	0.4	1.8	3.2	3.2
400719010	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
400979014	6	3180	5200	173	173	713	13428	13428	4.7	1.3	2.7	2.7	5.5	5.7	5.7
401010167	8	3751	4529	23	23	1130	9866	9866	5.9	4.2	3.7	3.7	3.7	15.8	15.8
401090025	2	91	110	13	13	91	169	169	8.7	4.5	5.6	5.6	8.7	11.9	11.9
401091037	2	91	110	13	13	91	169	169	8.8	7.9	3.2	3.2	8.8	14.4	14.4
401159004	1	62		62	62	62	62	62	5.2	0.0	5.2	5.2	5.2	5.2	5.2
401430175	10	938	1088	9	9	263	2729	2729	11.8	6.9	1.4	1.4	13.9	18.3	18.3
401430235	10	938	1088	9	9	263	2729	2729	10.7	6.9	1.5	1.5	13.4	18.1	18.1
401430501	10	938	1088	9	9	263	2729	2729	12.6	6.8	2.7	2.7	14.2	19.2	19.2
420030002	19	103	137	7	7	30	468	468	7.4	5.9	0.6	0.6	8.6	18.1	18.1
420030010	55	85	101	5	7	49	407	468	14.2	5.6	2.5	2.5	15.5	20.0	20.0
420030021	64	819	5274	5	7	47	5395	42018	11.7	3.3	3.2	4.8	13.1	18.0	18.7
420030031	62	757	5327	5	7	46	468	42018	13.9	5.1	1.3	1.4	14.4	18.7	19.8
420030032	64	819	5274	5	7	47	5395	42018	11.7	3.3	3.1	4.7	13.2	18.1	18.7
420030064	54	213	741	5	6	52	1164	5395	6.0	5.2	2.0	2.0	3.1	17.9	18.2
420030067	16	73	105	7	7	29	407	407	15.1	3.5	6.1	6.1	15.7	19.7	19.7
420030116	19	103	137	7	7	30	468	468	7.4	5.1	2.1	2.1	7.7	17.0	17.0
420031301	57	914	5587	5	7	47	5395	42018	9.9	4.6	1.1	1.1	11.0	17.5	17.8
420033003	54	213	741	5	6	52	1164	5395	5.6	5.4	1.0	1.0	2.3	17.8	17.8

		SO ₂ e	missions (tpy) from	sources	within 20	km of mo	nitor¹	Dista	nce of r	nonitor	to SO ₂ 6	emission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
420033004	55	209	735	5	6	49	1164	5395	5.9	6.0	0.6	0.7	3.3	18.8	18.8
420070002	10	18726	19819	18	18	15912	59928	59928	13.0	3.2	9.2	9.2	11.4	18.6	18.6
420070004	7	5881	11104	9	9	118	30312	30312	14.5	5.1	7.4	7.4	16.0	19.8	19.8
420070005	8	5173	10474	9	9	157	30312	30312	9.6	5.6	2.5	2.5	8.8	17.1	17.1
420070014	10	4400	9400	8	8	157	30312	30312	12.0	3.1	7.1	7.1	12.0	17.2	17.2
420110009	13	1140	3818	14	14	37	13841	13841	9.8	7.1	1.3	1.3	10.3	19.8	19.8
420110100	12	1231	3973	14	14	34	13841	13841	8.7	6.3	1.5	1.5	7.5	17.2	17.2
420130801	1	441		441	441	441	441	441	1.3	0.0	1.3	1.3	1.3	1.3	1.3
420170012	22	687	3033	5	5	27	14266	14266	11.1	6.5	1.2	1.2	12.4	19.6	19.6
420210011	4	4195	5171	34	34	3004	10738	10738	8.5	7.4	1.5	1.5	8.9	14.9	14.9
420270100	4	1090	1267	53	53	834	2638	2638	10.4	6.2	2.3	2.3	11.4	16.6	16.6
420430401	8	107	99	10	10	78	313	313	5.4	4.0	8.0	0.8	3.7	12.1	12.1
420450002	57	681	1415	5	5	47	5051	6720	13.6	5.5	1.3	1.9	15.8	19.8	19.8
420450109	45	855	1553	5	5	91	5051	6720	12.4	6.4	0.5	1.6	13.3	19.9	20.0
420490003	5	824	1068	10	10	228	2398	2398	3.1	1.9	1.2	1.2	2.6	5.4	5.4
420630004	3	4796	5156	1497	1497	2154	10738	10738	18.4	1.4	17.0	17.0	18.4	19.8	19.8
420692006	5	13	5	6	6	15	18	18	10.9	7.4	2.1	2.1	8.2	19.6	19.6
420710007	5	75	109	6	6	23	264	264	3.7	3.7	0.6	0.6	2.7	10.1	10.1
420730015	9	3206	8423	6	6	28	25551	25551	12.5	5.6	0.6	0.6	13.2	18.0	18.0
420770004	13	703	1041	7	7	120	2888	2888	12.5	5.8	0.3	0.3	12.0	19.3	19.3
420791101	4	117	160	9	9	53	351	351	12.3	3.4	7.8	7.8	12.9	15.8	15.8
420810100	3	28	28	6	6	18	59	59	11.3	0.7	10.6	10.6	11.2	12.0	12.0
420810403	3	28	28	6	6	18	59	59	15.8	1.1	14.9	14.9	15.4	16.9	16.9
420850100	2	14	4	11	11	14	17	17	10.8	11.8	2.4	2.4	10.8	19.1	19.1
420910013	28	171	704	5	5	15	3753	3753	15.3	4.5	1.4	1.4	16.2	20.0	20.0
420950025	18	676	1020	7	7	86	2888	2888	13.1	4.3	4.0	4.0	14.1	19.7	19.7
420950100	15	2179	5602	7	7	120	22057	22057	10.4	5.5	2.5	2.5	10.7	19.3	19.3
420958000	16	2045	5439	7	7	86	22057	22057	10.1	5.9	0.6	0.6	9.1	18.8	18.8
420990301	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
421010004	61	102	316	5	6	20	560	2378	10.5	5.2	1.0	1.3	10.9	19.2	19.7
421010022	66	285	1022	5	5	26	4450	6720	8.0	5.6	0.9	1.0	7.0	19.4	20.0
421010024	36	46	77	5	5	13	407	407	13.0	3.8	6.3	6.3	12.6	19.9	19.9
421010027	63	99	311	5	6	20	560	2378	9.8	4.6	0.8	1.7	11.0	19.7	19.7
421010029	67	262	1007	5	5	24	4450	6720	8.3	4.7	1.1	1.8	6.8	18.9	19.6
421010047	65	270	1022	5	5	26	4450	6720	7.9	4.5	0.6	0.8	6.4	17.6	17.9
421010048	60	104	318	5	6	22	560	2378	10.4	4.9	0.9	1.7	10.7	18.6	19.2

		SO ₂ e	missions ((tpy) from	sources	within 20	km of mo	nitor¹	Dista	nce of r	nonitor	to SO ₂ e	emission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
421010055	66	286	1022	5	5	26	4450	6720	7.9	5.4	1.3	1.4	6.8	18.8	20.0
421010136	68	319	1042	5	5	27	4450	6720	8.8	5.4	1.1	1.4	9.3	18.7	19.8
421070003	6	831	687	8	8	674	1743	1743	10.4	7.4	3.3	3.3	8.8	19.2	19.2
421230003	2	2445	659	1979	1979	2445	2911	2911	4.0	1.2	3.2	3.2	4.0	4.9	4.9
421230004	2	2445	659	1979	1979	2445	2911	2911	3.0	1.6	1.9	1.9	3.0	4.1	4.1
421250005	33	257	945	5	5	47	5395	5395	15.7	4.7	1.1	1.1	17.5	18.7	18.7
421250200	1	7		7	7	7	7	7	1.1	0.0	1.1	1.1	1.1	1.1	1.1
421255001	8	321	439	7	7	82	1017	1017	15.9	4.1	9.3	9.3	17.2	19.7	19.7
421290008	3	24	9	16	16	22	34	34	9.8	1.4	8.7	8.7	9.3	11.5	11.5
421330008	9	8943	22698	14	14	171	68932	68932	9.3	5.8	0.8	0.8	10.1	17.7	17.7
440070012	54	41	90	5	5	13	392	521	8.4	5.8	0.3	0.4	5.9	18.9	19.0
440071005	55	41	89	5	5	13	392	521	9.1	5.5	0.9	1.0	8.4	18.5	19.0
440071009	55	41	89	5	5	13	392	521	8.6	6.0	0.1	0.4	6.3	19.5	19.9
450030003	13	1654	2599	8	8	549	8275	8275	15.3	1.5	11.4	11.4	15.3	17.5	17.5
450110001	1	65		65	65	65	65	65	13.2	0.0	13.2	13.2	13.2	13.2	13.2
450190003	16	2183	6339	6	6	28	25544	25544	7.2	5.0	1.1	1.1	6.2	16.3	16.3
450190046	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
450430006	7	5834	14038	6	6	24	37622	37622	4.6	4.3	0.2	0.2	3.4	13.2	13.2
450450008	12	89	136	6	6	20	411	411	11.7	4.5	2.1	2.1	10.7	17.4	17.4
450450009	13	83	132	6	6	19	411	411	10.1	5.7	4.0	4.0	5.4	17.3	17.3
450630008	11	948	2944	5	5	9	9820	9820	11.5	5.4	0.5	0.5	13.0	19.2	19.2
450730001	1	5		5	5	5	5	5	14.9	0.0	14.9	14.9	14.9	14.9	14.9
450750003	5	1433	1913	5	5	211	4088	4088	8.5	5.1	3.4	3.4	9.6	15.8	15.8
450790007	10	61	103	5	5	18	343	343	14.0	4.1	6.4	6.4	15.9	18.7	18.7
450790021	8	5061	12720	7	7	89	36378	36378	14.7	1.2	12.3	12.3	15.3	15.6	15.6
450791003	13	995	2730	5	5	52	9820	9820	10.9	5.9	1.4	1.4	10.9	18.5	18.5
450791006	10	4289	11350	7	7	89	36378	36378	17.5	3.3	8.2	8.2	18.9	19.1	19.1
460330132	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
460710001	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
460990007	1	496		496	496	496	496	496	17.5	0.0	17.5	17.5	17.5	17.5	17.5
470010028	8	5595	14808	7	7	34	42188	42188	12.2	6.5	0.9	0.9	12.8	18.8	18.8
470090002	3	1421	2325	6	6	153	4104	4104	5.7	5.7	0.7	0.7	4.5	11.9	11.9
470090006	3	1421	2325	6	6	153	4104	4104	5.4	5.3	1.4	1.4	3.3	11.3	11.3
470090101	3	1421	2325	6	6	153	4104	4104	12.1	6.9	4.2	4.2	15.4	16.7	16.7
470110102	2	2719	3687	112	112	2719	5326	5326	2.5	1.2	1.6	1.6	2.5	3.4	3.4
470310004	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0

		SO ₂ e	missions (tpy) from	sources	within 20	km of mo	nitor¹	Dista	nce of r	nonitor	to SO ₂ e	emission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
470370011	9	891	2248	9	9	60	6842	6842	10.4	3.6	5.6	5.6	10.7	17.6	17.6
470730002	3	11831	10420	6	6	15822	19666	19666	2.9	2.1	1.7	1.7	1.7	5.2	5.2
470850020	6	18599	44191	12	12	281	108788	108788	3.2	1.8	1.6	1.6	2.6	6.3	6.3
471070101	3	1834	3024	64	64	112	5326	5326	7.6	10.2	0.5	0.5	3.0	19.3	19.3
471250006	6	222	401	8	8	35	1025	1025	6.2	6.9	1.0	1.0	2.5	15.0	15.0
471250106	6	222	401	8	8	35	1025	1025	7.1	7.3	1.5	1.5	3.5	16.3	16.3
471390003	1	1900		1900	1900	1900	1900	1900	3.1	0.0	3.1	3.1	3.1	3.1	3.1
471390007	1	1900		1900	1900	1900	1900	1900	1.6	0.0	1.6	1.6	1.6	1.6	1.6
471390008	1	1900		1900	1900	1900	1900	1900	1.4	0.0	1.4	1.4	1.4	1.4	1.4
471390009	1	1900		1900	1900	1900	1900	1900	1.0	0.0	1.0	1.0	1.0	1.0	1.0
471450009	4	19470	22311	9	9	19188	39495	39495	10.9	6.7	5.3	5.3	9.5	19.1	19.1
471570034	18	1204	2391	5	5	32	6540	6540	11.4	2.2	4.8	4.8	11.8	15.3	15.3
471570043	18	1204	2391	5	5	32	6540	6540	9.6	1.7	5.3	5.3	10.0	11.4	11.4
471570046	2	1973	2640	106	106	1973	3839	3839	6.0	6.7	1.3	1.3	6.0	10.8	10.8
471571034	19	1150	2336	5	5	35	6540	6540	3.5	5.6	0.5	0.5	0.7	18.0	18.0
471610007	3	5561	5107	21	21	6580	10081	10081	1.8	0.2	1.7	1.7	1.7	1.9	1.9
471630007	10	3010	5303	22	22	495	16855	16855	3.7	2.6	1.7	1.7	2.6	10.7	10.7
471630009	12	2513	4935	13	13	286	16855	16855	5.7	6.0	2.0	2.0	2.7	18.7	18.7
471651002	4	8593	10129	88	88	7029	20226	20226	4.2	1.8	2.9	2.9	3.5	6.9	6.9
480610006	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
481130069	9	34	25	9	9	18	69	69	12.1	5.7	2.0	2.0	12.9	20.0	20.0
481390015	12	664	993	13	13	57	3003	3003	9.5	5.8	2.3	2.3	9.4	16.6	16.6
481390016	12	664	993	13	13	57	3003	3003	9.0	6.3	2.9	2.9	6.1	17.4	17.4
481390017	12	664	993	13	13	57	3003	3003	9.6	6.9	1.9	1.9	7.6	18.6	18.6
481410037	13	44	92	5	5	11	345	345	9.7	1.8	4.5	4.5	10.0	12.0	12.0
481410053	13	44	92	5	5	11	345	345	9.7	1.6	5.1	5.1	9.9	11.9	11.9
481410058	16	38	83	5	5	12	345	345	13.9	2.3	9.5	9.5	14.7	16.0	16.0
481670005	43	185	611	5	6	22	1937	3599	2.3	1.3	1.2	1.3	2.0	3.3	9.5
481671002	43	185	611	5	6	22	1937	3599	3.6	1.1	2.5	2.5	3.3	4.6	9.5
481830001	5	13289	12287	6	6	19024	24837	24837	18.9	0.5	18.6	18.6	18.7	19.9	19.9
482010046	29	606	1182	6	6	161	5097	5097	12.8	3.1	6.2	6.2	13.1	19.6	19.6
482010051	2	13	8	7	7	13	18	18	19.1	0.6	18.7	18.7	19.1	19.5	19.5
482010059	38	674	1486	6	6	48	6968	6968	10.3	5.9	1.8	1.8	8.5	19.5	19.5
482010062	37	694	1503	6	6	49	6968	6968	14.8	3.8	7.8	7.8	15.7	20.0	20.0
482010070	31	790	1622	6	6	161	6968	6968	10.7	5.3	2.2	2.2	8.7	19.5	19.5
482011035	39	657	1470	6	6	46	6968	6968	8.6	5.4	1.6	1.6	7.7	17.6	17.6

		SO ₂ e	missions (tpy) from	sources	within 2	0 km of mo	nitor¹	Dista	nce of r	nonitor	to SO ₂ e	emission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
482011050	46	243	1028	6	7	36	829	6968	16.5	3.9	5.0	5.3	17.9	19.1	19.9
482450009	16	863	2732	6	6	80	11064	11064	14.8	6.8	0.4	0.4	18.7	19.7	19.7
482450011	27	999	2362	6	6	45	11064	11064	9.0	5.3	2.8	2.8	7.0	18.1	18.1
482450020	8	170	306	6	6	64	908	908	10.8	8.1	1.8	1.8	11.3	19.9	19.9
482570005	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
483550025	17	468	1086	6	6	43	3955	3955	6.7	3.0	4.2	4.2	5.2	16.4	16.4
483550026	19	424	1032	6	6	43	3955	3955	10.0	3.3	4.6	4.6	11.0	13.6	13.6
483550032	17	468	1086	6	6	43	3955	3955	3.9	4.1	0.4	0.4	1.7	16.0	16.0
490050004	1	5		5	5	5	5	5	1.8	0.0	1.8	1.8	1.8	1.8	1.8
490110001	6	468	500	8	8	366	1332	1332	8.2	5.8	1.5	1.5	8.1	17.7	17.7
490110004	6	468	500	8	8	366	1332	1332	9.7	6.0	2.3	2.3	9.8	19.2	19.2
490350012	6	468	500	8	8	366	1332	1332	4.9	3.7	0.6	0.6	4.5	8.9	8.9
490351001	7	833	1006	8	8	712	2788	2788	13.0	6.5	2.1	2.1	13.0	19.6	19.6
490352004	3	1245	1415	8	8	939	2788	2788	9.8	8.0	2.4	2.4	8.9	18.3	18.3
500070003	1	6		6	6	6	6	6	1.6	0.0	1.6	1.6	1.6	1.6	1.6
500070014	1	6		6	6	6	6	6	1.9	0.0	1.9	1.9	1.9	1.9	1.9
500210002	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
510360002	18	4818	17274	7	7	35	73839	73839	12.1	7.2	2.0	2.0	13.6	19.9	19.9
510590005	5	31	46	8	8	11	114	114	17.2	1.6	15.0	15.0	17.3	19.4	19.4
510590018	10	1820	5043	8	8	74	16141	16141	13.5	3.9	8.4	8.4	15.7	17.5	17.5
510591004	11	1664	4813	7	7	59	16141	16141	10.9	3.5	3.7	3.7	11.2	16.3	16.3
510591005	13	1416	4435	7	7	59	16141	16141	13.6	4.3	4.6	4.6	13.8	19.0	19.0
510595001	11	1566	4837	6	6	24	16141	16141	14.8	4.4	5.1	5.1	16.0	19.8	19.8
511130003	1	7		7	7	7	7	7	10.8	0.0	10.8	10.8	10.8	10.8	10.8
511611004	8	85	117	5	5	34	341	341	9.3	5.5	2.9	2.9	9.7	19.1	19.1
511650002	7	40	36	8	8	32	108	108	12.3	5.1	5.1	5.1	13.9	17.8	17.8
511650003	6	39	40	5	5	25	108	108	11.4	5.4	6.3	6.3	10.3	17.9	17.9
515100009	11	1663	4813	7	7	59	16141	16141	9.6	5.1	1.1	1.1	8.6	17.9	17.9
516500004	15	285	505	6	6	92	1983	1983	11.1	4.9	4.0	4.0	11.3	17.9	17.9
517100023	21	1738	7026	5	5	85	32344	32344	8.3	3.4	3.6	3.6	8.3	18.8	18.8
517600024	14	191	363	6	6	16	1148	1148	9.4	5.8	1.2	1.2	10.3	20.0	20.0
530090010	1	756		756	756	756	756	756	5.6	0.0	5.6	5.6	5.6	5.6	5.6
530090012	1	756		756	756	756	756	756	5.3	0.0	5.3	5.3	5.3	5.3	5.3
530330057	5	241	301	63	63	117	771	771	4.0	6.0	0.6	0.6	1.3	14.7	14.7
530330080	5	241	301	63	63	117	771	771	5.0	4.2	2.5	2.5	3.1	12.5	12.5
530530021	3	179	213	11	11	109	419	419	3.2	1.1	2.1	2.1	3.2	4.3	4.3

		SO ₂ e	missions (tpy) from	sources	within 20	km of mo	nitor ¹	Dista	nce of r	nonitor	to SO ₂ e	mission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
530530031	3	179	213	11	11	109	419	419	1.8	0.9	1.2	1.2	1.3	2.8	2.8
530570012	4	2238	2630	21	21	1793	5345	5345	2.2	8.0	1.3	1.3	2.3	3.1	3.1
530571003	4	2238	2630	21	21	1793	5345	5345	1.7	0.6	1.1	1.1	1.7	2.4	2.4
530610016	2	191	194	53	53	191	328	328	0.5	0.1	0.4	0.4	0.5	0.6	0.6
530730011	9	488	695	8	8	349	2286	2286	16.9	6.2	0.5	0.5	19.3	19.7	19.7
540090005	13	6005	15392	10	10	234	53414	53414	5.3	5.3	0.9	0.9	2.7	16.8	16.8
540090007	17	13129	20063	10	10	361	59928	59928	10.7	5.3	3.9	3.9	8.3	18.8	18.8
540110006	5	1501	2677	124	124	401	6285	6285	13.2	7.1	0.5	0.5	16.2	17.2	17.2
540250001	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
540290005	8	22069	20983	18	18	25596	59928	59928	9.3	5.3	4.7	4.7	7.5	17.6	17.6
540290007	16	9282	17668	10	10	238	59928	59928	13.1	3.8	4.8	4.8	13.1	18.3	18.3
540290008	9	20696	19955	18	18	24766	59928	59928	12.1	4.2	6.3	6.3	11.2	19.8	19.8
540290009	15	9894	18112	10	10	243	59928	59928	11.0	3.5	1.0	1.0	12.0	17.7	17.7
540290011	17	13129	20063	10	10	361	59928	59928	10.7	5.2	3.2	3.2	8.8	18.8	18.8
540290014	16	9282	17668	10	10	238	59928	59928	11.8	4.0	1.5	1.5	11.1	19.4	19.4
540290015	9	20696	19955	18	18	24766	59928	59928	12.1	3.5	7.1	7.1	12.4	18.2	18.2
540290016	16	10611	17732	10	10	302	59928	59928	10.8	4.3	1.1	1.1	10.6	18.3	18.3
540291004	16	10611	17732	10	10	302	59928	59928	11.5	3.9	1.8	1.8	11.8	19.8	19.8
540390004	4	1529	1146	854	854	1008	3245	3245	10.2	4.3	6.0	6.0	10.0	14.8	14.8
540390010	4	1529	1146	854	854	1008	3245	3245	9.7	4.6	5.2	5.2	9.8	14.0	14.0
540392002	5	22698	47491	750	750	1009	107633	107633	9.1	5.6	2.3	2.3	6.7	15.5	15.5
540511002	5	27781	23029	795	795	35454	56009	56009	10.1	4.7	2.2	2.2	11.4	15.0	15.0
540610003	2	45992	63840	850	850	45992	91134	91134	4.6	1.4	3.6	3.6	4.6	5.6	5.6
540610004	4	24472	44468	850	850	2952	91134	91134	11.8	8.9	0.8	0.8	13.5	19.4	19.4
540610005	3	32132	51128	850	850	4412	91134	91134	9.2	9.7	1.0	1.0	6.7	19.9	19.9
540690007	2	37391	22660	21367	21367	37391	53414	53414	13.9	1.8	12.7	12.7	13.9	15.2	15.2
540990002	8	1271	2194	25	25	343	6285	6285	9.7	5.5	1.7	1.7	10.6	16.0	16.0
540990003	8	1271	2194	25	25	343	6285	6285	9.6	5.5	1.5	1.5	10.7	15.8	15.8
540990004	8	1271	2194	25	25	343	6285	6285	9.6	6.0	1.0	1.0	11.3	15.8	15.8
540990005	8	1271	2194	25	25	343	6285	6285	9.5	6.4	0.9	0.9	11.4	16.2	16.2
541071002	11	4375	9095	7	7	1517	31006	31006	8.5	5.4	2.7	2.7	8.8	17.0	17.0
550090005	7	3413	5045	9	9	850	13470	13470	4.2	3.4	1.1	1.1	3.1	9.7	9.7
550250041	7	1293	2743	7	7	71	7417	7417	7.4	4.7	2.8	2.8	5.2	14.7	14.7
550410007	1	5		5	5	5	5	5	8.3	0.0	8.3	8.3	8.3	8.3	8.3
550730005	3	4040	6715	24	24	303	11792	11792	10.7	9.2	0.1	0.1	15.8	16.2	16.2
550790007	9	1750	4858	5	5	28	14686	14686	6.5	3.4	1.8	1.8	5.9	12.9	12.9

		SO ₂ e	missions (tpy) from	sources	within 20	km of mo	nitor¹	Dista	nce of r	nonitor	to SO ₂ e	mission	source	(km) ¹
monid	n	mean	std	min	p2.5	p50	p97.5	p100	mean	std	min	p2.5	p50	p97.5	p100
550790026	9	1750	4858	5	5	28	14686	14686	7.6	3.0	3.5	3.5	7.5	12.8	12.8
550790041	9	1750	4858	5	5	28	14686	14686	10.1	3.0	5.9	5.9	10.2	14.5	14.5
550850996	2	1152	1617	9	9	1152	2295	2295	0.9	0.1	0.9	0.9	0.9	1.0	1.0
551110007	2	31	35	7	7	31	56	56	14.7	7.4	9.5	9.5	14.7	19.9	19.9
551250001	0								0.0	0.0	0.0	0.0	0.0	0.0	0.0
551410016	6	2374	2368	6	6	2032	5782	5782	5.3	2.6	2.3	2.3	4.9	9.8	9.8
560050857	4	2527	3868	23	23	896	8291	8291	4.6	6.5	1.1	1.1	1.6	14.4	14.4

¹ Mean, std , min, p2.5, p50, p97.5, max are the arithmetic average, standard deviation, minimum, 2.5th, 50th, 97.5th percentiles, and maximum distances and emissions.

² There were no emissions above 5 tpy for sources located within 20 km of the monitors sited in Puerto Rico and the Virgin Islands.

A.2 Analysis Duplicate SO₂ Values at Ambient Monitor Locations

During the screening of each of the ambient monitoring data sets, it became evident that simultaneous measurements were present. Staff analyzed the duplicate SO₂ measurements to discern if there were any differences in the reported/measured values because ultimately only one value would be selected for use in each of the final screened data sets. Staff was not interested in whether multiple monitors were present at a particular monitoring site or if there were duplicate reporting of SO₂ concentrations, only to determine that the selection of a particular value used in the final data sets were not biased.

In selecting which of the duplicate concentrations to use for final REA data sets, staff made the following judgements. First, the ambient monitor POC containing the greatest number of samples was used to populate the max-5 data set. Second, where continuous-5 measurements were available and coincided with max-5 measurements, staff selected the 5-minute maximum SO₂ concentration from the continuous-5 data set. And finally, where continuous-5 data were available and used to estimate a 1-hour average SO₂ concentration that coincided with a reported 1-hour ambient monitor concentration, the continuous-5 1-hour average concentration was used. Staff designed the following analyses to explore the effect the selection of one concentration over another may have on the final data set used.

Staff calculated the relative percent difference (RPD) for each duplicate concentration, considering measurements within the 5-max data set (n=300,438), duplicate reporting between the continuous-5 and the max-5 data sets (n=29,058), and duplicate values between the 1-hour and the continuous-5 data sets (n=258,457), separately. We anticipated that small fluctuations in concentration between the duplicate data would have a greater influence on the RPD at lower concentrations than at higher concentrations. Therefore, staff separated the duplicate values into concentration groups for this analysis. Two groups were constructed; one with concentrations \leq 10 ppb and the other containing concentrations > 10 ppb. The following formula calculates the RPD for each duplicate value:

$$RPD = \frac{(C_1 - C_2)}{(C_1 + C_2)} \times 200$$
 equation A.2-1

where,

RPD = Relative percent difference (%)

 C_1 = First SO₂ concentration value

 C_2 = Second SO₂ concentration value

Depending on the difference in concentration, the value for the calculated RPD could be as low as -200 or as high +200, indicating the maximum difference between any two values, while an RPD of zero indicates no difference. The sign of the value can also indicate the direction of bias when comparing the first concentration to the second.

In the first comparison (i.e., the within max-5 duplicates), C₁ was selected as the ambient monitor containing the overall greater sample size/duration. Table A.2-1 summarizes the distribution of RPDs for where duplicate values of SO₂ concentrations were less than 10 ppb within the max-5 monitoring data set. On average, there were relatively small differences in the duplicate values reported at each of the monitoring locations. Most duplicate values were within +/-67% of one another, although some were noted at or above 100% (absolute difference). In considering that these maximum 5-minute SO₂ concentrations are well below that of potential interest in the exposure and risk analysis, this degree of agreement between the two values at these concentration levels is acceptable.

Table A.2-1. Distribution of the relative percent difference (RPD) between duplicate 5-minute maximum SO_2 values at max-5 monitors, where concentrations were ≤ 10 ppb.

				Relative Pe	ercent Diffe	erence (%))1	
Monitor ID	n	mean	std	min	р5	p50	p95	max
290210009	25868	0	34	-196	-50	0	67	100
290210011	22247	-7	22	-143	-40	0	18	67
290930030	54904	8	34	-181	-40	0	67	100
290930031	48417	-14	29	-122	-67	0	67	67
290990004	22788	-8	27	-120	-50	0	67	100
290990014	33245	-12	29	-133	-67	0	29	67
290990017	21460	2	30	-120	-50	0	67	120
290990018	17025	2	25	-156	-40	0	67	100
291630002	11528	-3	34	-164	-40	0	67	67

Notes:

 1 the mean, std, min, p5, p50, p95, max are the arithmetic average, standard deviation, minimum, $\mathbf{5}^{\text{th}}$, median, 95 $^{\text{th}}$, and maximum, respectively.

When considering duplicate values > 10 ppb, the RPD was much lower at each of the monitors (Table A.2-2). Most of the RPDs are within +/-10%, indicating excellent agreement among the duplicate values. A small negative bias may exist with selection of the monitor with

the greatest number of samples as the base monitor, but on average the difference was typically less than 3%.

Table A.2-2. Distribution of the relative percent difference (RPD) between duplicate 5-minute maximum SO_2 values at max-5 monitors, where concentrations were > 10 ppb.

				Relative Pe	ercent Diffe	erence (%)	1	
Monitor ID	n	mean	std	min	р5	p50	p95	max
290210009	2333	-2	6	-133	-10	0	6	18
290210011	2344	0	3	-66	-6	0	5	18
290930030	8068	-1	6	-120	-9	0	4	24
290930031	7652	-3	6	-134	-13	-2	0	10
290990004	8627	-1	4	-100	-7	0	5	20
290990014	4973	2	16	-17	-8	0	9	184
290990017	5138	-1	7	-137	-11	0	10	32
290990018	2626	0	6	-81	-7	0	10	32
291630002	1195	-6	32	-137	-133	0	11	29

Notes:

 1 the mean, std, min, p5, p50, p95, max are the arithmetic average, standard deviation, minimum, 5^{th} , median, 95^{th} , and maximum, respectively.

Staff also analyzed data where the max-5 sampling times corresponded with the continuous-5 monitoring at the same location. Of the 29,058 duplicate measurement values, only 312 contained different values among the two sample types (i.e., a non-zero RPD). This indicates that the majority of the data are duplicate values reported in each of the two data sets. Since there were very few samples with RPDs deviating from zero (i.e., 1.1%), the following analysis included only the samples that had a non-zero difference and at any concentration levels. The distribution for the RPD given these monitors and duplicate monitoring events is provided in Table A.2-3. On average there may be a small positive bias in selecting the continuous-5 monitoring concentrations where differences existed, however given that there were only 1% of samples that differed among the two data sets, the overall impact to the below estimation procedure is determined as negligible. In addition, selection of the continuous-5 measurement preserves the relationship between the actual 5-minute maximum and the calculated 1-hour concentration derived from the multiple 5-minute measurements that occurred within the hour, not adding to uncertainty regarding the true relationship between the 1-hour and 5-minute maximum concentrations.

Table A.2-3. Distribution of the relative percent difference (RPD) between simultaneous 5-minute SO_2 maximum values in the max-5 and continuous-5 data sets, where concentrations > 0 ppb.

			F	Relative Pe	rcent Diffe	erence (%)	2	
Monitor ID	n ¹	mean	std	min	p5	p50	p95	max
301110066	76	26	57	-143	-117	16	133	160
301110079	149	27	48	-178	-67	29	67	164
301110082	47	25	52	-67	-67	29	67	186
301110083	40	78	64	-120	-53	67	160	160

In the last comparison (i.e., the 1-hour concentration duplicates), the 1-hour concentration from the continous-5 ambient monitors was selected as C_1 in equation A.2-1. Table A.2-4 summarizes the distribution of RPDs for where duplicate measurements of SO_2 concentrations were less than 10 ppb within the max-5 monitoring data set. While nearly 20% had no difference between the duplicate values, on average, there were greater differences in the duplicate 1-hour values at most of the monitors than was observed for the 5-minute duplicates. Nearly 20% of the concentrations were noted at or above 100% one another (absolute difference), however all of these were due to where reported values were zero at the 1-hour monitor and concentrations of 1 ppb were reported for the continuous-5 monitor. This factor contributes to the observed positive bias at most of the monitors, however in considering that these 1-hour SO_2 concentrations are below that of potential interest in the exposure and risk analysis, this degree of limited agreement between the two data sets at these concentration levels should be acceptable.

Table A.2-4. Distribution of the relative percent difference (RPD) between duplicate 1-hour SO_2 values in the continuous-5 and 1-hour data sets, where concentrations were \leq 10 ppb.

				Relative Pe	ercent Diffe	erence (%)	1	
Monitor ID	n	mean	std	min	р5	p50	p95	max
110010041	2049	0	7	-34	-12	0	12	45
120890005	25163	88	99	-175	-11	15	200	200
290770026	24286	91	99	-105	-9	15	200	200
290770037	24822	41	80	-46	-13	0	200	200
301110066	6640	24	62	-100	-13	0	200	200
301110079	7906	119	95	-133	-9	200	200	200
301110082	7930	69	92	-165	-13	12	200	200
301110083	4757	82	96	-105	-9	15	200	200
371290006	27954	-45	83	-193	-133	-59	200	200

¹ This distribution is for the number of samples where the RPD was non-zero. The majority of the duplicate measures (n=28,746) were identical.

² the mean, std, min, p5, p50, p95, max are the arithmetic average, standard deviation, minimum, 5th, median, 95th, and maximum, respectively.

				Relative Pe	ercent Diffe	erence (%))1	
Monitor ID	n	mean	std	min	р5	p50	p95	max
420030021	4594	34	81	-175	-18	2	200	200
420030064	5174	20	71	-172	-29	-4	200	200
420030116	4231	3	25	-61	-18	0	19	200
420033003	4640	23	69	-67	-23	-1	200	200
420070005	30386	63	91	-133	-10	6	200	200
540990002	6592	1	10	-40	-13	0	19	90
541071002	23864	1	11	-156	-13	0	17	200

¹ the mean, std, min, p5, p50, p95, max are the arithmetic average, standard deviation, minimum, 5th, median, 95th, and maximum, respectively.

When considering duplicate 1-hour concentrations > 10 ppb, the RPD was much lower at each of these same monitors (Table A.2-5). Most RPD distributions were within +/-5%, indicating excellent agreement among the duplicate 1-hour values at concentrations above 10 ppb. A very small positive bias may exist with selection of the continuous-5 monitor data for use in the air quality characterization when compared with the reported 1-hour concentrations, but on average, the difference was typically less than 1% when considering concentrations above 10 ppb.

Table A.2-5. Distribution of the relative percent difference (RPD) between duplicate 1-hour SO_2 values in the continuous-5 and 1-hour data sets, where concentrations were > 10 ppb.

			F	Relative Pe	ercent Diffe	erence (%)	1	
Monitor ID	n	mean	std	min	р5	p50	p95	max
110010041	202	0	2	-5	-4	0	4	5
120890005	2400	0	4	-90	-3	0	3	34
290770026	1906	0	2	-10	-3	0	3	7
290770037	1373	0	2	-5	-3	0	3	7
301110066	1616	0	5	-50	-3	0	4	173
301110079	71	0	3	-6	-4	-1	4	6
301110082	176	0	2	-5	-3	0	4	6
301110083	85	1	3	-4	-3	1	5	20
371290006	3747	1	25	-108	-15	-2	12	186
420030021	1852	1	14	-59	-4	0	4	200
420030064	2892	-2	2	-10	-6	-2	0	11
420030116	1145	0	9	-34	-4	0	4	200
420033003	2625	-1	5	-36	-5	-1	2	187
420070005	15034	0	2	-23	-3	0	3	73
540990002	2062	0	2	-5	-3	0	4	10
541071002	10283	0	2	-87	-3	0	3	65

Notes:

¹ the mean, std, min, p5, p50, p95, max are the arithmetic average, standard deviation, minimum, 5th, median, 95th, and maximum, respectively.

A.3 Peak-To-Mean Ratio Distributions

Peak-to-mean ratios (PMR) were calculated using the measured values for each the 5-minute maximum and 1-hour SO₂ concentrations. PMRs were seperated into 19 groups² based on the observed variability (3 bins) and concentrations ranges (7 bins) in measured 1-hour ambient monitor concentrations (n=2,367,686). Table A.3-1 summarizes the PMR distributions used for estimating 5-minute maximum concentrations from 1-hour measurements where ambient monitors were characterized by the 1-hour coefficient of variation (COV). These are the PMR distributions used in the statistical modeling of 5-minute maximum SO₂ concentrations in the air quality characterization and in the exposure modeling. Table A.3-2 summarizes the PMR distributions used for estimating 5-minute maximum SO₂ concentrations from 1-hour measurements where ambient monitors were characterized by the 1-hour coefficient of variation (GSD). Peak-to-mean ratios estimated by categorizing the ambient monitors by GSD were used only in evaluating an alternative method of estimating 5-minute SO₂ concentrations.

_

² Although there are 21 PMR distributions possible (i.e., 3×7), the COV < 100% and GSD <2.17 categories had only three 1-hour concentrations above 150 ppb. Therefore, the two highest concentration bins do not have a distribution, and concentrations > 75 ppb constituted the highest concentration bin in the low COV or low GSD bins.

Table A.3-1. Distribution of 5-minute maximum peak to 1-hour mean SO₂ concentration ratios (PMRs) using ambient monitors categorized by 1-hour coefficient of variation (COV) and 1-hour mean concentration.

		GSD	≤ 100%	, D			10	00% < GS	SD ≤ 200)%					COV	> 200 %)		
Concbin ¹	0	1	2	3	4	0	1	2	3	4	5	6	0	1	2	3	4	5	6
Pct ² - 0	1.00	1.00	1.00	1.00	1.01	1.00	1.00	1.00	1.00	1.00	1.05	1.02	1.00	1.00	1.00	1.00	1.00	1.08	1.13
- 1	1.00	1.00	1.00	1.03	1.02	1.00	1.00	1.00	1.00	1.05	1.08	1.04	1.00	1.00	1.00	1.12	1.14	1.18	1.25
- 2	1.00	1.00	1.00	1.03	1.02	1.00	1.00	1.00	1.03	1.07	1.12	1.14	1.00	1.00	1.06	1.17	1.18	1.21	1.28
- 3	1.00	1.00	1.00	1.04	1.04	1.00	1.00	1.00	1.04	1.08	1.14	1.14	1.00	1.00	1.08	1.21	1.21	1.22	1.29
- 4	1.00	1.00	1.00	1.04	1.04	1.00	1.00	1.05	1.06	1.10	1.16	1.15	1.00	1.00	1.08	1.24	1.24	1.25	1.30
- 5	1.00	1.00	1.05	1.05	1.05	1.00	1.00	1.06	1.06	1.11	1.20	1.16	1.00	1.00	1.09	1.26	1.26	1.28	1.33
- 6	1.00	1.00	1.06	1.06	1.06	1.00	1.00	1.06	1.07	1.12	1.21	1.18	1.00	1.00	1.10	1.29	1.28	1.31	1.34
- 7	1.00	1.00	1.06	1.06	1.07	1.00	1.00	1.07	1.08	1.13	1.21	1.18	1.00	1.00	1.11	1.31	1.30	1.34	1.37
- 8	1.00	1.00	1.06	1.07	1.08	1.00	1.00	1.08	1.09	1.14	1.22	1.22	1.00	1.00	1.14	1.33	1.32	1.37	1.38
- 9	1.00	1.00	1.07	1.07	1.09	1.00	1.00	1.08	1.10	1.15	1.23	1.24	1.00	1.00	1.15	1.36	1.33	1.40	1.43
- 10	1.00	1.00	1.07	1.07	1.09	1.00	1.00	1.08	1.10	1.16	1.23	1.24	1.00	1.00	1.17	1.38	1.35	1.42	1.47
- 11	1.00	1.00	1.08	1.07	1.10	1.00	1.05	1.09	1.11	1.17	1.25	1.24	1.00	1.00	1.18	1.40	1.37	1.44	1.48
- 12	1.00	1.00	1.08	1.08	1.10	1.00	1.08	1.09	1.12	1.18	1.27	1.30	1.00	1.00	1.20	1.42	1.38	1.47	1.50
- 13	1.00	1.00	1.08	1.08	1.11	1.00	1.11	1.10	1.12	1.19	1.27	1.30	1.00	1.06	1.20	1.44	1.40	1.49	1.51
- 14	1.00	1.00	1.08	1.09	1.11	1.00	1.11	1.10	1.13	1.19	1.28	1.32	1.00	1.11	1.22	1.46	1.42	1.51	1.53
- 15	1.00	1.00	1.08	1.09	1.11	1.00	1.11	1.10	1.14	1.20	1.28	1.33	1.00	1.11	1.24	1.48	1.43	1.54	1.54
- 16	1.00	1.00	1.08	1.10	1.12	1.00	1.13	1.10	1.15	1.21	1.29	1.34	1.00	1.13	1.26	1.50	1.45	1.57	1.57
- 17	1.00	1.00	1.09	1.10	1.13	1.00	1.13	1.11	1.15	1.22	1.30	1.36	1.00	1.13	1.27	1.52	1.46	1.59	1.58
- 18	1.00	1.04	1.09	1.11	1.14	1.00	1.13	1.13	1.16	1.23	1.31	1.36	1.00	1.14	1.30	1.53	1.48	1.60	1.59
- 19	1.00	1.11	1.09	1.11	1.15	1.00	1.13	1.13	1.17	1.24	1.32	1.37	1.00	1.14	1.30	1.55	1.50	1.64	1.59
- 20	1.00	1.11	1.09	1.11	1.15	1.00	1.14	1.14	1.17	1.24	1.32	1.38	1.00	1.14	1.33	1.57	1.51	1.65	1.61
- 21	1.00	1.11	1.10	1.12	1.16	1.00	1.14	1.14	1.18	1.25	1.34	1.39	1.00	1.14	1.34	1.59	1.53	1.68	1.61
- 22	1.00	1.11	1.10	1.12	1.17	1.00	1.14	1.15	1.19	1.26	1.34	1.43	1.00	1.17	1.36	1.61	1.54	1.72	1.63
- 23	1.00	1.13	1.10	1.12	1.17	1.00	1.14	1.16	1.20	1.27	1.35	1.45	1.00	1.17	1.38	1.62	1.56	1.75	1.64
- 24	1.00	1.13	1.10	1.13	1.18	1.00	1.15	1.17	1.20	1.28	1.36	1.45	1.00	1.17	1.40	1.64	1.57	1.76	1.64
- 25	1.00	1.13	1.10	1.13	1.18	1.00	1.17	1.17	1.21	1.29	1.37	1.46	1.00	1.17	1.42	1.66	1.59	1.78	1.67
- 26	1.00	1.13	1.11	1.13	1.19	1.00	1.17	1.18	1.22	1.30	1.38	1.46	1.00	1.17	1.44	1.68	1.60	1.80	1.69
- 27	1.00	1.13	1.12	1.14	1.19	1.00	1.17	1.18	1.23	1.30	1.38	1.46	1.00	1.18	1.46	1.70	1.62	1.81	1.71
- 28	1.00	1.13	1.13	1.14	1.20	1.00	1.17	1.19	1.23	1.31	1.38	1.47	1.00	1.20	1.50	1.71	1.64	1.83	1.73
- 29	1.00	1.14	1.13	1.15	1.20	1.00	1.17	1.20	1.24	1.32	1.39	1.47	1.00	1.20	1.50	1.73	1.65	1.87	1.73

		GSD	≤ 100%	, 0			10	00% < GS	SD ≤ 200)%					COV	> 200 %)		
Concbin ¹	0	1	2	3	4	0	1	2	3	4	5	6	0	1	2	3	4	5	6
- 30	1.00	1.14	1.13	1.15	1.23	1.00	1.17	1.20	1.25	1.33	1.40	1.48	1.00	1.20	1.53	1.75	1.67	1.90	1.76
- 31	1.00	1.14	1.14	1.16	1.23	1.00	1.18	1.20	1.26	1.34	1.42	1.49	1.00	1.20	1.55	1.76	1.69	1.91	1.77
- 32	1.00	1.14	1.14	1.16	1.23	1.00	1.20	1.20	1.27	1.35	1.42	1.51	1.00	1.20	1.57	1.78	1.70	1.93	1.78
- 33	1.00	1.14	1.15	1.16	1.24	1.00	1.20	1.21	1.28	1.36	1.43	1.51	1.00	1.20	1.60	1.80	1.73	1.96	1.79
- 34	1.00	1.14	1.15	1.17	1.24	1.00	1.20	1.22	1.28	1.36	1.44	1.51	1.00	1.20	1.62	1.81	1.74	1.97	1.79
- 35	1.00	1.15	1.16	1.17	1.24	1.00	1.20	1.23	1.29	1.38	1.44	1.54	1.00	1.20	1.64	1.83	1.77	1.99	1.80
- 36	1.00	1.17	1.17	1.18	1.24	1.00	1.20	1.24	1.30	1.38	1.46	1.54	1.00	1.22	1.67	1.85	1.78	2.02	1.81
- 37	1.00	1.17	1.17	1.18	1.25	1.00	1.20	1.25	1.31	1.39	1.46	1.55	1.00	1.24	1.69	1.87	1.80	2.05	1.82
- 38	1.00	1.17	1.17	1.19	1.26	1.04	1.20	1.26	1.32	1.40	1.48	1.55	1.00	1.25	1.71	1.88	1.82	2.08	1.82
- 39	1.00	1.17	1.18	1.19	1.29	1.08	1.20	1.27	1.33	1.41	1.49	1.56	1.00	1.27	1.74	1.90	1.84	2.10	1.83
- 40	1.00	1.17	1.18	1.19	1.29	1.11	1.22	1.27	1.34	1.42	1.50	1.57	1.00	1.29	1.76	1.92	1.86	2.14	1.84
- 41	1.00	1.17	1.18	1.20	1.29	1.13	1.22	1.29	1.35	1.43	1.51	1.57	1.00	1.29	1.80	1.94	1.88	2.16	1.84
- 42	1.00	1.17	1.18	1.21	1.30	1.18	1.24	1.29	1.36	1.44	1.52	1.58	1.00	1.33	1.82	1.96	1.90	2.18	1.87
- 43	1.00	1.17	1.19	1.21	1.30	1.22	1.25	1.30	1.37	1.45	1.53	1.60	1.00	1.33	1.84	1.98	1.93	2.20	1.89
- 44	1.00	1.17	1.20	1.22	1.31	1.25	1.25	1.30	1.38	1.46	1.55	1.64	1.00	1.33	1.87	2.00	1.95	2.21	1.91
- 45	1.00	1.20	1.20	1.22	1.31	1.25	1.27	1.31	1.39	1.47	1.57	1.64	1.00	1.34	1.90	2.02	1.97	2.23	1.91
- 46	1.00	1.20	1.20	1.23	1.32	1.25	1.29	1.33	1.40	1.48	1.57	1.65	1.00	1.38	1.92	2.04	1.99	2.24	1.93
- 47	1.00	1.20	1.20	1.23	1.32	1.25	1.29	1.33	1.41	1.49	1.58	1.67	1.00	1.40	1.94	2.06	2.01	2.26	1.94
- 48	1.00	1.20	1.20	1.24	1.34	1.25	1.29	1.35	1.42	1.50	1.59	1.68	1.00	1.40	2.00	2.08	2.04	2.28	1.96
- 49	1.00	1.20	1.21	1.24	1.35	1.29	1.33	1.36	1.43	1.51	1.61	1.68	1.00	1.40	2.00	2.10	2.06	2.30	1.96
- 50	1.00	1.20	1.21	1.25	1.35	1.33	1.33	1.36	1.44	1.52	1.62	1.69	1.00	1.40	2.03	2.12	2.09	2.31	1.97
- 51	1.00	1.20	1.22	1.25	1.36	1.33	1.33	1.38	1.46	1.54	1.62	1.72	1.00	1.43	2.07	2.14	2.12	2.34	1.97
- 52	1.00	1.20	1.23	1.26	1.37	1.33	1.33	1.40	1.47	1.55	1.63	1.72	1.00	1.44	2.09	2.17	2.15	2.36	1.98
- 53	1.00	1.20	1.24	1.27	1.39	1.33	1.33	1.40	1.48	1.56	1.64	1.74	1.00	1.50	2.11	2.19	2.18	2.38	2.01
- 54	1.00	1.20	1.25	1.27	1.40	1.33	1.37	1.41	1.50	1.57	1.65	1.74	1.00	1.50	2.15	2.21	2.21	2.41	_
- 55	1.00	1.20	1.25	1.28	1.41	1.33	1.38	1.42	1.51	1.58	1.67	1.76	1.00	1.50	2.18	2.24	2.24	2.43	2.04
- 56	1.00	1.20	1.25	1.28	1.42	1.42	1.40	1.44	1.52	1.60	1.68	1.78	1.00	1.56	2.20	2.26	2.27	2.44	2.06
- 57	1.00	1.22	1.27	1.29	1.42	1.43	1.40	1.45	1.54	1.61	1.70	1.81	1.00	1.57	2.24	2.29	2.30	2.47	2.08
- 58	1.05	1.22	1.27	1.30	1.45	1.50	1.40	1.47	1.55	1.62	1.71	1.82	1.04	1.60	2.27	2.31	2.34	2.50	2.09
- 59	1.11	1.24	1.27	1.31	1.45	1.50	1.40	1.49	1.57	1.63	1.73	1.82	1.11	1.60	2.30	2.34	2.36	2.53	2.13
- 60	1.20	1.25	1.29	1.31	1.46	1.50	1.40	1.50	1.58	1.65	1.74	1.83	1.17	1.63	2.34	2.37	2.40	2.57	2.14
- 61	1.25	1.25	1.29	1.32	1.46	1.50	1.43	1.50	1.60	1.66	1.75	1.83	1.25	1.67	2.38	2.39	2.44	2.60	2.15
- 62	1.25	1.25	1.30	1.32	1.47	1.50	1.43	1.53	1.61	1.67	1.75	1.86	1.25	1.67	2.41	2.42	2.48	2.62	2.17

		GSD	≤ 100%	, 0			10	00% < GS	SD ≤ 200)%					COV	> 200 %)		
Concbin ¹	0	1	2	3	4	0	1	2	3	4	5	6	0	1	2	3	4	5	6
- 63	1.25	1.29	1.30	1.33	1.52	1.50	1.45	1.55	1.63	1.69	1.77	1.90	1.25	1.74	2.45	2.45	2.52	2.64	2.17
- 64	1.25	1.29	1.31	1.34	1.54	1.50	1.50	1.56	1.65	1.70	1.79	1.93	1.33	1.78	2.50	2.48	2.56	2.67	2.19
- 65	1.30	1.29	1.31	1.35	1.55	1.50	1.50	1.58	1.67	1.71	1.81	1.93	1.33	1.80	2.53	2.51	2.60	2.70	2.21
- 66	1.33	1.33	1.33	1.36	1.57	1.50	1.50	1.60	1.68	1.72	1.82	1.93	1.33	1.83	2.56	2.54	2.66	2.73	2.24
- 67	1.33	1.33	1.33	1.37	1.58	1.58	1.55	1.62	1.70	1.74	1.83	1.96	1.33	1.86	2.60	2.57	2.71	2.77	2.27
- 68	1.33	1.33	1.35	1.38	1.58	1.67	1.57	1.64	1.72	1.76	1.86	1.99	1.42	1.89	2.64	2.61	2.76	2.80	2.28
- 69	1.33	1.33	1.36	1.39	1.60	1.67	1.58	1.67	1.74	1.78	1.88	2.02	1.50	2.00	2.69	2.64	2.80	2.84	2.30
- 70	1.33	1.33	1.36	1.40	1.64	1.67	1.60	1.68	1.76	1.79	1.90	2.02	1.50	2.00	2.73	2.68	2.85	2.88	2.31
- 71	1.43	1.33	1.38	1.42	1.64	1.75	1.60	1.70	1.78	1.81	1.92	2.04	1.50	2.00	2.77	2.72	2.89	2.90	2.33
- 72	1.50	1.38	1.39	1.42	1.65	1.85	1.63	1.73	1.80	1.83	1.93	2.06	1.50	2.10	2.82	2.76	2.95	2.93	2.33
- 73	1.50	1.38	1.40	1.44	1.65	2.00	1.67	1.75	1.82	1.84	1.96	2.07	1.50	2.14	2.87	2.80	3.01	2.97	2.35
- 74	1.50	1.40	1.40	1.44	1.65	2.00	1.67	1.78	1.85	1.86	1.98	2.07	1.50	2.18	2.92	2.84	3.06	2.99	2.37
- 75	1.50	1.40	1.42	1.46	1.66	2.00	1.71	1.80	1.87	1.88	2.00	2.08	1.50	2.22	2.96	2.89	3.11	3.02	2.41
- 76	1.50	1.40	1.43	1.47	1.67	2.00	1.75	1.83	1.90	1.90	2.02	2.09	1.60	2.29	3.00	2.93	3.16	3.06	2.44
- 77	1.50	1.40	1.45	1.48	1.68	2.00	1.78	1.86	1.92	1.93	2.05	2.11	1.67	2.34	3.07	2.97	3.22	3.10	2.49
- 78	1.50	1.40	1.46	1.50	1.69	2.00	1.80	1.90	1.96	1.95	2.06	2.13	1.71	2.40	3.13	3.03	3.30	3.16	2.52
- 79	1.50	1.43	1.48	1.52	1.70	2.00	1.83	1.92	1.98	1.97	2.08	2.16	1.85	2.46	3.18	3.09	3.35	3.19	2.53
- 80	1.50	1.44	1.50	1.52	1.71	2.00	1.86	1.96	2.01	2.00	2.14	2.20	2.00	2.56	3.25	3.14	3.41	3.24	2.55
- 81	1.58	1.50	1.50	1.54	1.74	2.00	1.89	2.00	2.05	2.02	2.15	2.23	2.00	2.60	3.31	3.20	3.47	3.26	2.57
- 82	1.67	1.50	1.53	1.57	1.75	2.00	2.00	2.05	2.08	2.05	2.17	2.25	2.00	2.67	3.38	3.26	3.57	3.32	2.60
- 83	1.75	1.50	1.55	1.59	1.77	2.00	2.00	2.09	2.12	2.08	2.22	2.29	2.00	2.78	3.46	3.33	3.65	3.38	2.64
- 84	2.00	1.55	1.58	1.61	1.77	2.00	2.00	2.14	2.15	2.11	2.25	2.29	2.00	2.83	3.54	3.41	3.72	3.42	2.65
- 85	2.00	1.57	1.60	1.64	1.82	2.00	2.11	2.19	2.20	2.14	2.27	2.31	2.00	3.00	3.62	3.48	3.80	3.49	2.67
- 86	2.00	1.60	1.63	1.67	1.85	2.11	2.17	2.24	2.24	2.17	2.39	2.32	2.00	3.00	3.70	3.57	3.90	3.55	_
- 87	2.00	1.60	1.65	1.70	1.86	2.33	2.20	2.30	2.29	2.20	2.47	2.39	2.00	3.17	3.80	3.67	4.00	3.62	_
- 88	2.00	1.63	1.69	1.72	1.88	2.50	2.29	2.36	2.35	2.23	2.50	2.39	2.00	3.29	3.90	3.77	4.10	3.69	2.74
- 89	2.00	1.67	1.71	1.76	1.91	2.50	2.35	2.43	2.40	2.27	2.53	2.39	2.00	3.40	4.00	3.90	4.21	3.80	2.82
- 90	2.00	1.71	1.75	1.80	1.98	2.94	2.43	2.50	2.46	2.31	2.58	2.50	2.00	3.56	4.12	4.04	4.35	3.88	2.84
- 91	2.00	1.78	1.80	1.85	2.10	3.00	2.56	2.60	2.54	2.37	2.66	2.51	2.44	3.68	4.25	4.18	4.44	3.94	2.94
- 92	2.00	1.80	1.83	1.89	2.25	3.00	2.65	2.70	2.62	2.43	2.73	2.57	2.67	3.86	4.39	4.35	4.62	4.07	2.98
- 93	2.00	1.86	1.90	1.96	2.26	3.00	2.80	2.81	2.71	2.48	2.77	2.59	3.00	4.00	4.56	4.55	4.82	4.18	3.03
- 94	2.00	2.00	1.95	2.02	2.30	3.33	3.00	2.94	2.81	2.56	2.81	2.65	3.00	4.29	4.76	4.77	5.03	4.28	3.09
- 95	2.00	2.00	2.05	2.10	2.50	4.00	3.14	3.10	2.93	2.66	2.91	2.65	3.75	4.57	5.00	5.03	5.24	4.40	3.13

		GSD	≤ 100%)			10	00% < GS	D ≤ 200)%					COV	> 200 %	ı		
Concbin ¹	0	1	2	3	4	0	1	2	3	4	5	6	0	1	2	3	4	5	6
- 96	2.33	2.14	2.14	2.22	2.53	4.00	3.38	3.30	3.08	2.82	3.11	2.66	4.75	4.88	5.27	5.37	5.48	4.48	3.33
- 97	2.67	2.29	2.27	2.37	2.56	5.00	3.67	3.56	3.28	3.01	3.25	2.71	6.00	5.29	5.69	5.80	5.94	4.63	3.38
- 98	3.00	2.50	2.50	2.63	3.12	6.00	4.17	3.93	3.56	3.33	3.30	3.16	10.00	5.86	6.30	6.51	6.48	5.06	3.48
- 99	4.00	2.89	2.91	3.02	3.61	10.00	5.00	4.64	4.07	3.77	3.82	3.27	10.00	6.86	7.27	7.50	7.29	5.36	3.70
- 100	11.67	10.60	10.08	6.81	6.10	11.75	11.67	11.94	11.41	8.51	6.63	3.51	11.75	11.50	11.93	11.45	11.39	6.48	5.39
n ³	352735	74053	42876	6895	147	802624	259701	179452	53053	3807	398	104	475572	55341	35502	20077	4019	989	341

^{1 1-}hour SO₂ concentration bins are: 0 = 1-hour mean < 5 ppb; $2 = 5 \le 1$ -hour mean < 10 ppb; $2 = 10 \le 1$ -hour mean < 25 ppb; $3 = 25 \le 1$ -hour mean < 75 ppb; $4 = 75 \le 1$ -hour mean < 150 ppb; $5 = 150 \le 1$ -hour mean 250 ppb; 6 = 1-hour mean > 250 ppb.

2 pct - x indicates the percentile of the distribution.

3 $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; x = 10

Table A.3-2. Distribution of 5-minute maximum peak to 1-hour mean SO₂ concentration ratios (PMRs) using ambient monitors categorized by 1-hour geometric standard deviation (GSD) and 1-hour mean concentration.

		GSI) ≤ 2.17	,				2.17 < GS	SD ≤ 2.9	4					GSD	> 2.94			
Concbin ¹	0	1	2	3	4	0	1	2	3	4	5	6	0	1	2	3	4	5	6
Pct ² - 0	1.00	1.00	1.00	1.00	1.01	1.00	1.00	1.00	1.00	1.00	1.05	1.13	1.00	1.00	1.00	1.00	1.00	1.07	1.02
- 1	1.00	1.00	1.00	1.03	1.07	1.00	1.00	1.00	1.00	1.05	1.13	1.19	1.00	1.00	1.00	1.05	1.08	1.14	1.14
- 2	1.00	1.00	1.00	1.04	1.17	1.00	1.00	1.00	1.03	1.08	1.21	1.26	1.00	1.00	1.04	1.07	1.10	1.17	1.16
- 3	1.00	1.00	1.00	1.04	1.21	1.00	1.00	1.00	1.04	1.10	1.23	1.28	1.00	1.00	1.06	1.08	1.12	1.20	1.18
- 4	1.00	1.00	1.00	1.06	1.22	1.00	1.00	1.05	1.05	1.12	1.26	1.29	1.00	1.00	1.07	1.09	1.14	1.21	1.24
- 5	1.00	1.00	1.00	1.07	1.24	1.00	1.00	1.06	1.06	1.14	1.28	1.30	1.00	1.00	1.08	1.10	1.15	1.21	1.25
- 6	1.00	1.00	1.00	1.08	1.25	1.00	1.00	1.06	1.07	1.16	1.29	1.33	1.00	1.00	1.08	1.12	1.17	1.22	1.29
- 7	1.00	1.00	1.04	1.10	1.27	1.00	1.00	1.07	1.08	1.17	1.31	1.34	1.00	1.03	1.09	1.13	1.18	1.23	1.30
- 8	1.00	1.00	1.06	1.11	1.29	1.00	1.00	1.07	1.08	1.18	1.32	1.35	1.00	1.05	1.10	1.14	1.19	1.25	1.31
- 9	1.00	1.00	1.06	1.12	1.30	1.00	1.00	1.08	1.09	1.20	1.34	1.37	1.00	1.07	1.10	1.15	1.20	1.27	1.33
- 10	1.00	1.00	1.07	1.13	1.30	1.00	1.00	1.08	1.10	1.21	1.35	1.38	1.00	1.09	1.11	1.16	1.21	1.28	1.36
- 11	1.00	1.00	1.07	1.14	1.31	1.00	1.00	1.08	1.11	1.23	1.38	1.43	1.00	1.10	1.12	1.17	1.22	1.30	1.37
- 12	1.00	1.00	1.07	1.14	1.32	1.00	1.05	1.09	1.12	1.24	1.39	1.45	1.00	1.11	1.13	1.18	1.24	1.32	1.38
- 13	1.00	1.00	1.08	1.15	1.32	1.00	1.10	1.09	1.12	1.25	1.40	1.46	1.00	1.11	1.14	1.19	1.25	1.35	1.45
- 14	1.00	1.00	1.08	1.16	1.33	1.00	1.11	1.10	1.13	1.26	1.42	1.47	1.00	1.13	1.15	1.20	1.26	1.36	1.46
- 15	1.00	1.00	1.08	1.17	1.34	1.00	1.11	1.10	1.14	1.28	1.43	1.48	1.00	1.13	1.16	1.21	1.27	1.38	1.46
- 16	1.00	1.00	1.08	1.19	1.35	1.00	1.11	1.10	1.15	1.29	1.44	1.50	1.00	1.13	1.17	1.22	1.29	1.39	1.47
- 17	1.00	1.00	1.09	1.19	1.36	1.00	1.13	1.10	1.15	1.30	1.46	1.51	1.00	1.14	1.18	1.23	1.30	1.42	1.49
- 18	1.00	1.00	1.09	1.20	1.36	1.00	1.13	1.11	1.16	1.31	1.47	1.52	1.00	1.14	1.18	1.24	1.31	1.43	1.51
- 19	1.00	1.00	1.09	1.21	1.37	1.00	1.13	1.12	1.17	1.32	1.49	1.53	1.00	1.14	1.19	1.25	1.32	1.44	1.54
- 20	1.00	1.00	1.09	1.22	1.40	1.00	1.13	1.13	1.17	1.34	1.50	1.54	1.00	1.15	1.20	1.26	1.33	1.46	1.55
- 21	1.00	1.00	1.10	1.23	1.43	1.00	1.14	1.13	1.18	1.35	1.52	1.54	1.00	1.16	1.20	1.27	1.34	1.49	1.57
- 22	1.00	1.07	1.10	1.24	1.44	1.00	1.14	1.14	1.19	1.36	1.53	1.56	1.00	1.17	1.21	1.29	1.35	1.50	1.58
- 23	1.00	1.11	1.10	1.25	1.44	1.00	1.14	1.15	1.20	1.38	1.55	1.58	1.00	1.17	1.23	1.30	1.36	1.53	1.60
- 24	1.00	1.11	1.10	1.26	1.46	1.00	1.14	1.15	1.21	1.39	1.57	1.58	1.00	1.17	1.24	1.31	1.37	1.56	1.61
- 25	1.00	1.11	1.10	1.27	1.47	1.00	1.14	1.16	1.21	1.40	1.57	1.58	1.00	1.18	1.25	1.32	1.39	1.58	1.64
- 26	1.00	1.13	1.11	1.28	1.48	1.00	1.17	1.17	1.22	1.41	1.59	1.59	1.00	1.19	1.25	1.33	1.40	1.60	1.64
- 27	1.00	1.13	1.12	1.29	1.49	1.00	1.17	1.17	1.23	1.42	1.60	1.59	1.00	1.20	1.27	1.34	1.41	1.62	1.64
- 28	1.00	1.13	1.13	1.30	1.50	1.00	1.17	1.18	1.24	1.43	1.61	1.61	1.00	1.20	1.27	1.35	1.42	1.64	1.68
- 29	1.00	1.14	1.14	1.30	1.50	1.00	1.17	1.18	1.25	1.44	1.64	1.63	1.00	1.20	1.29	1.37	1.43	1.65	1.68

		GSI	D ≤ 2.17	•				2.17 < GS	SD ≤ 2.9	4					GSD	> 2.94			
Concbin ¹	0	1	2	3	4	0	1	2	3	4	5	6	0	1	2	3	4	5	6
- 30	1.00	1.14	1.14	1.31	1.52	1.00	1.17	1.18	1.26	1.46	1.65	1.64	1.00	1.20	1.30	1.38	1.45	1.67	1.74
- 31	1.00	1.14	1.15	1.32	1.53	1.00	1.17	1.19	1.27	1.47	1.68	1.65	1.00	1.20	1.30	1.39	1.46	1.71	1.76
- 32	1.00	1.14	1.16	1.33	1.55	1.00	1.17	1.20	1.28	1.48	1.70	1.66	1.00	1.22	1.32	1.40	1.47	1.73	1.77
- 33	1.00	1.14	1.17	1.34	1.57	1.00	1.18	1.20	1.29	1.50	1.72	1.68	1.00	1.23	1.33	1.42	1.48	1.75	1.79
- 34	1.00	1.15	1.17	1.35	1.58	1.00	1.20	1.20	1.30	1.51	1.74	1.69	1.00	1.25	1.34	1.43	1.50	1.76	1.81
- 35	1.00	1.17	1.18	1.36	1.59	1.00	1.20	1.21	1.31	1.52	1.75	1.69	1.00	1.25	1.36	1.44	1.51	1.77	1.83
- 36	1.00	1.17	1.18	1.37	1.60	1.00	1.20	1.21	1.32	1.54	1.76	1.70	1.00	1.26	1.36	1.46	1.52	1.80	1.83
- 37	1.00	1.17	1.18	1.39	1.60	1.00	1.20	1.23	1.32	1.55	1.78	1.72	1.00	1.28	1.38	1.47	1.53	1.82	1.84
- 38	1.00	1.17	1.20	1.40	1.62	1.00	1.20	1.23	1.33	1.57	1.80	1.73	1.03	1.29	1.39	1.49	1.54	1.85	1.90
- 39	1.00	1.17	1.20	1.40	1.63	1.00	1.20	1.25	1.35	1.58	1.82	1.73	1.05	1.29	1.40	1.50	1.56	1.90	1.91
- 40	1.00	1.17	1.20	1.42	1.63	1.00	1.20	1.25	1.36	1.60	1.83	1.74	1.11	1.32	1.42	1.52	1.57	1.92	1.91
- 41	1.00	1.17	1.20	1.43	1.64	1.00	1.20	1.26	1.37	1.61	1.85	1.76	1.11	1.33	1.43	1.53	1.58	1.94	1.93
- 42	1.00	1.18	1.21	1.44	1.65	1.00	1.20	1.27	1.38	1.63	1.86	1.77	1.11	1.33	1.45	1.55	1.60	1.96	1.96
- 43	1.00	1.20	1.22	1.44	1.66	1.00	1.22	1.27	1.39	1.64	1.89	1.78	1.15	1.33	1.46	1.56	1.61	1.99	1.96
- 44	1.00	1.20	1.23	1.46	1.67	1.00	1.22	1.29	1.40	1.66	1.90	1.78	1.18	1.35	1.47	1.58	1.62	2.02	1.96
- 45	1.00	1.20	1.25	1.47	1.70	1.00	1.25	1.29	1.42	1.67	1.91	1.79	1.21	1.37	1.50	1.59	1.64	2.03	1.97
- 46	1.00	1.20	1.25	1.48	1.70	1.04	1.25	1.30	1.43	1.69	1.93	1.80	1.25	1.38	1.50	1.61	1.65	2.08	1.98
- 47	1.00	1.20	1.27	1.50	1.71	1.11	1.25	1.30	1.44	1.70	1.95	1.80	1.25	1.40	1.53	1.63	1.67	2.12	1.98
- 48	1.00	1.20	1.27	1.51	1.72	1.13	1.29	1.31	1.45	1.72	1.97	1.81	1.25	1.40	1.54	1.64	1.68	2.16	2.00
- 49	1.00	1.20	1.27	1.52	1.74	1.20	1.29	1.33	1.47	1.74	1.99	1.82	1.25	1.40	1.56	1.66	1.69	2.17	2.01
- 50	1.00	1.20	1.29	1.54	1.74	1.25	1.29	1.33	1.48	1.75	2.00	1.82	1.29	1.41	1.58	1.68	1.71	2.21	2.03
- 51	1.00	1.20	1.30	1.56	1.75	1.25	1.29	1.35	1.49	1.77	2.02	1.82	1.33	1.43	1.59	1.69	1.72	2.22	2.04
- 52	1.00	1.20	1.30	1.57	1.76	1.25	1.33	1.36	1.51	1.79	2.05	1.83	1.33	1.44	1.61	1.71	1.74	2.24	2.06
- 53	1.00	1.20	1.31	1.59	1.76	1.25	1.33	1.37	1.52	1.81	2.06	1.84	1.33	1.47	1.63	1.73	1.77	2.26	2.08
- 54	1.00	1.20	1.32	1.61	1.77	1.25	1.33	1.38	1.54	1.83	2.09	1.84	1.33	1.50	1.65	1.75	1.78	2.28	
- 55	1.00	1.22	1.33	1.63	1.78	1.29	1.33	1.40	1.56	1.84	2.11	1.87	1.38	1.50	1.67	1.77	1.80	2.31	
- 56	1.00	1.25	1.35	1.65	1.80	1.33	1.33	1.40	1.57	1.86	2.14	1.88	1.43	1.50	1.69	1.79	1.82	2.37	2.14
- 57	1.00	1.25	1.36	1.67	1.81	1.33	1.38	1.42	1.59	1.88	2.15		1.43	1.54	1.71	1.80	1.84	2.38	2.15
- 58	1.00	1.27	1.37	1.69	1.81	1.33	1.38	1.43	1.61	1.90	2.17	1.91	1.48	1.57	1.73	1.82	1.86	2.41	2.16
- 59	1.07	1.29	1.38	1.71	1.83	1.33	1.40	1.45	1.62	1.92	2.19	1.91	1.50	1.58	1.76	1.84	1.88	2.43	2.18
- 60	1.14	1.29	1.40	1.72	1.83	1.33	1.40	1.46	1.64	1.94	2.21	1.93	1.50	1.60	1.79	1.86	1.91	2.47	2.19
- 61	1.22	1.32	1.40	1.74	1.84	1.33	1.40	1.47	1.66	1.96	2.22	1.94	1.50	1.60	1.81	1.88	1.93	2.50	2.20
- 62	1.25	1.33	1.42	1.75	1.91	1.43	1.40	1.50	1.68	1.98	2.25	1.95	1.50	1.63	1.83	1.90	1.96	2.52	2.26

		GSI	D ≤ 2.17	,				2.17 < GS	SD ≤ 2.9	4					GSD	> 2.94			
Concbin ¹	0	1	2	3	4	0	1	2	3	4	5	6	0	1	2	3	4	5	6
- 63	1.25	1.33	1.44	1.78	1.93	1.50	1.40	1.50	1.70	1.99	2.27	1.96	1.50	1.67	1.86	1.92	1.98	2.56	2.28
- 64	1.29	1.33	1.45	1.80	1.93	1.50	1.43	1.52	1.72	2.02	2.29	2.00	1.54	1.67	1.89	1.95	2.01	2.59	2.29
- 65	1.33	1.33	1.47	1.81	1.99	1.50	1.43	1.54	1.74	2.04	2.31	2.02	1.62	1.70	1.92	1.97	2.04	2.62	2.31
- 66	1.33	1.38	1.50	1.84	2.00	1.50	1.44	1.56	1.76	2.07	2.32	2.04	1.67	1.72	1.94	2.00	2.07	2.63	2.31
- 67	1.33	1.40	1.50	1.87	2.05	1.50	1.50	1.58	1.79	2.10	2.35	2.06	1.67	1.76	1.99	2.02	2.10	2.67	2.33
- 68	1.33	1.40	1.53	1.89	2.08	1.50	1.50	1.60	1.81	2.12	2.37	2.07	1.71	1.80	2.00	2.04	2.14	2.70	2.35
- 69	1.36	1.40	1.55	1.91	2.09	1.50	1.50	1.62	1.83	2.15	2.41	2.08	1.80	1.80	2.03	2.07	2.18	2.72	2.36
- 70	1.50	1.40	1.58	1.94	2.11	1.50	1.56	1.64	1.85	2.17	2.43	2.11	1.86	1.83	2.07	2.10	2.21	2.77	2.37
- 71	1.50	1.40	1.60	1.97	2.15	1.50	1.57	1.67	1.88	2.20	2.44	2.13	2.00	1.86	2.10	2.13	2.24	2.81	2.39
- 72	1.50	1.43	1.62	2.00	2.18	1.50	1.60	1.69	1.91	2.23	2.49	2.14	2.00	1.89	2.14	2.15	2.29	2.85	2.41
- 73	1.50	1.43	1.64	2.02	2.19	1.67	1.60	1.71	1.94	2.26	2.51	2.15	2.00	1.98	2.18	2.18	2.33	2.90	2.44
- 74	1.50	1.49	1.67	2.04	2.23	1.67	1.60	1.73	1.97	2.30	2.55	2.17	2.00	2.00	2.21	2.21	2.37	2.93	2.50
- 75	1.50	1.50	1.69	2.07	2.26	1.68	1.67	1.77	2.00	2.33	2.61	2.17	2.00	2.00	2.25	2.25	2.42	2.98	2.51
- 76	1.50	1.50	1.71	2.10	2.27	1.75	1.67	1.80	2.03	2.36	2.63	2.21	2.00	2.03	2.29	2.28	2.48	3.01	2.53
- 77	1.50	1.56	1.73	2.12	2.28	2.00	1.71	1.82	2.06	2.41	2.69	2.23	2.00	2.13	2.33	2.32	2.54	3.03	2.53
- 78	1.50	1.57	1.77	2.15	2.31	2.00	1.75	1.86	2.10	2.46	2.73	2.24	2.00	2.17	2.38	2.36	2.60	3.09	2.54
- 79	1.67	1.60	1.80	2.19	2.40	2.00	1.80	1.90	2.13	2.49	2.75	2.27	2.00	2.20	2.43	2.40	2.68	3.12	2.56
- 80	1.75	1.60	1.83	2.22	2.46	2.00	1.80	1.93	2.17	2.54	2.79	2.27	2.00	2.24	2.49	2.44	2.77	3.17	2.58
- 81	2.00	1.63	1.87	2.27	2.47	2.00	1.83	2.00	2.22	2.60	2.84	2.30	2.00	2.31	2.54	2.48	2.85	3.21	2.60
- 82	2.00	1.67	1.91	2.30	2.47	2.00	1.86	2.00	2.26	2.67	2.87	2.31	2.29	2.37	2.60	2.53	2.95	3.25	2.64
- 83	2.00	1.71	1.94	2.36	2.49	2.00	1.96	2.08	2.31	2.72	2.89	2.33	2.50	2.40	2.65	2.58	3.05	3.30	2.65
- 84	2.00	1.77	2.00	2.43	2.53	2.00	2.00	2.11	2.36	2.78	2.92	2.37	2.50	2.50	2.71	2.63	3.13	3.35	2.69
- 85	2.00	1.80	2.00	2.48	2.68	2.00	2.00	2.18	2.41	2.85	2.97	2.44	2.75	2.57	2.79	2.69	3.24	3.39	2.71
- 86	2.00	1.83	2.09	2.56	2.74	2.00	2.11	2.23	2.47	2.90	3.00	2.48	3.00	2.63	2.87	2.75	3.35	3.46	2.73
- 87	2.00	1.86	2.13	2.63	2.78	2.00	2.17	2.30	2.54	2.97	3.11	2.56	3.00	2.73	2.94	2.82	3.47	3.54	2.81
- 88	2.00	1.97	2.20	2.69	2.81	2.00	2.20	2.38	2.60	3.06	3.19	2.59	3.33	2.83	3.00	2.89	3.62	3.59	2.84
- 89	2.00	2.00	2.27	2.79	2.85	2.00	2.30	2.45	2.68	3.14	3.25	2.62	3.33	2.94	3.10	2.96	3.73	3.68	
- 90	2.00	2.00	2.33	2.88	2.96	2.25	2.40	2.54	2.76	3.26	3.31	2.66	4.00	3.00	3.20	3.06	3.86	3.78	
- 91	2.00	2.14	2.42	2.97	3.06	2.50	2.50	2.64	2.86	3.36	3.41	2.67	4.67	3.18	3.31	3.16	4.03	3.88	2.97
- 92	2.00	2.20	2.54	3.08	3.24	2.50	2.60	2.75	2.96	3.44	3.55	2.68	5.00	3.33	3.46	3.28	4.22	3.98	3.02
- 93	2.00	2.29	2.64	3.24	3.39	3.00	2.78	2.89	3.08	3.59	3.67	2.70	5.50	3.50	3.61	3.41	4.41	4.10	3.06
- 94	2.25	2.40	2.79	3.50	3.55	3.00	2.92	3.02	3.22	3.74	3.84	2.71	10.00	3.71	3.77	3.57	4.65	4.18	3.12
- 95	2.50	2.56	2.93	3.61	3.68	3.00	3.14	3.21	3.40	3.92	3.92	3.01	10.00	4.00	4.00	3.78	4.94	4.35	3.16

		GSI	D ≤ 2.17	ı			2	2.17 < GS	SD ≤ 2.9	4					GSD	> 2.94			
Concbin ¹	0	1	2	3	4	0	1	2	3	4	5	6	0	1	2	3	4	5	6
- 96	3.00	2.71	3.13	3.91	3.93	3.50	3.40	3.44	3.62	4.12	4.22	3.11	10.00	4.25	4.23	4.07	5.23	4.44	3.27
- 97	3.00	3.00	3.40	4.23	4.13	4.00	3.75	3.73	3.93	4.35	4.38	3.41	10.00	4.67	4.57	4.48	5.59	4.58	3.33
- 98	3.50	3.29	3.85	4.71	4.49	5.00	4.20	4.17	4.37	4.84	4.52	3.44	10.00	5.22	5.04	5.06	6.11	4.89	3.35
- 99	4.00	4.00	4.68	5.58	5.09	6.00	5.14	5.00	5.20	5.50	5.13	3.79	10.00	6.20	5.91	6.19	6.89	5.45	3.51
- 100	11.75	11.57	11.94	10.14	6.10	11.75	11.50	11.93	11.41	9.67	6.48	5.39	11.67	11.67	11.93	11.45	11.39	6.63	3.62
n ³	456580	54454	16117	1925	150	876986	271059	186098	49555	3888	613	219	297365	63582	55615	28545	3952	759	224

^{1 1-}hour SO₂ concentration bins are: 0 = 1-hour mean < 5 ppb; $2 = 5 \le 1$ -hour mean < 10 ppb; $2 = 10 \le 1$ -hour mean < 25 ppb; $3 = 25 \le 1$ -hour mean < 75 ppb; $4 = 75 \le 1$ -hour mean < 150 ppb; $5 = 150 \le 1$ -hour mean 250 ppb; 6 = 1-hour mean > 250 ppb.

2 pct - x indicates the percentile of the distribution.

3 $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; $x = 10 \le 1$ -hour mean < 25 ppb; x = 10

A.4 Factors Used in Adjusting Air Quality to Just Meet the Current and Potential Alternative SO2 Air Quality Standards

The adjustment factors used for simulating just meeting particular forms and levels of SO₂ standards are described here in two sections. This was done given the difference in how the adjustment factors were derived and applied to each of the air quality scenarios and given the number of factors generated for the potential alternative standards. The first section includes the factors used for adjusting air quality to just meet the current standards (either the 24-hour or annual average), while the second section note the concentrations used in deriving the factors applied to simulate just meeting potential alternative standards.

A.4.1 Adjustment factors for just meeting the current standard

Both annual and daily adjustment factors were calculated for all selected counties in evaluating the current annual and daily standards however, the lowest value of the two was selected for use in adjusting concentrations (see REA section 7.2.4). The adjustment factors for each county, year, and the standard from which the factors were derived is given in Table A.4-1. In addion, the coefficient of variation (i.e., COV) was used as a measure to indicate the variability associated with each of the calculated factors when considering all of the monitors in a county. Within a given year, the COV generally indicates the extent of spatial variability in ambient concentrations, considering the number of monitors in operation. Variation in the COV across different years can indicate the temporal variability in a county however, year-to-year differences in the number and location of ambient monitors may confound this comparison. Lower COVs indicate similarity in that concentration metric in the county, while higher values indicate less homogeneity in concentrations (whether spatially or temporally).

Table A.4-1. Adjustment factors used in simulating air quality just meeting the current SO₂ NAAQS in selected counties by year.

State Abbreviation	County	Year	Monitors (n)	Adjustment Factor	cov	Closest Standard ¹
AZ	Gila	2001	2	3.12	4	D
AZ	Gila	2002	2	3.53	5	Α
AZ	Gila	2003	2	3.82	12	Α
AZ	Gila	2004	2	3.04	21	Α
AZ	Gila	2005	2	3.33	5	D
AZ	Gila	2006	2	4.40	1	D
DE	New Castle	2001	4	3.38	16	D
DE	New Castle	2002	4	2.67	9	D

State Abbreviation	County	Year	Monitors (n)	Adjustment Factor	cov	Closest Standard ¹
DE	New Castle	2003	5	2.75	9	D
DE	New Castle	2004	4	2.58	13	D
DE	New Castle	2005	4	2.73	11	D
DE	New Castle	2006	4	2.68	14	D
FL	Hillsborough	2001	7	3.14	13	D
FL	Hillsborough	2002	7	3.09	16	D
FL	Hillsborough	2003	6	3.09	19	D
FL	Hillsborough	2004	6	4.95	32	D
FL	Hillsborough	2005	6	4.40	25	D
FL	Hillsborough	2006	6	4.19	29	D
IL	Madison	2001	4	3.51	7	D
IL	Madison	2002	4	2.88	12	D
IL	Madison	2003	3	3.60	6	D
IL	Madison	2004	3	3.61	18	D
IL	Madison	2005	3	4.19	11	D
IL	Madison	2006	3	4.90	16	D
IL	Wabash	2001	2	3.25	1	D
IL	Wabash	2002	2	3.33	3	D
IL	Wabash	2003	2	2.95	5	D
IL	Wabash	2004	2	3.98	1	D
IL	Wabash	2005	2	3.80	7	D
IL	Wabash	2006	2	3.01	5	D
IN	Floyd	2001	3	3.98	2	D
IN	Floyd	2002	3	4.85	6	D
IN	Floyd	2003	3	4.14	5	D
IN	Floyd	2004	2	5.04	6	A
IN	Floyd	2005	3	3.98	11	Α
IN	Floyd	2006	3	3.64	5	D
IN	Gibson	2001	2	2.34	6	D
IN	Gibson	2002	2	2.68	19	D
IN	Gibson	2003	2	1.17	13	D
IN	Gibson	2004	2	2.99	10	D
IN	Gibson	2005	2	4.78	3	D
IN	Gibson	2006	2	1.67	16	D
IN	Lake	2001	2	4.87	0	D
IN	Lake	2002	2	4.43	17	D
IN	Lake	2003	2	4.94	7	D
IN	Lake	2004	2	4.39	14	D
IN	Lake	2005	2	3.39	16	D
IN	Lake	2006	1	8.12	0	A
IN	Vigo	2001	2	2.47	16	D
IN	Vigo	2002	2	4.65	18	A
IN	Vigo	2003	2	4.06	13	A
IN	Vigo	2004	2	5.28	1	D
IN	Vigo	2005	2	4.57	5	D
IN	Vigo	2006	2	6.97	5	D
IA	Linn	2001	5	3.53	18	D
IA	Linn	2002	3	4.70	5	D

State Abbreviation	County	Year	Monitors (n)	Adjustment Factor	cov	Closest Standard ¹
IA	Linn	2003	3	3.45	5	D
IA	Linn	2004	3	2.29	10	D
IA	Linn	2005	3	3.41	9	D
IA	Linn	2006	3	4.10	35	D
IA	Muscatine	2001	3	4.20	12	D
IA	Muscatine	2002	3	3.87	11	D
IA	Muscatine	2003	3	4.09	11	D
IA	Muscatine	2004	3	2.78	16	D
IA	Muscatine	2005	3	2.90	17	D
IA	Muscatine	2006	3	2.94	10	D
MI	Wayne	2001	6	3.21	9	D
MI	Wayne	2002	3	2.97	15	D
MI	Wayne	2003	3	3.30	5	D
MI	Wayne	2004	3	2.99	12	D
MI	Wayne	2005	3	3.35	7	D
MI	Wayne	2006	3	2.95	13	D
MO	Greene	2001	3	3.57	17	D
MO	Greene	2002	5	3.47	32	D
MO	Greene	2003	5	5.12	26	D
MO	Greene	2004	5	5.29	29	D
MO	Greene	2005	5	4.87	34	D
MO	Greene	2006	5	4.46	19	D
MO	Iron	2001	2	2.26	0	D
MO	Iron	2002	2	2.11	2	D
MO	Iron	2003	2	2.44	2	D
MO	Iron	2004	2	7.96	22	A
MO	Jefferson	2001	3	5.74	10	D
MO	Jefferson	2002	1	3.89	0	D
MO	Jefferson	2003	1	5.65	0	D
MO	Jefferson	2004	1	1.87	0	D
MO	Jefferson	2005	1	2.13	0	D
MO	Jefferson	2006	1	1.93	0	D
NH	Merrimack	2001	2	3.07	21	D
NH	Merrimack	2002	3	3.71	18	D
NH	Merrimack	2003	3	3.31	10	D
NH	Merrimack	2004	2	2.59	17	D
NH	Merrimack	2005	2	2.70	18	D
NH	Merrimack	2006	2	2.51	28	D
NJ	Hudson	2001	2	3.39	6	A
NJ	Hudson	2002	1	5.26	0	A
NJ	Hudson	2003	2	3.52	6	A
NJ	Hudson	2004	2	3.67	4	A
NJ	Hudson	2005	2	3.67	1	A
NJ	Hudson	2006	2	6.25	5	D
NJ	Union	2001	2	3.71	7	A
NJ	Union	2001	2	3.52	11	A
NJ	Union	2002	2	3.70	8	A
NJ	Union	2003	2	3.99	8	A

State Abbreviation	County	Year	Monitors (n)	Adjustment Factor	cov	Closest Standard ¹
NJ	Union	2005	2	4.12	7	Α
NJ	Union	2006	2	7.98	4	D
NY	Bronx	2001	1	2.95	0	Α
NY	Bronx	2002	2	3.04	3	Α
NY	Bronx	2003	2	2.82	1	D
NY	Bronx	2004	2	2.96	3	Α
NY	Bronx	2005	1	3.26	0	Α
NY	Bronx	2006	2	3.44	6	Α
NY	Chautauqua	2001	3	1.85	12	D
NY	Chautauqua	2002	2	2.34	18	D
NY	Chautauqua	2003	2	2.30	13	D
NY	Chautauqua	2004	2	3.42	16	D
NY	Chautauqua	2005	2	5.78	11	D
NY	Chautauqua	2006	2	9.47	2	D
NY	Erie	2001	2	2.66	13	D
NY	Erie	2002	2	2.01	16	D
NY	Erie	2003	2	1.85	16	D
NY	Erie	2004	2	3.65	20	D
NY	Erie	2005	2	4.14	14	D
NY	Erie	2006	2	4.72	17	D
ОН	Cuyahoga	2001	5	4.05	6	D
ОН	Cuyahoga	2002	5	5.10	11	Α
ОН	Cuyahoga	2003	5	3.98	5	D
ОН	Cuyahoga	2004	4	4.54	11	D
ОН	Cuyahoga	2005	4	3.43	6	D
ОН	Cuyahoga	2006	4	4.25	8	D
ОН	Lake	2001	2	3.78	8	Α
ОН	Lake	2002	2	3.34	15	Α
OH	Lake	2003	2	2.79	10	D
ОН	Lake	2004	2	3.05	13	D
ОН	Lake	2005	2	1.87	13	D
ОН	Lake	2006	2	2.51	16	D
ОН	Summit	2001	2	3.25	3	D
ОН	Summit	2002	2	2.39	8	D
ОН	Summit	2003	2	2.65	2	D
ОН	Summit	2004	2	2.75	11	D
ОН	Summit	2005	2	3.76	14	Α
ОН	Summit	2006	2	3.79	9	D
OK	Tulsa	2001	3	4.16	10	Α
OK	Tulsa	2002	3	4.51	2	D
OK	Tulsa	2003	3	3.65	6	D
OK	Tulsa	2004	3	4.07	3	D
OK	Tulsa	2005	3	4.57	4	A
OK	Tulsa	2006	4	5.69	 59	D
PA	Allegheny	2001	7	2.72	5	D
PA	Allegheny	2002	5	2.80	4	A
PA	Allegheny	2003	7	2.23	5	D
PA	Allegheny	2004	7	2.81	6	D

State Abbreviation	County	Year	Monitors (n)	Adjustment Factor	cov	Closest Standard ¹
PA	Allegheny	2005	7	2.17	7	D
PA	Allegheny	2006	6	2.97	8	D
PA	Beaver	2001	3	2.01	5	D
PA	Beaver	2002	3	1.91	6	D
PA	Beaver	2003	3	1.73	6	D
PA	Beaver	2004	3	2.64	6	Α
PA	Beaver	2005	3	2.42	7	Α
PA	Beaver	2006	3	2.67	8	D
PA	Northampton	2001	2	2.15	28	Α
PA	Northampton	2002	2	5.01	0	Α
PA	Northampton	2003	2	3.73	18	Α
PA	Northampton	2004	2	2.28	21	Α
PA	Northampton	2005	2	3.55	3	Α
PA	Northampton	2006	2	0.98	19	D
PA	Warren	2001	2	1.66	11	D
PA	Warren	2002	2	1.45	15	D
PA	Warren	2003	2	1.40	11	D
PA	Warren	2004	2	2.37	15	D
PA	Warren	2005	2	1.91	17	D
PA	Warren	2006	2	1.68	17 19	D
PA	Washington	2001	3	2.95	6	A
PA	Washington	2002	3	3.11	6	A
PA	Washington	2003	3	2.99	8	A
PA	Washington	2004	3	3.42	2	A
PA	Washington	2005	3	3.07	5	D
PA	Washington	2006	3	3.48	6	A
TN	Blount	2001	2	1.62	18	D
TN	Blount	2002	2	2.05	10	D
TN	Blount	2002	2	1.88	12	D
TN	Blount	2003	2	2.22	12	D
TN	Blount	2004	2	1.61	7	D
TN			2			_
TN	Blount Shelby	2006 2001	3	1.79 3.47	10 19	D D
TN	Shelby	2001	3	4.79	20	D
TN	Shelby	2002	3	3.75	21	D
TN	•	2003	3	4.46	20	D
	Shelby					
TN TN	Shelby Shelby	2005	3	3.90 4.12	46 44	D D
	•	2006	2			
TN	Sullivan	2001	2	2.95	8	A D
TN	Sullivan	2002	2	3.26	10	D
TN	Sullivan	2003		3.28	4	
TN	Sullivan	2004	2	3.33	3	D
TN	Sullivan	2005	2	3.72	4	D
TN	Sullivan	2006	2	3.33	3	D
TX	Jefferson	2001	3	2.68	8	D
TX	Jefferson	2002	3	4.82	4	D
TX	Jefferson	2003	3	4.30	4	D
TX	Jefferson	2004	3	4.47	13	D

State			Monitors	Adjustment		Closest
Abbreviation	County	Year	(n)	Factor	COV	Standard ¹
TX	Jefferson	2005	3	5.67	7	D
TX	Jefferson	2006	3	4.31	4	D
VA	Fairfax	2001	2	4.50	18	Α
VA	Fairfax	2002	2	4.49	14	Α
VA	Fairfax	2003	3	4.89	15	Α
VA	Fairfax	2004	3	4.80	19	Α
VA	Fairfax	2005	3	4.79	19	Α
VA	Fairfax	2006	3	5.35	18	Α
WV	Brooke	2001	2	2.13	5	Α
WV	Brooke	2002	2	2.49	4	Α
WV	Brooke	2003	2	2.63	3	Α
WV	Brooke	2004	2	2.02	6	Α
WV	Brooke	2005	2	2.16	5	Α
WV	Brooke	2006	2	2.50	8	Α
WV	Hancock	2001	9	2.20	3	Α
WV	Hancock	2002	9	2.38	3	D
WV	Hancock	2003	9	2.30	3	D
WV	Hancock	2004	7	2.38	4	Α
WV	Hancock	2005	7	2.22	5	Α
WV	Hancock	2006	7	2.34	4	Α
WV	Monongalia	2001	3	2.37	3	D
WV	Monongalia	2002	2	2.22	2	D
WV	Monongalia	2003	2	3.26	1	D
WV	Monongalia	2004	2	3.25	1	D
WV	Monongalia	2005	2	3.13	3	Α
WV	Monongalia	2006	2	3.20	1	D
WV	Wayne	2001	4	2.85	4	D
WV	Wayne	2002	4	3.31	3	Α
WV	Wayne	2003	4	3.41	7	D
WV	Wayne	2004	3	2.87	9	D
WV	Wayne	2005	3	2.02	11	D
VI	St Croix	2001	5	3.41	83	D
VI	St Croix	2002	5	3.46	64	D
VI	St Croix	2003	5	3.66	66	D
VI	St Croix	2004	5	3.26	56	D
VI	St Croix	2005	5	9.25	15	D
VI	St Croix	2006	5	4.59	25	D
		•				

Notes:

1 Ambient SO₂ concentrations were closest to either the annual (A) or daily (D) NAAQS level.

A.4.2 Adjustment factors for just meeting the potential alternative standards

Five potential alternative standards (i.e., 50, 100, 150, 200, and 250 ppb daily maximum 1-hour) given a 99th percentile form and one alternative standard (200 ppb daily maximum 1-hour) given a 98th percentile form were selected for evaluation (for details, see REA chapter 5). Adjustment factors were derived for each of two 3-year groups of recent air quality (i.e., 2001-2003 and 2004-2006). For the sake of brevity, only the maximum 3-year averaged concentrations for each of the percentile forms are provided in Table A.4-2, rather than all of the adjustment factors. The actual adjustment factors used in simulating air quality can be derived for each of the concentration levels by dividing by the county concentration for each year goup. For example, the adjustement factor applied to the 2002 hourly mean concentrations in New Castle DE to simulate just meeting a 99th percentile daily maximum 1-hour of 100 ppb is 100/164 = 0.61. That is to say, to meet this particular standard, the hourly concentrations need to be adjusted downward by a factor of 0.61. The COV is also used to represent the temporal variability over the three years of monitoring (where such data exist).

Table A.4-2. Concentrations used in developing adjustment factors when simulating air quality just meeting potential alternative SO₂ NAAQS in selected counties by year.

			98	th Percen	tile	99 ^t	h Percent	ile
State			Years	Conc	COV	Years	Conc	COV
Abbreviation	County	Year Group	(n)	(ppb)	(%)	(n)	(ppb)	(%)
AZ	Gila	2001-2003	3	226	10	3	260	10
AZ	Gila	2004-2006	2	222	6	2	294	1
DE	New Castle	2001-2003	2	138	5	2	164	0
DE	New Castle	2004-2006	3	123	20	3	147	31
FL	Hillsborough	2001-2003	3	117	12	3	146	2
FL	Hillsborough	2004-2006	2	93	8	2	128	8
IA	Linn	2001-2003	3	82	21	3	105	12
IA	Linn	2004-2006	3	96	17	3	111	27
IA	Muscatine	2001-2003	3	92	13	3	113	9
IA	Muscatine	2004-2006	3	120	10	3	135	8
IL	Madison	2001-2003	3	110	22	3	144	24
IL	Madison	2004-2006	3	123	5	3	144	7
IL	Wabash	2001-2003	1	139		1	216	
IL	Wabash	2004-2006	1	131		1	187	
IN	Floyd	2001-2003	3	124	17	1	151	
IN	Floyd	2004-2006	3	129	14	3	170	6
IN	Gibson	2001-2003	2	185	12	2	235	19

			98	th Percen	tile	99 ^t	h Percent	tile
State Abbreviation	County	Year Group	Years (n)	Conc (ppb)	COV (%)	Years (n)	Conc (ppb)	COV (%)
IN	Gibson	2004-2006	1	199	(70)	1	226	(70)
IN	Lake	2001-2003	3	68	5	2	84	52
IN	Lake	2004-2006	2	87	1	2	113	3
IN	Vigo	2001-2003	3	114	7	3	159	25
IN	Vigo	2004-2006	2	110	8	2	136	2
MI	Wayne	2001-2003	2	102	3	2	126	4
MI	Wayne	2004-2006	3	115	2	3	128	2
MO	Greene	2001-2003	3	81	13	3	94	13
MO	Greene	2004-2006	3	63	29	3	81	25
MO	Iron	2001-2003	3	289	20	3	341	9
MO	Iron	2004-2006	1	20	20	1	22	
MO	Jefferson	2004-2000	1	230		1	234	
MO	Jefferson	2004-2006	3	244	10	3	346	16
NH	Merrimack	2004-2000	3	110	30	3	125	34
NH	Merrimack	2001-2003	3	127	2	3	151	9
NJ	Hudson	2004-2000	2	54	9	2	61	1
				1	3		!	
NJ	Hudson	2004-2006	2	51		2	65	7
NJ	Union	2001-2003	3	52	13	3	57	
NJ	Union	2004-2006	2	49	10	2	60	9
NY	Bronx	2001-2003	2	64	1	2	71	7
NY	Bronx	2004-2006	2	59	7	2	68	2
NY	Chautauqua	2001-2003	3	238	2	3	285	12
NY	Chautauqua	2004-2006	3	84	47	3	101	54
NY	Erie	2001-2003	3	206	10	3	225	8
NY	Erie	2004-2006	3	114	33	3	129	24
OH	Cuyahoga	2001-2003	2	76	1	2	101	1
OH	Cuyahoga ¹	2004-2006	3	67	8	3	80	9
OH	Cuyahoga ¹	2004-2006	3	67	18			
OH	Lake	2001-2003	3	129	10	3	145	4
OH	Lake	2004-2006	3	146	5	3	175	9
OH	Summit	2001-2003	3	131	12	3	148	12
OH	Summit	2004-2006	3	133	9	3	150	13
OK	Tulsa	2001-2003	3	63	22	3	76	7
OK	Tulsa	2004-2006	2	82	32	2	93	33
PA	Allegheny	2001-2003	1	149		1	164	
PA	Allegheny	2004-2006	2	144	16	2	183	36
PA	Beaver	2001-2003	3	200	28	3	245	31
PA	Beaver	2004-2006	3	188	6	3	228	8
PA	Northampton	2001-2003	3	55	9	3	65	3
PA	Northampton	2004-2006	3	92	41	3	146	65
PA	Warren	2001-2003	3	218	6	3	270	12
PA	Warren	2004-2006	3	180	22	3	226	15
PA	Washington	2001-2003	3	99	10	3	111	11
PA	Washington	2004-2006	3	89	10	3	102	11
TN	Blount	2001-2003	1	189		1	204	
TN	Blount	2004-2006	3	168	5	3	194	6
TN	Shelby	2001-2003	3	70	29	3	101	35

			98	th Percen	tile	99 ^t	^h Percent	ile
State Abbreviation	County	Year Group	Years (n)	Conc (ppb)	COV (%)	Years (n)	Conc (ppb)	COV (%)
TN	Shelby ¹	2004-2006	3	72	35	3	85	33
TN	Shelby ¹	2004-2006	3	72	2			
TN	Sullivan	2001-2003	3	157	13	3	195	19
TN	Sullivan	2004-2006	3	145	7	3	208	17
TX	Jefferson	2001-2003	3	92	20	3	103	16
TX	Jefferson	2004-2006	3	109	49	3	129	46
VA	Fairfax	2001-2003	3	38	15	3	48	24
VA	Fairfax	2004-2006	3	37	8	3	41	11
VI	St Croix	2001-2003	2	103	6	2	126	18
VI	St Croix	2004-2006	1	70		1	130	
WV	Brooke	2001-2003	3	154	20	3	180	17
WV	Brooke	2004-2006	3	125	8	3	158	19
WV	Hancock	2001-2003	3	182	17	3	217	23
WV	Hancock	2004-2006	3	134	24	3	159	19
WV	Monongalia	2001-2003	3	163	22	3	218	26
WV	Monongalia	2004-2006	2	148	3	2	188	16
WV	Wayne	2001-2003	3	93	7	3	109	14
WV	Wayne	2004-2006	2	67	11	2	75	0

Notes:

1 Two monitors in the county had the same average 98th percentile daily 1-hour maximum concentrations. Concentrations, monitoring years, and COVs for both monitors are indicated.

A.5 Supplementary	/ Results	Tables	for 5-minute	Measurement Data
-------------------	-----------	---------------	--------------	-------------------------

Table A.5-1. Annual average SO₂ concentrations and number of measured 5-minute daily maximum SO₂ concentrations above potential health effect benchmark levels. Data used were from 98 monitors that reported both the 5-minute maximum and 1-hour SO₂ concentrations for years 1997 through 2007.

				Days	Hours	Anr	nual Ho	urly (p	pb)	Numbe	r of 5-minu	te Daily Ma	ximum
State	County	Monitor ID	Year	(n)	(n)	Mean	std	GM	GSD	> 100 ppb	> 200 ppb	> 300 ppb	> 400 ppb
AR	Pulaski	051190007	2002	339	7138	2.76	1.43	2.44	1.65	1	0	0	0
AR	Pulaski	051190007	2003	365	7799	2.47	1.3	2.18	1.64	0	0	0	0
AR	Pulaski	051190007	2004	359	7687	2.08	1.61	1.69	1.84	0	0	0	0
AR	Pulaski	051190007	2005	350	6702	1.91	1.17	1.65	1.69	0	0	0	0
AR	Pulaski	051190007	2006	365	8356	3.2	1.13	3.03	1.39	0	0	0	0
AR	Pulaski	051190007	2007	90	2062	2.88	1.12	2.71	1.39	0	0	0	0
AR	Pulaski	051191002	1997	365	6607	2.33	1.5	1.99	1.74	0	0	0	0
AR	Pulaski	051191002	1998	329	5997	1.62	1.3	1.35	1.74	0	0	0	0
AR	Pulaski	051191002	1999	275	3833	2.31	1.51	1.85	2.04	0	0	0	0
AR	Pulaski	051191002	2000	352	5596	2.38	1.63	1.77	2.44	0	0	0	0
AR	Pulaski	051191002	2001	364	6529	2.28	1.18	2.02	1.63	0	0	0	0
AR	Union	051390006	1997	365	7624	5.27	11.3	3.28	2.15	30	11	5	0
AR	Union	051390006	1998	313	6766	6.4	7.45	5.14	1.73	17	3	1	0
AR	Union	051390006	1999	275	5101	5.39	6.94	3.66	2.44	12	1	0	0
AR	Union	051390006	2000	357	5792	6.21	10.95	3.76	2.29	44	7	2	0
AR	Union	051390006	2001	364	7474	3.09	3.86	2.28	2.06	5	1	1	1
AR	Union	051390006	2002	275	6296	2.92	2.27	2.5	1.65	1	0	0	0
AR	Union	051390006	2003	364	7239	2.14	5.13	1.59	1.88	2	2	2	1
AR	Union	051390006	2004	334	4267	2.15	2.74	1.63	1.89	3	2	0	0
AR	Union	051390006	2005	249	4922	2.36	2.58	1.94	1.76	2	1	0	0
AR	Union	051390006	2006	365	8364	2.89	2.19	2.61	1.49	1	1	1	0
AR	Union	051390006	2007	90	2061	2.99	1.3	2.81	1.39	0	0	0	0
СО	Denver	080310002	1997	365	7014	6.77	9.36	3.75	2.86	23	0	0	0
CO	Denver	080310002	1998	360	4311	7.37	9.45	4.29	2.79	18	2	0	0
CO	Denver	080310002	1999	156	1626	6.77	8.21	4.01	2.76	3	0	0	0
СО	Denver	080310002	2000	137	2434	6.53	8.62	3.84	2.69	4	0	0	0
CO	Denver	080310002	2001	360	5575	6.63	8.85	3.84	2.75	8	0	0	0
CO	Denver	080310002	2002	365	6830	5.36	7.27	3.11	2.67	6	0	0	0
CO	Denver	080310002	2003	362	6250	3.83	4.62	2.54	2.34	1	0	0	0
CO	Denver	080310002	2004	337	4412	3.68	4.09	2.48	2.31	0	0	0	0

				Days	Hours	Anr	nual Ho	urly (p	ob)	Numbe	r of 5-minu	te Daily Ma	aximum
State	County	Monitor ID	Year	(n)	(n)	Mean	std	GM	GSD	> 100 ppb	> 200 ppb	> 300 ppb	> 400 ppb
CO	Denver	080310002	2005	337	3599	3.92	4.2	2.57	2.42	0	0	0	0
CO	Denver	080310002	2006	349	6199	3.38	3.62	2.33	2.26	1	0	0	0
DE	New Castle	100031008	1997	330	7490	10.29	17.99	5.23	2.86	103	33	1	0
DE	New Castle	100031008	1998	257	4898	8.86	14.99	4.35	3.03	64	16	2	0
DC	District of Columbia	110010041	2000	160	3731	8.64	6.17	7.25	1.77	1	0	0	0
DC	District of Columbia	110010041	2001	358	7774	7	6.51	4.83	2.45	3	1	1	0
DC	District of Columbia	110010041	2002	365	8365	6.89	5.62	5.29	2.11	1	0	0	0
DC	District of Columbia	110010041	2003	181	4267	8.63	5.92	7.28	1.75	5	1	1	1
DC	District of Columbia	110010041	2004	119	2765	7.88	5.51	6.3	2.06	1	0	0	0
DC	District of Columbia	110010041	2007	268	6394	5.05	3.74	4.24	1.76	1	1	1	0
FL	Nassau	120890005	2002	357	8415	6.39	15.33	2.65	2.95	69	23	6	2
FL	Nassau	120890005	2003	365	8662	3.44	8.95	1.6	2.5	26	5	1	0
FL	Nassau	120890005	2004	275	6507	3.2	7.18	1.68	2.37	11	5	1	1
FL	Nassau	120890005	2005	175	4120	4.06	10.16	1.65	2.71	26	4	0	0
IA	Cerro Gordo	190330018	2001	38	513	1.22	3.38	0.44	3.16	0	0	0	0
IA	Cerro Gordo	190330018	2002	254	3325	1.16	3.83	0.33	4.07	0	0	0	0
IA	Cerro Gordo	190330018	2003	296	5032	1.88	7.57	0.27	4.83	4	0	0	0
IA	Cerro Gordo	190330018	2004	366	8141	0.8	2.84	0.23	3.4	0	0	0	0
IA	Cerro Gordo	190330018	2005	173	3528	0.69	1.49	0.31	3.16	0	0	0	0
IA	Clinton	190450019	2001	70	1276	2.14	1.69	1.52	2.54	0	0	0	0
IA	Clinton	190450019	2002	345	6516	3.29	3.37	1.96	3.02	3	0	0	0
IA	Clinton	190450019	2003	333	5939	2.89	3.2	1.68	3.14	4	1	0	0
IA	Clinton	190450019	2004	353	7093	2.83	3.06	1.67	3.12	3	0	0	0
IA	Clinton	190450019	2005	177	3323	3.99	4.31	2.35	3.11	2	0	0	0
IA	Muscatine	191390016	2001	91	1733	3.27	4.61	1.89	2.93	0	0	0	0
IA	Muscatine	191390016	2002	365	7391	4.07	5.36	2.78	2.39	4	0	0	0
IA	Muscatine	191390016	2003	353	6570	3.87	7.01	2.21	2.86	4	0	0	0
IA	Muscatine	191390016	2004	365	6664	3.92	5.67	2.43	2.7	5	0	0	0
IA	Muscatine	191390016	2005	181	3629	4.22	7.55	2.34	2.79	9	0	0	0
IA	Muscatine	191390017	2001	83	1373	2.14	1.86	1.42	2.66	0	0	0	0
IA	Muscatine	191390017	2002	364	7242	3.12	3.82	2.05	2.62	3	1	0	0
IA	Muscatine	191390017	2003	365	7586	3.93	4.26	2.69	2.51	4	0	0	0
IA	Muscatine	191390017	2004	363	7322	3.56	3.92	2.24	2.79	2	0	0	0
IA	Muscatine	191390017	2005	181	3441	3.16	4.14	2.03	2.59	4	0	0	0

				Days	Hours	Anr	nual Ho	urly (p	pb)	Numbe	r of 5-minu	te Daily Ma	aximum
State	County	Monitor ID	Year	(n)	(n)	Mean	std	GM	GSD	> 100 ppb	> 200 ppb	> 300 ppb	> 400 ppb
IA	Muscatine	191390020	2001	92	1909	5.36	9.76	2.04	3.95	1	0	0	0
IA	Muscatine	191390020	2002	363	7682	5.27	10.27	2.22	3.61	31	1	0	0
IA	Muscatine	191390020	2003	365	7695	5.31	11.2	2.11	3.71	42	5	0	0
IA	Muscatine	191390020	2004	366	7757	7.36	15.39	3.02	3.2	60	14	0	0
IA	Muscatine	191390020	2005	181	3931	5.55	13.61	2.02	3.64	27	12	1	0
IA	Scott	191630015	2001	85	1345	1.15	2.13	0.45	4	0	0	0	0
IA	Scott	191630015	2002	364	7505	2.28	3.17	0.87	4.7	0	0	0	0
IA	Scott	191630015	2003	364	7451	2.09	2.68	1.02	3.79	0	0	0	0
IA	Scott	191630015	2004	336	6696	2.11	2.65	1.06	3.68	0	0	0	0
IA	Scott	191630015	2005	177	3436	2.56	3.05	1.17	4.17	0	0	0	0
IA	Van Buren	191770005	2001	65	597	0.9	0.92	0.64	2.33	0	0	0	0
IA	Van Buren	191770005	2002	353	6350	1.03	0.92	0.72	2.48	0	0	0	0
IA	Van Buren	191770005	2003	358	7118	1.1	0.91	0.78	2.48	0	0	0	0
IA	Van Buren	191770005	2004	305	5011	0.88	1.45	0.5	2.87	0	0	0	0
IA	Van Buren	191770006	2004	53	877	0.85	0.94	0.55	2.53	0	0	0	0
IA	Van Buren	191770006	2005	181	3349	0.9	0.79	0.69	2.09	0	0	0	0
IA	Woodbury	191930018	2001	85	1578	1.32	2.28	0.77	2.45	0	0	0	0
IA	Woodbury	191930018	2002	280	3875	1.5	2.94	0.7	3.14	0	0	0	0
LA	West Baton Rouge	221210001	1997	277	4966	7.04	12.51	3.94	2.65	42	13	4	1
LA	West Baton Rouge	221210001	1998	353	7566	7.52	10.67	5.03	2.29	50	18	2	1
LA	West Baton Rouge	221210001	1999	354	7272	6.4	9.59	4.01	2.44	55	12	1	1
LA	West Baton Rouge	221210001	2000	361	7360	7.3	11.13	4.51	2.46	76	26	7	1
MO	Buchanan	290210009	1997	361	8484	8.3	31.64	2.77	2.8	94	79	57	39
MO	Buchanan	290210009	1998	364	8161	7.06	24.17	2.8	2.64	92	67	44	19
МО	Buchanan	290210009	1999	362	7415	2.77	3.07	2.08	2	3	0	0	0
MO	Buchanan	290210009	2000	264	5297	2.37	3.04	1.81	1.88	7	0	0	0
MO	Buchanan	290210011	2000	72	1672	5.27	8.53	3.45	2.15	8	0	0	0
MO	Buchanan	290210011	2001	329	6412	3.7	5.3	2.52	2.15	6	0	0	0
MO	Buchanan	290210011	2002	331	6457	4.01	7.33	2.52	2.23	21	0	0	0
MO	Buchanan	290210011	2003	253	5141	4.06	7.04	2.59	2.25	13	0	0	0
MO	Greene	290770026	1997	339	4763	4.32	9.65	2.02	2.69	20	2	0	0
MO	Greene	290770026	1998	350	5810	5.73	11.66	2.35	3.07	39	1	0	0
MO	Greene	290770026	1999	362	7242	4.09	7.53	2.22	2.5	13	1	0	0
MO	Greene	290770026	2000	366	8721	4.97	10.21	2.41	2.67	52	1	0	0

				Days	Hours	Anr	nual Ho	urly (p	pb)	Numbe	r of 5-minu	te Daily Ma	aximum
State	County	Monitor ID	Year	(n)	(n)	Mean	std	GM	GSD	> 100 ppb	> 200 ppb	> 300 ppb	> 400 ppb
MO	Greene	290770026	2001	365	8304	4.52	9.62	2.17	2.63	36	0	0	0
МО	Greene	290770026	2002	360	7054	4.28	9.08	1.94	2.72	27	0	0	0
MO	Greene	290770026	2003	362	7935	3.5	6.16	2.02	2.36	5	0	0	0
MO	Greene	290770026	2004	274	6574	3.21	6.41	1.64	2.45	3	0	0	0
MO	Greene	290770026	2005	365	8756	2.95	5.94	1.58	2.35	5	0	0	0
MO	Greene	290770026	2006	365	8753	3.15	6.77	1.58	2.42	8	0	0	0
MO	Greene	290770026	2007	272	6520	3.2	7.07	1.59	2.43	9	0	0	0
MO	Greene	290770037	1997	356	6559	4.98	14.73	1.89	2.78	52	21	8	5
MO	Greene	290770037	1998	361	8134	4.27	7.37	2.76	2.18	30	2	0	0
MO	Greene	290770037	1999	363	8554	3.13	7.72	1.72	2.23	31	3	0	0
MO	Greene	290770037	2000	341	5318	6.36	17.9	2.13	3.04	46	23	3	0
MO	Greene	290770037	2001	355	6707	4.04	10.65	1.91	2.49	37	9	2	0
MO	Greene	290770037	2002	335	6373	4	9.68	2.15	2.27	40	11	1	0
MO	Greene	290770037	2003	363	8179	3.32	6.96	1.93	2.21	19	1	0	0
МО	Greene	290770037	2004	274	6575	2.71	4.79	1.79	2.05	13	0	0	0
MO	Greene	290770037	2005	365	8760	3.05	6.06	1.93	2.11	20	1	0	0
MO	Greene	290770037	2006	365	8745	3.26	8.44	1.57	2.38	37	4	0	0
MO	Greene	290770037	2007	272	6496	2.42	6.03	1.37	2.08	16	0	0	0
MO	Iron	290930030	1997	365	8575	8.24	26.43	3.12	2.89	93	78	63	54
MO	Iron	290930030	1998	365	8475	7.9	25.09	2.73	2.99	85	70	62	52
MO	Iron	290930030	1999	356	6546	9.33	28.07	3.29	3.09	83	74	63	49
MO	Iron	290930030	2000	324	4071	14.3	46.11	3.2	3.95	95	77	69	55
MO	Iron	290930030	2001	356	5388	9.32	32.18	2.37	3.41	88	74	64	56
MO	Iron	290930030	2002	354	7960	6.95	23.55	2.2	2.98	99	73	58	52
MO	Iron	290930030	2003	363	6963	7.58	23.2	2.69	2.94	99	81	64	48
MO	Iron	290930030	2004	90	1846	2.47	2.56	1.76	2.11	0	0	0	0
MO	Iron	290930031	1997	352	6177	8.09	24.57	2.92	3.17	77	55	37	27
MO	Iron	290930031	1998	363	7991	7.56	22.94	3.03	2.94	88	57	37	22
MO	Iron	290930031	1999	341	7918	8.41	25.99	3.93	2.63	92	54	37	23
MO	Iron	290930031	2000	332	5170	8.27	24.93	2.81	3.21	86	53	35	23
MO	Iron	290930031	2001	365	8426	6.62	23.42	2.47	2.79	95	60	40	22
MO	Iron	290930031	2002	365	8665	6.32	18.53	3.19	2.35	88	54	28	19
МО	Iron	290930031	2003	350	8230	6.6	21.05	2.89	2.64	88	54	39	23
MO	Iron	290930031	2004	91	2172	3.82	2.74	3.2	1.74	0	0	0	0

				Days	Hours	Anr	nual Ho	urly (p	ob)	Numbe	r of 5-minu	te Daily Ma	aximum
State	County	Monitor ID	Year	(n)	(n)	Mean	std	GM	GSD	> 100 ppb	> 200 ppb	> 300 ppb	> 400 ppb
MO	Jefferson	290990004	2004	346	8033	10.32	22.63	4.78	2.96	106	41	26	13
МО	Jefferson	290990004	2005	351	7144	11.41	24.87	4.62	3.34	118	68	47	28
МО	Jefferson	290990004	2006	343	6524	13.12	27.2	4.3	4.02	134	78	53	41
MO	Jefferson	290990004	2007	90	2125	6.31	11.92	3.08	2.88	21	8	4	1
MO	Jefferson	290990014	1997	359	7174	8.38	19	4.14	2.79	87	54	31	23
МО	Jefferson	290990014	1998	365	7770	4.57	9.67	2.62	2.48	37	23	13	6
МО	Jefferson	290990014	1999	363	7591	4.6	9.49	2.48	2.57	32	19	11	5
MO	Jefferson	290990014	2000	361	6588	3.87	7.06	2.36	2.35	28	7	4	2
МО	Jefferson	290990014	2001	132	2433	3.15	5.64	1.95	2.25	7	1	0	0
МО	Jefferson	290990017	1998	289	5721	7.37	18.87	3.47	2.87	59	33	22	16
МО	Jefferson	290990017	1999	360	7289	8.65	22.19	3.8	3.01	90	57	42	29
MO	Jefferson	290990017	2000	355	7153	6.06	16.54	2.87	2.77	59	40	26	17
MO	Jefferson	290990017	2001	74	1044	7.72	16.53	3.69	3.02	13	9	5	3
МО	Jefferson	290990018	2001	219	3492	5.33	11.74	2.53	2.84	34	18	9	6
МО	Jefferson	290990018	2002	352	6305	5.51	14.84	2.59	2.75	56	36	24	18
MO	Jefferson	290990018	2003	272	6009	4.41	10.38	2.4	2.54	27	18	10	9
MO	Monroe	291370001	1997	364	8280	2.92	2.86	2.38	1.79	0	0	0	0
МО	Monroe	291370001	1998	364	8411	2.35	2.25	1.86	1.87	0	0	0	0
MO	Monroe	291370001	1999	365	8714	3.58	2.36	3.13	1.63	0	0	0	0
MO	Monroe	291370001	2000	366	8617	2.93	2.06	2.54	1.65	0	0	0	0
МО	Monroe	291370001	2001	309	4346	1.78	1.44	1.47	1.74	0	0	0	0
MO	Monroe	291370001	2002	321	5358	1.81	1.48	1.48	1.75	0	0	0	0
МО	Monroe	291370001	2003	336	5948	1.82	1.48	1.51	1.73	0	0	0	0
MO	Monroe	291370001	2004	316	5123	2.29	2.31	1.77	1.91	0	0	0	0
МО	Monroe	291370001	2005	348	6518	2.03	1.81	1.63	1.81	0	0	0	0
MO	Monroe	291370001	2006	338	6169	1.73	1.26	1.47	1.68	0	0	0	0
MO	Monroe	291370001	2007	51	526	1.86	2	1.48	1.8	0	0	0	0
MO	Pike	291630002	2005	311	4879	4.37	5.43	2.89	2.33	5	0	0	0
МО	Pike	291630002	2006	348	6469	3.94	4.67	2.78	2.2	3	0	0	0
МО	Pike	291630002	2007	68	1019	3.08	3.69	2.09	2.24	0	0	0	0
MO	Saint Charles	291830010	1997	365	8152	4.35	7.95	2.6	2.45	5	1	1	1
МО	Saint Charles	291830010	1998	230	4810	4.32	5.69	2.77	2.38	1	0	0	0
МО	Saint Charles	291831002	1997	365	8514	5.72	6.95	3.65	2.5	23	2	1	0
МО	Saint Charles	291831002	1998	362	8122	6.31	7.9	4.02	2.5	25	0	0	0

				Days	Hours	Anr	nual Ho	urly (p	pb)	Numbe	r of 5-minu	te Daily Ma	ximum
State	County	Monitor ID	Year	(n)	(n)	Mean	std	GM	GSD	> 100 ppb	> 200 ppb	> 300 ppb	> 400 ppb
МО	Saint Charles	291831002	1999	363	7969	5.61	7.24	3.58	2.5	17	2	0	0
МО	Saint Charles	291831002	2000	331	6421	4.6	5.45	3.01	2.42	5	0	0	0
MT	Yellowstone	301110066	1997	362	6873	8.06	10.76	4.4	3	45	7	1	1
MT	Yellowstone	301110066	1998	357	7198	7.14	9.49	4	2.9	42	5	1	0
MT	Yellowstone	301110066	1999	352	5767	7.75	9.65	4.31	2.99	34	5	0	0
MT	Yellowstone	301110066	2000	355	6099	7.72	10.26	4.25	2.97	66	7	2	1
MT	Yellowstone	301110066	2001	365	6872	7.77	10.46	4.13	3.06	56	4	0	0
MT	Yellowstone	301110066	2002	364	8347	6.81	11.61	3.46	3.04	52	4	2	1
MT	Yellowstone	301110066	2003	347	5691	7.37	9.92	4.06	2.93	39	2	0	0
MT	Yellowstone	301110079	1997	180	3166	3.84	4.06	2.65	2.28	1	0	0	0
MT	Yellowstone	301110079	2001	55	837	4.64	3.71	3.43	2.23	0	0	0	0
MT	Yellowstone	301110079	2002	353	8034	1.9	1.91	1.48	1.83	0	0	0	0
MT	Yellowstone	301110079	2003	350	5107	3.02	2.55	2.3	2.06	0	0	0	0
MT	Yellowstone	301110080	1997	363	5433	7.54	10.11	4.29	2.86	59	11	3	0
MT	Yellowstone	301110080	1998	358	5371	6.85	9.12	3.98	2.79	38	14	6	0
MT	Yellowstone	301110080	1999	350	5588	6.36	7.81	3.79	2.75	47	7	4	2
MT	Yellowstone	301110080	2000	360	5999	6.22	7.65	3.68	2.74	59	10	1	0
MT	Yellowstone	301110080	2001	150	2015	5.55	6.3	3.54	2.56	12	2	1	1
MT	Yellowstone	301110082	2001	169	2605	4.19	4.62	2.87	2.32	1	0	0	0
MT	Yellowstone	301110082	2002	365	8212	2.32	2.77	1.7	1.99	0	0	0	0
MT	Yellowstone	301110082	2003	361	5173	2.93	3.25	2.11	2.11	1	1	0	0
MT	Yellowstone	301110083	1999	112	2087	8.07	8.01	5.01	2.81	4	0	0	0
MT	Yellowstone	301110083	2000	341	3845	4.68	5.36	3	2.49	10	1	1	1
MT	Yellowstone	301110083	2001	357	5604	4.36	5.59	2.71	2.51	11	1	0	0
MT	Yellowstone	301110083	2002	360	6847	2.31	3.21	1.65	1.98	1	0	0	0
MT	Yellowstone	301110083	2003	166	1641	2.29	3.08	1.62	1.99	0	0	0	0
MT	Yellowstone	301110084	2003	99	759	2.99	4.51	1.99	2.19	0	0	0	0
MT	Yellowstone	301110084	2004	294	2465	3.48	5.45	2.14	2.37	2	0	0	0
MT	Yellowstone	301110084	2005	291	2577	2.96	4.98	1.79	2.28	2	0	0	0
MT	Yellowstone	301110084	2006	273	1983	2.75	4.56	1.71	2.23	1	0	0	0
MT	Yellowstone	301112008	1997	177	2579	3.96	4.57	2.65	2.35	2	0	0	0
NC	Forsyth	370670022	1997	362	7822	7.06	6.91	5.13	2.2	10	0	0	0
NC	Forsyth	370670022	1998	364	7122	6.98	7.54	4.72	2.48	13	1	1	1
NC	Forsyth	370670022	1999	352	6428	5.85	5.92	4.13	2.29	3	0	0	0

				Days	Hours	Anr	nual Ho	urly (p	ob)	Numbe	r of 5-minu	te Daily Ma	aximum
State	County	Monitor ID	Year	(n)	(n)	Mean	std	GM	GSD	> 100 ppb	> 200 ppb	> 300 ppb	> 400 ppb
NC	Forsyth	370670022	2000	266	5203	5.52	5.58	3.77	2.39	1	0	0	0
NC	Forsyth	370670022	2001	361	7634	5.12	5.64	3.46	2.38	5	0	0	0
NC	Forsyth	370670022	2002	362	7022	6.12	8.19	3.87	2.51	15	3	0	0
NC	Forsyth	370670022	2003	363	8075	5.87	6.19	4.17	2.24	11	0	0	0
NC	Forsyth	370670022	2004	259	4710	5.56	8.21	3.37	2.55	6	1	0	0
NC	New Hanover	371290006	1999	360	8208	4.1	8.34	1.92	2.73	54	8	4	3
NC	New Hanover	371290006	2000	335	7980	4.67	8.92	2.13	2.87	76	6	3	0
NC	New Hanover	371290006	2001	358	8168	5.71	13.73	2.08	3.09	109	54	10	3
NC	New Hanover	371290006	2002	352	8028	6.44	13.85	2.61	3.12	127	39	7	2
ND	Billings	380070002	1998	143	1940	1.31	1.04	1.16	1.48	0	0	0	0
ND	Billings	380070002	1999	276	3216	1.38	1.04	1.21	1.53	0	0	0	0
ND	Billings	380070002	2000	248	2724	1.42	1.1	1.24	1.56	0	0	0	0
ND	Billings	380070002	2001	283	2860	1.37	1.12	1.2	1.51	0	0	0	0
ND	Billings	380070002	2002	275	3113	1.43	1.11	1.26	1.53	0	0	0	0
ND	Billings	380070002	2003	26	341	1.48	0.87	1.32	1.54	0	0	0	0
ND	Billings	380070002	2004	164	1256	1.24	0.85	1.13	1.41	0	0	0	0
ND	Billings	380070002	2005	128	835	1.44	0.92	1.27	1.55	0	0	0	0
ND	Billings	380070002	2006	106	418	1.53	1.25	1.29	1.64	0	0	0	0
ND	Billings	380070002	2007	43	221	1.5	1.26	1.29	1.6	0	0	0	0
ND	Billings	380070003	1997	167	2657	1.72	1.52	1.43	1.7	0	0	0	0
ND	Burke	380130002	1999	297	3852	2.79	4.61	1.65	2.31	3	0	0	0
ND	Burke	380130002	2000	347	5268	2.96	5.77	1.77	2.27	7	1	1	0
ND	Burke	380130002	2001	338	5653	2.72	4.97	1.62	2.25	3	1	0	0
ND	Burke	380130002	2002	346	5367	2.64	4.72	1.58	2.24	4	0	0	0
ND	Burke	380130002	2003	353	6328	2.6	4.77	1.62	2.16	7	1	0	0
ND	Burke	380130002	2004	340	5229	2.77	5.03	1.65	2.26	6	0	0	0
ND	Burke	380130002	2005	263	3098	2.88	4.99	1.67	2.33	4	0	0	0
ND	Burke	380130004	2003	63	882	2.89	3.99	1.84	2.26	0	0	0	0
ND	Burke	380130004	2004	315	3198	2.76	3.59	1.83	2.21	0	0	0	0
ND	Burke	380130004	2005	244	2238	2.47	3.18	1.72	2.09	0	0	0	0
ND	Burke	380130004	2006	302	3152	2.27	3.16	1.59	2.02	1	0	0	0
ND	Burke	380130004	2007	99	1227	3.8	5.18	2.27	2.53	1	0	0	0
ND	Burleigh	380150003	2005	60	683	3.4	2.97	2.47	2.2	0	0	0	0
ND	Burleigh	380150003	2006	294	3686	2.33	2.6	1.68	2.04	0	0	0	0

				Days	Hours	Anr	nual Ho	urly (p	ob)	Numbe	r of 5-minu	te Daily Ma	ximum
State	County	Monitor ID	Year	(n)	(n)	Mean	std	GM	GSD	> 100 ppb	> 200 ppb	> 300 ppb	> 400 ppb
ND	Burleigh	380150003	2007	97	947	3.77	4.32	2.49	2.36	0	0	0	0
ND	Cass	380171003	1997	206	2254	1.74	2.31	1.32	1.79	0	0	0	0
ND	Cass	380171003	1998	132	2943	1.88	1.83	1.5	1.8	0	0	0	0
ND	Cass	380171004	1998	162	2501	1.11	0.43	1.07	1.27	0	0	0	0
ND	Cass	380171004	1999	246	3325	1.32	0.75	1.2	1.46	0	0	0	0
ND	Cass	380171004	2000	213	1868	1.37	0.84	1.23	1.5	0	0	0	0
ND	Cass	380171004	2001	203	1686	1.34	0.93	1.2	1.49	0	0	0	0
ND	Cass	380171004	2002	274	2476	1.12	0.43	1.08	1.27	0	0	0	0
ND	Cass	380171004	2003	200	1297	1.25	0.82	1.15	1.41	0	0	0	0
ND	Cass	380171004	2004	256	3140	1.21	0.6	1.13	1.37	0	0	0	0
ND	Cass	380171004	2005	146	928	1.24	0.68	1.15	1.41	0	0	0	0
ND	Cass	380171004	2006	358	7385	0.39	0.42	0.28	2.19	0	0	0	0
ND	Cass	380171004	2007	116	2256	0.55	0.74	0.33	2.6	0	0	0	0
ND	Dunn	380250003	1997	224	3313	1.38	1.14	1.2	1.54	0	0	0	0
ND	Dunn	380250003	1998	242	2688	1.78	2.07	1.39	1.79	0	0	0	0
ND	Dunn	380250003	1999	323	5099	1.5	1.56	1.26	1.62	0	0	0	0
ND	Dunn	380250003	2000	353	7455	1.4	1.44	1.2	1.55	0	0	0	0
ND	Dunn	380250003	2001	276	3575	1.6	1.48	1.34	1.66	0	0	0	0
ND	Dunn	380250003	2002	334	4484	1.31	1.09	1.16	1.48	0	0	0	0
ND	Dunn	380250003	2003	355	7289	1.5	1.28	1.29	1.58	0	0	0	0
ND	Dunn	380250003	2004	347	6019	1.34	1.13	1.17	1.51	0	0	0	0
ND	Dunn	380250003	2005	183	1314	1.48	1.53	1.23	1.62	0	0	0	0
ND	Dunn	380250003	2006	262	2213	1.53	1.57	1.26	1.65	0	0	0	0
ND	Dunn	380250003	2007	79	667	1.65	1.5	1.37	1.69	0	0	0	0
ND	McKenzie	380530002	1997	238	2552	1.5	1.23	1.28	1.61	0	0	0	0
ND	McKenzie	380530002	1998	144	1989	1.66	1.57	1.36	1.7	0	0	0	0
ND	McKenzie	380530002	2001	108	754	1.31	0.84	1.18	1.47	0	0	0	0
ND	McKenzie	380530002	2002	262	3361	1.23	0.77	1.13	1.4	0	0	0	0
ND	McKenzie	380530002	2003	305	5345	1.5	1.29	1.28	1.6	0	0	0	0
ND	McKenzie	380530002	2004	303	4614	1.4	1.19	1.22	1.55	0	0	0	0
ND	McKenzie	380530002	2005	225	2515	1.29	0.82	1.17	1.46	0	0	0	0
ND	McKenzie	380530002	2006	276	2896	1.28	0.85	1.16	1.45	0	0	0	0
ND	McKenzie	380530002	2007	73	511	1.64	1.34	1.38	1.67	0	0	0	0
ND	McKenzie	380530104	1998	224	1525	2.38	4.92	1.59	2.04	4	0	0	0

				Days	Hours	Anr	nual Ho	urly (p	ob)	Numbe	r of 5-minu	te Daily Ma	aximum
State	County	Monitor ID	Year	(n)	(n)	Mean	std	GM	GSD	> 100 ppb	> 200 ppb	> 300 ppb	> 400 ppb
ND	McKenzie	380530104	1999	240	1500	2.3	3.7	1.66	1.97	3	3	1	0
ND	McKenzie	380530104	2000	294	2755	1.96	4.07	1.44	1.85	5	2	1	1
ND	McKenzie	380530104	2001	283	2281	1.68	1.75	1.38	1.72	1	0	0	0
ND	McKenzie	380530104	2002	236	1526	1.9	4.04	1.34	1.83	9	2	0	0
ND	McKenzie	380530104	2003	293	2333	1.98	5.29	1.3	1.84	15	3	1	0
ND	McKenzie	380530104	2004	271	2231	1.34	1.34	1.19	1.49	1	0	0	0
ND	McKenzie	380530104	2005	245	1900	1.32	2.32	1.14	1.46	2	0	0	0
ND	McKenzie	380530104	2006	234	1827	1.32	1.78	1.14	1.46	4	1	0	0
ND	McKenzie	380530104	2007	71	764	1.44	1.13	1.26	1.56	0	0	0	0
ND	McKenzie	380530111	1998	258	2063	3.11	7.34	1.8	2.29	7	2	0	0
ND	McKenzie	380530111	1999	294	2379	2.36	5.4	1.56	2.02	7	2	1	1
ND	McKenzie	380530111	2000	329	2805	2.68	8.27	1.65	2.1	7	5	4	2
ND	McKenzie	380530111	2001	336	3183	1.81	2.09	1.4	1.81	0	0	0	0
ND	McKenzie	380530111	2002	297	2255	1.87	3.52	1.38	1.8	8	3	1	0
ND	McKenzie	380530111	2003	288	2243	2.03	3.84	1.44	1.87	7	2	1	0
ND	McKenzie	380530111	2004	308	2857	1.82	5.94	1.27	1.72	3	1	1	0
ND	McKenzie	380530111	2005	296	2790	1.39	3.28	1.14	1.5	5	2	0	0
ND	McKenzie	380530111	2006	304	2896	1.35	2.43	1.16	1.48	4	1	0	0
ND	McKenzie	380530111	2007	78	722	1.61	1.89	1.3	1.69	1	1	0	0
ND	Mercer	380570001	1997	243	2824	2.93	4.29	1.87	2.26	0	0	0	0
ND	Mercer	380570001	1998	319	4735	3.33	6.47	2.09	2.28	5	2	0	0
ND	Mercer	380570001	1999	14	320	5.18	3.12	4.43	1.73	0	0	0	0
ND	Mercer	380570004	1999	334	5584	2.6	3.94	1.66	2.2	3	1	0	0
ND	Mercer	380570004	2000	362	7348	2.29	3.8	1.55	2.06	3	1	0	0
ND	Mercer	380570004	2001	338	4647	2.9	5.34	1.76	2.26	8	0	0	0
ND	Mercer	380570004	2002	336	3701	2.65	4.59	1.73	2.17	2	1	0	0
ND	Mercer	380570004	2003	351	5555	2.21	3.11	1.55	2.01	1	0	0	0
ND	Mercer	380570004	2004	344	4678	2.62	3.57	1.73	2.19	1	0	0	0
ND	Mercer	380570004	2005	273	3037	2.43	3.25	1.68	2.08	0	0	0	0
ND	Mercer	380570004	2006	301	2755	2.77	3.37	1.86	2.21	0	0	0	0
ND	Mercer	380570004	2007	107	1133	2.48	3.44	1.7	2.1	0	0	0	0
ND	Morton	380590002	1997	346	6547	9.31	20.26	2.93	3.67	102	19	1	0
ND	Morton	380590002	1998	290	4696	9.3	22.47	2.78	3.75	75	8	0	0
ND	Morton	380590002	1999	359	6837	7.7	16.99	2.53	3.55	90	4	0	0

				Days	Hours	Anr	nual Ho	urly (p	ob)	Numbe	r of 5-minu	te Daily Ma	aximum
State	County	Monitor ID	Year	(n)	(n)	Mean	std	GM	GSD	> 100 ppb	> 200 ppb	> 300 ppb	> 400 ppb
ND	Morton	380590002	2000	363	7964	6.47	14.58	2.22	3.31	73	3	0	0
ND	Morton	380590002	2001	346	5947	7.48	13.57	2.81	3.5	66	2	0	0
ND	Morton	380590002	2002	355	6258	6.26	12.03	2.49	3.25	59	1	0	0
ND	Morton	380590002	2003	365	8033	6.25	13.66	2.33	3.18	82	3	1	0
ND	Morton	380590002	2004	363	7532	6.74	13.2	2.62	3.29	76	2	0	0
ND	Morton	380590002	2005	111	1450	4.85	6.08	2.7	2.82	1	0	0	0
ND	Morton	380590003	1998	95	1924	3.71	7.47	2.01	2.48	8	0	0	0
ND	Morton	380590003	1999	353	6522	5.06	8.84	2.48	2.88	41	2	1	0
ND	Morton	380590003	2000	351	5984	4.71	8.04	2.44	2.74	24	0	0	0
ND	Morton	380590003	2001	357	6345	4.94	8.17	2.54	2.81	27	1	0	0
ND	Morton	380590003	2002	342	5245	4.41	7.53	2.35	2.68	26	1	0	0
ND	Morton	380590003	2003	364	7991	3.55	6.34	1.96	2.49	27	0	0	0
ND	Morton	380590003	2004	344	6338	4.44	7.03	2.5	2.59	24	0	0	0
ND	Morton	380590003	2005	106	1012	3.84	5.1	2.42	2.39	1	0	0	0
ND	Oliver	380650002	1997	244	2356	4.28	7.23	2.3	2.63	7	0	0	0
ND	Oliver	380650002	1998	319	4175	3.92	7.23	2.1	2.58	12	1	0	0
ND	Oliver	380650002	1999	349	4856	3.47	6.94	1.93	2.42	15	1	0	0
ND	Oliver	380650002	2000	351	4765	3.14	5.54	1.89	2.32	8	0	0	0
ND	Oliver	380650002	2001	214	2404	3.42	5.86	1.96	2.42	1	0	0	0
ND	Oliver	380650002	2002	350	4482	2.71	4.75	1.69	2.21	4	0	0	0
ND	Oliver	380650002	2003	357	6953	2.37	5.58	1.47	2.05	10	1	0	0
ND	Oliver	380650002	2004	354	6138	2.76	5.16	1.65	2.24	7	1	1	0
ND	Oliver	380650002	2005	275	2443	3.86	6.7	2.05	2.62	6	2	0	0
ND	Oliver	380650002	2006	325	3369	2.85	4.32	1.77	2.28	1	0	0	0
ND	Oliver	380650002	2007	101	780	4.12	6.99	2.35	2.53	2	0	0	0
ND	Steele	380910001	1997	216	3134	1.41	0.74	1.28	1.5	0	0	0	0
ND	Steele	380910001	1998	202	2804	2.22	2.1	1.72	1.91	0	0	0	0
ND	Steele	380910001	1999	152	1845	1.25	0.79	1.14	1.42	0	0	0	0
ND	Steele	380910001	2000	83	805	1.11	0.4	1.07	1.26	0	0	0	0
ND	Williams	381050103	2002	319	2724	3.18	7.56	1.68	2.36	8	3	1	0
ND	Williams	381050103	2003	339	3323	2.48	3.71	1.64	2.13	3	0	0	0
ND	Williams	381050103	2004	348	3438	2.52	5.21	1.62	2.12	5	3	1	0
ND	Williams	381050103	2005	301	2331	3.51	8	1.85	2.45	20	3	1	0
ND	Williams	381050103	2006	322	2976	1.88	2.32	1.4	1.87	0	0	0	0

				Days	Hours	Anr	nual Ho	urly (pp	ob)	Numbe	r of 5-minu	te Daily Ma	ximum
State	County	Monitor ID	Year	(n)	(n)	Mean	std	GM	GSD	> 100 ppb	> 200 ppb	> 300 ppb	> 400 ppb
ND	Williams	381050103	2007	86	834	3.35	4.62	2.07	2.4	0	0	0	0
ND	Williams	381050105	2002	302	2843	6.77	10.88	2.93	3.34	35	4	1	0
ND	Williams	381050105	2003	342	3523	5.67	9.39	2.55	3.12	13	1	0	0
ND	Williams	381050105	2004	346	4129	5.64	10.64	2.55	3.1	19	2	2	1
ND	Williams	381050105	2005	349	4492	6.79	13	2.49	3.46	52	12	1	0
ND	Williams	381050105	2006	262	2938	3.74	6.66	1.91	2.62	14	1	0	0
ND	Williams	381050105	2007	24	263	3.59	5.63	1.99	2.53	1	0	0	0
PA	Allegheny	420030002	1997	357	7821	12.57	15.05	7.69	2.68	70	8	2	0
PA	Allegheny	420030002	1998	3	72	43.18	32.27	31.63	2.43	3	1	0	0
PA	Allegheny	420030002	1999	325	6986	11.04	11.16	7.36	2.53	31	2	0	0
PA	Allegheny	420030021	1997	355	7830	18.11	18.87	11.07	2.93	87	19	5	2
PA	Allegheny	420030021	1998	3	72	10.22	8.23	7.48	2.27	0	0	0	0
PA	Allegheny	420030021	1999	362	8279	9	7.94	6.64	2.2	3	0	0	0
PA	Allegheny	420030021	2002	313	7291	7.32	7.33	4.49	2.85	3	0	0	0
PA	Allegheny	420030031	1997	362	8000	10.98	9.63	8.05	2.24	12	1	0	0
PA	Allegheny	420030031	1998	3	68	11.38	9.36	8.2	2.3	0	0	0	0
PA	Allegheny	420030031	1999	360	7443	8.98	7.84	6.43	2.33	1	0	0	0
PA	Allegheny	420030032	1997	364	7951	15.4	19.34	9.39	2.73	84	15	6	4
PA	Allegheny	420030032	1998	3	60	35.2	20.65	27.51	2.26	2	0	0	0
PA	Allegheny	420030032	1999	210	4326	8.18	7.8	5.66	2.41	2	0	0	0
PA	Allegheny	420030064	1997	361	7526	11.9	13.08	7.16	2.86	17	2	0	0
PA	Allegheny	420030064	1998	3	71	20.11	7.99	18.41	1.56	0	0	0	0
PA	Allegheny	420030064	1999	355	7232	12.11	14.34	7.35	2.78	18	3	2	1
PA	Allegheny	420030064	2002	350	8239	10.9	13.26	5.91	3.15	18	5	1	0
PA	Allegheny	420030067	1997	364	8231	10.43	11.13	6.69	2.62	12	2	1	1
PA	Allegheny	420030067	1998	3	72	17.01	12.54	12.63	2.25	0	0	0	0
PA	Allegheny	420030067	1999	257	5891	10.05	8.81	7.35	2.22	1	0	0	0
PA	Allegheny	420030116	1997	361	7767	13.26	17.76	8.33	2.6	60	19	12	8
PA	Allegheny	420030116	1998	3	70	17	11.04	12.59	2.46	0	0	0	0
PA	Allegheny	420030116	1999	299	5684	12.12	16.01	7.82	2.54	50	26	13	8
PA	Allegheny	420030116	2002	232	5403	7	7.96	4.56	2.5	3	0	0	0
PA	Allegheny	420031301	1997	363	7663	9.37	9.8	6.25	2.48	21	4	1	1
PA	Allegheny	420031301	1998	3	70	12.66	6.88	11.29	1.58	0	0	0	0
PA	Allegheny	420031301	1999	363	8161	9.64	9.62	6.57	2.44	21	3	1	1

				Days	Hours	Anr	nual Ho	urly (p	ob)	Numbe	r of 5-minu	te Daily Ma	ximum
State	County	Monitor ID	Year	(n)	(n)	Mean	std	GM	GSD	> 100 ppb	> 200 ppb	> 300 ppb	> 400 ppb
PA	Allegheny	420033003	1997	356	7422	11.8	13.86	7.01	2.85	27	1	0	0
PA	Allegheny	420033003	1998	2	45	11.47	6.31	9.35	2.09	0	0	0	0
PA	Allegheny	420033003	1999	350	6998	13.59	19.91	7.86	2.86	37	2	2	2
PA	Allegheny	420033003	2002	316	7363	12.66	18.25	6.32	3.29	53	8	5	3
PA	Allegheny	420033004	1997	362	7461	9.18	9.66	6.17	2.47	12	2	0	0
PA	Allegheny	420033004	1998	3	66	13.12	6.01	11.71	1.65	0	0	0	0
PA	Allegheny	420033004	1999	361	7408	8.55	9.09	5.79	2.47	6	3	2	0
PA	Beaver	420070002	1997	351	7889	11.83	15.38	6.83	2.84	91	11	1	1
PA	Beaver	420070002	1998	270	6205	12.96	16.48	7.8	2.71	74	6	2	0
PA	Beaver	420070005	1997	359	7447	16.57	25.11	8.65	3.14	98	39	17	11
PA	Beaver	420070005	1998	277	6388	16.14	26.85	8.36	3.01	92	39	21	13
PA	Beaver	420070005	2002	361	8491	14.24	26.51	5.28	4.12	113	49	23	13
PA	Beaver	420070005	2003	365	8706	10.79	17.07	4.38	3.83	75	16	3	2
PA	Beaver	420070005	2004	364	8656	11.59	17.68	5.55	3.39	74	22	10	3
PA	Beaver	420070005	2005	362	8578	12.57	18.18	6.82	3.04	75	26	12	7
PA	Beaver	420070005	2006	361	8457	9.26	18.5	3.49	3.78	71	30	11	5
PA	Beaver	420070005	2007	324	7556	9.79	13.98	4.94	3.26	45	12	4	1
PA	Berks	420110009	1997	350	7805	8.66	8.87	5.87	2.44	35	4	0	0
PA	Berks	420110009	1998	365	8641	8.93	7.56	7.11	1.92	33	3	0	0
PA	Berks	420110009	1999	119	2790	9.22	8.38	6.86	2.17	9	1	0	0
PA	Cambria	420210011	1997	361	8129	9.76	9.15	6.72	2.47	8	0	0	0
PA	Cambria	420210011	1998	356	7908	8.78	9.69	5.65	2.62	16	1	0	0
PA	Cambria	420210011	1999	120	2835	9.74	7.99	7.61	1.99	1	0	0	0
PA	Erie	420490003	1997	363	8169	9.76	11.22	6.68	2.33	60	9	1	0
PA	Erie	420490003	1998	363	8416	10.57	13.5	7.09	2.35	60	12	1	0
PA	Erie	420490003	1999	120	2778	11.48	15.12	7.46	2.48	26	7	3	0
PA	Philadelphia	421010022	1997	364	8297	8.56	8.74	5.63	2.57	7	1	0	0
PA	Philadelphia	421010022	1998	363	8065	7.3	7.04	4.82	2.56	2	0	0	0
PA	Philadelphia	421010022	1999	137	2665	7.79	8.26	4.76	2.79	4	1	0	0
PA	Philadelphia	421010022	2000	179	3630	7.63	6.88	5.05	2.62	1	0	0	0
PA	Philadelphia	421010022	2001	98	2094	7.53	7.17	5.16	2.44	0	0	0	0
PA	Philadelphia	421010048	1997	365	8456	8.88	18.38	4.96	2.74	59	40	27	23
PA	Philadelphia	421010048	1998	356	7285	6.27	6.03	4.21	2.48	0	0	0	0
PA	Philadelphia	421010048	1999	178	3939	6.08	6.57	3.95	2.53	1	1	0	0

				Days	Hours	Anr	nual Ho	urly (p	ob)	Numbe	r of 5-minu	te Daily Ma	ximum
State	County	Monitor ID	Year	(n)	(n)	Mean	std	GM	GSD	> 100 ppb	> 200 ppb	> 300 ppb	> 400 ppb
PA	Philadelphia	421010136	1997	360	7532	4.99	5.52	3.29	2.43	1	0	0	0
PA	Philadelphia	421010136	1998	339	6491	5.25	5.52	3.5	2.44	2	0	0	0
PA	Philadelphia	421010136	1999	337	7144	5.63	6.04	3.71	2.48	2	1	0	0
PA	Philadelphia	421010136	2000	351	7044	5.76	5.97	3.74	2.54	0	0	0	0
PA	Philadelphia	421010136	2001	266	5149	6.77	7.43	4.38	2.55	2	0	0	0
PA	Philadelphia	421010136	2002	359	7271	5.38	5.7	3.57	2.47	3	0	0	0
PA	Philadelphia	421010136	2003	119	2585	6.74	6.71	4.62	2.42	2	0	0	0
PA	Warren	421230003	1997	346	7157	10.53	11.59	6.64	2.68	26	3	0	0
PA	Warren	421230003	1998	89	2126	7.62	7.38	5.41	2.26	0	0	0	0
PA	Warren	421230004	1997	355	7022	17.14	28.18	7.47	3.66	148	44	14	8
PA	Warren	421230004	1998	89	1966	13.97	21.76	6.8	3.18	30	6	2	0
PA	Washington	421250005	1997	364	8374	8.95	8.41	6.45	2.25	7	0	0	0
PA	Washington	421250005	1998	362	8540	8.88	7.78	6.68	2.14	4	0	0	0
PA	Washington	421250005	1999	120	2821	8.32	7.68	6.36	2.02	1	0	0	0
PA	Washington	421250200	1997	364	8369	10.52	11.23	6.99	2.45	17	0	0	0
PA	Washington	421250200	1998	365	8656	10.46	10.49	7.18	2.37	15	1	0	0
PA	Washington	421250200	1999	120	2829	10.15	9.81	7	2.4	3	1	0	0
PA	Washington	421255001	1997	365	8425	12.71	15.24	8.39	2.36	57	5	1	0
PA	Washington	421255001	1998	277	6559	13.46	13.09	10.28	1.97	42	3	0	0
SC	Barnwell	450110001	2000	100	789	3.95	2.83	3.39	1.66	0	0	0	0
SC	Barnwell	450110001	2001	267	2625	2.72	2.61	2.13	1.93	1	0	0	0
SC	Barnwell	450110001	2002	202	2544	2.11	1.72	1.67	1.88	0	0	0	0
SC	Charleston	450190003	2000	114	1703	6.24	5.36	4.77	2.02	1	0	0	0
SC	Charleston	450190003	2001	344	4806	4.16	4.12	2.95	2.22	1	0	0	0
SC	Charleston	450190003	2002	201	3509	2.85	3.49	1.97	2.16	0	0	0	0
SC	Charleston	450190046	2000	100	1252	4.61	3.9	3.71	1.84	0	0	0	0
SC	Charleston	450190046	2001	269	3497	2.64	2.6	1.99	2	0	0	0	0
SC	Charleston	450190046	2002	189	2927	2.34	2.89	1.68	2.02	0	0	0	0
SC	Georgetown	450430006	2000	71	604	4.92	4.35	3.97	1.82	0	0	0	0
SC	Georgetown	450430006	2001	241	2218	4.76	6.11	3.13	2.33	3	0	0	0
SC	Georgetown	450430006	2002	140	1169	2.5	4.33	1.67	2.08	1	0	0	0
SC	Greenville	450450008	2000	113	1987	4.84	3.75	3.95	1.82	0	0	0	0
SC	Greenville	450450008	2001	356	6418	4.24	3.86	3.18	2.1	3	0	0	0
SC	Greenville	450450008	2002	212	4679	3.06	2.8	2.29	2.09	1	0	0	0

				Days	Hours	Anr	nual Ho	urly (p	pb)	Numbe	r of 5-minu	te Daily Ma	aximum
State	County	Monitor ID	Year	(n)	(n)	Mean	std	GM	GSD	> 100 ppb	> 200 ppb	> 300 ppb	> 400 ppb
SC	Lexington	450630008	2001	263	3941	4.2	7.8	2.37	2.44	26	3	0	0
SC	Lexington	450630008	2002	211	4242	4.5	8.74	2.33	2.61	22	3	0	0
SC	Oconee	450730001	2000	89	1218	3.85	2.87	3.26	1.7	0	0	0	0
SC	Oconee	450730001	2001	288	4304	2.9	2.1	2.35	1.89	0	0	0	0
SC	Oconee	450730001	2002	188	3063	1.82	1.52	1.43	1.95	0	0	0	0
SC	Richland	450790007	2000	110	1808	4.48	2.81	3.86	1.69	0	0	0	0
SC	Richland	450790007	2001	365	6419	3.88	3.47	2.99	2.02	0	0	0	0
SC	Richland	450790007	2002	210	4335	2.95	2.71	2.23	2.04	0	0	0	0
SC	Richland	450790021	2000	109	911	4.43	5.47	3.4	1.85	0	0	0	0
SC	Richland	450790021	2001	283	2700	3.73	4.89	2.64	2.1	0	0	0	0
SC	Richland	450790021	2002	202	2505	2.94	4.85	1.92	2.16	0	0	0	0
SC	Richland	450791003	2001	193	3346	3.14	2.8	2.46	1.96	0	0	0	0
SC	Richland	450791003	2002	212	4323	2.87	2.8	2.16	2.04	0	0	0	0
UT	Salt Lake	490352004	1997	335	4524	2.31	2.5	1.76	1.94	6	1	0	0
UT	Salt Lake	490352004	1998	354	5792	1.94	1.66	1.58	1.78	0	0	0	0
WV	Wayne	540990002	2002	365	8711	7.49	7.14	5.13	2.42	1	0	0	0
WV	Wayne	540990003	2002	361	7417	8.48	9.1	5.21	2.75	7	2	1	1
WV	Wayne	540990003	2003	362	8057	8.76	9.73	5.56	2.58	8	0	0	0
WV	Wayne	540990003	2004	366	8659	9.21	9.46	6.38	2.31	5	1	0	0
WV	Wayne	540990003	2005	365	8141	9.58	11.8	5.96	2.61	6	0	0	0
WV	Wayne	540990004	2002	362	8560	9.21	9.18	6.37	2.37	22	1	1	1
WV	Wayne	540990004	2003	365	8570	8.53	9.77	5.84	2.35	26	4	3	1
WV	Wayne	540990004	2004	366	8673	7.22	6.66	5.36	2.12	6	0	0	0
WV	Wayne	540990004	2005	363	8586	7.67	6.39	5.97	2	7	0	0	0
WV	Wayne	540990005	2002	365	8283	8.44	9.75	5.38	2.58	67	3	0	0
WV	Wayne	540990005	2003	365	7927	8.31	11.03	5.02	2.7	52	20	5	0
WV	Wayne	540990005	2004	366	8681	7.03	5.92	5.25	2.16	2	0	0	0
WV	Wayne	540990005	2005	365	8453	6.68	5.52	4.89	2.26	4	1	0	0
WV	Wood	541071002	2001	92	2152	7.76	12.51	4.04	3.04	9	3	2	1
WV	Wood	541071002	2002	365	8648	9.9	11.29	6.21	2.63	42	7	1	0
WV	Wood	541071002		365	8641	9.48	12.26	5.8	2.61	53	9	2	0
WV	Wood	541071002	2004	366	8581	10.88	13.25	7	2.55	57	13	3	1
WV	Wood	541071002	2005	266	6219	8.34	12.71	4.07	3.23	42	12	1	1

Appendix B: Supplement to the SO₂ Exposure Assessment

B-1 OVERVIEW

This appendix contains supplemental descriptions of the methods and data used in the SO₂ exposure assessment, as well as detailed results from the exposure analyses performed. First, a broad description of the exposure modeling approach is described (section B-2), applicable to the two exposure modeling domains conducted to date: Greene County, Mo. and St. Louis, MO. Supplementary input data used in AERMOD are provided in section B-3, as well as the model predictions and ambient monitor measurements in each modeling domain. Section B-4 has additional input and output data for APEX. A series of Attachments follow, further documenting some of the data sources and modeling approaches used, as well as previously conducted uncertainty analyses on selected input parameters in APEX.

B-2 HUMAN EXPOSURE MODELING USING APEX

The Air Pollutants Exposure model (APEX) is a personal computer (PC)-based program designed to estimate human exposure to criteria and air toxic pollutants at the local, urban, and consolidated metropolitan levels. APEX, also known as TRIM.Expo, is the human inhalation exposure module of EPA's Total Risk Integrated Methodology (TRIM) model framework (US EPA, 1999), a modeling system with multimedia capabilities for assessing human health and ecological risks from hazardous and criteria air pollutants. It is developed to support evaluations with a scientifically sound, flexible, and user-friendly methodology. Additional information on the TRIM modeling system, as well as downloads of the APEX Model, user's guide, and other supporting documentation, are on EPA's Technology Transfer Network (TTN) at http://www.epa.gov/ttn/fera.

B-2.1 History

APEX was derived from the National Ambient Air Quality Standards (NAAQS) Exposure Model (NEM) series of models, developed to estimate exposure to the criteria pollutants (e.g., carbon monoxide (CO), ozone O₃). In 1979, EPA began by assembling a database of human activity patterns that could be used to estimate exposures to indoor and outdoor pollutants (Roddin et al., 1979). These data were then combined with measured outdoor concentrations in NEM to estimate exposures to CO (Biller et al., 1981; Johnson and Paul, 1983). In 1988, OAQPS began to incorporate probabilistic elements into the NEM methodology and use activity pattern data based on various human activity diary studies to create an early version of probabilistic NEM for O₃ (i.e., pNEM/O₃). In 1991, a probabilistic version of NEM was extended to CO (pNEM/CO) that included a one-compartment mass-balance model to estimate CO concentrations in indoor microenvironments. The application of this model to Denver, Colorado has been documented in Johnson et al. (1992). Additional enhancements to pNEM/O₃ in the early- to mid-1990's allowed for probabilistic exposure assessments in nine urban areas for the general population, outdoor children, and outdoor workers (Johnson et al., 1996a; 1996b; 1996c). Between 1999 and 2001, updated versions of pNEM/CO (versions 2.0 and 2.1) were developed that relied on activity diary data from EPA's Consolidated Human Activities Database (CHAD) and enhanced algorithms for simulating gas stove usage, estimating alveolar ventilation rate (a measure of human respiration), and modeling home-to-work commuting patterns.

The first version of APEX was essentially identical to pNEM/CO (version 2.0) except that it was capable of running on a PC instead of a mainframe. The next version, APEX2, was substantially different, particularly in the use of a personal profile approach (i.e., simulation of individuals) rather than a cohort simulation (i.e., groups of similar persons). APEX3 introduced a number of new features including automatic site selection from national databases, a series of new output tables providing summary exposure and dose statistics, and a thoroughly reorganized method of describing microenvironments and their parameters. Most of the spatial and temporal constraints of pNEM and APEX1 were removed or relaxed by version 3.

The version of APEX used in this exposure assessment is APEX4.3, described in the APEX User's Guide and the APEX Technical Support Document (US EPA, 2009a; 2009b) and referred to here as the APEX User's Guide and TSD. This latest version has the added flexibility of addressing user defined exposure timesteps within an hour.

B-2.2 APEX Model Overview

APEX estimates human exposure to criteria and toxic air pollutants at the local, urban, or consolidated metropolitan area levels using a stochastic, microenvironmental approach. The model randomly selects data for a sample of hypothetical individuals from an actual population database and simulates each hypothetical individual's movements through time and

A microenvironment is a threedimensional space in which human contact with an environmental pollutant takes place and which can be treated as a well-characterized, relatively homogeneous location with respect to pollutant concentrations for a specified time period.

space (e.g., at home, in vehicles) to estimate their exposure to a pollutant. APEX simulates commuting, and thus exposures that occur at home and work locations, for individuals who work in different areas than they live.

APEX can be conceptualized as a simulated field study that would involve selecting an actual sample of specific individuals who live in (or work and live in) a geographic area and then continuously monitoring their activities and subsequent inhalation exposure to a specific air pollutant during a specific period of time.

The main differences between APEX and an actual field study are that in APEX:

• The sample of individuals is a virtual sample, not actual persons. However, the population of individuals appropriately balanced according to various demographic

- variables and census data using their relative frequencies, in order to obtain a representative sample (to the extent possible) of the actual people in the study area
- The activity patterns of the sampled individuals (e.g., the specification of indoor and other microenvironments visited and the time spent in each) are assumed by the model to be comparable to individuals with similar demographic characteristics, according to activity data such as diaries compiled in EPA's Consolidated Human Activity Database (or CHAD; US EPA, 2002; McCurdy et al., 2000)
- The pollutant exposure concentrations are estimated by the model using a set of userinput ambient outdoor concentrations (either modeled or measured) and information on the behavior of the pollutant in various microenvironments;
- Variation in ambient air quality levels can be simulated by either adjusting air quality
 concentrations to just meet alternative ambient standards, or by reducing source
 emissions and obtaining resulting air quality modeling outputs that reflect these
 potential emission reductions, and
- The model accounts for the most significant factors contributing to inhalation
 exposure the temporal and spatial distribution of people and pollutant
 concentrations throughout the study area and among microenvironments while also
 allowing the flexibility to adjust some of these factors for alternative scenarios and
 sensitivity analyses.

APEX is designed to simulate human population exposure to criteria and air toxic pollutants at local, urban, and regional scales. The user specifies the geographic area to be modeled and the number of individuals to be simulated to represent this population. APEX then generates a personal profile for each simulated person that specifies various parameter values required by the model. The model next uses diary-derived time/activity data matched to each personal profile to generate an exposure event sequence (also referred to as *activity pattern* or *diary*) for the modeled individual that spans a specified time period, such as one year. Each event in the sequence specifies a start time, exposure duration, geographic location, microenvironment, and activity performed. Probabilistic algorithms are used to estimate the pollutant concentration associated with each exposure event. The estimated pollutant concentrations account for the effects of ambient (outdoor) pollutant concentration, penetration factors, air exchange rates, decay/deposition rates, and proximity to emission sources, depending

on the microenvironment, available data, and estimation method selected by the user. Because the modeled individuals represent a random sample of the population of interest, the distribution of modeled individual exposures can be extrapolated to the larger population. Additional discussion regarding the five basic exposure modeling steps noted in the SO₂ REA are described in sections that follow.

B-2.2.1 Study Area Characterization

The APEX study area has traditionally been on the scale of a city or slightly larger metropolitan area, although it is now possible to model larger areas such as combined statistical areas (CSAs). In the exposure analyses performed as part of this NAAQS review, the study area is defined by either a single or a few counties. The demographic data used by the model to create personal profiles is provided at the census block level. For each block the model requires demographic information representing the distribution of age, gender, race, and work status within the study population. Each block has a location specified by latitude and longitude for some representative point (e.g., geographic center). The current release of APEX includes input files that already contain this demographic and location data for all census tracts, block groups, and blocks in the 50 United States, based on the 2000 Census. In this assessment, exposures were evaluated at the block level.

Air Quality Data

Air quality data can be input to the model as measured data from an ambient monitor or that generated by air quality modeling. This exposure analysis used modeled air quality data, whereas the principal emission sources included both mobile and stationary sources as well as fugitive emissions. Air quality data used for input to APEX were generated using AERMOD, a steady-state, Gaussian plume model (US EPA, 2004). The following steps were performed using AERMOD.

In APEX, the ambient air quality data are assigned to geographic areas called districts. The districts are used to assign pollutant concentrations to the blocks/tracts and microenvironments being modeled. The ambient air quality data are provided by the user as hourly time series for each district. As with blocks/tracts, each district has a representative location (latitude and longitude). APEX calculates the distance from each block/tract to each district center, and assigns the block/tract to the nearest district, provided the block/tract representative location point (e.g., geographic center) is in the district. Each block/tract can be

assigned to only one district. In this assessment the district was synonymous with the receptor modeled in the dispersion modeling.

Meteorological Data

Ambient temperatures are input to APEX for different sites (locations). As with districts, APEX calculates the distance from each block to each temperature site and assigns each block to the nearest site. Hourly temperature data are from the National Climatic Data Center Surface Airways Hourly TD-3280 dataset (NCDC Surface Weather Observations). Daily average and 1-hour maxima are computed from these hourly data.

There are two files that are used to provide meteorological data to APEX. One file, the meteorological station location file, contains the locations of meteorological data recordings expressed in latitude and longitude coordinates. This file also contains start and end dates for the data recording periods. The temperature data file contains the data from the locations in the temperature zone location file. This file contains hourly temperature readings for the period being modeled for the meteorological stations in and around the study area.

B-2.2.2 Generate Simulated Individuals

APEX stochastically generates a user-specified number of simulated persons to represent the population in the study area. Each simulated person is represented by a personal profile, a summary of personal attributes that define the individual. APEX generates the simulated person or profile by probabilistically selecting values for a set of profile variables (Table B-2-1). The profile variables could include:

- Demographic variables, generated based on the census data;
- Physical variables, generated based on sets of distribution data;
- Other daily varying variables, generated based on literature-derived distribution data that change daily during the simulation period.

APEX first selects demographic and physical attributes for each specified individual, and then follows the individual over time and calculates his or her time series of exposure.

Table B-2-1. Examples of profile variables in APEX.

Variable Type	Profile Variables	Description
Demographic	Age	Age (years)
	Gender	Male or Female
	Home block	Block in which a simulated person lives
	Work tract	Tract in which a simulated person works
	Employment status	Indicates employment outside home
Physical	Air conditioner	Indicates presence of air conditioning at home
	Gas Stove	Indicates presence of gas stove at home

Population Demographics

APEX takes population characteristics into account to develop accurate representations of study area demographics. Specifically, population counts by area and employment probability estimates are used to develop representative profiles of hypothetical individuals for the simulation.

APEX is flexible in the resolution of population data provided. As long as the data are available, any resolution can be used (e.g., county, census tract, census block). For this application of the model, census block level data were used. Block-level population counts come from the 2000 Census of Population and Housing Summary File 1 (SF-1). This file contains the 100-percent data, which is the information compiled from the questions asked of all people and about every housing unit.

As part of the population demographics inputs, it is important to integrate working patterns into the assessment. In the 2000 U.S. Census, estimates of employment were developed by census information (US Census Bureau, 2007). The employment statistics are broken down by gender and age group, so that each gender/age group combination is given an employment probability fraction (ranging from 0 to 1) within each census tract. The age groupings used are: 16-19, 20-21, 22-24, 25-29, 30-34, 35-44, 45-54, 55-59, 60-61, 62-64, 65-69, 70-74, and >75. Children under 16 years of age were assumed to be not employed.

Since this analysis was conducted at the census block level, block level employment probabilities were required. It was assumed that the employment probabilities for a census tract apply uniformly to the constituent census blocks.

Commuting

In addition to using estimates of employment by tract, APEX also incorporates home-to-work commuting data. Commuting data were originally derived from the 2000 Census and were collected as part of the Census Transportation Planning Package (CTPP) (US DOT, 2007). The data used contain counts of individuals commuting from home to work locations at a number of geographic scales. These data were processed to calculate fractions for each tract-to-tract flow to create the national commuting data distributed with APEX. This database contains commuting data for each of the 50 states and Washington, D.C.

Commuting within the Home Tract

The APEX data set does not differentiate people that work at home from those that commute within their home tract.

Commuting Distance Cutoff

A preliminary data analysis of the home-work counts showed that a graph of log(flows) versus log(distance) had a near-constant slope out to a distance of around 120 kilometers. Beyond that distance, the relationship also had a fairly constant slope but it was flatter, meaning that flows were not as sensitive to distance. A simple interpretation of this result is that up to 120 km, the majority of the flow was due to persons traveling back and forth daily, and the numbers of such persons decrease rapidly with increasing distance. Beyond 120 km, the majority of the flow is comprosed of persons who stay at the workplace for extended times, in which case the separation distance is not as crucial in determining the flow.

To apply the home-work data to commuting patterns in APEX, a simple rule was chosen. It was assumed that all persons in home-work flows up to 120 km are daily commuters, and no persons in more widely separated flows commute daily. This meant that the list of destinations for each home tract was restricted to only those work tracts that are within 120 km of the home tract. When the same cutoff was performed on the 1990 census data, it resulted in 4.75% of the home-work pairs in the nationwide database being eliminated, representing 1.3% of the workers. The assumption is that this 1.3% of workers do not commute from home to work on a daily basis. It is expected that the cutoff reduced the 2000 data by similar amounts.

Eliminated Records

A number of tract-to-tract pairs were eliminated from the database for various reasons. A fair number of tract-to-tract pairs represented workers who either worked outside of the U.S.

(9,631 tract pairs with 107,595 workers) or worked in an unknown location (120,830 tract pairs with 8,940,163 workers). An additional 515 workers in the commuting database whose data were missing from the original files, possibly due to privacy concerns or errors, were also deleted.

Commuting outside the study area

APEX allows for some flexibility in the treatment of persons in the modeled population who commute to destinations outside the study area. By specifying "KeepLeavers = No" in the simulation control parameters file, people who work inside the study area but live outside of it are not modeled, nor are people who live in the study area but work outside of it. By specifying "KeepLeavers = Yes," these commuters are modeled. This triggers the use of two additional parameters, called LeaverMult and LeaverAdd. While a commuter is at work, if the workplace is outside the study area, then the ambient concentration is assumed to be related to the average concentration over all air districts at the same point in time, and is calculated as:

Ambient Concentration = LeaverMult $\times avg(t) + LeaverAdd$ equation (B-1)

where:

Ambient Concentration = Calculated ambient air concentrations for locations outside

of the study area (ppm or ppm)

LeaverMult = Multiplicative factor for city-wide average concentration,

applied when working outside study area

avg(t) = Average ambient air concentration over all air districts in

study area, for time *t* (ppm or ppm)

LeaverAdd = Additive term applied when working outside study area

All microenvironmental concentrations for locations outside of the study area are determined from this ambient concentration by the same function as applies inside the study area.

Block-level commuting

For census block simulations, APEX requires block-level commuting file. A special software preprocesser was created to generate these files for APEX on the basis of the tract-level

commuting data and finely-resolved land use data. The software calculates commuting flows between census blocks for the employed population according equation (B-2).

$$Flow_{block} = Flow_{tract} \times F_{pop} \times F_{land}$$
 equation (B-2) where:

Flow block= flow of working population between a home block and a work block.Flow tract= flow of working population between a home tract and a work tract. F_{pop} = fraction of home tract's working population residing in the home block. F_{land} = fraction of work tract's commercial/industrial land area in the workblock

Thus, it is assumed that the frequency of commuting to a workplace block within a tract is proportional to the amount of commercial and industrial land in the block.

Profile Functions

A *Profile Functions* file contains settings used to generate results for variables related to simulated individuals. While certain settings for individuals are generated automatically by APEX based on other input files, including demographic characteristics, others can be specified using this file. For example, the file may contain settings for determining whether the profiled individual's residence has an air conditioner, a gas stove, etc. As an example, the *Profile Functions* file contains fractions indicating the prevalence of air conditioning in the cities modeled in this assessment (Figure B-2-1). APEX uses these fractions to stochastically generate air conditioning status for each individual. The derivation of particular data used in specific microenvironments is provided below.

```
AC_Home
! Has air conditioning at home
TABLE
INPUT1 PROBABILITY 2 "A/C probabilities"
0.85 0.15
RESULT INTEGER 2 "Yes/No"
1 2
#
```

Figure B-2-1. Example of a profile function file for A/C prevalence.

B-2.2.3 Longitudinal Activity Pattern Sequences

Exposure models use human activity pattern data to predict and estimate exposure to pollutants. Different human activities, such as spending time outdoors, indoors, or driving, will have varying pollutant exposure concentrations. To accurately model individuals and their exposure to pollutants, it is critical to understand their daily activities.

The Consolidated Human Activity Database (CHAD) provides data for where people spend time and the activities performed. CHAD was designed to provide a basis for conducting multi-route, multi-media exposure assessments (McCurdy et al., 2000). The data contained within CHAD come from multiple activity pattern surveys with varied structures (Table B-2-2), however the surveys have commonality in containing daily diaries of human activities and personal attributes (e.g., age and gender).

There are four CHAD-related input files used in APEX. Two of these files can be downloaded directly from the CHADNet (http://www.epa.gov/chadnet1), and adjusted to fit into the APEX framework. These are the human activity diaries file and the personal data file, and are discussed below. A third input file contains metabolic information for different activities listed in the diary file, these are not used in this exposure analysis. The fourth input file maps five-digit location codes used in the diary file to APEX microenvironments; this file is discussed in the section describing microenvironmental calculations (Section B-2.2.4.4).

Personal Information file

Personal attribute data are contained in the CHAD questionnaire file that is distributed with APEX. This file also has information for each day individuals have diaries. The different variables in this file are:

- The study, person, and diary day identifiers
- Day of week
- Gender
- Employment status
- Age in years
- Maximum temperature in degrees Celsius for this diary day
- Mean temperature in degrees Celsius for this diary day
- Occupation code

• Time, in minutes, during this diary day for which no data are included in the database

Diary Events file

The human activity diary data are contained in the events file that is distributed with APEX. This file contains the activities for the nearly 23,000 people with intervals ranging from one minute to one hour. An individuals' diary varies in length from one to 15 days. This file contains the following variables:

- The study, person, and diary day identifiers
- Start time of this activity
- Number of minutes for this activity
- Activity code (a record of what the individual was doing)
- Location code (a record of where the individual was)

Table B-2-2. Summary of activity pattern studies used in CHAD.

Study Name	Location	Study time period	Ages	Persons	Person -days	Diary type /study design	Reference
Baltimore	A single building in Baltimore	01/1997- 02/1997, 07/1998- 08/1998	72-93	26	292	Diary	Williams et al. (2000)
California Adolescents and Adults (CARB)	California	10/1987- 09/1988	12-17 18-94	181 1,552	181 1,552	Recall /Random	Robinson et al. (1989); Wiley et al. (1991a)
California Children (CARB)	California	04/1989- 02/1990	0-11	1,200	1,200	Recall /Random	Wiley et al. (1991b)
Cincinnati (EPRI)	Cincinnati MSA	03/1985- 04/1985, 08/1985	0-86	888	2,587	Diary /Random	Johnson (1989)
Denver (EPA)	Denver MSA	11/1982- 02/1983	18-70	432	791	Diary /Random	Johnson (1984); Akland et al. (1985)
Los Angeles: Elementary School Children	Los Angeles	10/1989	10-12	17	51	Diary	Spier et al. (1992)
Los Angeles: High School Adolescents	Los Angeles	09/1990- 10/1990	13-17	19	42	Diary	Spier et al. (1992)
National: NHAPS-Air	National	09/1992- 10/1994	0-93	4,326	4,326	Recall /Random	Klepeis et al. (1996); Tsang and Klepeis (1996)
National: NHAPS- Water	National	09/1992- 10/1994	0-93	4,332	4,332	Recall /Random	Klepeis et al. (1996); Tsang and Klepeis (1996)
Washington, D.C. (EPA)	Wash. DC MSA	11/1982- 02/1983	18-98	639	639	Diary /Random	Hartwell et al. (1984); Akland et al. (1985)

Construction of Longitudinal Activity Sequences

Typical time-activity pattern data available for inhalation exposure modeling consist of a sequence of location/activity combinations spanning a 24-hour duration, with 1 to 3 diary-days for any single individual. Exposure modeling requires information on activity patterns over longer periods of time, e.g., a full year. For example, even for pollutant health effects with short averaging times (e.g., SO₂ 5-minute average concentration) it may be desirable to know the frequency of exceedances of a concentration over a long period of time (e.g., the annual number of exceedances of a 24-hour average SO₂ concentration of 100 ppb for each simulated individual).

Long-term multi-day activity patterns can be estimated from single days by combining the daily records in various ways, and the method used for combining them will influence the variability of the long-term activity patterns across the simulated population. This in turn will influence the ability of the model to accurately represent either long-term average high-end exposures, or the number of individuals exposed multiple times to short-term high-end concentrations.

A common approach for constructing long-term activity patterns from short-term records is to re-select a daily activity pattern from the pool of data for each day, with the implicit assumption that there is no correlation between activities from day to day for the simulated individual. This approach tends to result in long-term activity patterns that are very similar across the simulated population. Thus, the resulting exposure estimates are likely to underestimate the variability across the population, and therefore, underestimate the high-end exposure concentrations or the frequency of exceedances.

A contrasting approach is to select a single activity pattern (or a single pattern for each season and/or weekday-weekend) to represent a simulated individual's activities over the duration of the exposure assessment. This approach has the implicit assumption that an individual's day-to-day activities are perfectly correlated. This approach tends to result in long-term activity patterns that are very different across the simulated population, and therefore may over-estimate the variability across the population.

Cluster-Markov Algorithm

A new algorithm has been developed and incorporated into APEX to represent the day-to-day correlation of activities for individuals. The algorithms first use cluster analysis to divide the daily activity pattern records into groups that are similar, and then select a single daily record from each group. This limited number of daily patterns is then used to construct a long-term sequence for a simulated individual, based on empirically-derived transition probabilities. This approach is intermediate between the assumption of no day-to-day correlation (i.e., re-selection for each time period) and perfect correlation (i.e., selection of a single daily record to represent all days).

The steps in the algorithm are as follows.

1. For each demographic group (age, gender, employment status), temperature range, and day-of-week combination, the associated time-activity records are partitioned into 3

- groups using cluster analysis. The clustering criterion is a vector of 5 values: the time spent in each of 5 microenvironment categories (indoors residence; indoors other building; outdoors near road; outdoors away from road; in vehicle).
- 2. For each simulated individual, a single time-activity record is randomly selected from each cluster.
- 3. A Markov process determines the probability of a given time-activity pattern occurring on a given day based on the time-activity pattern of the previous day and cluster-to-cluster transition probabilities. The cluster-to-cluster transition probabilities are estimated from the available multi-day time-activity records. If insufficient multi-day time-activity records are available for a demographic group, season, day-of-week combination, then the cluster-to-cluster transition probabilities are estimated from the frequency of time-activity records in each cluster in the CHAD data base.

Details regarding the Cluster-Markov algorithm and supporting evaluations are provided in Attachments 3 and 4.

B-2.2.4 Calculating Microenvironmental Concentrations

Probabilistic algorithms estimate the pollutant concentration associated with each exposure event. The estimated pollutant concentrations account for the effects of ambient (outdoor) pollutant concentration, penetration factor, air exchange rate, decay/deposition rate, and proximity to microenvironments can use the transfer factors method while the others use the mass balance emission sources, depending on the microenvironment, available data, and the estimation method selected by the user.

APEX calculates air concentrations in the various microenvironments visited by the simulated person by using the ambient air data for the relevant blocks, the user-specified estimation method, and input parameters specific to each microenvironment. APEX calculates hourly concentrations in all the microenvironments at each hour of the simulation for each of the simulated individuals using one of two methods: by mass balance or a transfer factors method.

Mass Balance Model

The mass balance method simulates an enclosed microenvironment as a well-mixed volume in which the air concentration is spatially uniform at any specific time. The following processes are used estimate the concentration of an air pollutant in such a microenvironment:

• Inflow of air into the microenvironment

- Outflow of air from the microenvironment
- Removal of a pollutant from the microenvironment due to deposition, filtration, and chemical degradation
- Pollutant emissions inside the microenvironment.

Table B-2-3 lists the parameters required by the mass balance method to calculate concentrations in a microenvironment. A proximity factor ($f_{proximity}$) is used to account for differences in ambient concentrations between the geographic location represented by the ambient air quality data (e.g., a regional fixed-site monitor or modeled concentration) and the geographic location of the microenvironment (e.g., near a roadway). This factor could take a value either greater than or less than 1. Emission source (ES) represents the emission rate for the emission source and concentration source (CS) is the mean air concentration resulting from the source. $R_{removal}$ is defined as the removal rate of a pollutant from a microenvironment due to deposition, filtration, and chemical reaction. The air exchange rate ($R_{air\ exchange}$) is expressed in air changes per hour.

Table B-2-3. Mass balance model parameters.

Variable	Definition	Units	Value Range
f proximity	Proximity factor	unitless	$f_{proximity} \ge 0$
CS	Concentration source	ppb	CS ≥ 0
R removal	Removal rate due to deposition, filtration, and chemical reaction	1/hr	R _{removal} ≥ 0
R air exchange	Air exchange rate	1/hr	$R_{air\ exchange} \ge 0$
V	Volume of microenvironment	m ³	V > 0

The mass balance equation for a pollutant in a microenvironment is described by:

$$\frac{dC_{ME}(t)}{dt} = \Delta C_{in} - \Delta C_{out} - \Delta C_{removal} + \Delta C_{source}$$
 equation (B-3)

where:

 $dC_{ME}(t)$ = Change in concentration in a microenvironment at time t (ppb), ΔC_{in} = Rate of change in microenvironmental concentration due to influx of air (ppb/hour), ΔC_{out} = Rate of change in microenvironmental concentration due to outflux of air (ppb/hour), $\Delta C_{removal}$ = Rate of change in microenvironmental concentration due to removal processes (ppb/hour), and ΔC_{source} = Rate of change in microenvironmental concentration due to an emission source inside the microenvironment (ppb/hour).

Within the timestep selected, each of the rates of change, ΔC_{in} , ΔC_{out} , $\Delta C_{removal}$, and ΔC_{source} , is assumed to be constant. At each timestep of the simulation period, APEX estimates the equilibrium, ending, and mean concentrations using a series of equations that account for concentration changes expected to occur due to these physical processes. Details regarding these equations are provided in the APEX TSD (US EPA, 2009b). The calculation continues to the next timestep by using the end concentration for the previous timestep as the initial microenvironmental concentration. A brief description of the input parameters estimates used for microenvironments using the mass balance approach is provided below.

Factors Model

The factors method is simpler than the mass balance method. It does not calculate concentration in a microenvironment from the concentration in the previous hour and it has fewer parameters. Table B-2-4 lists the parameters required by the factors method to calculate concentrations in a microenvironment without emissions sources.

Table B-2-4. Factors model parameters.

Variable	Definition	Units	Value Range		
f proximity	Proximity factor	unitless	$f_{proximity} \ge 0$		
f penetration	Penetration factor	unitless	$0 \le f_{penetration} \le 1$		

The factors method uses the following equation to calculate the timestep concentration in a microenvironment from the user-provided hourly air quality data:

$$C_{ME}^{timestep} = C_{ambient} x f_{proximity} x f_{penetration}$$
 equation (B-4)

where:

 $C_{ME}^{timestep}$ = Timestep concentration in a microenvironment (ppb)

 $C_{ambient}$ = Timestep concentration in ambient environment (ppb)

 $f_{proximity}$ = Proximity factor (unitless)

 $f_{penetration}$ = Penetration factor (unitless)

The ambient NO₂ concentrations are from the air quality data input file. The proximity factor is a unitless parameter that represents the proximity of the microenvironment to a monitoring station. The penetration factor is a unitless parameter that represents the fraction of pollutant entering a microenvironment from outside the microenvironment via air exchange. The development of the specific proximity and penetration factors used in this analysis are discussed below for each microenvironment using this approach.

Microenvironments Modeled

In APEX, microenvironments represent the exposure locations for simulated individuals. For exposures to be estimated accurately, it is important to have realistic microenvironments that match closely to the locations where actual people spend time on a daily basis. As discussed above, the two methods available in APEX for calculating pollutant levels within microenvironments are: 1) factors and 2) mass balance. A list of microenvironments used in this study, the calculation method used, and the parameters used to calculate the microenvironment concentrations can be found in Table B-2-5.

Each of the microenvironments is designed to simulate an environment in which people spend time during the day. CHAD locations are linked to the different microenvironments in the *Microenvironment Mapping* File (see below). There are many more CHAD locations than microenvironment locations (there are 113 CHAD codes versus 12 microenvironments in this assessment), therefore most of the microenvironments have multiple CHAD locations mapped to them.

Table B-2-5. List of microenvironments and calculation methods used.

Microenvironment		Calculation	Parameter			
No.	Name	Method	Types used 1			
1	Indoors – Residence	Mass balance	AER and DE			
2	Indoors – Bars and restaurants	Mass balance	AER and DE			
3	Indoors – Schools	Mass balance	AER and DE			
4	Indoors – Day-care centers	Mass balance	AER and DE			
5	Indoors – Office	Mass balance	AER and DE			
6	Indoors – Shopping	Mass balance	AER and DE			
7	Indoors – Other	Mass balance	AER and DE			
8	Outdoors – Near road	Factors	PR			
9	Outdoors – Public garage - parking lot	Factors	PR			
10	Outdoors – Other	Factors	None			
11	In-vehicle – Cars and Trucks	Factors	PE and PR			
12	In-vehicle - Mass Transit (bus, subway, train)	Factors	PE and PR			
0	Not modeled					
¹ AER=air exchange rate, DE=decay-deposition rate, PR=proximity factor, PE=penetration factor						

Mapping of APEX Microenvironments to CHAD Diaries

The *Microenvironment Mapping* file matches the APEX Microenvironments to CHAD Location codes. Table B-2-6 gives the mapping used for the APEX simulations.

Table B-2-6. Mapping of CHAD activity locations to APEX microenvironments.

CHAD Loc.	Description	I	APEX micro				
U	Uncertain of correct code	=	 -1	Unknown			
X	No data	=	-1	Unknown			
30000	Residence, general	=	1	Indoors-Residence			
30010	Your residence	=	1	Indoors-Residence			
30020	Other residence	=	1	Indoors-Residence			
30100	Residence, indoor	=	1	Indoors-Residence			
30120	Your residence, indoor	=	1	Indoors-Residence			
30121	, kitchen	=	1	Indoors-Residence			
30122	, living room or family room	=	1	Indoors-Residence			
30123	, dining room	=	1	Indoors-Residence			
30124	, bathroom	=	1	Indoors-Residence			
30125	, bedroom	=	1	Indoors-Residence			
30126	, study or office	=	1	Indoors-Residence			
30127	, basement	=	1	Indoors-Residence			
30128	, utility or laundry room	=	1	Indoors-Residence			
30129	, other indoor	=	1	Indoors-Residence			
30130	Other residence, indoor	=	1	Indoors-Residence			
30131	, kitchen	=	1	Indoors-Residence			
30132	, living room or family room	=	1	Indoors-Residence			
30133	, dining room	=	1	Indoors-Residence			
30134	, bathroom	=	1	Indoors-Residence			
30135	, bedroom	=	1	Indoors-Residence			

```
..., study or office
                                                 1 Indoors-Residence
30136
                                             =
30137
          ..., basement
                                             = 1 Indoors-Residence
          ..., utility or laundry room
30138
                                            = 1 Indoors-Residence
30139
          ..., other indoor
                                                 1 Indoors-Residence
          Residence, outdoor
30200
                                             = 10 Outdoors-Other
30210
          Your residence, outdoor
                                            = 10 Outdoors-Other
                                             = 10 Outdoors-Other
30211
          ..., pool or spa
                                             = 10 Outdoors-Other
30219
          ..., other outdoor
30220
          Other residence, outdoor
                                                 10 Outdoors-Other
                                             =
30221
          ..., pool or spa
                                                  10 Outdoors-Other
30229
          ..., other outdoor
                                                  10 Outdoors-Other
          Residential garage or carport
                                                  7 Indoors-Other
30300
                                             =
                                                  7 Indoors-Other
30310
          ..., indoor
                                             =
                                             = 10 Outdoors-Other
30320
           ..., outdoor
                                                  1 Indoors-Residence
30330
          Your garage or carport
30331
          ..., indoor
                                                  1 Indoors-Residence
                                             =
30332
                                             = 10 Outdoors-Other
          ... outdoor
30340
          Other residential garage or carport = 1 Indoors-Residence
30341
          ..., indoor
                                             =
                                                  1 Indoors-Residence
                                                 10 Outdoors-Other
30342
          ..., outdoor
                                             =
          Residence, none of the above
                                                 1 Indoors-Residence
30400
                                             =
31000
          Travel, general
                                                 11 In Vehicle-Cars_and_Trucks
                                             =
31100
          Motorized travel
                                                  11 In Vehicle-Cars_and_Trucks
                                             =
                                                 11 In Vehicle-Cars_and_Trucks
11 In Vehicle-Cars_and_Trucks
11 In Vehicle-Cars_and_Trucks
11 In Vehicle-Cars_and_Trucks
31110
                                             =
          Car
31120
          Truck
31121
          Truck (pickup or van)
                                             =
31122
          Truck (not pickup or van)
                                             =
                                                  8 Outdoors-Near_Road
31130
          Motorcycle or moped
                                             =
                                             = 12 In Vehicle-Mass_Transit
31140
          Bus
                                             = 12 In Vehicle-Mass_Transit
31150
          Train or subway
31160
          Airplane
                                                 0 Zero concentration
31170
          Boat
                                             = 10 Outdoors-Other
          Boat, motorized
31171
                                             = 10 Outdoors-Other
31172
          Boat, other
                                             = 10 Outdoors-Other
                                             = 10 Outdoors-Other
31200
          Non-motorized travel
                                             = 10 Outdoors-Other
31210
          Walk
          Bicycle or inline skates/skateboard =
                                                 10 Outdoors-Other
31220
31230
          In stroller or carried by adult =
                                                  10 Outdoors-Other
31300
          Waiting for travel
                                                  10 Outdoors-Other
31310
          ..., bus or train stop
                                                  8 Outdoors-Near_Road
                                                  7
31320
           ..., indoors
                                                     Indoors-Other
                                                 11 In Vehicle-Cars_and_Trucks
31900
          Travel, other
                                              =
                                                11 In Vehicle-Cars_and_Trucks
31910
          ..., other vehicle
                                              =
          Non-residence indoor, general
                                                  7 Indoors-Other
32000
                                             =
32100
          Office building/ bank/ post office = 5 Indoors-Office
32200
          Industrial/ factory/ warehouse
                                                 5 Indoors-Office
32300
          Grocery store/ convenience store
                                            = 6 Indoors-Shopping
32400
          Shopping mall/ non-grocery store
                                            = 6 Indoors-Shopping
32500
          Bar/ night club/ bowling alley
                                             =
                                                 2 Indoors-Bars_and_Restaurants
32510
          Bar or night club
                                                  2 Indoors-Bars_and_Restaurants
                                              =
32520
                                                  2 Indoors-Bars_and_Restaurants
          Bowling alley
                                              =
32600
                                                      Indoors-Other
          Repair shop
                                              =
          Auto repair shop/ gas station
32610
                                             =
                                                      Indoors-Other
32620
          Other repair shop
                                              =
                                                      Indoors-Other
                                                   7
32700
          Indoor gym /health club
                                                      Indoors-Other
                                                  4
32800
          Childcare facility
                                                     Indoors-Day_Care_Centers
                                                  1
32810
          ..., house
                                                     Indoors-Residence
                                                  4 Indoors-Day_Care_Centers
32820
          ..., commercial
          Large public building
                                                  7 Indoors-Other
32900
                                             =
                                                 7 Indoors-Other
32910
          Auditorium/ arena/ concert hall
                                            =
32920
          Library/ courtroom/ museum/ theater = 7 Indoors-Other
33100
          Laundromat
                                                  7 Indoors-Other
33200
          Hospital/ medical care facility
                                                 7 Indoors-Other
          Barber/ hair dresser/ beauty parlor = 7 Indoors-Other
33300
33400
          Indoors, moving among locations = 7 Indoors-Other
```

33500	School	=	3	Indoors-Schools
33600	Restaurant	=	2	Indoors-Bars_and_Restaurants
33700	Church	=	7	Indoors-Other
33800	Hotel/ motel	=	7	Indoors-Other
33900	Dry cleaners	=	7	Indoors-Other
34100	Indoor parking garage	=	7	Indoors-Other
34200	Laboratory	=	7	Indoors-Other
34300	Indoor, none of the above	=	7	Indoors-Other
35000	Non-residence outdoor, general	=	10	Outdoors-Other
35100	Sidewalk, street	=	8	Outdoors-Near_Road
35110	Within 10 yards of street	=	8	Outdoors-Near_Road
35200	Outdoor public parking lot /garage	=	9	Outdoors-Public_Garage-Parking
35210	, public garage	=	9	Outdoors-Public_Garage-Parking
35220	, parking lot	=	9	Outdoors-Public_Garage-Parking
35300	Service station/ gas station	=	10	Outdoors-Other
35400	Construction site	=	10	Outdoors-Other
35500	Amusement park	=	10	Outdoors-Other
35600	Playground	=	10	Outdoors-Other
35610	, school grounds	=	10	Outdoors-Other
35620	, public or park	=	10	Outdoors-Other
35700	Stadium or amphitheater	=	10	Outdoors-Other
35800	Park/ golf course	=	10	Outdoors-Other
35810	Park	=	10	Outdoors-Other
35820	Golf course	=	10	Outdoors-Other
35900	Pool/ river/ lake	=	10	Outdoors-Other
36100	Outdoor restaurant/ picnic	=	10	Outdoors-Other
36200	Farm	=	10	Outdoors-Other
36300	Outdoor, none of the above	=	10	Outdoors-Other

B-2.2.5 Exposure Calculations

APEX calculates exposure as a time series of exposure concentrations that a simulated individual experiences during the simulation period. APEX determines the exposure using hourly ambient air concentrations, calculated concentrations in each microenvironment based on these ambient air concentrations (and indoor sources if present), and the minutes spent in a sequence of microenvironments visited according to the composite diary. The hourly exposure concentration at any clock hour during the simulation period is determined using the following equation:

$$C_{i} = \frac{\sum_{j=1}^{N} C_{ME(j)}^{timestep} t_{(j)}}{T}$$
 equation (B-5)

where:

 C_i = Hourly exposure concentration at clock hour i of the simulation period (ppb)

N = Number of events (i.e., microenvironments visited) in clock hour i of the simulation period.

 $C_{ME(j)}^{timestep}$ = Timestep concentration in microenvironment j (ppm)

 $t_{(j)}$ = Time spent in microenvironment j (minutes)

T = Length of timestep (minutes)

From the timestep exposures, APEX calculates time series of 1-hour, 8-hour and daily average exposures that a simulated individual would experience during the simulation period. APEX then statistically summarizes and tabulates the timestep, hourly, 8-hour, and daily exposures. Note that if the APEX timestep is greater than an hour, the 1-hour and 8-hour exposures are not calculated and the corresponding tables are not produced. Exposures are calculated independently for all pollutants in the simulation.

From the timestep exposures, APEX can calculate the time-series of 1-hour, 8-hour, and daily average exposures that a simulated individual would experience during the simulation period. APEX then statistically summarizes and tabulates the timestep (or hourly, daily, annual average) exposures. In this analysis, the exposure indicator is 5-minute exposures above potential health effect benchmark levels. From this, APEX can calculate two general types of exposure estimates: counts of the estimated number of people exposed to a specified SO₂ concentration level and the number of times per year that they are so exposed; the latter metric is typically expressed in terms of person-occurrences or person-days. The former highlights the number of individuals exposed at least *one or more* times per modeling period to the health effect benchmark level of interest. APEX can also report counts of individuals with multiple exposures. This person-occurrences measure estimates the number of times per season that individuals are exposed to the exposure indicator of interest and then accumulates these estimates for the entire population residing in an area.

APEX tabulates and displays the two measures for exposures above levels ranging from any number of benchmark levels, by any increment (e.g., 0 to 800 ppb by 50 ppb increments for 5-minute exposures). These exposure results are tabulated for the population and subpopulations of interest.

Exposure Model Output

All of the output files written by APEX are ASCII text files. Table B-2-7 lists each of the output data files written for these simulations and provides descriptions of their content.

Additional output files that can produced by APEX are given in Table 5-1 of the APEX User's Guide, and include hourly exposure, ventilation, and energy expenditures, and even detailed event-level information, if desired. The names and locations, as well as the output table levels

(e.g., output percentiles, cut-points), for these output files are specified by the user in the simulation control parameters file.

Table B-2-7. Example of APEX output files.

Output File Type	Description
Log	The <i>Log</i> file contains the record of the APEX model simulation as it progresses. If the simulation completes successfully, the log file indicates the input files and parameter settings used for the simulation and reports on a number of different factors. If the simulation ends prematurely, the log file contains error messages describing the critical errors that caused the simulation to end.
Profile Summary	The <i>Profile Summary</i> file provides a summary of each individual modeled in the simulation.
Microenvironment Summary	The <i>Microenvironment Summary</i> file provides a summary of the time and exposure by microenvironment for each individual modeled in the simulation.
Sites	The <i>Sites</i> file lists the tracts, districts, and zones in the study area, and identifies the mapping between them.
Output Tables	The <i>Output Tables</i> file contains a series of tables summarizing the results of the simulation. The percentiles and cut-off points used in these tables are defined in the simulation control parameters file.

B-3 Supplemental AERMOD Dispersion Modeling Data

B-3.1 AERMOD Input data

Table B-3-1. Emission parameters by stack for all major facility stacks in Missouri.

Stack ID	City	Facility Name	NEI Site ID	UTM X (m) ¹	UTM Y (m) ¹	SO ₂ Emissions (tpy)	Stack Height (m)	Exit Temp. (K)	Stack Diam. (m)	Exit Velocity (m/s)	Profile Method ²
5049	LABADIE	AMERENUE-LABADIE PLANT	NEI 7514	688,392	4,270,394	10,970	213	444	6.2	28	Tier 1
5050	LABADIE	AMERENUE-LABADIE PLANT	NEI 7514	688,357	4,270,439	14,753	213	444	6.2	28	Tier 1
5051	LABADIE	AMERENUE-LABADIE PLANT	NEI 7514	688,461	4,270,338	14,285	213	444	8.8	28	Tier 1
5054	LABADIE	AMERENUE-LABADIE PLANT	NEI 7514	688,442	4,270,322	7,602	213	444	8.8	28	Tier 1
5063	SPRING- FIELD	CITY UTILITIES OF SPRINGFIELD MISSOURI-JAMES RIVER POWER PLANT	NEI 7525	476,842	4,106,944	1,137	107	422	2.5	15	Tier 2
5064	SPRING- FIELD	CITY UTILITIES OF SPRINGFIELD MISSOURI-JAMES RIVER POWER PLANT	NEI 7525	476,853	4,106,922	1,433	107	422	2.5	15	Tier 1
5066	SPRING- FIELD	CITY UTILITIES OF SPRINGFIELD MISSOURI-JAMES RIVER POWER PLANT	NEI 7525	476,913	4,106,929	757	61	422	3.7	6	Tier 1
5068	SPRING- FIELD	CITY UTILITIES OF SPRINGFIELD MISSOURI-JAMES RIVER POWER PLANT	NEI 7525	476,884	4,106,932	159	61	422	3.7	6	Tier 1
5069	SPRING- FIELD	CITY UTILITIES OF SPRINGFIELD MISSOURI-JAMES RIVER POWER PLANT	NEI 7525	476,890	4,106,922	660	61	422	3.7	5	Tier 1
5070	SPRING- FIELD	CITY UTILITIES OF SPRINGFIELD MISSOURI-JAMES RIVER POWER PLANT	NEI 7525	476,918	4,106,919	567	61	422	3.7	5	Tier 1
5073	SPRING- FIELD	CITY UTILITIES OF SPRINGFIELD MISSOURI-JAMES RIVER POWER PLANT	NEI 7525	476,919	4,106,930	218	60	422	3.7	6	Tier 1
5074	SPRING-	CITY UTILITIES OF SPRINGFIELD	NEI 7525			255	60	422	3.7	6	Tier 1

Stack ID	City	Facility Name	NEI Site ID	UTM X (m) ¹	UTM Y (m) ¹	SO ₂ Emissions (tpy)	Stack Height (m)	Exit Temp. (K)	Stack Diam. (m)	Exit Velocity (m/s)	Profile Method ²
	FIELD	MISSOURI-JAMES RIVER POWER PLANT		476,952	4,106,940						
5076	SPRING- FIELD	CITY UTILITIES OF SPRINGFIELD MISSOURI-JAMES RIVER POWER PLANT	NEI 7525	477,050	4,106,880	219	60	422	3.7	6	Tier 1
5077	SPRING- FIELD	CITY UTILITIES OF SPRINGFIELD MISSOURI-JAMES RIVER POWER PLANT	NEI 7525	476,992	4,106,881	252	60	422	3.7	6	Tier 1
5084		CITY UTILITIES OF SPRINGFIELD MISSOURI- SOUTHWEST POWER PLANT	NEI 12640	465,416	4,111,816	3,390	117	397	3.4	21	Tier 2
5113		AMERENUE-SIOUX PLANT	NEI 7516	735,034	4,310,876	24,932	183	427	5.8	29	Tier 1
5114		AMERENUE-SIOUX PLANT	NEI 7516	735,027	4,310,819	21,025	183	427	5.8	29	Tier 1
5115	WEST ALTON	AMERENUE-SIOUX PLANT	NEI 7516	734,948	4,310,864	2	65	436	1.4	15	Tier 1
5131	HERCU- LANEUM	DOE RUN COMPANY- HERCULANEUM SMELTER	NEI 34412	729,589	4,238,084	2	3	295	0.0	0	Tier 2
5141	HERCU- LANEUM	DOE RUN COMPANY- HERCULANEUM SMELTER	NEI 34412	729,543	4,237,936	2	9	287	0.3	6	Tier 3
5145	HERCU- LANEUM	DOE RUN COMPANY- HERCULANEUM SMELTER	NEI 34412	729,537	4,237,973	15,219	168	350	6.1	18	Tier 2
5147	FESTUS	AMERENUE-RUSH ISLAND PLANT	NEI 12618	739,910	4,223,934	2	76	577	1.5	9	Tier 1
5148	FESTUS	AMERENUE-RUSH ISLAND PLANT	NEI 12618	739,893	4,223,827	10,511	213	405	8.8	25	Tier 1
5149	FESTUS	AMERENUE-RUSH ISLAND PLANT	NEI 12618	739,931	4,223,869	12,744	213	405	8.8	25	Tier 1
5244	STE. GENE- VIEVE	MISSISSIPPI LIME COMPANY- MISSISSIPPI LIME CO	NEI MO1860001	757,358	4,207,065	62	23	519	3.2	4	Tier 3
5245	STE. GENE- VIEVE	MISSISSIPPI LIME COMPANY- MISSISSIPPI LIME CO	NEI MO1860001	757,384	4,207,015	89	23	469	3.4	6	Tier 3

Stack ID	City	Facility Name	NEI Site ID	UTM X (m) ¹	UTM Y	SO ₂ Emissions (tpy)	Stack Height (m)	Exit Temp. (K)	Stack Diam. (m)	Exit Velocity (m/s)	Profile Method ²
5246	STE. GENE- VIEVE	MISSISSIPPI LIME COMPANY- MISSISSIPPI LIME CO	NEI MO1860001	757,697	4,206,939	103	23	469	3.4	6	Tier 3
5247	STE. GENE- VIEVE	MISSISSIPPI LIME COMPANY- MISSISSIPPI LIME CO	NEI MO1860001	757,666	4,206,950	106	23	469	3.4	6	Tier 3
5248	STE. GENE- VIEVE	MISSISSIPPI LIME COMPANY- MISSISSIPPI LIME CO	NEI MO1860001	757,697	4,206,981	105	23	469	3.4	6	Tier 3
5261	STE. GENE- VIEVE	MISSISSIPPI LIME COMPANY- MISSISSIPPI LIME CO	NEI MO1860001	757,561	4,206,988	1,290	35	343	1.7	11	Tier 3
5262	STE. GENE- VIEVE	MISSISSIPPI LIME COMPANY- MISSISSIPPI LIME CO	NEI MO1860001	757,735	4,206,971	1,394	35	343	1.7	11	Tier 3
5263	STE. GENE- VIEVE	MISSISSIPPI LIME COMPANY- MISSISSIPPI LIME CO	NEI MO1860001	757,727	4,206,997	1,505	35	344	1.7	13	Tier 3
5264	STE. GENE- VIEVE	MISSISSIPPI LIME COMPANY- MISSISSIPPI LIME CO	NEI MO1860001	757,550	4,206,964	67	35	346	2.1	9	Tier 3
5265	STE. GENE- VIEVE	MISSISSIPPI LIME COMPANY- MISSISSIPPI LIME CO	NEI MO1860001	757,524	4,206,924	77	35	346	2.1	9	Tier 3
5267	STE. GENE- VIEVE	MISSISSIPPI LIME COMPANY- MISSISSIPPI LIME CO	NEI MO1860001	757,633	4,206,999	2	20	367	1.1	15	Tier 2
5270	STE. GENE- VIEVE	MISSISSIPPI LIME COMPANY- MISSISSIPPI LIME CO	NEI MO1860001	757,627	4,206,989	1	20	362	1.2	11	Tier 3
5271	STE. GENE- VIEVE	MISSISSIPPI LIME COMPANY- MISSISSIPPI LIME CO	NEI MO1860001	757,540	4,206,931	1,199	35	343	1.7	11	Tier 3
5276	ST. LOUIS	AMERENUE- MERAMEC PLANT	NEI 7515	732,584	4,253,799	5,195	107	463	4.9	33	Tier 1
5277	ST. LOUIS	AMERENUE- MERAMEC PLANT	NEI 7515	732,631	4,253,790	6,463	107	447	4.3	31	Tier 1
5278	ST. LOUIS	AMERENUE- MERAMEC PLANT	NEI 7515	732,677	4,253,784	2,359	76	436	3.4	27	Tier 1
5279	ST. LOUIS	AMERENUE- MERAMEC PLANT	NEI 7515	732,714	4,253,779	2,430	76	436	3.2	27	Tier 1
5293	ST. LOUIS	ANHEUSER-BUSCH INC-ST LOUIS	NEI 34732	742,736	4,275,786	2	30	371	1.2	3	Tier 2

Stack ID	City	Facility Name	NEI Site ID	UTM X (m) ¹	UTM Y (m) ¹	SO ₂ Emissions (tpy)	Stack Height (m)	Exit Temp. (K)	Stack Diam. (m)	Exit Velocity (m/s)	Profile Method ²
5295	ST. LOUIS	ANHEUSER-BUSCH INC-ST LOUIS	NEI 34732	742,775	4,275,743	176	69	450	3.0	6	Tier 2
5296	ST. LOUIS	ANHEUSER-BUSCH INC-ST LOUIS	NEI 34732	742,750	4,275,704	256	69	450	3.0	6	Tier 2
5297	ST. LOUIS	ANHEUSER-BUSCH INC-ST LOUIS	NEI 34732	742,781	4,275,753	249	69	450	3.0	6	Tier 2
5298	ST. LOUIS	ANHEUSER-BUSCH INC-ST LOUIS	NEI 34732	742,800	4,275,764	158	69	450	3.0	6	Tier 2
5299	ST. LOUIS	ANHEUSER-BUSCH INC-ST LOUIS	NEI 34732	742,759	4,275,714	3,066	69	461	3.0	6	Tier 2
5302	ST. LOUIS	ANHEUSER-BUSCH INC-ST LOUIS	NEI 34732	742,739	4,275,677	2,339	69	439	3.0	6	Tier 2
5304	ST. LOUIS	ANHEUSER-BUSCH INC-ST LOUIS	NEI 34732	742,711	4,275,740	4	22	486	1.2	9	Tier 2

Tier 1: CAMD hourly concentrations to create relative temporal profiles.

Tier 2: EMS-HAP seasonal and diurnal temporal profiles for source categorization codes (SCCs).

Tier 3: Flat profiles

¹ UTM Zone 15 values in all cases. ² Three methods were possible to convert annual total emissions data from the NEI into hourly temporal profiles required for AERMOD, based on availability of data:

Table B-3-2. Emission parameters by stack for all major cross-border facility stacks in the St. Louis scenario.

Table B-3-2.	Emission	parameters by	stack for all	major ci	oss-borde	er facility s	tacks in	i the St.	. Louis	scenario).
Stack ID	City	Facility Name	NEI Site ID	UTM X (m) ¹	UTM Y (m) ¹	SO ₂ Emissions (tpy)	Stack Height (m)	Exit Temp. (K)	Stack Diam. (m)	Exit Velocity (m/s)	Profile Method ²
1	East Alton	DYNEGY MIDWEST GENERATION INC	NEI52119	748,654	4,305,518	1536.2	76.2	427.6	5.2	8.5	Tier 1
2	East Alton	DYNEGY MIDWEST GENERATION INC	NEI52119	748,654	4,305,518	5725.8	106.7	416.5	4.6	34.6	Tier 1
3	Baldwin	DYNEGY MIDWEST GENERATION INC	NEI52781	775,316	4,233,202	9931.4	184.4	425.4	5.9	39.7	Tier 1
4	Baldwin	DYNEGY MIDWEST GENERATION INC	NEI52781	775,316	4,233,202	9053	184.4	428.7	5.9	38.3	Tier 1
5	Baldwin	DYNEGY MIDWEST GENERATION INC	NEI52781	775,316	4,233,202	7283	184.4	424.8	5.9	38.4	Tier 1
9	Hartford	Premcor Refining Group (prev. Clark Oil and Refining Corp.)	NEI52159	753,003	4,302,381	131.95786	33.5	533.2	1.5	3.1	Tier 2
10	Hartford	Premcor Refining Group (prev. Clark Oil and Refining Corp.)	NEI52159	752,783	4,302,408	907.24	19.9	502.0	1.1	6.5	Tier 2
11	Hartford	Premcor Refining Group (prev. Clark Oil and Refining Corp.)	NEI52159	752,886	4,302,285	132.9	24.1	519.3	2.1	7.0	Tier 2

Stack ID	City	Facility Name	NEI Site ID	UTM X (m) ¹	UTM Y (m) ¹	SO ₂ Emissions (tpy)	Stack Height (m)	Exit Temp. (K)	Stack Diam. (m)	Exit Velocity (m/s)	Profile Method ²
12	Hartford	Premcor Refining Group (prev. Clark Oil and Refining Corp.)	NEI52159	752,883	4,302,377	106.67	24.4	533.2	1.8	2.6	Tier 2
13	Hartford	Premcor Refining Group (prev. Clark Oil and Refining Corp.)	NEI52159	753,003	4,302,381	79	36.0	533.2	1.2	3.1	Tier 2
14	Hartford	Premcor Refining Group (prev. Clark Oil and Refining Corp.)	NEI52159	752,886	4,302,285	66.43	16.8	677.6	1.8	6.2	Tier 2
15	Hartford	Premcor Refining Group (prev. Clark Oil and Refining Corp.)	NEI52159	752,783	4,302,408	4.90219	35.4	570.4	1.5	7.8	Tier 2
16	Hartford	Premcor Refining Group (prev. Clark Oil and Refining Corp.)	NEI52159	753,003	4,302,381	171.36006	30.5	533.2	1.5	4.1	Tier 2
17	Hartford	Premcor Refining Group (prev. Clark Oil and Refining Corp.)	NEI52159	752,783	4,302,408	7.42	30.7	513.2	1.7	11.4	Tier 2
18	Sauget	BIG RIVER ZINC CORP	NEI53013	746,429	4,276,339	1.34	21.3	317.6	0.7	10.6	Tier 2
19	Sauget	BIG RIVER ZINC CORP	NEI53013	746,429	4,276,339	1377.28	25.9	422.0	0.9	41.3	Tier 2
20	Roxana	ConocoPhillips Co. (prev. Phillips 66 Co.)	NEI55835	755,000	4,302,599	15.38	106.7	472.0	4.6	11.4	Tier 2

Stack ID	City	Facility Name	NEI Site ID	UTM X (m) ¹	UTM Y (m) ¹	SO ₂ Emissions (tpy)	Stack Height (m)	Exit Temp. (K)	Stack Diam. (m)	Exit Velocity (m/s)	Profile Method ²
21	Roxana	ConocoPhillips Co. (prev. Phillips 66 Co.)	NEI55835	755,000	4,302,599	7.27	106.7	463.7	4.6	0.3	Tier 2
22	Roxana	ConocoPhillips Co. (prev. Phillips 66 Co.)	NEI55835	755,188	4,302,550	1.2	45.7	628.2	2.3	7.9	Tier 1
23	Roxana	ConocoPhillips Co. (prev. Phillips 66 Co.)	NEI55835	754,405	4,303,105	1.25	56.4	432.6	2.4	6.7	Tier 2
24	Roxana	ConocoPhillips Co. (prev. Phillips 66 Co.)	NEI55835	754,997	4,302,691	1.45	61.0	672.0	3.7	6.7	Tier 2
25	Roxana	ConocoPhillips Co. (prev. Phillips 66 Co.)	NEI55835	754,505	4,302,984	1.53	95.1	483.7	4.3	0.3	Tier 2
26	Roxana	ConocoPhillips Co. (prev. Phillips 66 Co.)	NEI55835	754,994	4,302,783	3.39	40.2	491.5	2.1	13.2	Tier 2
27	Roxana	ConocoPhillips Co. (prev. Phillips 66 Co.)	NEI55835	755,084	4,303,003	1.15	45.7	699.8	2.3	7.0	Tier 1
28	Roxana	ConocoPhillips Co. (prev. Phillips 66 Co.)	NEI55835	754,658	4,302,515	385.25	36.9	754.8	3.4	5.9	Tier 2
29	Roxana	ConocoPhillips Co. (prev. Phillips 66 Co.)	NEI55835	754,994	4,302,783	3.24	45.7	431.5	3.0	15.9	Tier 2
30	Roxana	ConocoPhillips Co. (prev. Phillips 66 Co.)	NEI55835	755,000	4,302,599	16.73	106.7	483.7	4.6	0.3	Tier 2
31	Roxana	ConocoPhillips Co. (prev. Phillips 66 Co.)	NEI55835	754,658	4,302,515	11677.82	10.1	293.7	0.1	0.1	Tier 2
32	Roxana	ConocoPhillips Co. (prev. Phillips 66 Co.)	NEI55835	755,231	4,302,561	212.41	45.7	699.8	2.4	8.8	Tier 2

Stack ID	City	Facility Name	NEI Site ID	UTM X (m) ¹	UTM Y (m) ¹	SO ₂ Emissions (tpy)	Stack Height (m)	Exit Temp. (K)	Stack Diam. (m)	Exit Velocity (m/s)	Profile Method ²
33	Roxana	ConocoPhillips Co. (prev. Phillips 66 Co.)	NEI55835	755,231	4,302,561	206.96	45.7	672.0	2.4	8.2	Tier 2
34	Roxana	ConocoPhillips Co. (prev. Phillips 66 Co.)	NEI55835	753,801	4,303,085	110.6	38.1	792.0	2.2	5.4	Tier 2
35	Roxana	ConocoPhillips Co. (prev. Phillips 66 Co.)	NEI55835	755,231	4,302,561	108.6	45.7	672.0	2.4	4.3	Tier 2
36	Granite City	NATIONAL STEEL CORP - GRANITE CITY DIV	NEI55848	747,795	4,286,723	61.88	30.5	616.5	2.1	17.9	Tier 2
37	Granite City	NATIONAL STEEL CORP - GRANITE CITY DIV	NEI55848	750,041	4,286,824	506.7	46.3	441.5	2.1	10.6	Tier 2
38	Granite City	NATIONAL STEEL CORP - GRANITE CITY DIV	NEI55848	749,778	4,286,692	228.47	24.5	372.0	1.5	6.2	Tier 2
39	Granite City	NATIONAL STEEL CORP - GRANITE CITY DIV	NEI55848	749,897	4,286,788	421.58883	68.6	460.9	4.3	4.5	Tier 2
40	Granite City	NATIONAL STEEL CORP - GRANITE CITY DIV	NEI55848	749,970	4,286,761	375.19	15.4	453.7	0.9	9.9	Tier 2
41	Granite City	NATIONAL STEEL CORP - GRANITE CITY DIV	NEI55848	750,041	4,286,824	351.93	46.3	441.5	2.1	1.2	Tier 2
42	Granite City	NATIONAL STEEL CORP - GRANITE CITY DIV	NEI55848	749,847	4,286,849	264.95442	61.0	460.9	3.4	3.1	Tier 2

Stack ID	City	Facility Name	NEI Site ID	UTM X (m) ¹	UTM Y (m) ¹	SO ₂ Emissions (tpy)	Stack Height (m)	Exit Temp. (K)	Stack Diam. (m)	Exit Velocity (m/s)	Profile Method ²
43	Granite City	NATIONAL STEEL CORP - GRANITE CITY DIV	NEI55848	750,280	4,286,925	923.52	43.5	538.7	2.0	9.2	Tier 2
44	Granite City	NATIONAL STEEL CORP - GRANITE CITY DIV	NEI55848	749,828	4,286,663	501.19	43.5	538.7	2.0	9.2	Tier 2
46	Granite City	NATIONAL STEEL CORP - GRANITE CITY DIV	NEI55848	747,842	4,286,755	85.86	30.5	616.5	2.1	17.9	Tier 2
47	Granite City	NATIONAL STEEL CORP - GRANITE CITY DIV	NEI55848	750,180	4,286,983	20.99	24.9	335.9	1.5	8.9	Tier 2
50	Granite City	NATIONAL STEEL CORP - GRANITE CITY DIV	NEI55848	748,053	4,287,055	8	19.2	323.7	2.1	13.1	Tier 2
51	Granite City	NATIONAL STEEL CORP - GRANITE CITY DIV	NEI55848	750,255	4,286,924	959.82	43.5	538.7	2.0	9.2	Tier 2

¹ UTM Zone 15 values in all cases. ² Three methods were possible to convert annual total emissions data from the NEI into hourly temporal profiles required for AERMOD, based on availability of data:

Tier 1: CAMD hourly concentrations to create relative temporal profiles.

Tier 2: EMS-HAP seasonal and diurnal temporal profiles for source categorization codes (SCCs).

Tier 3: Flat profiles

B-3.2 AERMOD Air Quality Evaluation Data

Table B-3-2. Measured ambient monitor SO_2 concentration distributions and the modeled monitor receptor and receptors within 4 km of the ambient monitors in Greene County for year 2002.

Ambient		Percentile Concentration (ppb)									
Monitor ID	Receptor(s) ¹	100	99	95	90	80	70	60	50	25	0
	AERMOD P2.5	29	6	2	1	0	0	0	0	0	0
	AERMOD P50	48	12	4	2	1	1	0	0	0	0
290770026	AERMOD P97.5	101	46	18	8	2	1	1	1	0	0
	Ambient Monitor	114	46	16	7	3	2	1	1	1	0
	AERMOD Monitor	48	22	11	6	2	1	1	1	0	0
	AERMOD P2.5	30	10	5	3	2	1	1	1	0	0
	AERMOD P50	41	12	6	4	3	2	2	2	1	0
290770032	AERMOD P97.5	62	14	8	6	5	4	3	3	2	0
	Ambient Monitor	28	8	6	5	4	4	3	3	2	0
	AERMOD Monitor	42	14	8	6	5	4	3	3	1	0
	AERMOD P2.5	35	5	2	1	0	0	0	0	0	0
	AERMOD P50	53	13	3	2	1	0	0	0	0	0
290770037	AERMOD P97.5	106	55	21	8	2	1	1	0	0	0
	Ambient Monitor	144	49	8	4	2	2	2	2	0	0
	AERMOD Monitor	115	42	5	3	1	1	1	0	0	0
	AERMOD P2.5	34	5	2	1	0	0	0	0	0	0
	AERMOD P50	53	13	3	2	1	0	0	0	0	0
290770040	AERMOD P97.5	106	55	21	8	2	1	1	0	0	0
	Ambient Monitor	203	18	6	3	2	1	1	0	0	0
	AERMOD Monitor	116	45	6	3	1	1	1	0	0	0
	AERMOD P2.5	31	5	2	1	0	0	0	0	0	0
	AERMOD P50	52	14	3	2	1	0	0	0	0	0
290770041	AERMOD P97.5	108	56	22	8	2	1	1	0	0	0
	Ambient Monitor	33	9	3	2	1	1	1	0	0	0
	AERMOD Monitor	73	23	4	2	1	1	1	0	0	0

Notes

3

1 2

¹ AERMOD concentrations are for the given percentile (p2.5 = 2.5th; p50 = 50th; p97.5 = 97.5th) of the modeled distribution of all modeled air quality receptors within 4 km of ambient monitor. *AERMOD monitor* is the concentration prediction at the ambient monitor location using AERMOD.

Table B-3-3. Measured ambient monitor SO_2 concentration diurnal profile and the modeled monitor receptor and receptors within 4 km of the ambient monitors in Greene County for year 2002.

	Hour	Ann	ual Average SO	2 Concentration	(ppb) at Given Re	eceptor
Monitor ID	of Day	AERMOD P2.5	AERMOD P50	AERMOD P97.5	Ambient Monitor	AERMOD Monitor
	1	0.2	0.4	1.6	2.7	1.2
	2	0.2	0.4	1.8	2.4	1.0
	3	0.2	0.4	2.0	2.5	0.9
	4	0.1	0.3	1.6	2.5	0.9
,	5	0.1	0.3	1.5	2.9	0.8
	6	0.1	0.3	1.7	2.9	0.9
	7	0.2	0.7	2.3	3.6	1.4
	8	0.5	1.5	4.2	4.2	2.8
	9	0.7	1.5	5.6	4.6	3.6
	10	0.8	1.6	5.6	5.3	3.4
	11	0.7	1.4	6.0	5.0	3.7
200770026	12	0.5	1.2	6.3	4.7	3.2
290770026	13	0.6	1.1	6.1	4.5	2.8
	14	0.6	1.0	6.0	4.1	2.6
	15	0.5	1.0	5.8	3.7	2.6
	16	0.6	1.0	5.1	3.8	2.5
	17	0.6	1.3	4.6	3.7	2.9
	18	0.5	1.2	3.7	2.9	2.9
,	19	0.3	0.9	2.3	2.6	2.4
	20	0.2	0.5	1.7	3.0	1.4
	21	0.2	0.5	1.7	2.8	1.4
	22	0.2	0.5	1.9	3.0	1.4
:	23	0.2	0.4	1.9	2.9	1.1
	24	0.2	0.4	1.9	2.9	1.1
290770032	1	1.5	2.3	3.2	2.8	3.0
	2	1.4	2.1	3.0	2.6	2.9
	3	1.4	2.2	3.4	2.5	2.8
	4	1.3	2.0	2.8	2.5	2.7
•	5	1.1	1.7	2.4	2.3	2.5
	6	1.1	1.8	2.5	2.2	2.4
	7	1.4	2.0	2.5	2.3	2.5
	8	1.9	2.2	2.7	2.7	2.9
	9	1.7	2.3	3.4	3.0	3.2
	10	1.5	2.3	3.9	3.3	3.6
	11	1.3	2.2	4.0	3.2	3.5
	12	1.2	2.2	4.1	3.2	3.6
	13	1.1	2.1	4.3	3.3	3.6
	14	1.1	2.0	4.1	3.2	3.6
·	15	1.0	2.0	4.0	3.2	3.5
	16	1.1	2.1	4.1	3.1	3.4
	17	1.4	2.4	3.6	3.2	3.5
	18	1.6	2.4	3.3	3.1	3.5
	19	1.8	2.4	3.2	3.1	3.4

	Hour	Ann	ual Average SO	2 Concentration	(ppb) at Given Ro	eceptor
	of	AERMOD	AERMOD	AERMOD	Ambient	AERMOD
Monitor ID	Day	P2.5	P50	P97.5	Monitor	Monitor
	20	1.7	2.5	3.2	3.1	3.4
	21	1.8	2.4	3.3	3.1	3.3
	22	1.7	2.6	3.6	3.1	3.4
	23	1.6	2.5	3.4	3.1	3.4
	24	1.4	2.4	3.2	2.9	3.1
	1	0.2	0.2	1.4	1.6	0.5
	2	0.2	0.2	1.5	1.5	0.5
	3	0.2	0.2	1.7	1.5	0.5
	4	0.1	0.2	1.5	1.9	0.4
	5	0.1	0.2	1.4	1.9	0.3
	6	0.1	0.2	1.6	1.8	0.3
	7	0.1	0.4	2.4	1.9	0.3
	8	0.4	1.0	4.5	2.3	1.0
	9	0.6	1.2	6.2	3.1	1.9
	10	8.0	1.5	6.4	3.8	3.7
	11	0.7	1.4	7.0	4.1	4.6
290770037	12	0.6	1.3	6.9	4.8	5.4
290770037	13	0.6	1.3	7.0	5.0	5.0
	14	0.6	1.2	7.2	5.2	4.6
	15	0.5	1.2	6.5	5.3	4.3
	16	0.5	1.2	5.7	4.9	3.1
	17	0.5	1.2	5.2	4.2	2.4
	18	0.4	1.0	4.2	3.0	1.9
	19	0.3	0.5	2.5	2.2	0.7
	20	0.2	0.3	1.4	2.2	0.5
	21	0.2	0.3	1.5	1.9	0.5
	22	0.2	0.3	1.7	1.8	0.6
	23	0.2	0.2	1.8	1.9	0.5
	24	0.2	0.2	1.6	2.1	0.5
290770040	1	0.2	0.2	1.4	1.0	0.5
	2	0.2	0.2	1.5	0.8	0.5
	3	0.2	0.2	1.7	1.0	0.5
	4	0.1	0.2	1.5	1.0	0.4
	5	0.1	0.2	1.4	1.0	0.3
	6	0.1	0.2	1.6	1.0	0.3
	7	0.1	0.4	2.4	1.0	0.3
	8	0.4	1.0	4.5	1.2	0.8
	9	0.6	1.2	6.2	1.6	1.8
	10	0.8	1.5	6.4	2.2	3.7
	11	0.7	1.4	7.0	2.4	4.8
	12	0.5	1.3	6.9	2.9	6.2
	13	0.6	1.3	7.0	2.4	5.9
	14	0.6	1.2	7.2	3.0	4.8
	15	0.5	1.2	6.5	2.8	4.6
	16	0.5	1.2	5.7	2.2	3.2
	17	0.5	1.1	5.2	1.8	2.6
	18	0.4	1.0	4.2	1.8	1.8

	Hour	Ann	ual Average SC	O ₂ Concentration	(ppb) at Given R	eceptor
	of	AERMOD	AERMOD	AERMOD	Ambient	AERMOD
Monitor ID	Day	P2.5	P50	P97.5	Monitor	Monitor
	19	0.3	0.5	2.5	1.2	0.8
	20	0.2	0.3	1.4	1.0	0.5
	21	0.2	0.3	1.5	1.0	0.5
	22	0.2	0.3	1.7	0.9	0.6
	23	0.2	0.2	1.8	0.9	0.5
	24	0.2	0.2	1.6	1.0	0.5
	1	0.2	0.3	1.5	0.6	0.6
	2	0.2	0.3	1.7	0.6	0.5
	3	0.2	0.3	1.9	0.6	0.6
	4	0.1	0.2	1.5	0.5	0.5
	5	0.1	0.2	1.4	0.4	0.4
	6	0.1	0.2	1.7	0.6	0.4
	7	0.1	0.6	2.4	0.6	0.6
	8	0.5	1.2	4.9	0.8	1.5
	9	0.6	1.4	6.2	1.1	1.7
	10	0.7	1.7	6.5	1.4	1.8
	11	0.6	1.5	7.2	1.5	2.4
290770041	12	0.4	1.4	7.0	1.5	2.1
290770041	13	0.5	1.4	7.4	1.6	2.4
	14	0.4	1.3	7.9	1.3	2.0
	15	0.4	1.2	6.6	1.1	2.1
	16	0.4	1.3	6.2	1.0	2.3
	17	0.4	1.2	5.4	0.9	2.1
	18	0.4	1.1	4.2	0.7	1.8
	19	0.3	0.5	2.6	0.6	0.8
	20	0.2	0.3	1.5	0.6	0.6
	21	0.2	0.3	1.6	0.7	0.6
	22	0.2	0.4	1.8	0.7	0.7
	23	0.2	0.3	1.9	0.6	0.6
	24	0.2	0.3	1.8	0.7	0.6

Table B-3-4. Measured ambient monitor SO_2 concentration distributions and the modeled monitor receptor and receptors within 4 km of the ambient monitors in St. Louis for year 2002.

Ambient				Pe	rcentil	e Conc	entrat	ion (pp	b)		
Monitor ID	Receptor(s) ¹	100	99	95	90	80	70	60	50	25	0
	AERMOD P2.5	60	20	11	7	4	3	2	2	1	0
	AERMOD P50	69	22	12	8	5	3	2	2	1	0
291890004	AERMOD P97.5	103	25	14	9	5	4	3	2	1	0
	Ambient Monitor	99	24	13	8	5	3	2	1	0	0
	AERMOD Monitor	67	22	11	7	4	3	2	2	1	0
	AERMOD P2.5	48	19	10	7	4	3	2	2	1	0
	AERMOD P50	55	20	11	7	5	3	2	2	1	0
291890006	AERMOD P97.5	94	20	12	8	5	4	3	2	1	0
	Ambient Monitor	85	18	9	6	3	2	1	1	0	0
	AERMOD Monitor	73	20	11	8	5	3	3	2	1	0
	AERMOD P2.5	58	24	13	9	5	4	3	2	1	0
	AERMOD P50	75	26	14	10	6	4	3	2	1	0
291893001	AERMOD P97.5	91	30	17	12	8	6	5	3	2	0
	Ambient Monitor	80	24	12	8	5	4	3	2	1	0
	AERMOD Monitor	71	25	14	10	6	4	3	2	1	0
	AERMOD P2.5	97	32	13	8	5	4	3	2	1	0
	AERMOD P50	168	38	14	9	6	4	3	2	1	0
291895001	AERMOD P97.5	545	51	15	10	6	4	3	2	1	0
	Ambient Monitor	158	23	12	8	5	4	3	2	1	0
	AERMOD Monitor	191	40	14	9	6	4	3	2	1	0
	AERMOD P2.5	67	25	11	7	4	3	2	2	1	0
	AERMOD P50	89	28	12	8	5	3	3	2	1	0
291897003	AERMOD P97.5	138	32	13	9	5	4	3	2	1	0
	Ambient Monitor	91	24	12	8	5	4	3	2	1	0
	AERMOD Monitor	99	27	12	8	5	4	3	2	1	0
	AERMOD P2.5	71	26	13	8	4	3	2	2	1	0
	AERMOD P50	93	31	18	11	7	5	4	3	1	0
295100007	AERMOD P97.5	137	43	23	16	10	8	6	5	2	0
	Ambient Monitor	64	25	14	10	6	5	3	2	1	0
	AERMOD Monitor	100	32	17	11	7	6	5	4	2	0
	AERMOD P2.5	71	29	15	11	7	5	4	3	1	0
	AERMOD P50	91	32	18	13	9	6	5	4	2	0
295100086	AERMOD P97.5	124	36	22	16	11	8	6	5	3	0
	Ambient Monitor	86	30	16	11	7	5	4	3	1	0
Notes	AERMOD Monitor	111	31	17	13	8	6	5	4	2	0

¹ AERMOD concentrations are for the given percentile (p2.5 = 2.5th; p50 = 50th; p97.5 = 97.5th) of the modeled distribution of all modeled air quality receptors within 4 km of ambient monitor. *AERMOD monitor* is the concentration prediction at the ambient monitor location using AERMOD.

Table B-3-5. Measured ambient monitor SO_2 concentration diurnal profile and the modeled monitor receptor and receptors within 4 km of the ambient monitors in St. Louis for year 2002.

	Hour	Annual Av	rerage SO ₂ Co	ncentration (p	pb) at Given	Receptor
Ambient	of	AERMOD	AERMOD	AERMOD	Ambient	AERMOD
Monitor ID	Day	P2.5	P50	P97.5	Monitor	Monitor
	1	2.0	2.6	3.2	2.4	2.2
	3	1.7	2.2	2.7	2.1	1.8
	-	1.5	1.9	2.3	1.8	1.7
	4 5	1.5	1.9	2.3	1.8	1.6 1.7
	6	1.4	1.8	2.1	1.8	
	7	1.4 1.8	1.8 2.2	2.6	2.0	1.8
	8	2.7	3.2	2.6 4.0	2.4 3.3	3.0
	9	4.0	4.5	4.8	4.1	4.2
	10	4.6	5.0	5.4	4.1	4.2
	11	4.8	5.0	5.3	4.6	4.7
	12	4.6	5.2	5.6	4.5	4.8
291890004	13	4.4	4.9	5.2	4.5	4.5
	14	4.4	4.9	5.0	4.1	4.3
	15	3.9	4.7	4.6	4.0	4.2
	16	3.7	4.3	4.4	3.6	3.7
	17	3.8	4.4	4.4	3.8	3.7
	18	3.5	4.4	4.7	3.8	3.5
	19	3.1	3.6	4.0	3.4	3.1
	20	3.0	3.5	3.7	2.9	3.1
	21	2.7	3.4	3.7	2.8	2.9
	22	2.4	2.9	3.3	2.9	2.6
	23	2.4	2.7	3.3	2.9	2.4
	24	2.1	2.6	3.0	2.5	2.4
291890006	1	2.4	2.6	2.9	1.6	2.6
20100000	2	2.1	2.3	2.6	1.6	2.5
	3	1.7	1.9	2.1	1.5	2.0
	4	1.8	2.0	2.3	1.2	2.1
	5	1.6	1.8	1.9	1.2	1.8
	6	1.5	1.6	1.7	1.2	1.5
	7	2.0	2.0	2.1	1.4	2.0
	8	2.5	2.7	2.7	1.9	2.5
	9	4.2	4.3	4.4	2.7	4.3
	10	4.4	4.6	4.8	3.4	4.7
	11	4.8	4.9	5.3	3.5	5.1
	12	4.3	4.5	4.8	3.8	4.6
	13	4.2	4.3	4.7	3.5	4.6
	14	4.1	4.2	4.6	2.9	4.6
	15	3.9	4.0	4.4	2.6	4.3
	16	3.7	3.8	4.2	2.9	4.2
	17	3.8	4.0	4.6	2.7	4.3
	18	3.4	3.7	4.5	2.6	4.1
	19	3.0	3.3	3.8	2.4	3.4

			1			
	20	2.9	3.1	3.4	2.4	3.0
	21	2.8	3.0	3.4	2.0	3.1
	22	2.5	2.7	3.0	2.0	2.8
	23	2.3	2.8	3.2	1.9	2.8
	24	2.2	2.4	2.8	1.8	2.7
	1	3.0	3.6	4.2	2.2	3.5
	2	2.8	3.2	3.9	2.2	3.2
	3	2.3	2.7	3.3	2.0	2.7
	4	2.5	2.8	3.4	1.7	2.8
	5	2.1	2.5	2.8	1.8	2.5
	6	2.2	2.6	3.1	2.3	2.7
	7	2.6	3.0	3.7	2.8	3.1
	8	3.2	3.7	4.6	3.7	3.6
	9	4.5	5.1	6.5	4.5	5.0
	10	5.2	5.6	7.8	4.9	5.7
	11	5.3	5.8	8.1	4.8	5.8
204002004	12	5.3	5.8	8.2	4.7	5.8
291893001	13	5.0	5.4	7.7	4.4	5.3
	14	4.6	5.1	7.8	4.5	5.0
	15	4.5	4.8	7.3	4.1	4.8
	16	4.3	4.7	7.1	3.8	4.7
	17	4.5	4.8	6.4	3.8	4.7
	18	4.3	4.8	6.0	4.1	4.8
	19	3.9	4.3	5.3	3.7	4.2
	20	3.6	3.9	4.7	3.5	3.9
	21	3.6	4.0	4.6	3.4	4.0
	22	3.3	3.8	4.7	3.2	3.7
	23	3.2	3.8	4.5	3.0	3.9
	24	3.0	3.7	4.4	2.7	3.6
291895001	1	3.2	3.7	4.9	3.1	3.8
	2	3.1	3.7	5.1	2.9	3.5
	3	2.8	3.2	3.8	2.7	3.2
	4	2.8	3.3	4.3	2.7	3.2
	5	2.4	3.0	3.9	2.7	3.3
	6	2.5	3.6	4.9	2.8	3.8
	7	2.6	3.2	3.9	3.2	3.0
	8	3.2	4.3	5.3	4.0	4.7
	9	4.5	5.5	6.1	4.6	5.4
	10	5.3	6.0	6.6	4.7	6.0
	11	5.5	5.9	6.1	5.2	6.0
	12	5.6	5.7	6.0	5.1	6.0
	13	4.6	5.3	5.7	4.6	5.3
	14	4.6	5.1	5.7	4.0	5.2
	15	4.4	4.8	5.0	4.1	4.9
	16	4.4	4.6	4.9	3.9	4.9
	17	4.1	4.5	4.9	4.1	4.0
	18		4.5	5.3		4.7
	19	4.5		5.3	3.9 3.7	
	} 	3.2	4.2			3.7
	20	3.3	4.1	5.5	3.2	4.0
	21	3.1	4.3	5.6	3.5	3.9

	1					T
	22	3.5	4.4	5.6	3.3	4.7
	23	3.7	4.4	6.3	3.2	5.6
	24	3.8	4.3	5.1	2.9	4.3
	1	2.3	2.8	3.3	2.6	2.7
	2	2.6	3.0	3.2	2.4	3.2
	3	2.1	2.6	2.9	2.5	2.7
	4	2.2	2.5	3.0	2.4	2.4
	5	1.7	2.2	2.7	2.3	2.2
	6	2.1	2.5	3.2	2.5	2.5
	7	1.8	2.1	2.6	3.2	2.1
	8	2.9	3.4	3.9	4.1	3.2
	9	4.1	4.4	5.0	4.7	4.5
	10	4.9	5.3	5.8	4.8	5.4
	11	4.8	5.2	5.6	5.1	5.4
204007002	12	4.5	5.0	5.6	4.7	5.1
291897003	13	4.3	4.7	5.1	4.5	4.9
	14	4.0	4.4	4.8	4.4	4.6
	15	3.9	4.4	4.7	4.2	4.6
	16	3.6	4.1	4.4	3.8	4.3
	17	3.7	4.3	4.6	3.7	4.5
	18	3.2	4.2	4.7	3.9	4.4
	19	3.1	3.8	4.5	3.6	3.8
	20	2.8	3.2	4.0	3.5	3.2
	21	2.8	3.4	3.9	3.3	3.2
	22	3.4	3.7	4.0	3.1	3.9
	23	2.7	3.3	4.2	3.1	3.6
	24	3.0	3.4	3.8	2.9	3.6
295100007	1	2.2	3.7	5.8	3.4	4.0
200100007	2	2.1	3.4	5.6	3.2	3.5
	3	1.6	3.4	5.3	3.2	3.3
	4	1.7	3.1	5.2	3.0	3.3
	5			5.2		
	6	1.4	3.0		2.9	3.1
	-	1.6	3.1	5.2	3.1	3.2
	7	2.9	4.5	7.6	3.7	4.6
	8	3.6	5.2	7.8	4.1	5.2
	9	5.0	6.6	8.4	5.2	6.6
	10	5.1	6.8	8.2	5.7	7.0
	11	5.1	7.1	8.5	5.5	7.5
	12	4.9	7.0	8.2	4.9	7.2
	13	4.6	6.9	8.1	4.7	7.1
	14	4.5	6.8	8.1	4.6	7.1
	15	4.0	6.3	7.6	4.4	6.6
	16	4.0	6.2	7.8	4.2	6.6
	17	4.4	6.2	8.2	4.2	6.6
	18	4.2	6.0	8.7	3.9	6.3
	19	3.6	5.7	10.0	3.8	6.5
	20	3.5	5.1	7.4	4.2	5.2
	21	3.2	4.8	7.1	4.1	4.9
	22	2.7	4.4	6.6	4.0	4.5
	23	2.6	4.0	5.9	4.1	4.0

	24	2.3	3.9	5.8	3.7	3.9
	1	3.8	4.9	6.5	4.3	4.8
	2	3.3	4.7	6.7	4.2	4.4
	3	3.1	4.3	5.5	3.7	4.1
	4	3.0	4.0	5.6	3.9	4.0
	5	3.0	3.8	5.8	3.9	3.6
	6	2.3	3.9	5.9	4.3	4.0
	7	3.7	4.4	7.0	4.4	4.3
	8	4.2	5.5	7.0	5.4	5.3
	9	5.8	7.0	8.0	6.3	6.9
	10	6.7	8.1	8.4	6.0	8.1
	11	6.6	8.0	8.4	6.0	8.0
295100086	12	6.5	7.8	8.3	5.4	7.8
293100000	13	6.2	7.7	8.1	5.1	7.6
	14	6.1	7.5	7.9	4.9	7.4
	15	5.7	7.1	7.4	4.6	7.1
	16	5.6	7.2	7.5	4.7	7.2
	17	5.3	7.2	7.9	4.9	6.9
	18	5.2	7.2	8.5	4.4	7.0
	19	5.0	6.5	9.2	4.6	6.2
	20	4.7	6.2	8.0	4.7	6.0
	21	4.6	6.3	7.7	4.9	6.1
	22	4.3	5.6	7.9	4.8	5.1
	23	4.1	5.4	7.3	4.3	5.1
	24	3.8	5.1	6.9	4.2	4.8

B-4 SUPPLEMENTAL APEX EXPOSURE MODELING DATA

B-4.1 APEX Input Data Distributions for SO₂ deposition

In recognizing the relationship between SO₂ deposition rate and various surface types within indoor microenvironments and that the presence of these surfaces would vary in proportions dependent on the microenvironment, staff estimated the APEX input SO₂ deposition rate distributions using a Monte Carlo sampling approach. First, 1,000 different hypothetical indoor microenvironments were simulated, each with a different ratio of wall area to floor area and furniture area to floor area. Based on these ratios, surface area to volume ratios were estimated in each sample indoor microenvironment. Then, surface area to volume ratios were used to convert the deposition velocities to deposition rates in hr⁻¹ by dividing the velocities by the surface area to volume ratio and then making an appropriate unit conversion. And finally, the deposition rate for each surface type was combined using a weighted average to estimate an effective deposition rate, as follows:

$$D_{eff} = \frac{D_{floor} + D_{ceiling} * \frac{A_{ceiling}}{A_{floor}} + D_{furniture} * \frac{A_{furniture}}{A_{floor}}}{1 + \frac{A_{ceiling}}{A_{floor}} + \frac{A_{furniture}}{A_{floor}}}$$
equation (B-6)

where D denotes deposition rate, A denotes area of the indoor microenvironment, and D_{eff} is the effective deposition rate. If more than one surface type is present in the sample indoor microenvironment (e.g. both carpet and non-carpeted floors), these values were first averaged using the fraction of the room that contains each. Details regarding the data used for estimating the SO_2 deposition rate within simulated indoor microenvironments are provided in the following sections.

B-4.1.1 Surface deposition data and surface type mapping

Staff obtained SO₂ deposition velocities from a literature review conducted by Grøntoft and Raychaudhuri (2004). These authors categorized the data by several relative humidities and considering several different surface types. Staff mapped the

surface classes reported in Grøntoft and Raychaudhuri (2004) to surface types typically found within indoor microenvironments (Table B-4-1).

Table B-4-1. Classification of SO₂ deposition data for several microenvironmental surfaces.

			Dep	osition in c	m/s ¹
Surface Category	Surface Type	Surface Class ¹	50% Relative Humidity	70% Relative Humidity	90% Relative Humidity
Carpet		Average of the wool and synthetic carpet values	0.0625	0.075	0.117
FIOOI	Floor	Synthetic Floor Covering – medium worn	0.007	0.015	0.032
Ceiling	Ceiling Tile	Coarse composite panels	0.14	0.15	0.18
Ociling	Ceiling Wallboard	Treated gypsum wallboard	0.048	0.16	0.27
	Wallpaper	Wall paper	0.036	0.043	0.068
Wall	Wall Wallboard	Treated gypsum wallboard	0.048	0.16	0.27
	Wood paneling	Surface treated wood work and wall boards	0.014	0.047	0.078
Furniture	Furniture	Cloth	0.019	0.023	0.036

Notes:

B-4.1.2 Indoor Microenvironment Configurations

Because the configuration of rooms within a building will affect the wall area to floor area ratio, staff first estimated the areas of several indoor microenvironments. Staff had to make several assumptions due to the limited availability of data. The first broad assumption was that a single room within the indoor microenvironment could represent all potential rooms within the particular building type. Secondly, staff assumed all rooms were square to calculate the area distributions. Additional assumptions specific to the type of indoor microenvironment are provided below, along with the estimated indoor microenvironment area distributions.

¹ Obtained from Table 6 of Grøntoft and Raychaudhuri (2004).

Residential area distributions

In residences, the American Housing Survey (AHS, 2008) provides a matrix that gives the number of survey homes within a given total square footage and a given number of rooms category. Staff converted the data to probabilities using the total number of homes in each category (Table B-4-2). In calculating the room area using these distributions, a series of two independent random numbers were used to select a square footage category and then to find the number of rooms within that square footage category, accounting for the inherent correlation of the number of rooms in a given building with the total square footage. Staff derived a representative room area by dividing the square footage by the number of rooms.

Table B-4-2. Distributions used to calculate a representative room size in an indoor residential microenvironment.

				Square	Footage		
		250	750	1250	1750	2250	2750
	Cumulative probability for each square footage class	0.01	0.10	0.35	0.60	0.77	1.00
Cumulative	Rooms						
probability for number	1	0.07	0.00	0.00	0.00	0.00	0.00
of rooms	2	0.13	0.00	0.00	0.00	0.00	0.00
within each	3	0.40	0.07	0.01	0.00	0.00	0.00
square	4	0.64	0.47	0.13	0.04	0.02	0.01
footage class	5	0.81	0.80	0.54	0.28	0.15	0.08
	6	0.90	0.94	0.86	0.65	0.41	0.23
	7	0.97	0.98	0.96	0.90	0.71	0.46
	8	0.99	0.99	0.99	0.98	0.92	0.71
	9	0.99	1.00	1.00	0.99	0.98	0.87
	10	1.00			1.00	1.00	1.00

Non-residential area distributions

An office can contain many different rooms, each with either one or two occupants (usually a smaller office) or a collection of cubicles (usually a larger office).

Staff used the Building Assessment Survey and Evaluation study (BASE; US EPA, 2008a) to generate representative office areas for simulated buildings. The BASE data provided the mean, standard deviation, minimum, and maximum of the total square footage and the number of people per square meter of occupied space (Table B-4-3). Based on this, staff represented the data as a normal distribution and set the lower and upper limits using the minimum and maximum observations. BASE (US EPA, 2008a) also provides the average number of occupants in private or semi-private work areas (40%) compared to shared space (60%). Staff assumed that the private and semi-private offices have an average of two people in each and the shared spaces have an average of six people in each. In calculating the area, two independent random numbers were used to select the total floor area and the number of occupants in that floor area. The total square footage of the office was then divided by the number of rooms to obtain the representative office area.

For schools, the distribution of the total building square footage is available from the Commercial Building Energy Consumption Survey (CBECS; US DOE, 2003); however, information on the number of rooms in each square footage class is not available. As an alternate data source, information was available on the range of the square footage of a typical school classroom (600 to 1,400 square feet) to generate a uniform distribution bounded by these extremes (NCBG, 2008; US Army Corps of Engineers, 2002). For restaurants and other buildings, staff assumed that the entire building was one room; therefore, the CBECS (US DOE, 2003) provided data for this building category to estimate square footage distributions (Table B-4-3).

Table B-4-3. Distributions used to calculate representative room size for non-residential microenvironments.

Microenvironment	Parameter 1 ^a	Parameter 2 ^b	Parameter 3 ^c	Parameter 4 ^d	Distribution Type
Office, Building size (ft²)	16,632	8,035	4,612	69,530	Normal
Office, number of people per m ² .	4.0	1.5	1.5	8.5	Normal

¹ http://www.epa.gov/iaq/base/pdfs/test_space_characteristics/tc-0.pdf

² http://www.epa.gov/iaq/base/pdfs/test_space_characteristics/tc-1.pdf

School (ft²)	600	1,400	N/A	N/A	Uniform
Restaurant (ft ²)	5,340	31	668	42,699	Lognormal
Other Buildings (ft ²)	3,750	24	750	18,796	Lognormal

Additional specifications

Two additional specifications were required to calculate the room volumes and surface areas: the ceiling heights and surface area of furniture within the rooms. Table B-4-4 provides the data values and sources used to estimate each of these variables.

Table B-4-4. Ceiling heights and furniture surface area to floor ratios for simulated indoor microenvironments.

Indoor Microenvironment	Ceiling Height ^a	Furniture Surface Area to Floor Ratio
Residence	8 ft	2 ^b
Office	10 ft	4 ^c
School	10 ft	4 ^c
Restaurant	10 ft	4 ^c
Other Buildings	10 ft	4 ^c

Notes:

B-4.1.3 Surface type probabilities

Following the calculation of the basic dimensions of the simulated room, staff performed additional probabilistic sampling to specify the surface types present. In some microenvironments, it is possible that only a single surface type be present (e.g., a public access building likely contains only hard floors and no carpet). However, in other cases, a typical building may have multiple surface types (e.g., a residence may have a mixture

^a Mean for normal, geometric mean for lognormal, lower limit for uniform distribution.

^b Standard deviation for normal, geometric standard deviation for lognormal, upper limit for uniform.

^c Minimum value for normal and lognormal.

^d Maximum value for normal and lognormal.

^a Assumed by staff.

^b Thatcher et al. (2002) and Singer et al. (2002).

^c The surface area to volume ratio was assumed higher in the commercial microenvironments than in residences. A value of 4 was selected since it kept the range of total surface area to volume ratio within a typical range of 2 to 4 (Lawrence Berkeley National Laboratory., 2003).

of both hard floor and carpet). Thus, in each microenvironment, staff estimated a probability of occurrence for each surface type. If more than one surface type is possible at the same time, then staff also approximated the fraction of each. Table B-4-5 summarizes both the probabilities and fractions assumed by staff for each microenvironment.

B-4.1.4 Final SO₂ deposition distributions

Following the estimation of the room dimensions and surface types within each simulated indoor microenvironment, an effective deposition rate was estimated for all 1,000 sample buildings. The geometric mean and geometric standard deviation were calculated across all 1,000 samples and used to parameterize a lognormal distribution (Table B-4-6). In applying these to the relative humidity conditions in the study areas, staff assumed that the relative humidity is below 50% when the air conditioning or heating unit is on. If the building has no air conditioner, the ambient summer humidity was used (90 % in the morning, 50% in the afternoon). Staff also assumed that all non-residential buildings had air-conditioning.

As far as mapping to the APEX microenvironments, residences, offices, and restaurants are explicitly modeled microenvironments. The daycare microenvironment used the school deposition distribution, while other indoor microenvironments (i.e., shopping or other) used the other building deposition distribution.

Table B-4-5. Probability of occurrence and fractional quantity for surface types in indoor micronenvironments.

Indoor	Fle	oor	Ceil	ling		Wall	
Microenvironment	Carpet	Hard floor	Wallboard	Ceiling Tile	Wallboard	Wallpaper	Wood Paneling
	P = 1	P = 1			P = 1	P = 0.225	
Residence	F = N{0.52, 0.23} ^a	F = 1 - fraction carpeted ^a	P = 1 ^c	P = 0 ^c	F= 5/6 if wallpaper is present ^c	F= 1/6 if wallpaper is present ^d	P = 0 ^c
	P = 1	P = 0.34			P = 1	P = 0.11	P = 0.13
Office	F = 5/6 if hard floor present ^c	= 5/6 if hard $P = 0^{\circ}$ $P = 0^{\circ}$		P = 1 ^c	F is adjusted if wallpaper and/or wood paneling is present ^c	F= 1/6 if wallpaper is present ^b	F = 1/6 if wood paneling is present ^b
School	$P = 0^{c}$	P = 1 ^c	$P = 0^{c}$	P = 1 ^c	P = 1 ^c	$P = 0^{c}$	$P = 0^{c}$
					P = 1	P = 0.09	P = 0.25
Restaurant	P = 0.1 ^d P = 0.9	P = 0.9 ^d	$P = 0.9^{d}$ $P = 0.55^{d}$		F is adjusted if wallpaper and/or wood paneling is present ^c	F = 1/2 if wallpaper is present ^d	F = 1/10 If wood paneling is present ^d
					P = 1	P = 0.09	P = 0.045
Other Buildings	P = 0.1 ^d	P = 0.9 ^d	P = 0.19 ^d	P = 0.81 ^d	F is adjusted if wallpaper and/or wood paneling is present ^c	F = 1/2 if wallpaper is present ^d	F=1/10 if wood paneling is present ^d

^a US EPA, 2008b.

^b BASE study, Table 4 (US EPA, 2008a); the fraction of 1/6 is based on professional judgment.

^c Assumed by staff.

d Source Ranking Database (SRD, US EPA, 2004b). The fraction of buildings value in the database was used to specify a probability each surface type occurs in the microenvironment. SRD names were matched to the APEX environments. Most categories in the SRD have the same fraction of building values. To map to the necessary surface types: Carpet – Networx represented carpet; Ceiling tile represented ceiling tile; vinyl coated wallpaper represented wallpaper; and Hardwood plywood paneling represented wood paneling. Fractions were assumed by staff. Then, probabilities in the remaining surface types were calculated assuming either only one type could be present or multiple types could be present.

Table B-4-6. Final parameter estimates of SO_2 deposition distributions in several indoor microenvironments modeled in APEX.

	Heatin	g or Air Co	nditioning	in Use	(Sumr	Air Conditioning Not in Use (Summertime Ambient Morning Relative Humidity of 90%)			
Microenv- ironment	Geom. Mean (hr ⁻¹)	Geom. Stand. Dev. (hr ⁻¹)	Lower Limit (hr ⁻¹)	Upper Limit (hr ⁻¹)	Geom. Mean (hr ⁻¹)	Geom . Stand. Dev. (hr ⁻¹)	Lower Limit (hr ⁻¹)	Upper Limit (hr ⁻¹)	
Residence	3.14	1.11	2.20	5.34	13.41	1.11	10.31	26.96	
Office	3.99	1.04	3.63	4.37	N/A	N/A	N/A	N/A	
School	4.02	1.02	3.90	4.21	N/A	N/A	N/A	N/A	
Restaurant	2.36	1.28	1.64	4.17	N/A	N/A	N/A	N/A	
Other Buildings	2.82	1.21	1.71	4.12	N/A	N/A	N/A	N/A	

N/A not applicable, assumed by staff to always have A/C in operation.

B-4.2 APEX Exposure Output

Table B.4-7. APEX estimated exposures in Greene county (AS IS).

Evmogumo	Person	#		Donylatic n
Exposure level	days	# persons	Group	Populatio n Fraction
0	3218000	21262	DMTS,ASTHMA,MOD	0.97
50	309	193	DMTS,ASTHMA,MOD	0.97
100	18	13	DMTS,ASTHMA,MOD	0.00
150	0	0	DMTS,ASTHMA,MOD	0.00
200	0	0	DMTS,ASTHMA,MOD DMTS,ASTHMA,MOD	0.00
250	0	0	DMTS,ASTHMA,MOD DMTS,ASTHMA,MOD	0.00
300	0	0		0.00
350	0	0	DMTS,ASTHMA,MOD	0.00
400	0	0	DMTS,ASTHMA,MOD	0.00
450	0	0	DMTS,ASTHMA,MOD	0.00
500	0	0	DMTS,ASTHMA,MOD	0.00
550	0	0	DMTS,ASTHMA,MOD	
600	0	0	DMTS,ASTHMA,MOD	0.00
650	0	0	DMTS,ASTHMA,MOD DMTS,ASTHMA,MOD	0.00
700	0	0		0.00
750	0	0	DMTS,ASTHMA,MOD DMTS,ASTHMA,MOD	
800	0	0	DMTS,ASTHMA,MOD DMTS,ASTHMA,MOD	0.00
0	1821000	7280	DMTS,ASTHMA,MOD DMTS,ASTHMACHILD,MOD	1.00
50	193	108	DMTS,ASTHMACHILD,MOD	0.01
100	9	4	DMTS,ASTHMACHILD,MOD	0.00
150	0	0	DMTS,ASTHMACHILD,MOD	0.00
200	0	0	DMTS,ASTHMACHILD,MOD	0.00
250	0	0	DMTS,ASTHMACHILD,MOD	0.00
300	0	0	DMTS,ASTHMACHILD,MOD	0.00
350	0	0	DMTS,ASTHMACHILD,MOD	0.00
400	0	0	DMTS,ASTHMACHILD,MOD	0.00
450	0	0	DMTS,ASTHMACHILD,MOD	0.00
500	0	0	DMTS,ASTHMACHILD,MOD	0.00
550	0	0	DMTS,ASTHMACHILD,MOD	0.00
600	0	0	DMTS,ASTHMACHILD,MOD	0.00
650	0	0	DMTS,ASTHMACHILD,MOD	0.00
700	0	0	DMTS,ASTHMACHILD,MOD	0.00
750	0	0	DMTS,ASTHMACHILD,MOD	0.00
800	0	0		
800	U	L U	DMTS,ASTHMACHILD,MOD	0.00

Table B.4-8. APEX estimated exposures in Greene county (Current Standard).

Exposure	Person	#	G	Populatio n
level	days	persons	Group	Fraction
0	3218000	21262	DMTS,ASTHMA,MOD	0.97
50	9598	4322	DMTS,ASTHMA,MOD	0.20
100	1659	982	DMTS,ASTHMA,MOD	0.04
150	511	323	DMTS,ASTHMA,MOD	0.01
200	197	139	DMTS,ASTHMA,MOD	0.01
250	90	67	DMTS,ASTHMA,MOD	0.00
300	22	18	DMTS,ASTHMA,MOD	0.00
350	18	13	DMTS,ASTHMA,MOD	0.00
400	13	13	DMTS,ASTHMA,MOD	0.00
450	4	4	DMTS,ASTHMA,MOD	0.00
500	0	0	DMTS,ASTHMA,MOD	0.00
550	0	0	DMTS,ASTHMA,MOD	0.00
600	0	0	DMTS,ASTHMA,MOD	0.00
650	0	0	DMTS,ASTHMA,MOD	0.00
700	0	0	DMTS,ASTHMA,MOD	0.00
750	0	0	DMTS,ASTHMA,MOD	0.00
800	0	0	DMTS,ASTHMA,MOD	0.00
0	1821000	7280	DMTS,ASTHMACHILD,MOD	1.00
50	6393	2609	DMTS,ASTHMACHILD,MOD	0.36
100	1036	569	DMTS,ASTHMACHILD,MOD	0.08
150	323	188	DMTS,ASTHMACHILD,MOD	0.03
200	112	72	DMTS,ASTHMACHILD,MOD	0.01
250	49	40	DMTS,ASTHMACHILD,MOD	0.01
300	13	9	DMTS,ASTHMACHILD,MOD	0.00
350	9	4	DMTS,ASTHMACHILD,MOD	0.00
400	4	4	DMTS,ASTHMACHILD,MOD	0.00
450	4	4	DMTS,ASTHMACHILD,MOD	0.00
500	0	0	DMTS,ASTHMACHILD,MOD	0.00
550	0	0	DMTS,ASTHMACHILD,MOD	0.00
600	0	0	DMTS,ASTHMACHILD,MOD	0.00
650	0	0	DMTS,ASTHMACHILD,MOD	0.00
700	0	0	DMTS,ASTHMACHILD,MOD	0.00
750	0	0	DMTS,ASTHMACHILD,MOD	0.00
800	0	0	DMTS,ASTHMACHILD,MOD	0.00
000	U	U	אוויסטייים ווויזערווועט,ויויט אווייט	0.00

Table B.4-9. APEX estimated exposures in Greene County (99th %ile 50 ppb).

Exposure	Person	#		Populatio n
level	days	persons	Group	Fraction
0	3218000	21262	DMTS,ASTHMA,MOD	0.97
50	18	13	DMTS,ASTHMA,MOD	0.00
100	0	0	DMTS,ASTHMA,MOD	0.00
150	0	0	DMTS,ASTHMA,MOD	0.00
200	0	0	DMTS,ASTHMA,MOD	0.00
250	0	0	DMTS,ASTHMA,MOD	0.00
300	0	0	DMTS,ASTHMA,MOD	0.00
350	0	0	DMTS,ASTHMA,MOD	0.00
400	0	0	DMTS,ASTHMA,MOD	0.00
450	0	0	DMTS,ASTHMA,MOD	0.00
500	0	0	DMTS,ASTHMA,MOD	0.00
550	0	0	DMTS,ASTHMA,MOD	0.00
600	0	0	DMTS,ASTHMA,MOD	0.00
650	0	0	DMTS,ASTHMA,MOD	0.00
700	0	0	DMTS,ASTHMA,MOD	0.00
750	0	0	DMTS,ASTHMA,MOD	0.00
800	0	0	DMTS,ASTHMA,MOD	0.00
0	1821000	7280	DMTS,ASTHMACHILD,MOD	1.00
50	9	4	DMTS,ASTHMACHILD,MOD	0.00
100	0	0	DMTS,ASTHMACHILD,MOD	0.00
150	0	0	DMTS,ASTHMACHILD,MOD	0.00
200	0	0	DMTS,ASTHMACHILD,MOD	0.00
250	0	0	DMTS,ASTHMACHILD,MOD	0.00
300	0	0	DMTS,ASTHMACHILD,MOD	0.00
350	0	0	DMTS,ASTHMACHILD,MOD	0.00
400	0	0	DMTS,ASTHMACHILD,MOD	0.00
450	0	0	DMTS,ASTHMACHILD,MOD	0.00
500	0	0	DMTS,ASTHMACHILD,MOD	0.00
550	0	0	DMTS,ASTHMACHILD,MOD	0.00
600	0	0	DMTS,ASTHMACHILD,MOD	0.00
650	0	0	DMTS,ASTHMACHILD,MOD	0.00
700	0	0	DMTS,ASTHMACHILD,MOD	0.00
750	0	0	DMTS,ASTHMACHILD,MOD	0.00
800	0	0	DMTS,ASTHMACHILD,MOD	0.00

Table B.4-10. APEX estimated exposures in Greene County (99th %ille 100 ppb).

Table D.	T -10. AI	_/\ 00tiiii	ated exposures in Oreene	County (33
Exposure	Person	#		Populatio n
level	days	persons	Group	Fraction
0	3218000	21262	DMTS,ASTHMA,MOD	0.97
50	359	229	DMTS,ASTHMA,MOD	0.01
100	18	13	DMTS,ASTHMA,MOD	0.00
150	0	0	DMTS,ASTHMA,MOD	0.00
200	0	0	DMTS,ASTHMA,MOD	0.00
250	0	0	DMTS,ASTHMA,MOD	0.00
300	0	0	DMTS,ASTHMA,MOD	0.00
350	0	0	DMTS,ASTHMA,MOD	0.00
400	0	0	DMTS,ASTHMA,MOD	0.00
450	0	0	DMTS,ASTHMA,MOD	0.00
500	0	0	DMTS,ASTHMA,MOD	0.00
550	0	0	DMTS,ASTHMA,MOD	0.00
600	0	0	DMTS,ASTHMA,MOD	0.00
650	0	0	DMTS,ASTHMA,MOD	0.00
700	0	0	DMTS,ASTHMA,MOD	0.00
750	0	0	DMTS,ASTHMA,MOD	0.00
800	0	0	DMTS,ASTHMA,MOD	0.00
0	1821000	7280	DMTS,ASTHMACHILD,MOD	1.00
50	229	139	DMTS,ASTHMACHILD,MOD	0.02
100	9	4	DMTS,ASTHMACHILD,MOD	0.00
150	0	0	DMTS,ASTHMACHILD,MOD	0.00
200	0	0	DMTS,ASTHMACHILD,MOD	0.00
250	0	0	DMTS,ASTHMACHILD,MOD	0.00
300	0	0	DMTS,ASTHMACHILD,MOD	0.00
350	0	0	DMTS,ASTHMACHILD,MOD	0.00
400	0	0	DMTS,ASTHMACHILD,MOD	0.00
450	0	0	DMTS,ASTHMACHILD,MOD	0.00
500	0	0	DMTS,ASTHMACHILD,MOD	0.00
550	0	0	DMTS,ASTHMACHILD,MOD	0.00
600	0	0	DMTS,ASTHMACHILD,MOD	0.00
650	0	0	DMTS,ASTHMACHILD,MOD	0.00
700	0	0	DMTS,ASTHMACHILD,MOD	0.00
750	0	0	DMTS,ASTHMACHILD,MOD	0.00
800	0	0	DMTS,ASTHMACHILD,MOD	0.00

Table B.4-11. APEX estimated exposures in Greene County (99th %ille 150 ppb).

Table B.4-11. APEX estimated exposures in Greene County (98				
Exposure	Person	#		Populatio n
level	days	persons	Group	Fraction
0	3218000	21262	DMTS,ASTHMA,MOD	0.97
50	1327	811	DMTS,ASTHMA,MOD	0.04
100	139	103	DMTS,ASTHMA,MOD	0.00
150	18	13	DMTS,ASTHMA,MOD	0.00
200	9	9	DMTS,ASTHMA,MOD	0.00
250	0	0	DMTS,ASTHMA,MOD	0.00
300	0	0	DMTS,ASTHMA,MOD	0.00
350	0	0	DMTS,ASTHMA,MOD	0.00
400	0	0	DMTS,ASTHMA,MOD	0.00
450	0	0	DMTS,ASTHMA,MOD	0.00
500	0	0	DMTS,ASTHMA,MOD	0.00
550	0	0	DMTS,ASTHMA,MOD	0.00
600	0	0	DMTS,ASTHMA,MOD	0.00
650	0	0	DMTS,ASTHMA,MOD	0.00
700	0	0	DMTS,ASTHMA,MOD	0.00
750	0	0	DMTS,ASTHMA,MOD	0.00
800	0	0	DMTS,ASTHMA,MOD	0.00
0	1821000	7280	DMTS,ASTHMACHILD,MOD	1.00
50	798	466	DMTS,ASTHMACHILD,MOD	0.06
100	67	49	DMTS,ASTHMACHILD,MOD	0.01
150	9	4	DMTS,ASTHMACHILD,MOD	0.00
200	4	4	DMTS,ASTHMACHILD,MOD	0.00
250	0	0	DMTS,ASTHMACHILD,MOD	0.00
300	0	0	DMTS,ASTHMACHILD,MOD	0.00
350	0	0	DMTS,ASTHMACHILD,MOD	0.00
400	0	0	DMTS,ASTHMACHILD,MOD	0.00
450	0	0	DMTS,ASTHMACHILD,MOD	0.00
500	0	0	DMTS,ASTHMACHILD,MOD	0.00
550	0	0	DMTS,ASTHMACHILD,MOD	0.00
600	0	0	DMTS,ASTHMACHILD,MOD	0.00
650	0	0	DMTS,ASTHMACHILD,MOD	0.00
700	0	0	DMTS,ASTHMACHILD,MOD	0.00
750	0	0	DMTS,ASTHMACHILD,MOD	0.00
800	0	0	DMTS,ASTHMACHILD,MOD	0.00

Table B.4-12. APEX estimated exposures in Greene County (99th %ille 200 ppb).

Table B.4-12. AFEX estimated exposures in Greene County (99)				
Exposure	Person	#		Populatio n
level	days	persons	Group	Fraction
0	3218000	21262	DMTS,ASTHMA,MOD	0.97
50	2779	1600	DMTS,ASTHMA,MOD	0.07
100	359	229	DMTS,ASTHMA,MOD	0.01
150	94	72	DMTS,ASTHMA,MOD	0.00
200	18	13	DMTS,ASTHMA,MOD	0.00
250	13	13	DMTS,ASTHMA,MOD	0.00
300	0	0	DMTS,ASTHMA,MOD	0.00
350	0	0	DMTS,ASTHMA,MOD	0.00
400	0	0	DMTS,ASTHMA,MOD	0.00
450	0	0	DMTS,ASTHMA,MOD	0.00
500	0	0	DMTS,ASTHMA,MOD	0.00
550	0	0	DMTS,ASTHMA,MOD	0.00
600	0	0	DMTS,ASTHMA,MOD	0.00
650	0	0	DMTS,ASTHMA,MOD	0.00
700	0	0	DMTS,ASTHMA,MOD	0.00
750	0	0	DMTS,ASTHMA,MOD	0.00
800	0	0	DMTS,ASTHMA,MOD	0.00
0	1821000	7280	DMTS,ASTHMACHILD,MOD	1.00
50	1757	955	DMTS,ASTHMACHILD,MOD	0.13
100	229	139	DMTS,ASTHMACHILD,MOD	0.02
150	54	45	DMTS,ASTHMACHILD,MOD	0.01
200	9	4	DMTS,ASTHMACHILD,MOD	0.00
250	4	4	DMTS,ASTHMACHILD,MOD	0.00
300	0	0	DMTS,ASTHMACHILD,MOD	0.00
350	0	0	DMTS,ASTHMACHILD,MOD	0.00
400	0	0	DMTS,ASTHMACHILD,MOD	0.00
450	0	0	DMTS,ASTHMACHILD,MOD	0.00
500	0	0	DMTS,ASTHMACHILD,MOD	0.00
550	0	0	DMTS,ASTHMACHILD,MOD	0.00
600	0	0	DMTS,ASTHMACHILD,MOD	0.00
650	0	0	DMTS,ASTHMACHILD,MOD	0.00
700	0	0	DMTS,ASTHMACHILD,MOD	0.00
750	0	0	DMTS,ASTHMACHILD,MOD	0.00
800	0	0	DMTS,ASTHMACHILD,MOD	0.00

Table B.4-13. APEX estimated exposures in Greene County (99th %ille 250 ppb).

Table B.4-13. APEX estimated exposures in Greene County (99				
Exposure	Person	#		Populatio n
level	days	persons	Group	Fraction
0	3218000	21262	DMTS,ASTHMA,MOD	0.97
50	4918	2726	DMTS,ASTHMA,MOD	0.12
100	780	484	DMTS,ASTHMA,MOD	0.02
150	202	143	DMTS,ASTHMA,MOD	0.01
200	63	54	DMTS,ASTHMA,MOD	0.00
250	18	13	DMTS,ASTHMA,MOD	0.00
300	13	13	DMTS,ASTHMA,MOD	0.00
350	4	4	DMTS,ASTHMA,MOD	0.00
400	0	0	DMTS,ASTHMA,MOD	0.00
450	0	0	DMTS,ASTHMA,MOD	0.00
500	0	0	DMTS,ASTHMA,MOD	0.00
550	0	0	DMTS,ASTHMA,MOD	0.00
600	0	0	DMTS,ASTHMA,MOD	0.00
650	0	0	DMTS,ASTHMA,MOD	0.00
700	0	0	DMTS,ASTHMA,MOD	0.00
750	0	0	DMTS,ASTHMA,MOD	0.00
800	0	0	DMTS,ASTHMA,MOD	0.00
0	1821000	7280	DMTS,ASTHMACHILD,MOD	1.00
50	3201	1659	DMTS,ASTHMACHILD,MOD	0.23
100	457	256	DMTS,ASTHMACHILD,MOD	0.04
150	117	76	DMTS,ASTHMACHILD,MOD	0.01
200	40	31	DMTS,ASTHMACHILD,MOD	0.00
250	9	4	DMTS,ASTHMACHILD,MOD	0.00
300	4	4	DMTS,ASTHMACHILD,MOD	0.00
350	4	4	DMTS,ASTHMACHILD,MOD	0.00
400	0	0	DMTS,ASTHMACHILD,MOD	0.00
450	0	0	DMTS,ASTHMACHILD,MOD	0.00
500	0	0	DMTS,ASTHMACHILD,MOD	0.00
550	0	0	DMTS,ASTHMACHILD,MOD	0.00
600	0	0	DMTS,ASTHMACHILD,MOD	0.00
650	0	0	DMTS,ASTHMACHILD,MOD	0.00
700	0	0	DMTS,ASTHMACHILD,MOD	0.00
750	0	0	DMTS,ASTHMACHILD,MOD	0.00
800	0	0	DMTS,ASTHMACHILD,MOD	0.00

Table B.4-14. APEX estimated exposures in Greene County (98th %ille 200 ppb).

Table D.	T-1T. AI	LX CStill	ateu exposures ili Oreei	io obarity (c
Exposure	Person	#	_	Populatio n
level	days	persons	Group	Fraction
0	3218000	21262	DMTS,ASTHMA,MOD	0.97
50	4138	2304	DMTS,ASTHMA,MOD	0.10
100	632	386	DMTS,ASTHMA,MOD	0.02
150	161	117	DMTS,ASTHMA,MOD	0.01
200	45	40	DMTS,ASTHMA,MOD	0.00
250	18	13	DMTS,ASTHMA,MOD	0.00
300	13	13	DMTS,ASTHMA,MOD	0.00
350	0	0	DMTS,ASTHMA,MOD	0.00
400	0	0	DMTS,ASTHMA,MOD	0.00
450	0	0	DMTS,ASTHMA,MOD	0.00
500	0	0	DMTS,ASTHMA,MOD	0.00
550	0	0	DMTS,ASTHMA,MOD	0.00
600	0	0	DMTS,ASTHMA,MOD	0.00
650	0	0	DMTS,ASTHMA,MOD	0.00
700	0	0	DMTS,ASTHMA,MOD	0.00
750	0	0	DMTS,ASTHMA,MOD	0.00
800	0	0	DMTS,ASTHMA,MOD	0.00
0	1821000	7280	DMTS,ASTHMACHILD,MOD	1.00
50	2654	1390	DMTS,ASTHMACHILD,MOD	0.19
100	390	220	DMTS,ASTHMACHILD,MOD	0.03
150	85	58	DMTS,ASTHMACHILD,MOD	0.01
200	27	22	DMTS,ASTHMACHILD,MOD	0.00
250	9	4	DMTS,ASTHMACHILD,MOD	0.00
300	4	4	DMTS,ASTHMACHILD,MOD	0.00
350	0	0	DMTS,ASTHMACHILD,MOD	0.00
400	0	0	DMTS,ASTHMACHILD,MOD	0.00
450	0	0	DMTS,ASTHMACHILD,MOD	0.00
500	0	0	DMTS,ASTHMACHILD,MOD	0.00
550	0	0	DMTS,ASTHMACHILD,MOD	0.00
600	0	0	DMTS,ASTHMACHILD,MOD	0.00
650	0	0	DMTS,ASTHMACHILD,MOD	0.00
700	0	0	DMTS,ASTHMACHILD,MOD	0.00
750	0	0	DMTS,ASTHMACHILD,MOD	0.00
800	0	0	DMTS,ASTHMACHILD,MOD	0.00
550	Ü	Ü	,	5.00

Table B.4-15. APEX estimated exposures in St. Louis (AS IS).

Table B.4-15. APEX estimated exposures in St. Louis (AS IS).						
Exposure		#	Person	Population		
level	Group	persons	days	fraction		
0	DMTS,ASTHMA,MOD	102436	16677000	0.97		
50	DMTS,ASTHMA,MOD	24405	44100	0.23		
100	DMTS,ASTHMA,MOD	3866	4631	0.04		
150	DMTS,ASTHMA,MOD	789	896	0.01		
200	DMTS,ASTHMA,MOD	229	244	0.00		
250	DMTS,ASTHMA,MOD	69	69	0.00		
300	DMTS,ASTHMA,MOD	23	23	0.00		
350	DMTS,ASTHMA,MOD	8	8	0.00		
400	DMTS,ASTHMA,MOD	8	8	0.00		
450	DMTS,ASTHMA,MOD	0	0	0.00		
500	DMTS,ASTHMA,MOD	0	0	0.00		
550	DMTS,ASTHMA,MOD	0	0	0.00		
600	DMTS,ASTHMA,MOD	0	0	0.00		
650	DMTS,ASTHMA,MOD	0	0	0.00		
700	DMTS,ASTHMA,MOD	0	0	0.00		
750	DMTS,ASTHMA,MOD	0	0	0.00		
800	DMTS,ASTHMA,MOD	0	0	0.00		
0	DMTS,ASTHMACHILD,MOD	41714	10560000	1.00		
50	DMTS,ASTHMACHILD,MOD	16938	32800	0.41		
100	DMTS,ASTHMACHILD,MOD	2776	3357	0.07		
150	DMTS,ASTHMACHILD,MOD	575	651	0.01		
200	DMTS,ASTHMACHILD,MOD	160	176	0.00		
250	DMTS,ASTHMACHILD,MOD	39	38	0.00		
300	DMTS,ASTHMACHILD,MOD	16	15	0.00		
350	DMTS,ASTHMACHILD,MOD	0	0	0.00		
400	DMTS,ASTHMACHILD,MOD	0	0	0.00		
450	DMTS,ASTHMACHILD,MOD	0	0	0.00		
500	DMTS,ASTHMACHILD,MOD	0	0	0.00		
550	DMTS,ASTHMACHILD,MOD	0	0	0.00		
600	DMTS,ASTHMACHILD,MOD	0	0	0.00		
650	DMTS,ASTHMACHILD,MOD	0	0	0.00		
700	DMTS,ASTHMACHILD,MOD	0	0	0.00		
750	DMTS,ASTHMACHILD,MOD	0	0	0.00		
800	DMTS,ASTHMACHILD,MOD	0	0	0.00		

Table B.4-16. APEX estimated exposures in St. Louis (Current Standard).

Table D.	T-10. At LA estillated ex	posuics	III Ot. LOC	iis (Gui lei
Exposure		#	Person	Population
level	Group	persons	days	fraction
0	DMTS,ASTHMA,MOD	102436	16677000	0.97
50	DMTS,ASTHMA,MOD	93692	2889400	0.89
100	DMTS,ASTHMA,MOD	79422	793000	0.75
150	DMTS,ASTHMA,MOD	63016	316400	0.60
200	DMTS,ASTHMA,MOD	48211	153990	0.46
250	DMTS,ASTHMA,MOD	36315	84540	0.34
300	DMTS,ASTHMA,MOD	26363	49440	0.25
350	DMTS,ASTHMA,MOD	19278	31700	0.18
400	DMTS,ASTHMA,MOD	14181	20719	0.13
450	DMTS,ASTHMA,MOD	10448	14242	0.10
500	DMTS,ASTHMA,MOD	7853	10060	0.07
550	DMTS,ASTHMA,MOD	5880	7229	0.06
600	DMTS,ASTHMA,MOD	4431	5343	0.04
650	DMTS,ASTHMA,MOD	3336	3972	0.03
700	DMTS,ASTHMA,MOD	2631	3099	0.02
750	DMTS,ASTHMA,MOD	1985	2253	0.02
800	DMTS,ASTHMA,MOD	1556	1747	0.01
0	DMTS,ASTHMACHILD,MOD	41714	10560000	1.00
50	DMTS,ASTHMACHILD,MOD	41607	2158300	1.00
100	DMTS,ASTHMACHILD,MOD	40319	602800	0.97
150	DMTS,ASTHMACHILD,MOD	36287	239310	0.87
200	DMTS,ASTHMACHILD,MOD	30504	116260	0.73
250	DMTS,ASTHMACHILD,MOD	24386	63570	0.58
300	DMTS,ASTHMACHILD,MOD	18254	36830	0.44
350	DMTS,ASTHMACHILD,MOD	13539	23507	0.32
400	DMTS,ASTHMACHILD,MOD	9991	15304	0.24
450	DMTS,ASTHMACHILD,MOD	7547	10636	0.18
500	DMTS,ASTHMACHILD,MOD	5658	7420	0.14
550	DMTS,ASTHMACHILD,MOD	4237	5295	0.10
600	DMTS,ASTHMACHILD,MOD	3204	3901	0.08
650	DMTS,ASTHMACHILD,MOD	2376	2851	0.06
700	DMTS,ASTHMACHILD,MOD	1909	2231	0.05
750	DMTS,ASTHMACHILD,MOD	1426	1609	0.03
800	DMTS,ASTHMACHILD,MOD	1111	1240	0.03

Table B.4-17. APEX estimated exposures in St. Louis (99th %ile 50 ppb).

Exposure		#	Person	Population
level	Group	persons	days	fraction
0	DMTS,ASTHMA,MOD	102436	16677000	0.97
50	DMTS,ASTHMA,MOD	14488	21379	0.14
100	DMTS,ASTHMA,MOD	1595	1794	0.02
150	DMTS,ASTHMA,MOD	298	328	0.00
200	DMTS,ASTHMA,MOD	69	69	0.00
250	DMTS,ASTHMA,MOD	16	15	0.00
300	DMTS,ASTHMA,MOD	8	8	0.00
350	DMTS,ASTHMA,MOD	0	0	0.00
400	DMTS,ASTHMA,MOD	0	0	0.00
450	DMTS,ASTHMA,MOD	0	0	0.00
500	DMTS,ASTHMA,MOD	0	0	0.00
550	DMTS,ASTHMA,MOD	0	0	0.00
600	DMTS,ASTHMA,MOD	0	0	0.00
650	DMTS,ASTHMA,MOD	0	0	0.00
700	DMTS,ASTHMA,MOD	0	0	0.00
750	DMTS,ASTHMA,MOD	0	0	0.00
800	DMTS,ASTHMA,MOD	0	0	0.00
0	DMTS,ASTHMACHILD,MOD	41714	10560000	1.00
50	DMTS,ASTHMACHILD,MOD	10229	15835	0.25
100	DMTS,ASTHMACHILD,MOD	1135	1272	0.03
150	DMTS,ASTHMACHILD,MOD	214	237	0.01
200	DMTS,ASTHMACHILD,MOD	39	38	0.00
250	DMTS,ASTHMACHILD,MOD	8	8	0.00
300	DMTS,ASTHMACHILD,MOD	0	0	0.00
350	DMTS,ASTHMACHILD,MOD	0	0	0.00
400	DMTS,ASTHMACHILD,MOD	0	0	0.00
450	DMTS,ASTHMACHILD,MOD	0	0	0.00
500	DMTS,ASTHMACHILD,MOD	0	0	0.00
550	DMTS,ASTHMACHILD,MOD	0	0	0.00
600	DMTS,ASTHMACHILD,MOD	0	0	0.00
650	DMTS,ASTHMACHILD,MOD	0	0	0.00
700	DMTS,ASTHMACHILD,MOD	0	0	0.00
750	DMTS,ASTHMACHILD,MOD	0	0	0.00
800	DMTS,ASTHMACHILD,MOD	0	0	0.00

Table B.4-18. APEX estimated exposures in St. Louis (99th %ile 100 ppb).

Exposure		#	Person	Population
level	Group	persons	days	fraction
0	DMTS,ASTHMA,MOD	102436	16677000	0.97
50	DMTS,ASTHMA,MOD	48725	158000	0.46
100	DMTS,ASTHMA,MOD	14488	21379	0.14
150	DMTS,ASTHMA,MOD	4654	5619	0.04
200	DMTS,ASTHMA,MOD	1595	1794	0.02
250	DMTS,ASTHMA,MOD	666	742	0.01
300	DMTS,ASTHMA,MOD	298	328	0.00
350	DMTS,ASTHMA,MOD	153	152	0.00
400	DMTS,ASTHMA,MOD	69	69	0.00
450	DMTS,ASTHMA,MOD	38	38	0.00
500	DMTS,ASTHMA,MOD	16	15	0.00
550	DMTS,ASTHMA,MOD	8	8	0.00
600	DMTS,ASTHMA,MOD	8	8	0.00
650	DMTS,ASTHMA,MOD	8	8	0.00
700	DMTS,ASTHMA,MOD	0	0	0.00
750	DMTS,ASTHMA,MOD	0	0	0.00
800	DMTS,ASTHMA,MOD	0	0	0.00
0	DMTS,ASTHMACHILD,MOD	41714	10560000	1.00
50	DMTS,ASTHMACHILD,MOD	30703	119350	0.74
100	DMTS,ASTHMACHILD,MOD	10229	15835	0.25
150	DMTS,ASTHMACHILD,MOD	3349	4100	0.08
200	DMTS,ASTHMACHILD,MOD	1135	1272	0.03
250	DMTS,ASTHMACHILD,MOD	491	551	0.01
300	DMTS,ASTHMACHILD,MOD	214	237	0.01
350	DMTS,ASTHMACHILD,MOD	99	99	0.00
400	DMTS,ASTHMACHILD,MOD	39	38	0.00
450	DMTS,ASTHMACHILD,MOD	31	31	0.00
500	DMTS,ASTHMACHILD,MOD	8	8	0.00
550	DMTS,ASTHMACHILD,MOD	0	0	0.00
600	DMTS,ASTHMACHILD,MOD	0	0	0.00
650	DMTS,ASTHMACHILD,MOD	0	0	0.00
700	DMTS,ASTHMACHILD,MOD	0	0	0.00
750	DMTS,ASTHMACHILD,MOD	0	0	0.00
800	DMTS,ASTHMACHILD,MOD	0	0	0.00

Table B.4-19. APEX estimated exposures in St. Louis (99th %ile 150 ppb).

Table D.	T-13. AI LA CSIIIIAICU CA	posures	III Ot. LOC	113 (33 70
Exposure		#	Person	Population
level	Group	persons	days	fraction
0	DMTS,ASTHMA,MOD	102436	16677000	0.97
50	DMTS,ASTHMA,MOD	68830	429400	0.65
100	DMTS,ASTHMA,MOD	33447	73000	0.32
150	DMTS,ASTHMA,MOD	14488	21379	0.14
200	DMTS,ASTHMA,MOD	6702	8403	0.06
250	DMTS,ASTHMA,MOD	3212	3817	0.03
300	DMTS,ASTHMA,MOD	1595	1794	0.02
350	DMTS,ASTHMA,MOD	844	958	0.01
400	DMTS,ASTHMA,MOD	521	582	0.00
450	DMTS,ASTHMA,MOD	298	328	0.00
500	DMTS,ASTHMA,MOD	198	198	0.00
550	DMTS,ASTHMA,MOD	130	130	0.00
600	DMTS,ASTHMA,MOD	69	69	0.00
650	DMTS,ASTHMA,MOD	38	38	0.00
700	DMTS,ASTHMA,MOD	23	23	0.00
750	DMTS,ASTHMA,MOD	16	15	0.00
800	DMTS,ASTHMA,MOD	8	8	0.00
0	DMTS,ASTHMACHILD,MOD	41714	10560000	1.00
50	DMTS,ASTHMACHILD,MOD	38024	325900	0.91
100	DMTS,ASTHMACHILD,MOD	22721	54890	0.54
150	DMTS,ASTHMACHILD,MOD	10229	15835	0.25
200	DMTS,ASTHMACHILD,MOD	4843	6177	0.12
250	DMTS,ASTHMACHILD,MOD	2323	2767	0.06
300	DMTS,ASTHMACHILD,MOD	1135	1272	0.03
350	DMTS,ASTHMACHILD,MOD	621	705	0.01
400	DMTS,ASTHMACHILD,MOD	376	422	0.01
450	DMTS,ASTHMACHILD,MOD	214	237	0.01
500	DMTS,ASTHMACHILD,MOD	138	137	0.00
550	DMTS,ASTHMACHILD,MOD	76	76	0.00
600	DMTS,ASTHMACHILD,MOD	39	38	0.00
650	DMTS,ASTHMACHILD,MOD	31	31	0.00
700	DMTS,ASTHMACHILD,MOD	16	15	0.00
750	DMTS,ASTHMACHILD,MOD	8	8	0.00
800	DMTS,ASTHMACHILD,MOD	0	0	0.00

Table B.4-20. APEX estimated exposures in St. Louis (99th %ile 200 ppb).

Exposure		#	Person	Population
level	Group	persons	days	fraction
0	DMTS,ASTHMA,MOD	102436	16677000	0.97
50	DMTS,ASTHMA,MOD	79775	813700	0.76
100	DMTS,ASTHMA,MOD	48725	158000	0.46
150	DMTS,ASTHMA,MOD	27030	51270	0.26
200	DMTS,ASTHMA,MOD	14488	21379	0.14
250	DMTS,ASTHMA,MOD	8097	10427	0.08
300	DMTS,ASTHMA,MOD	4654	5619	0.04
350	DMTS,ASTHMA,MOD	2707	3198	0.03
400	DMTS,ASTHMA,MOD	1595	1794	0.02
450	DMTS,ASTHMA,MOD	1050	1180	0.01
500	DMTS,ASTHMA,MOD	666	742	0.01
550	DMTS,ASTHMA,MOD	428	458	0.00
600	DMTS,ASTHMA,MOD	298	328	0.00
650	DMTS,ASTHMA,MOD	214	229	0.00
700	DMTS,ASTHMA,MOD	153	152	0.00
750	DMTS,ASTHMA,MOD	107	107	0.00
800	DMTS,ASTHMA,MOD	69	69	0.00
0	DMTS,ASTHMACHILD,MOD	41714	10560000	1.00
50	DMTS,ASTHMACHILD,MOD	40388	618700	0.97
100	DMTS,ASTHMACHILD,MOD	30703	119350	0.74
150	DMTS,ASTHMACHILD,MOD	18690	38210	0.45
200	DMTS,ASTHMACHILD,MOD	10229	15835	0.25
250	DMTS,ASTHMACHILD,MOD	5856	7718	0.14
300	DMTS,ASTHMACHILD,MOD	3349	4100	0.08
350	DMTS,ASTHMACHILD,MOD	1947	2292	0.05
400	DMTS,ASTHMACHILD,MOD	1135	1272	0.03
450	DMTS,ASTHMACHILD,MOD	773	857	0.02
500	DMTS,ASTHMACHILD,MOD	491	551	0.01
550	DMTS,ASTHMACHILD,MOD	314	336	0.01
600	DMTS,ASTHMACHILD,MOD	214	237	0.01
650	DMTS,ASTHMACHILD,MOD	145	160	0.00
700	DMTS,ASTHMACHILD,MOD	99	99	0.00
750	DMTS,ASTHMACHILD,MOD	61	61	0.00
800	DMTS,ASTHMACHILD,MOD	39	38	0.00

Table B.4-21. APEX estimated exposures in St. Louis (99th %ile 250 ppb).

Table D.	T-Z I. AI LA CSIIIIalca CA	posuics	III Ot. LOC	113 (33 70
Exposure		#	Person	Population
level	Group	persons	days	fraction
0	DMTS,ASTHMA,MOD	102436	16677000	0.97
50	DMTS,ASTHMA,MOD	85784	1276000	0.81
100	DMTS,ASTHMA,MOD	60235	278550	0.57
150	DMTS,ASTHMA,MOD	39121	97390	0.37
200	DMTS,ASTHMA,MOD	23681	42330	0.22
250	DMTS,ASTHMA,MOD	14488	21379	0.14
300	DMTS,ASTHMA,MOD	9180	12037	0.09
350	DMTS,ASTHMA,MOD	5750	7061	0.05
400	DMTS,ASTHMA,MOD	3696	4416	0.04
450	DMTS,ASTHMA,MOD	2452	2843	0.02
500	DMTS,ASTHMA,MOD	1595	1794	0.02
550	DMTS,ASTHMA,MOD	1150	1287	0.01
600	DMTS,ASTHMA,MOD	751	858	0.01
650	DMTS,ASTHMA,MOD	574	643	0.01
700	DMTS,ASTHMA,MOD	405	435	0.00
750	DMTS,ASTHMA,MOD	298	328	0.00
800	DMTS,ASTHMA,MOD	229	244	0.00
0	DMTS,ASTHMACHILD,MOD	41714	10560000	1.00
50	DMTS,ASTHMACHILD,MOD	41147	967000	0.99
100	DMTS,ASTHMACHILD,MOD	35351	210680	0.85
150	DMTS,ASTHMACHILD,MOD	25834	73310	0.62
200	DMTS,ASTHMACHILD,MOD	16477	31530	0.39
250	DMTS,ASTHMACHILD,MOD	10229	15835	0.25
300	DMTS,ASTHMACHILD,MOD	6686	8975	0.16
350	DMTS,ASTHMACHILD,MOD	4138	5166	0.10
400	DMTS,ASTHMACHILD,MOD	2637	3173	0.06
450	DMTS,ASTHMACHILD,MOD	1786	2070	0.04
500	DMTS,ASTHMACHILD,MOD	1135	1272	0.03
550	DMTS,ASTHMACHILD,MOD	849	941	0.02
600	DMTS,ASTHMACHILD,MOD	536	613	0.01
650	DMTS,ASTHMACHILD,MOD	422	475	0.01
700	DMTS,ASTHMACHILD,MOD	298	321	0.01
750	DMTS,ASTHMACHILD,MOD	214	237	0.01
800	DMTS,ASTHMACHILD,MOD	160	176	0.00

Table B.4-21. APEX estimated exposures in St. Louis (98th %ile 200 ppb).

Table D.	T-Z I. Al EX estillated exposu	ies iii ot	. Louis (se	0 /011 C 20
Exposure		#	Person	Population
level	Group	persons	days	fraction
0	DMTS,ASTHMA,MOD	102436	16677000	0.97
50	DMTS,ASTHMA,MOD	84633	1159900	0.80
100	DMTS,ASTHMA,MOD	57867	249490	0.55
150	DMTS,ASTHMA,MOD	36682	85910	0.35
200	DMTS,ASTHMA,MOD	21576	37060	0.20
250	DMTS,ASTHMA,MOD	12925	18498	0.12
300	DMTS,ASTHMA,MOD	8014	10304	0.08
350	DMTS,ASTHMA,MOD	5022	6041	0.05
400	DMTS,ASTHMA,MOD	3174	3772	0.03
450	DMTS,ASTHMA,MOD	2023	2299	0.02
500	DMTS,ASTHMA,MOD	1387	1539	0.01
550	DMTS,ASTHMA,MOD	913	1035	0.01
600	DMTS,ASTHMA,MOD	666	742	0.01
650	DMTS,ASTHMA,MOD	474	512	0.00
700	DMTS,ASTHMA,MOD	314	344	0.00
750	DMTS,ASTHMA,MOD	229	252	0.00
800	DMTS,ASTHMA,MOD	198	198	0.00
0	DMTS,ASTHMACHILD,MOD	41714	10560000	1.00
50	DMTS,ASTHMACHILD,MOD	41070	880000	0.98
100	DMTS,ASTHMACHILD,MOD	34529	188770	0.83
150	DMTS,ASTHMACHILD,MOD	24576	64600	0.59
200	DMTS,ASTHMACHILD,MOD	15085	27517	0.36
250	DMTS,ASTHMACHILD,MOD	9168	13677	0.22
300	DMTS,ASTHMACHILD,MOD	5774	7596	0.14
350	DMTS,ASTHMACHILD,MOD	3648	4446	0.09
400	DMTS,ASTHMACHILD,MOD	2285	2721	0.05
450	DMTS,ASTHMACHILD,MOD	1464	1655	0.04
500	DMTS,ASTHMACHILD,MOD	1011	1110	0.02
550	DMTS,ASTHMACHILD,MOD	675	759	0.02
600	DMTS,ASTHMACHILD,MOD	491	551	0.01
650	DMTS,ASTHMACHILD,MOD	352	375	0.01
700	DMTS,ASTHMACHILD,MOD	222	245	0.01
750	DMTS,ASTHMACHILD,MOD	160	183	0.00
800	DMTS,ASTHMACHILD,MOD	138	137	0.00

B-5 REFERENCES

- AHS. (2008). The American Housing Survey. U.S. Department of Housing and Urban Development. http://www.census.gov/prod/2008pubs/h150-07.pdf. Last accessed December 17, 2008.
- Akland GG, Hartwell TD, Johnson TR, Whitmore RW. (1985). Measuring human exposure to carbon monoxide in Washington, D. C. and Denver, Colorado during the winter of 1982-83. *Environ Sci Technol*. 19:911-918.
- Biller WF, Feagans TB, Johnson TR, Duggan GM, Paul RA, McCurdy T, Thomas HC. (1981). A general model for estimating exposure associated with alternative NAAQS. Paper No. 81-18.4 in Proceedings of the 74th Annual Meeting of the Air Pollution Control Association, Philadelphia, PA.
- Grontoft T, and Raychaudhuri MR. (2004). Compilation of tables of surface deposition velocities for O₃, NO₂ and SO₂ to a range of indoor surfaces. *Atmos Environ*. 38:533-544.
- Hartwell TD, Clayton CA, Ritchie RM, Whitmore RW, Zelon HS, Jones SM, Whitehurst DA. (1984). Study of Carbon Monoxide Exposure of Residents of Washington, DC and Denver, Colorado. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring Systems Laboratory. EPA-600/4-84-031.
- Johnson T, Capel J, Mozier J, McCoy M. (1996b). Estimation of Ozone Exposures Experienced by Outdoor Children in Nine Urban Areas Using a Probabilistic Version of NEM. Prepared for the Air Quality Management Division under Contract No. 68-DO-30094, April.
- Johnson T, Capel J, McCoy M, Mozier J. (1996c). Estimation of Ozone Exposures Experienced by Outdoor Workers in Nine Urban Areas Using a Probabilistic Version of NEM. Prepared for the Air Quality Management Division under Contract No. 68-DO-30094, April.
- Johnson T, Capel J, McCoy M. (1996a). Estimation of Ozone Exposures Experienced by Urban Residents Using a Probabilistic Version of NEM and 1990 Population Data. Prepared by IT Air Quality Services for the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, September.
- Johnson T, Capel J, Olaguer E, Wijnberg L. (1992). Estimation of Ozone Exposures Experienced by Residents of ROMNET Domain Using a Probabilistic Version of NEM. Prepared by IT Air Quality Services for the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.
- Johnson T. (1984). A Study of Personal Exposure to Carbon Monoxide in Denver, Colorado. Research Triangle Park, NC: U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory. EPA-600/4-84-014.
- Johnson T. (1989). Human Activity Patterns in Cincinnati, Ohio. Palo Alto, CA: Electric Power Research Institute. EPRI EN-6204.
- Johnson TR and Paul RA. (1983). The NAAQS Exposure Model (NEM) Applied to Carbon Monoxide. EPA-450/5-83-003. Prepared for the U.S. Environmental Agency by PEDCo Environmental Inc., Durham, N.C. under Contract No. 68-02-3390. U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

- Klepeis NE, Tsang AM, Behar JV. (1996). Analysis of the National Human Activity Pattern Survey (NHAPS) Respondents from a Standpoint of Exposure Assessment. Washington, DC: U.S. Environmental Protection Agency, Office of Research and Development. EPA/600/R-96/074.
- Lawrence Berkeley National Laboratory (2003). Modeling shelter-in-place including sorption on indoor surfaces. Available at: http://repositories.cdlib.org/cgi/viewcontent.cgi?article=1450&context=lbnl.
- McCurdy T, Glen G, Smith L, Lakkadi Y. (2000). The National Exposure Research Laboratory's Consolidated Human Activity Database, *J Exp Anal Environ Epidemiol*. 10: 566-578.
- NCBG (2008). Design Capacity in the Chicago Public Schools. The Neighborhood Capital Budget Group. Available at: http://www.ncbg.org/schools/design_capacity.htm .
- Roddin MF, Ellis HT, Siddiqee WM. (1979). Background Data for Human Activity Patterns, Vols. 1, 2. Draft Final Report. Prepared for Strategies and Air Standards Division, Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, N.C.
- Singer, BC, AT Hodgson, and WW Nazaroff. (2002). Effect of sorption on exposures to organic gases from environmental tobacco smoke. LBNL report number 49576. January 2002.
- Spier CE, Little DE, Trim SC, Johnson TR, Linn WS, Hackney JD. (1992). Activity patterns in elementary and high school students exposed to oxidant pollution. *J Expo Anal Environ Epidemiol*. 2:277-293.
- Thatcher, TL, Lai ACK, Moreno-Jackson R, Sextro RG, and Nazaroff WW. (2002). Effects of room furnishings and air speed on particle deposition rates indoors. *Atmos Environ*. 36:1811-1819.
- Tsang AM and Klepeis NE. (1996). Descriptive Statistics Tables from a Detailed Analysis of the National Human Activity Pattern Survey (NHAPS) Data. U.S. Environmental Protection Agency. EPA/600/R-96/148.
- US Army Corps of Engineers. (2002). Unified Facilities Criteria (Ufc) Design: Child Development Centers. Report no. UFC 4-740-14, (Table 2.6). Available at: http://www.wbdg.org/ccb/DOD/UFC/ufc_4_740_14.pdf.
- US Census Bureau. (2007). Employment Status: 2000- Supplemental Tables. Available at: http://www.census.gov/population/www/cen2000/phc-t28.html.
- US DOE (2003). Commercial Building Energy Consumption Survey. U. S. Department of Energy. Available at: http://www.eia.doe.gov/emeu/cbecs/cbecs2003/public_use_2003/cbecs_pudata2003.html. Last accessed December 17, 2008.
- US DOT. (2007). Part 3-The Journey To Work files. Bureau of Transportation Statistics (BTS). Available at: http://transtats.bts.gov/.
- US EPA. (1999). Total Risk Integrated Methodology. Website: http://www.epa.gov/ttnatw01/urban/trim/trimpg.html.
- US EPA. (2002). Consolidated Human Activities Database (CHAD) Users Guide. Database and documentation available at: http://www.epa.gov/chadnet1/.
- US EPA. (2004a). AERMOD: Description of Model Formulation. Office of Air Quality Planning and Standards. EPA-454/R-03-004. Available at: http://www.epa.gov/scram001/7thconf/aermod/aermod_mfd.pdf.
- US EPA. (2004b). Source Ranking Database. Available at: http://www.epa.gov/opptintr/exposure/pubs/srddl.htm. Last accessed September 30, 2008.

- US EPA. (2008a). Building Assessment Survey and Evaluation (BASE) Study. http://www.epa.gov/iaq/base/summarized_data.html. Last accessed December 17, 2008.
- US EPA. (2008b). The Approach Used for Estimating Changes in Children's IQ from Lead Dust Generated During Renovation, Repair, and Painting in Residences and Child-Occupied Facilities: Appendix A. Inputs for the Residential and Child-occupied Facilities (COFs) RRP Models. Office of Pollution Prevention and Toxics. March 28, 2008.
- US EPA. (2009a). Total Risk Integrated Methodology (TRIM) Air Pollutants Exposure Model Documentation (TRIM.Expo / APEX, Version 4.3) Volume I: User's Guide. Office of Air Quality Planning and Standards, Research Triangle Park, NC. January 2009. Available at: http://www.epa.gov/ttn/fera/human_apex.html.
- US EPA. (2009b). Total Risk Integrated Methodology (TRIM) Air Pollutants Exposure Model Documentation (TRIM.Expo / APEX, Version 4.3) Volume II: Technical Support Document. Office of Air Quality Planning and Standards, Research Triangle Park, NC. January 2009. Available at: http://www.epa.gov/ttn/fera/human_apex.html.
- Wiley JA, Robinson JP, Cheng Y-T, Piazza T, Stork L, Pladsen K. (1991b). Study of Children's Activity Patterns: Final Report. California Air Resources Board, Sacramento, CA. ARB-R-93/489.
- Wiley JA, Robinson JP, Piazza T, Garrett K, Cirksena K, Cheng Y-T, Martin G. (1991a). Activity Patterns of California Residents: Final Report. California Air Resources Board, Sacramento, CA. ARB/R93/487. Available from: NTIS, Springfield, VA., PB94-108719.
- Williams R, Suggs J, Creason J, Rodes C, Lawless P, Kwok R, Zweidinger R, Sheldon L. (2000). The 1998 Baltimore particulate matter epidemiology-exposure study: Part 2. Personal exposure associated with an elderly population. *J Expo Anal Environ Epidemiol*. 10(6):533-543.

ATTACHMENT 1: TECHNICAL MEMORANDUM ON METEOROLOGICAL DATA PREPARATION FOR AERMOD FOR SO₂ REA FOR GREENE COUNTY AND ST. LOUIS MODELING DOMAINS, YEAR 2002

ATTACHMENT 2. TECHNICAL MEMORANDUM ON THE ANALYSIS OF NHIS ASTHMA PREVALENCE DATA

DRAFT MEMORANDUM

To: John Langstaff

From: Jonathan Cohen, Arlene Rosenbaum

Date: September 30, 2005

Re: EPA 68D01052, Work Assignment 3-08. Analysis of NHIS Asthma Prevalence

Data

This memorandum describes our analysis of children's asthma prevalence data from the National Health Interview Survey (NHIS) for 2003. Asthma prevalence rates for children aged 0 to 17 years were calculated for each age, gender, and region. The regions defined by NHIS are "Midwest," "Northeast," "South," and "West." For this project, asthma prevalence was defined as the probability of a Yes response to the question CASHMEV: "Ever been told that ... had asthma?" among those that responded Yes or No to this question. The responses were weighted to take into account the complex survey design of the NHIS survey. Standard errors and confidence intervals for the prevalence were calculated using a logistic model, taking into account the survey design. Prevalence curves showing the variation of asthma prevalence against age for a given gender and region were plotted. A scatterplot smoothing technique using the LOESS smoother was applied to smooth the prevalence curves and compute the standard errors and confidence intervals for the smoothed prevalence estimates. Logistic analysis of the prevalence curves shows statistically significant differences in prevalence by gender and by region. Therefore we did not combine the prevalence rates for different genders or regions.

Logistic Models

NHIS survey data for 2003 were provided by EPA. One obvious approach to calculate prevalence rates and their uncertainties for a given gender, region, and age is to calculate the proportion of Yes responses among the Yes and No responses for that demographic group, weighting each response by the survey weight. Although that approach was initially used, two problems are that the distributions of the estimated prevalence rates are not well approximated by normal distributions, and that the estimated confidence intervals based on the normal approximation often extend outside the [0, 1] interval. A better approach is to use a logistic transformation and fit a model of the form:

Prob (asthma) = $\exp(beta) / (1 + \exp(beta))$,

where beta may depend on the explanatory variables for age, gender, or region. This is equivalent to the model:

```
Beta = logit {prob (asthma) } = log { prob (asthma) / [1 - prob (asthma)] } }.
```

The distribution of the estimated values of beta is more closely approximated by a normal distribution than the distribution of the corresponding estimates of prob (asthma). By applying a logit transformation to the confidence intervals for beta, the corresponding confidence intervals for prob (asthma) will always be inside [0, 1]. Another advantage of the logistic modeling is that it can be used to compare alternative statistical models, such as models where the prevalence probability depends upon age, region, and gender, or on age and region but not gender.

A variety of logistic models for asthma prevalence were fit and compared, where the transformed probability variable beta is a given function of age, gender, and region. SAS's SURVEYLOGISTIC procedure was used to fit the logistic models, taking into account the NHIS survey weights and survey design (stratification and clustering).

The following Table G-1 lists the models fitted and their log-likelihood goodness-of-fit measures. 16 models were fitted. The Strata column lists the four possible stratifications: no stratification, by gender, by region, by region and gender. For example, "4. region, gender" means that separate prevalence estimates were made for each combination of region and gender. As another example, "2. gender" means that separate prevalence estimates were made for each gender, so that for each gender, the prevalence is assumed to be the same for each region. The prevalence estimates are independently calculated for each stratum.

Table G-1. Alternative logistic models for asthma prevalence.

Model	Description	Strata	- 2 Log Likelihood	DF
1	1. logit(prob) = linear in age	1. none	54168194.62	2
2	1. logit(prob) = linear in age	2. gender	53974657.17	4
3	1. logit(prob) = linear in age	3. region	54048602.57	8
4	1. logit(prob) = linear in age	4. region, gender	53837594.97	16
5	2. logit(prob) = quadratic in age	1. none	53958021.20	3
6	2. logit(prob) = quadratic in age	2. gender	53758240.99	6
7	2. logit(prob) = quadratic in age	3. region	53818198.13	12
8	2. logit(prob) = quadratic in age	4. region, gender	53593569.84	24
9	3. logit(prob) = cubic in age	1. none	53849072.76	4
10	3. logit(prob) = cubic in age	2. gender	53639181.24	8
11	3. logit(prob) = cubic in age	3. region	53694710.66	16
12	3. logit(prob) = cubic in age	4. region, gender	53441122.98	32
13	$4. \log it(prob) = f(age)$	1. none	53610093.48	18

Model	Description	Strata	- 2 Log Likelihood	DF
14	$4. \log it(prob) = f(age)$	2. gender	53226610.02	36
15	$4. \log it(prob) = f(age)$	3. region	53099749.33	72
16	$4. \log it(prob) = f(age)$	4. region, gender	52380000.19	144

The Description column describes how beta depends upon the age:

Linear in age: Beta = $\alpha + \beta \times$ age, where α and β vary with the strata.

Quadratic in age: Beta = $\alpha + \beta \times age + \gamma \times age^2$ where $\alpha \beta$ and γ vary with the

strata.

Cubic in age: Beta = $\alpha + \beta \times age + \gamma \times age^2 + \delta \times age^3$ where $\alpha \beta$, γ , and δ vary with the

strata.

f(age) Beta = arbitrary function of age, with different functions for different strata

The category f(age) is equivalent to making age one of the stratification variables, and is also equivalent to making beta a polynomial of degree 16 in age (since the maximum age for children is 17), with coefficients that may vary with the strata.

The fitted models are listed in order of complexity, where the simplest model (1) is an unstratified linear model in age and the most complex model (16) has a prevalence that is an arbitrary function of age, gender, and region. Model 16 is equivalent to calculating independent prevalence estimates for each of the 144 combinations of age, gender, and region.

Table G-1 also includes the -2 Log Likelihood, a goodness-of-fit measure, and the degrees of freedom, DF, which is the total number of estimated parameters. Two models can be compared using their -2 Log Likelihood values; lower values are preferred. If the first model is a special case of the second model, then the approximate statistical significance of the first model is estimated by comparing the difference in the -2 Log Likelihood values with a chi-squared random variable with r degrees of freedom, where r is the difference in the DF. This is a likelihood ratio test. For all pairs of models from Table G-1, all the differences are at least 70,000 and the likelihood ratios are all extremely statistically significant at levels well below 5 percent. Therefore the model 16 is clearly preferred and was used to model the prevalences.

The SURVEYLOGISTIC model predictions are tabulated in Table G-2 below and plotted in Figures 1 and 3 below. Also shown in Table G-2 and in Figures 2 and 4 are results for smoothed curves calculated using a LOESS scatterplot smoother, as discussed below.

The SURVEYLOGISTIC procedure produces estimates of the beta values and their 95 % confidence intervals for each combination of age, region, and gender. Applying the inverse logit transformation.

Prob (asthma) = $\exp(\text{beta}) / (1 + \exp(\text{beta}))$,

converted the beta values and 95 % confidence intervals into predictions and 95 % confidence intervals for the prevalence, as shown in Table G-2 and Figures 1 and 3. The standard error for the prevalence was estimated as

Std Error {Prob (asthma)} = Std Error (beta) \times exp(- beta) / (1 + exp(beta))²,

which follows from the delta method (a first order Taylor series approximation).

Loess Smoother

The estimated prevalence curves shows that the prevalence is not a smooth function of age. The linear, quadratic, and cubic functions of age modeled by SURVEYLOGISTIC were one strategy for smoothing the curves, but they did not provide a good fit to the data. One reason for this might be due to the attempt to fit a global regression curve to all the age groups, which means that the predictions for age A are affected by data for very different ages. We instead chose to use a local regression approach that separately fits a regression curve to each age A and its neighboring ages, giving a regression weight of 1 to the age A, and lower weights to the neighboring ages using a tri-weight function:

Weight =
$$\{1 - [|age - A|/q]^3\}$$
, where $|age - A| \le q$.

The parameter q defines the number of points in the neighborhood of the age a. Instead of calling q the smoothing parameter, SAS defines the smoothing parameter as the proportion of points in each neighborhood. We fitted a quadratic function of age to each age neighborhood, separately for each gender and region combination. We fitted these local regression curves to the beta values, the logits of the asthma prevalence estimates, and then converted them back to estimated prevalence rates by applying the inverse logit function $\exp(\text{beta}) / (1 + \exp(\text{beta}))$. In addition to the tri-weight variable, each beta value was assigned a weight of $1 / [\text{std error (beta)}]^2$, to account for their uncertainties.

The SAS LOESS procedure was applied to estimate smoothed curves for beta, the logit of the prevalence, as a function of age, separately for each region and gender. We fitted curves using the choices 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 for the smoothing parameter in an effort to determine the optimum choice based on various regression diagnostics.3,4

³ Two outlier cases were adjusted to avoid wild variations in the "smoothed" curves: For the West region, males, age 0, there were 97 children surveyed that all gave No answers to the asthma question, leading to an estimated value of -15.2029 for beta with a standard error of 0.14. For the Northeast region, females, age 0, there were 29 children surveyed that all gave No answers to the asthma question, leading to an estimated value of -15.2029 for beta with a standard error of 0.19. In both cases the raw probability of asthma equals zero, so the corresponding estimated beta would be negative infinity, but SAS's software gives -15.2029 instead. To reduce the impact of these outlier cases, we replaced their estimated standard errors by 4, which is approximately four times the maximum standard error for all other region, gender, and age combinations.

⁴ With only 18 points, a smoothing parameter of 0.2 cannot be used because the weight function assigns zero weights to all ages except age A, and a quadratic model cannot be uniquely fitted to a single value. A smoothing parameter of 0.3 also cannot be used because that choice assigns a neighborhood of 5 points only $(0.3 \times 18 = 5,$ rounded down), of which the two outside ages have assigned weight zero, making the local quadratic model fit exactly at every point except for the end points (ages 0, 1, 16 and 17). Usually one uses a smoothing parameter below one so that not all the data are used for the local regression at a given x value.

Quantities predicted in these smoothing parameter tests were the predicted value, standard error, confidence interval lower bound and confidence interval upper bound for the betas, and the corresponding values for the prevalence rates.

The polygonal curves joining values for different ages show the predicted values with vertical lines indicating the confidence intervals in Figures 3 and 4 for smoothing parameters 0 (i.e., no smoothing) and 0.5, respectively. Note that the confidence intervals are not symmetric about the predicted values because of the inverse logit transformation.

Note that in our application of LOESS, we used weights of 1 / [std error (beta)] 2 , so that $\sigma^2 = 1$ for this application. The LOESS procedure estimates σ^2 from the weighted sum of squares. Since in our application we assume $\sigma^2 = 1$, we multiplied the estimated standard errors by 1 / estimated σ , and adjusted the widths of the confidence intervals by the same factor.

Additionally, because the true value of σ equals 1, the best choices of smoothing parameter should give residual standard errors close to one. Using this criterion the best choice varies with gender and region between smoothing parameters 0.4 (3 cases), 0.5 (2 cases), 0.6 (1 case), and 0.7 (1 case).

As a further regression diagnostic the residual errors from the LOESS model were divided by std error (beta) to make their variances approximately constant. These approximately studentized residuals, 'student,' should be approximately normally distributed with a mean of zero and a variance of $\sigma^2 = 1$. To test this assumption, normal probability plots of the residuals were created for each smoothing parameter, combining all the studentized residuals across genders, regions, and ages. The plots for smoothing parameters seem to be equally straight for each smoothing parameter.

The final regression diagnostic is a plot of the studentized residuals against the smoothed beta values. Ideally there should be no obvious pattern and an average studentized residual close to zero. The plots indeed showed no unusual patterns, and the results for smoothing parameters 0.5 and 0.6 seem to showed a fitted LOESS close to the studentized residual equals zero line.

The regression diagnostics suggested the choice of smoothing parameter as 0.4 or 0.5. Normal probability plots did not suggest any preferred choices. The plots of residuals against smoothed predictions suggest the choices of 0.5 or 0.6. We therefore chose the final value of 0.5. These predictions, standard errors, and confidence intervals are presented in tabular form below as Table G-2.

Figure 1. Raw asthma prevalence rates by age and gender for each region region=Midwest

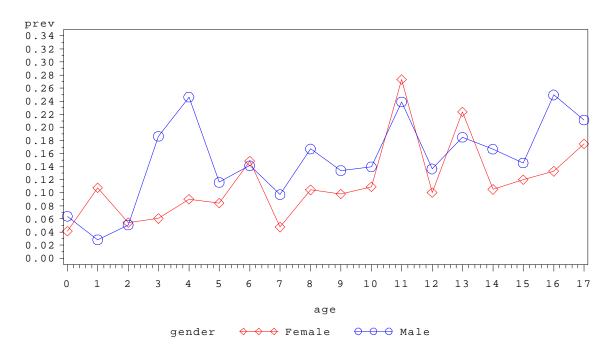


Figure 1. Raw asthma prevalence rates by age and gender for each region ${\tt region=Northeast}$

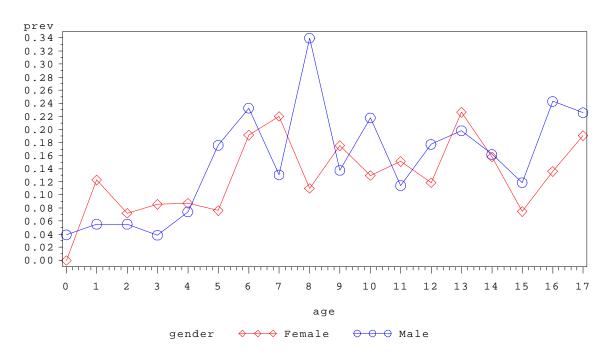


Figure 1. Raw asthma prevalence rates by age and gender for each region region=South

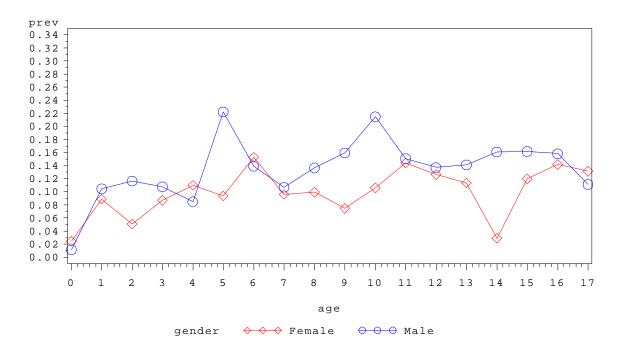


Figure 1. Raw asthma prevalence rates by age and gender for each region region=West

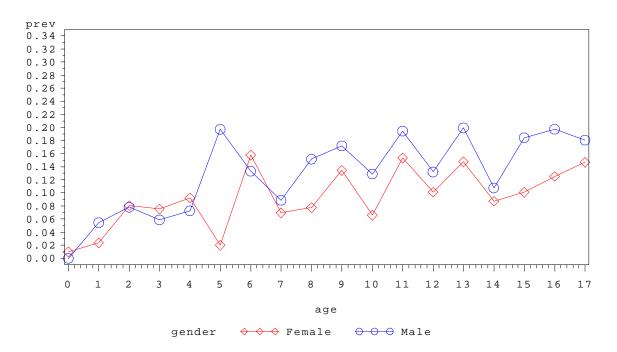


Figure 2. Smoothed asthma prevalence rates by age for each region and gender region=Midwest

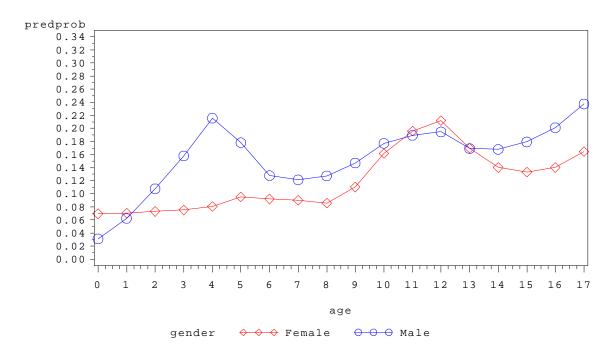


Figure 2. Smoothed asthma prevalence rates by age for each region and gender region=Northeast

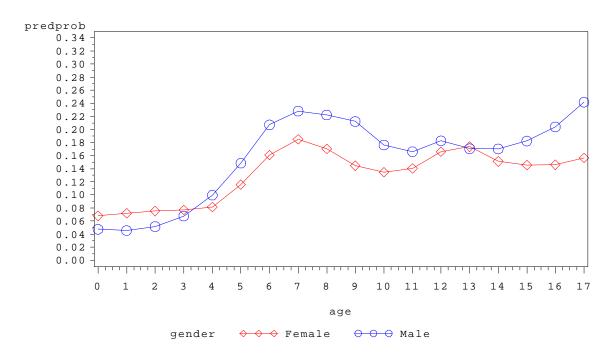


Figure 2. Smoothed asthma prevalence rates by age for each region and gender region=South

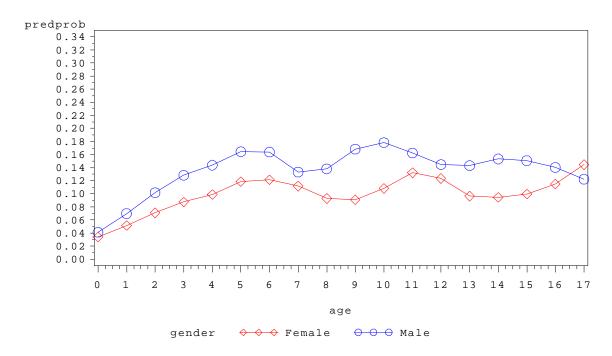


Figure 2. Smoothed asthma prevalence rates by age for each region and gender region=West

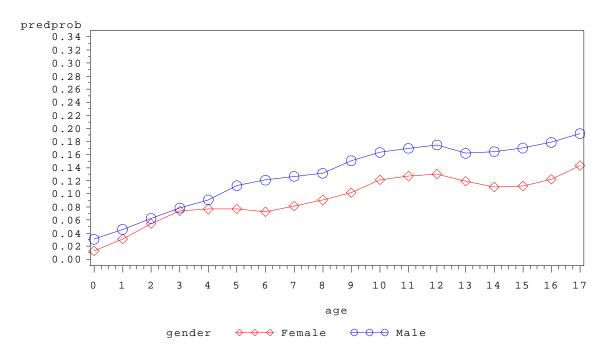


Figure 3. Raw asthma prevalence rates and confidence intervals ${\tt region=Midwest}$

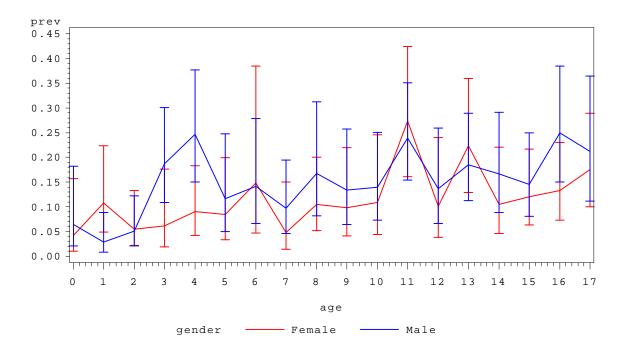


Figure 3. Raw asthma prevalence rates and confidence intervals ${\tt region=Northeast}$

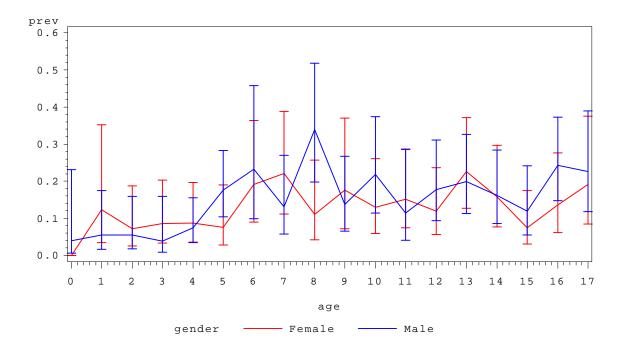


Figure 3. Raw asthma prevalence rates and confidence intervals region=South

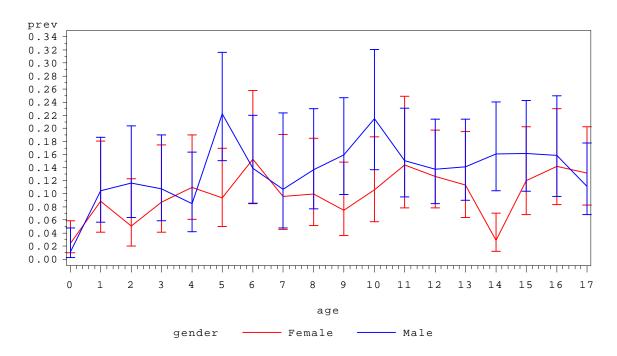


Figure 3. Raw asthma prevalence rates and confidence intervals region=West

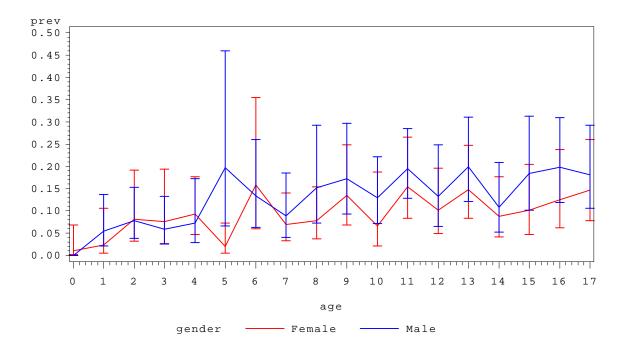


Figure 4. Smoothed asthma prevalence rates and confidence intervals region=Midwest

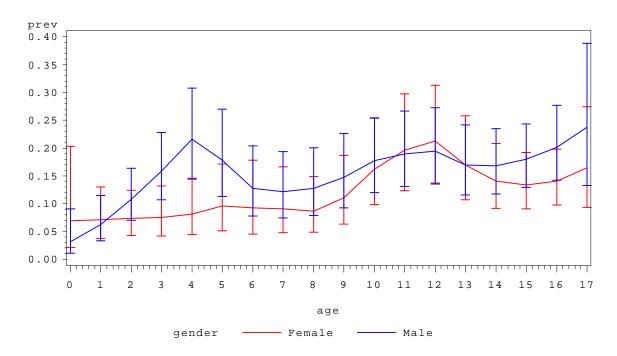


Figure 4. Smoothed asthma prevalence rates and confidence intervals ${\tt region=Northeast}$

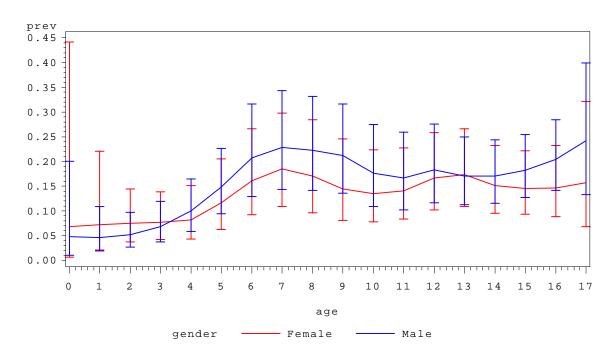


Figure 4. Smoothed asthma prevalence rates and confidence intervals ${\tt region=South}$

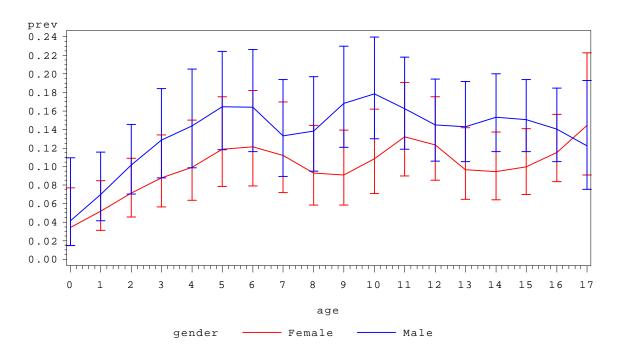
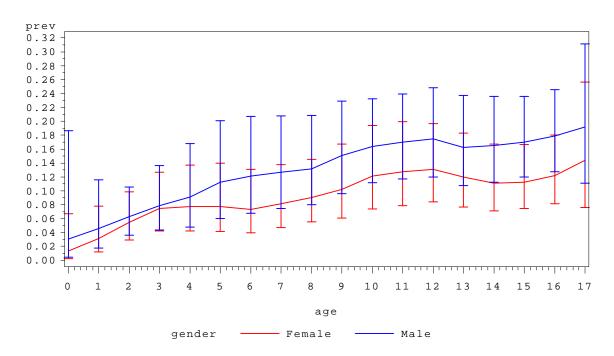



Figure 4. Smoothed asthma prevalence rates and confidence intervals region=West

 $\label{thm:confidence} \textbf{Table G-2. Raw and smoothed prevalence rates, with confidence intervals, by region, gender, and age.}$

Obs	Region	Gender	Age	Smoothed	Prevalence	Std Error	95 % Conf Interval – Lower Bound	95 % Conf Interval – Upper Bound
1	Midwest	Female	0	No	0.04161	0.02965	0.01001	0.15717
2	Midwest	Female	0	Yes	0.06956	0.03574	0.02143	0.20330
3	Midwest	Female	1	No	0.10790	0.04254	0.04840	0.22336
4	Midwest	Female	1	Yes	0.07078	0.01995	0.03736	0.13008
5	Midwest	Female	2	No	0.05469	0.02578	0.02131	0.13325
6	Midwest	Female	2	Yes	0.07324	0.01778	0.04228	0.12395
7	Midwest	Female	3	No	0.06094	0.03474	0.01936	0.17579
8	Midwest	Female	3	Yes	0.07542	0.01944	0.04205	0.13163
9	Midwest	Female	4	No	0.09049	0.03407	0.04233	0.18298
10	Midwest	Female	4	Yes	0.08100	0.02163	0.04417	0.14393
11	Midwest	Female	5	No	0.08463	0.03917	0.03317	0.19942
12	Midwest	Female	5	Yes	0.09540	0.02613	0.05106	0.17131
13	Midwest	Female	6	No	0.14869	0.08250	0.04643	0.38520
14	Midwest	Female	6	Yes	0.09210	0.02854	0.04534	0.17808
15	Midwest	Female	7	No	0.04757	0.02927	0.01389	0.15051
16	Midwest	Female	7	Yes	0.09032	0.02563	0.04728	0.16571
17	Midwest	Female	8	No	0.10444	0.03638	0.05160	0.19997
18	Midwest	Female	8	Yes	0.08612	0.02181	0.04842	0.14857
19	Midwest	Female	9	No	0.09836	0.04283	0.04062	0.21943
20	Midwest	Female	9	Yes	0.11040	0.02709	0.06298	0.18643
21	Midwest	Female	10	No	0.10916	0.04859	0.04400	0.24600
22	Midwest	Female	10	Yes	0.16190	0.03486	0.09838	0.25484
23	Midwest	Female	11	No	0.27341	0.06817	0.16112	0.42437
24	Midwest	Female	11	Yes	0.19597	0.03920	0.12296	0.29763
25	Midwest	Female	12	No	0.10055	0.04780	0.03816	0.23952
26	Midwest	Female	12	Yes	0.21214	0.03957	0.13724	0.31309
27	Midwest	Female	13	No	0.22388	0.05905	0.12907	0.35959

Obs	Region	Gender	Age	Smoothed	Prevalence	Std Error	95 % Conf Interval – Lower Bound	95 % Conf Interval – Upper Bound
28	Midwest	Female	13	Yes	0.16966	0.03371	0.10716	0.25807
29	Midwest	Female	14	No	0.10511	0.04233	0.04637	0.22104
30	Midwest	Female	14	Yes	0.14020	0.02603	0.09164	0.20857
31	Midwest	Female	15	No	0.12026	0.03805	0.06327	0.21670
32	Midwest	Female	15	Yes	0.13341	0.02266	0.09056	0.19226
33	Midwest	Female	16	No	0.13299	0.03933	0.07288	0.23037
34	Midwest	Female	16	Yes	0.14040	0.02235	0.09764	0.19777
35	Midwest	Female	17	No	0.17497	0.04786	0.09970	0.28884
36	Midwest	Female	17	Yes	0.16478	0.04037	0.09320	0.27468
37	Midwest	Male	0	No	0.06419	0.03612	0.02068	0.18227
38	Midwest	Male	0	Yes	0.03134	0.01537	0.01042	0.09046
39	Midwest	Male	1	No	0.02824	0.01694	0.00859	0.08879
40	Midwest	Male	1	Yes	0.06250	0.01751	0.03321	0.11457
41	Midwest	Male	2	No	0.05102	0.02343	0.02040	0.12189
42	Midwest	Male	2	Yes	0.10780	0.02078	0.06960	0.16328
43	Midwest	Male	3	No	0.18650	0.04864	0.10898	0.30057
44	Midwest	Male	3	Yes	0.15821	0.02705	0.10696	0.22775
45	Midwest	Male	4	No	0.24649	0.05823	0.15035	0.37686
46	Midwest	Male	4	Yes	0.21572	0.03661	0.14543	0.30774
47	Midwest	Male	5	No	0.11609	0.04818	0.04973	0.24793
48	Midwest	Male	5	Yes	0.17822	0.03525	0.11280	0.27003
49	Midwest	Male	6	No	0.14158	0.05280	0.06576	0.27873
50	Midwest	Male	6	Yes	0.12788	0.02799	0.07751	0.20375
51	Midwest	Male	7	No	0.09726	0.03614	0.04588	0.19448
52	Midwest	Male	7	Yes	0.12145	0.02642	0.07391	0.19317
53	Midwest	Male	8	No	0.16718	0.05814	0.08134	0.31276
54	Midwest	Male	8	Yes	0.12757	0.02700	0.07864	0.20031
55	Midwest	Male	9	No	0.13406	0.04783	0.06458	0.25769
56	Midwest	Male	9	Yes	0.14718	0.02976	0.09254	0.22603
57	Midwest	Male	10	No	0.13986	0.04422	0.07331	0.25050

Obs	Region	Gender	Age	Smoothed	Prevalence	Std Error	95 % Conf Interval – Lower Bound	95 % Conf Interval – Upper Bound
58	Midwest	Male	10	Yes	0.17728	0.02996	0.12020	0.25366
59	Midwest	Male	11	No	0.23907	0.05031	0.15449	0.35075
60	Midwest	Male	11	Yes	0.18961	0.03044	0.13100	0.26639
61	Midwest	Male	12	No	0.13660	0.04784	0.06668	0.25946
62	Midwest	Male	12	Yes	0.19487	0.03078	0.13541	0.27221
63	Midwest	Male	13	No	0.18501	0.04498	0.11230	0.28945
64	Midwest	Male	13	Yes	0.16939	0.02841	0.11528	0.24195
65	Midwest	Male	14	No	0.16673	0.05094	0.08886	0.29104
66	Midwest	Male	14	Yes	0.16795	0.02631	0.11734	0.23459
67	Midwest	Male	15	No	0.14583	0.04241	0.08054	0.24967
68	Midwest	Male	15	Yes	0.17953	0.02561	0.12951	0.24347
69	Midwest	Male	16	No	0.24965	0.06037	0.15033	0.38489
70	Midwest	Male	16	Yes	0.20116	0.03048	0.14187	0.27721
71	Midwest	Male	17	No	0.21152	0.06481	0.11131	0.36490
72	Midwest	Male	17	Yes	0.23741	0.05816	0.13243	0.38835
73	Northeast	Female	0	No	0.00000	0.00000	0.00000	0.00000
74	Northeast	Female	0	Yes	0.06807	0.06565	0.00670	0.44174
75	Northeast	Female	1	No	0.12262	0.07443	0.03476	0.35164
76	Northeast	Female	1	Yes	0.07219	0.03765	0.02088	0.22109
77	Northeast	Female	2	No	0.07217	0.03707	0.02561	0.18713
78	Northeast	Female	2	Yes	0.07522	0.02212	0.03764	0.14468
79	Northeast	Female	3	No	0.08550	0.03991	0.03324	0.20269
80	Northeast	Female	3	Yes	0.07709	0.02021	0.04162	0.13840
81	Northeast	Female	4	No	0.08704	0.03804	0.03596	0.19592
82	Northeast	Female	4	Yes	0.08171	0.02252	0.04269	0.15080
83	Northeast	Female	5	No	0.07597	0.03754	0.02801	0.18998
84	Northeast	Female	5	Yes	0.11603	0.03012	0.06258	0.20515
85	Northeast	Female	6	No	0.19149	0.06960	0.08937	0.36372
86	Northeast	Female	6	Yes	0.16106	0.03737	0.09219	0.26629
87	Northeast	Female	7	No	0.22034	0.07076	0.11195	0.38783

Obs	Region	Gender	Age	Smoothed	Prevalence	Std Error	95 % Conf Interval – Lower Bound	95 % Conf Interval – Upper Bound
88	Northeast	Female	7	Yes	0.18503	0.04087	0.10844	0.29764
89	Northeast	Female	8	No	0.11002	0.05128	0.04241	0.25654
90	Northeast	Female	8	Yes	0.17054	0.04039	0.09628	0.28407
91	Northeast	Female	9	No	0.17541	0.07488	0.07159	0.36981
92	Northeast	Female	9	Yes	0.14457	0.03538	0.08042	0.24618
93	Northeast	Female	10	No	0.12980	0.04964	0.05930	0.26087
94	Northeast	Female	10	Yes	0.13487	0.03098	0.07799	0.22319
95	Northeast	Female	11	No	0.15128	0.05287	0.07366	0.28547
96	Northeast	Female	11	Yes	0.14072	0.03068	0.08367	0.22704
97	Northeast	Female	12	No	0.11890	0.04426	0.05568	0.23597
98	Northeast	Female	12	Yes	0.16615	0.03375	0.10211	0.25877
99	Northeast	Female	13	No	0.22638	0.06285	0.12650	0.37158
100	Northeast	Female	13	Yes	0.17374	0.03402	0.10861	0.26626
101	Northeast	Female	14	No	0.15807	0.05513	0.07694	0.29719
102	Northeast	Female	14	Yes	0.15137	0.02946	0.09519	0.23220
103	Northeast	Female	15	No	0.07460	0.03409	0.02971	0.17506
104	Northeast	Female	15	Yes	0.14564	0.02761	0.09279	0.22127
105	Northeast	Female	16	No	0.13603	0.05328	0.06081	0.27686
106	Northeast	Female	16	Yes	0.14601	0.03095	0.08805	0.23241
107	Northeast	Female	17	No	0.19074	0.07382	0.08451	0.37568
108	Northeast	Female	17	Yes	0.15662	0.05374	0.06784	0.32151
109	Northeast	Male	0	No	0.03904	0.03829	0.00547	0.23095
110	Northeast	Male	0	Yes	0.04768	0.03299	0.00991	0.20023
111	Northeast	Male	1	No	0.05533	0.03425	0.01596	0.17461
112	Northeast	Male	1	Yes	0.04564	0.01831	0.01850	0.10821
113	Northeast	Male	2	No	0.05525	0.03119	0.01781	0.15872
114	Northeast	Male	2	Yes	0.05161	0.01505	0.02680	0.09709
115	Northeast	Male	3	No	0.03842	0.02923	0.00840	0.15853
116	Northeast	Male	3	Yes	0.06766	0.01784	0.03734	0.11955
117	Northeast	Male	4	No	0.07436	0.02906	0.03393	0.15522

Obs	Region	Gender	Age	Smoothed	Prevalence	Std Error	95 % Conf Interval – Lower Bound	95 % Conf Interval – Upper Bound
118	Northeast	Male	4	Yes	0.09964	0.02330	0.05859	0.16441
119	Northeast	Male	5	No	0.17601	0.04519	0.10393	0.28234
120	Northeast	Male	5	Yes	0.14854	0.02948	0.09428	0.22623
121	Northeast	Male	6	No	0.23271	0.09319	0.09832	0.45756
122	Northeast	Male	6	Yes	0.20731	0.04235	0.12875	0.31640
123	Northeast	Male	7	No	0.13074	0.05195	0.05785	0.26922
124	Northeast	Male	7	Yes	0.22820	0.04524	0.14338	0.34311
125	Northeast	Male	8	No	0.33970	0.08456	0.19726	0.51855
126	Northeast	Male	8	Yes	0.22240	0.04298	0.14157	0.33157
127	Northeast	Male	9	No	0.13761	0.05024	0.06507	0.26785
128	Northeast	Male	9	Yes	0.21238	0.04071	0.13589	0.31617
129	Northeast	Male	10	No	0.21785	0.06659	0.11464	0.37465
130	Northeast	Male	10	Yes	0.17652	0.03731	0.10824	0.27460
131	Northeast	Male	11	No	0.11448	0.05849	0.04005	0.28601
132	Northeast	Male	11	Yes	0.16617	0.03516	0.10200	0.25907
133	Northeast	Male	12	No	0.17736	0.05489	0.09349	0.31067
134	Northeast	Male	12	Yes	0.18279	0.03589	0.11611	0.27581
135	Northeast	Male	13	No	0.19837	0.05450	0.11222	0.32635
136	Northeast	Male	13	Yes	0.17078	0.03078	0.11288	0.25000
137	Northeast	Male	14	No	0.16201	0.04973	0.08618	0.28386
138	Northeast	Male	14	Yes	0.17033	0.02889	0.11547	0.24408
139	Northeast	Male	15	No	0.11894	0.04584	0.05417	0.24139
140	Northeast	Male	15	Yes	0.18246	0.02858	0.12740	0.25438
141	Northeast	Male	16	No	0.24306	0.05798	0.14759	0.37326
142	Northeast	Male	16	Yes	0.20406	0.03216	0.14187	0.28447
143	Northeast	Male	17	No	0.22559	0.06980	0.11748	0.38930
144	Northeast	Male	17	Yes	0.24185	0.06066	0.13291	0.39898
145	South	Female	0	No	0.02459	0.01116	0.01002	0.05906
146	South	Female	0	Yes	0.03407	0.01282	0.01465	0.07723
147	South	Female	1	No	0.08869	0.03373	0.04118	0.18067

Obs	Region	Gender	Age	Smoothed	Prevalence	Std Error	95 % Conf Interval – Lower Bound	95 % Conf Interval – Upper Bound
148	South	Female	1	Yes	0.05182	0.01167	0.03127	0.08472
149	South	Female	2	No	0.05097	0.02373	0.02012	0.12319
150	South	Female	2	Yes	0.07110	0.01386	0.04584	0.10869
151	South	Female	3	No	0.08717	0.03240	0.04122	0.17500
152	South	Female	3	Yes	0.08759	0.01718	0.05624	0.13394
153	South	Female	4	No	0.11010	0.03209	0.06113	0.19035
154	South	Female	4	Yes	0.09897	0.01914	0.06387	0.15025
155	South	Female	5	No	0.09409	0.02943	0.05015	0.16968
156	South	Female	5	Yes	0.11870	0.02157	0.07855	0.17548
157	South	Female	6	No	0.15318	0.04317	0.08611	0.25777
158	South	Female	6	Yes	0.12150	0.02282	0.07925	0.18182
159	South	Female	7	No	0.09608	0.03538	0.04565	0.19105
160	South	Female	7	Yes	0.11192	0.02171	0.07204	0.16985
161	South	Female	8	No	0.09955	0.03288	0.05111	0.18493
162	South	Female	8	Yes	0.09287	0.01897	0.05850	0.14436
163	South	Female	9	No	0.07477	0.02719	0.03606	0.14864
164	South	Female	9	Yes	0.09117	0.01786	0.05855	0.13929
165	South	Female	10	No	0.10602	0.03214	0.05750	0.18732
166	South	Female	10	Yes	0.10821	0.02026	0.07077	0.16201
167	South	Female	11	No	0.14411	0.04267	0.07875	0.24907
168	South	Female	11	Yes	0.13237	0.02251	0.08989	0.19071
169	South	Female	12	No	0.12646	0.02981	0.07860	0.19723
170	South	Female	12	Yes	0.12346	0.02004	0.08543	0.17519
171	South	Female	13	No	0.11376	0.03270	0.06365	0.19510
172	South	Female	13	Yes	0.09653	0.01717	0.06458	0.14190
173	South	Female	14	No	0.02915	0.01339	0.01174	0.07054
174	South	Female	14	Yes	0.09469	0.01619	0.06436	0.13721
175	South	Female	15	No	0.11985	0.03357	0.06801	0.20259
176	South	Female	15	Yes	0.09988	0.01586	0.06978	0.14099
177	South	Female	16	No	0.14183	0.03685	0.08366	0.23028

Obs	Region	Gender	Age	Smoothed	Prevalence	Std Error	95 % Conf Interval – Lower Bound	95 % Conf Interval – Upper Bound
178	South	Female	16	Yes	0.11501	0.01620	0.08365	0.15612
179	South	Female	17	No	0.13141	0.03007	0.08280	0.20226
180	South	Female	17	Yes	0.14466	0.02946	0.09067	0.22291
181	South	Male	0	No	0.01164	0.00852	0.00275	0.04790
182	South	Male	0	Yes	0.04132	0.01867	0.01487	0.10956
183	South	Male	1	No	0.10465	0.03216	0.05629	0.18635
184	South	Male	1	Yes	0.06981	0.01623	0.04125	0.11576
185	South	Male	2	No	0.11644	0.03486	0.06353	0.20382
186	South	Male	2	Yes	0.10189	0.01672	0.07024	0.14557
187	South	Male	3	No	0.10794	0.03253	0.05874	0.19005
188	South	Male	3	Yes	0.12852	0.02139	0.08793	0.18405
189	South	Male	4	No	0.08480	0.02973	0.04190	0.16410
190	South	Male	4	Yes	0.14393	0.02379	0.09861	0.20534
191	South	Male	5	No	0.22243	0.04227	0.15052	0.31592
192	South	Male	5	Yes	0.16450	0.02373	0.11821	0.22430
193	South	Male	6	No	0.13908	0.03392	0.08485	0.21964
194	South	Male	6	Yes	0.16386	0.02460	0.11613	0.22617
195	South	Male	7	No	0.10695	0.04272	0.04747	0.22347
196	South	Male	7	Yes	0.13329	0.02322	0.08951	0.19392
197	South	Male	8	No	0.13660	0.03841	0.07712	0.23049
198	South	Male	8	Yes	0.13818	0.02276	0.09484	0.19702
199	South	Male	9	No	0.15978	0.03742	0.09920	0.24720
200	South	Male	9	Yes	0.16839	0.02450	0.12062	0.23012
201	South	Male	10	No	0.21482	0.04702	0.13676	0.32086
202	South	Male	10	Yes	0.17848	0.02453	0.13021	0.23972
203	South	Male	11	No	0.15078	0.03440	0.09492	0.23112
204	South	Male	11	Yes	0.16247	0.02224	0.11881	0.21820
205	South	Male	12	No	0.13727	0.03260	0.08489	0.21438
206	South	Male	12	Yes	0.14480	0.01976	0.10610	0.19453
207	South	Male	13	No	0.14136	0.03119	0.09049	0.21409

Obs	Region	Gender	Age	Smoothed	Prevalence	Std Error	95 % Conf Interval – Lower Bound	95 % Conf Interval – Upper Bound
208	South	Male	13	Yes	0.14318	0.01928	0.10537	0.19165
209	South	Male	14	No	0.16110	0.03444	0.10438	0.24037
210	South	Male	14	Yes	0.15339	0.01875	0.11612	0.19992
211	South	Male	15	No	0.16172	0.03519	0.10394	0.24291
212	South	Male	15	Yes	0.15088	0.01746	0.11598	0.19398
213	South	Male	16	No	0.15836	0.03879	0.09614	0.24974
214	South	Male	16	Yes	0.14038	0.01773	0.10533	0.18467
215	South	Male	17	No	0.11156	0.02737	0.06810	0.17746
216	South	Male	17	Yes	0.12247	0.02596	0.07537	0.19286
217	West	Female	0	No	0.00983	0.00990	0.00135	0.06802
218	West	Female	0	Yes	0.01318	0.00987	0.00248	0.06700
219	West	Female	1	No	0.02367	0.01862	0.00497	0.10522
220	West	Female	1	Yes	0.03105	0.01312	0.01204	0.07769
221	West	Female	2	No	0.08097	0.03759	0.03170	0.19166
222	West	Female	2	Yes	0.05440	0.01482	0.02948	0.09825
223	West	Female	3	No	0.07528	0.03851	0.02679	0.19404
224	West	Female	3	Yes	0.07444	0.01842	0.04257	0.12701
225	West	Female	4	No	0.09263	0.03196	0.04621	0.17703
226	West	Female	4	Yes	0.07696	0.02064	0.04194	0.13701
227	West	Female	5	No	0.01976	0.01347	0.00513	0.07302
228	West	Female	5	Yes	0.07737	0.02123	0.04157	0.13949
229	West	Female	6	No	0.15792	0.07301	0.06009	0.35487
230	West	Female	6	Yes	0.07298	0.01985	0.03947	0.13107
231	West	Female	7	No	0.06955	0.02567	0.03321	0.13989
232	West	Female	7	Yes	0.08146	0.01987	0.04691	0.13776
233	West	Female	8	No	0.07753	0.02825	0.03731	0.15417
234	West	Female	8	Yes	0.09062	0.01994	0.05507	0.14558
235	West	Female	9	No	0.13440	0.04481	0.06802	0.24832
236	West	Female	9	Yes	0.10215	0.02347	0.06061	0.16709
237	West	Female	10	No	0.06573	0.03719	0.02102	0.18736

Obs	Region	Gender	Age	Smoothed	Prevalence	Std Error	95 % Conf Interval – Lower Bound	95 % Conf Interval – Upper Bound
238	West	Female	10	Yes	0.12152	0.02660	0.07376	0.19374
239	West	Female	11	No	0.15354	0.04584	0.08329	0.26584
240	West	Female	11	Yes	0.12719	0.02688	0.07852	0.19950
241	West	Female	12	No	0.10120	0.03594	0.04934	0.19631
242	West	Female	12	Yes	0.13054	0.02498	0.08440	0.19650
243	West	Female	13	No	0.14759	0.04125	0.08346	0.24769
244	West	Female	13	Yes	0.11968	0.02369	0.07629	0.18284
245	West	Female	14	No	0.08748	0.03284	0.04105	0.17675
246	West	Female	14	Yes	0.11063	0.02132	0.07145	0.16744
247	West	Female	15	No	0.10099	0.03841	0.04674	0.20471
248	West	Female	15	Yes	0.11236	0.02051	0.07428	0.16645
249	West	Female	16	No	0.12538	0.04343	0.06188	0.23755
250	West	Female	16	Yes	0.12224	0.02210	0.08108	0.18021
251	West	Female	17	No	0.14672	0.04582	0.07743	0.26052
252	West	Female	17	Yes	0.14371	0.03992	0.07558	0.25621
253	West	Male	0	No	0.00000	0.00000	0.00000	0.00000
254	West	Male	0	Yes	0.03075	0.02534	0.00437	0.18642
255	West	Male	1	No	0.05457	0.02662	0.02056	0.13695
256	West	Male	1	Yes	0.04584	0.01889	0.01729	0.11595
257	West	Male	2	No	0.07833	0.02789	0.03833	0.15342
258	West	Male	2	Yes	0.06254	0.01442	0.03627	0.10573
259	West	Male	3	No	0.05897	0.02530	0.02500	0.13281
260	West	Male	3	Yes	0.07844	0.01913	0.04398	0.13607
261	West	Male	4	No	0.07267	0.03354	0.02870	0.17208
262	West	Male	4	Yes	0.09122	0.02482	0.04765	0.16763
263	West	Male	5	No	0.19732	0.10033	0.06632	0.45969
264	West	Male	5	Yes	0.11262	0.02937	0.06021	0.20092
265	West	Male	6	No	0.13335	0.04859	0.06322	0.25970
266	West	Male	6	Yes	0.12119	0.02916	0.06799	0.20680
267	West	Male	7	No	0.08881	0.03493	0.04015	0.18508

Obs	Region	Gender	Age	Smoothed	Prevalence	Std Error	95 % Conf Interval – Lower Bound	95 % Conf Interval – Upper Bound
268	West	Male	7	Yes	0.12691	0.02806	0.07464	0.20758
269	West	Male	8	No	0.15183	0.05484	0.07210	0.29200
270	West	Male	8	Yes	0.13161	0.02705	0.08037	0.20811
271	West	Male	9	No	0.17199	0.05164	0.09260	0.29715
272	West	Male	9	Yes	0.15079	0.02837	0.09590	0.22915
273	West	Male	10	No	0.12897	0.03747	0.07151	0.22159
274	West	Male	10	Yes	0.16356	0.02584	0.11192	0.23279
275	West	Male	11	No	0.19469	0.04002	0.12785	0.28505
276	West	Male	11	Yes	0.16965	0.02623	0.11699	0.23956
277	West	Male	12	No	0.13214	0.04542	0.06547	0.24865
278	West	Male	12	Yes	0.17494	0.02738	0.12002	0.24792
279	West	Male	13	No	0.19947	0.04814	0.12127	0.31029
280	West	Male	13	Yes	0.16217	0.02773	0.10747	0.23732
281	West	Male	14	No	0.10759	0.03838	0.05220	0.20880
282	West	Male	14	Yes	0.16487	0.02644	0.11214	0.23582
283	West	Male	15	No	0.18459	0.05348	0.10138	0.31235
284	West	Male	15	Yes	0.17018	0.02480	0.11996	0.23578
285	West	Male	16	No	0.19757	0.04862	0.11892	0.30993
286	West	Male	16	Yes	0.17888	0.02540	0.12718	0.24569
287	West	Male	17	No	0.18078	0.04735	0.10548	0.29227
288	West	Male	17	Yes	0.19218	0.04291	0.11118	0.31153

ATTACHMENT 3: TECHNICAL MEMORANDUM ON LONGITUDINAL DIARY CONSTRUCTION APPROACH

TECHNICAL MEMORANDUM

TO: Stephen Graham and John Langstaff, US EPA

FROM: Arlene Rosenbaum **DATE:** February 29, 2008

SUBJECT: The Cluster-Markov algorithm in APEX

Background

The goals of population exposure assessment generally include an accurate estimate of both the average exposure concentration and the high end of the exposure distribution. One of the factors influencing the number of exposures at the high end of the concentration distribution is time-activity patterns that differ from the average, e.g., a disproportionate amount of time spent near roadways. Whether a model represents these exposure scenarios well depends on whether the treatment of activity pattern data accurately characterizes differences among individuals.

Human time-activity data for population exposure models are generally derived from demographic surveys of individuals' daily activities, the amount of time spent engaged in those activities, and the ME locations where the activities occur. Typical time-activity pattern data available for inhalation exposure modeling consist of a sequence of location/activity combinations spanning a 24-hour duration, with 1 to 3 records for any single individual. But modeling assessments of exposure to air pollutants typically require information on activity patterns over long periods of time, e.g., a full year. For example, even for pollutant health effects with short averaging times (e.g., ozone 8-hour average) it may be desirable to know the frequency of exceedances of a threshold concentration over a long period of time (e.g., the annual number of exceedances of an 8-hour average ozone concentration of 0.07 ppm for each simulated individual).

Long-term activity patterns can be estimated from daily ones by combining the daily records in various ways, and the method used for combining them will influence the variability of the long-term activity patterns across the simulated population. This in turn will influence the ability of the model to accurately represent either long-term average high-end exposures, or the number of individuals exposed multiple times to short-term high-end concentrations.

A common approach for constructing long-term activity patterns from short-term records is to re-select a daily activity pattern from the pool of data for each day, with the implicit assumption that there is no correlation between activities from day to day for the simulated individual. This approach tends to result in long-term activity patterns that are very similar across the simulated population. Thus, the resulting exposure estimates are likely to

underestimate the variability across the population, and therefore, underestimate the high-end concentrations.

A contrasting approach is to select a single activity pattern (or a single pattern for each season and/or weekday-weekend) to represent a simulated individual's activities over the modeling period. This approach has the implicit assumption that an individual's day to day activities are perfectly correlated. This approach tends to result in long-term activity patterns that are very different across the simulated population, and therefore may over-estimate the variability across the population.

The Cluster-Markov Algorithm

Recently, a new algorithm has been developed and incorporated into APEX that attempts to more realistically represent the day-to-day correlation of activities for individuals. The algorithms first use cluster analysis to divide the daily activity pattern records into groups that are similar, and then select a single daily record from each group. This limited number of daily patterns is then used to construct a long-term sequence for a simulated individual, based on empirically-derived transition probabilities. This approach is intermediate between the assumption of no day-to-day correlation (i.e., re-selection for each time period) and perfect correlation (i.e., selection of a single daily record to represent all days).

The steps in the algorithm are as follows.

- For each demographic group (age, gender, employment status), temperature range, and day-of-week combination, the associated time-activity records are partitioned into 3 groups using cluster analysis. The clustering criterion is a vector of 5 values: the time spent in each of 5 microenvironment categories (indoors residence; indoors other building; outdoors near road; outdoors away from road; in vehicle).
- For each simulated individual, a single time-activity record is randomly selected from each cluster.
- Next the Markov process determines the probability of a given time-activity pattern
 occurring on a given day based on the time-activity pattern of the previous day and
 cluster-to-cluster transition probabilities. The cluster-to-cluster transition
 probabilities are estimated from the available multi-day time-activity records. (If
 insufficient multi-day time-activity records are available for a demographic group,
 season, day-of-week combination, then the cluster-to-cluster transition probabilities
 are estimated from the frequency of time-activity records in each cluster in the CHAD
 data base.).

Figure 1 illustrates the Cluster-Markov algorithm in flow chart format.

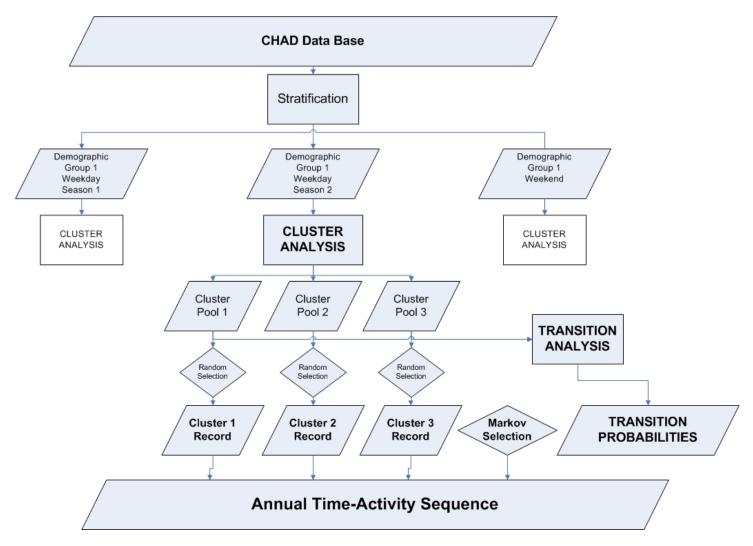


Figure 1. Flow chart of Cluster-Markov algorithm used for constructing longitudinal time-activity diaries.

Evaluation of modeled diary profiles versus observed diary profiles

The Cluster-Markov algorithm is also incorporated into the Hazardous Air Pollutant Exposure Model (HAPEM). Rosebaum and Cohen (2004) incorporated the algorithm in HAPEM and tested modeled longitudinal profiles with multi-day diary data sets collected as part of the Harvard Southern California Chronic Ozone Exposure Study (Xue et al. 2005, Geyh et al. 2000). In this study, 224 children in ages between 7 and 12 yr were followed for 1 year from June 1995 to May 1996, for 6 consecutive days each month. The subjects resided in two separate areas of San Bernardino County: urban Upland CA, and the small mountain towns of Lake Arrowhead, Crestline, and Running Springs, CA.

For purposes of clustering the activity pattern records were characterized according to time spent in each of 5 aggregate microenvironments: indoors-home, indoors-school, indoors-other, outdoors, and in-transit. For purposes of defining diary pools and for clustering and calculating transition probabilities the activity pattern records were divided by day type (i.e., weekday, weekend), season (i.e., summer or ozone season, non-summer or non-ozone season), age (7-10 and 11-12), and gender.

Week-long sequences (Wednesday through Tuesday) for each of 100 people in each age/gender group for each season were simulated. To evaluate the algorithm the following statistics were calculated for the predicted multi-day activity patterns and compared them with the actual multi-day diary data.

- For each age/gender group for each season, the average time in each microenvironment
- For each simulated person-week and microenvironment, the average of the within-person variance across all simulated persons. (The within-person variance was defined as the variance of the total time per day spent in the microenvironment across the week.)
- For each simulated person-week the variance across persons of the mean time spent in each microenvironment.

In each case the predicted statistic for the stratum was compared to the statistic for the corresponding stratum in the actual diary data. The mean normalized bias for the statistic, which is a common performance measure used in dispersion model performance and was also calculated as follows.

$$NBIAS = \frac{100}{N} \sum_{1}^{N} \frac{(predicted - observed)}{observed}$$

The predicted time-in-microenvironment averages matched well with the observed values. For combinations of microenvironment/age/gender/season the normalized bias ranges from -35% to +41%. Sixty percent of the predicted averages have bias between -9% and +9%, and the mean bias across any microenvironment ranges from -9% to +4%. Fourteen predictions have positive bias and 23 have negative bias.

For the variance across persons for the average time spent in each microenvironment, the bias ranged from -40% to +120% for any microenvironment/age/gender/season. Sixty-five percent of the predicted variances had bias between -22% and +24%. The mean normalized bias across any microenvironment ranged from -10% to +28%. Eighteen predictions had positive bias and 20 had negative bias.

For the within-person variance for time spent in each microenvironment, the bias ranged from -47% to +150% for any microenvironment/age/gender/season. Seventy percent of the predicted variances had bias between -25% and +30%. The mean normalized bias across any microenvironment ranged from -11% to +47%. Twenty-eight predictions had positive bias and 12 had negative bias, suggesting some tendency for overprediction of this variance measure.

The overall conclusion was that the proposed algorithm appeared to be able to replicate the observed data reasonably well. Although some discrepancies were rather large for some of the "variance across persons" and "within-person variance" subsets, about two-thirds of the predictions for each case were within 30% of the observed value. A detailed description of the evaluation using HAPEM is presented in Attachment 4.

Comparison of Cluster-Markov approach with other algorithms

As part of the application of APEX in support of US EPA's recent review of the ozone NAAQS several sensitivity analyses were conducted (US EPA, 2007). One of these was to make parallel simulations using each of the three algorithms for constructing multi-day time-activity sequences that are incorporated into APEX.

Table 1 presents the results for the number of persons in Atlanta population groups with moderate exertion exposed to 8-hour average concentrations exceeding 0.07 ppm. The results show that the predictions made with alternative algorithm Cluster-Markov algorithm are substantially different from those made with simple re-sampling or with the Diversity-Autocorrelation algorithm ("base case"). Note that for the cluster algorithm approximately 30% of the individuals with 1 or more exposure have 3 or more exposures. The corresponding values for the other algorithms range from about 13% to 21%.

Table 2 presents the results for the mean and standard deviation of number of days/person with 8-hour average exposures exceeding 0.07 ppm with moderate or greater exertion. The results show that although the mean for the Cluster-Markov algorithm is similar to the other approaches, the standard deviation is substantially higher, i.e., the Cluster-Markov algorithm results in substantially higher inter-individual variability.

Table 1. Sensitivity to longitudinal diary algorithm: 2002 simulated counts of Atlanta general population and children (ages 5-18) with any or three or more 8-hour ozone exposures above 0.07 ppm concomitant with moderate or greater exertion (after US EPA 2007).

	One	or more exposur	Three or more exposures			
Population Group	Simple re-sampling	Diversity- Autocorrelation	Cluster- Markov	Simple re-sampling	Diversity- Autocorrelation	Cluster- Markov
General Population	979,533	939,663 (-4%)	668,004 (-32%)	124,687	144,470 (+16%)	188,509 (+51%)
Children (5-18)	411,429	389,372 (-5%)	295,004 (-28%)	71,174	83,377 (+17%)	94,216 (+32%)

Table 2. Sensitivity to longitudinal diary algorithm: 2002 days per person with 8-hour ozone exposures above 0.07 ppm concomitant with moderate or greater exertion for Atlanta general population and children (ages 5-18) (after US EPA 2007).

	Me	ean Days/Pers	on	Standard Deviation			
Population Group	Simple re-sampling	Base case	Cluster- Markov	Simple re- sampling	Base case	Cluster- Markov	
General Population	0.332	0.335 (+1%)	0.342 (+3%)	0.757	0.802 (+6%)	1.197 (+58%)	
Children (5-18)	0.746	0.755 (+1%)	0.758 (+2%)	1.077	1.171 (+9%)	1.652 (+53%)	

References

- Geyh AS, Xue J, Ozkaynak H, Spengler JD. (2000). The Harvard Southern California chronic ozone exposure study: Assessing ozone exposure of grade-school-age children in two Southern California communities. *Environ Health Persp.* 108:265-270.
- Rosenbaum AS and Cohen JP. (2004). Evaluation of a multi-day activity pattern algorithm for creating longitudinal activity patterns. Memorandum prepared for Ted Palma, US EPA OAQPS, by ICF International.
- US EPA. (2007). Ozone Population Exposure Analysis for Selected Urban Areas. EPA-452/R-07-010. Available at:
 - http://www.epa.gov/ttn/naaqs/standards/ozone/data/2007-01_o3_exposure_tsd.pdf.
- Xue J, Liu SV, Ozkaynak H, Spengler J. (2005). Parameter evaluation and model validation of ozone exposure assessment using Harvard Southern California Chronic Ozone Exposure Study Data. *J. Air & Waste Manage Assoc.* 55:1508–1515.

ATTACHMENT 4: TECHNICAL MEMORANDUM ON THE EVALUATION CLUSTER-MARKOV ALGORITHM

TECHNICAL MEMORANDUM

TO: Ted Palma, US EPA

FROM: Arlene Rosenbaum and Jonathan Cohen, ICF Consulting

DATE: November 4, 2004

SUBJECT: Evaluation of a multi-day activity pattern algorithm for creating longitudinal

activity patterns.

BACKGROUND

In previous work ICF reviewed the HAPEM4 modeling approach for developing annual average activity patterns from the CHAD database and recommended an approach to improve the model's pattern selection process to better represent the variability among individuals. This section summarizes the recommended approach. (For details see Attachment 3)

Using cluster analysis, first the CHAD daily activity patterns are grouped into either two or three categories of similar patterns for each of the 30 combinations of day type (summer weekday, non-summer weekday, and weekend) and demographic group (males or females; age groups: 0-4, 5-11, 12-17, 18-64, 65+). Next, for each combination of day type and demographic group, category-to-category transition probabilities are defined by the relative frequencies of each second-day category associated with each given first-day category, where the same individual was observed for two consecutive days. (Consecutive day activity pattern records for a single individual constitute a small subset of the CHAD data.)

To implement the proposed algorithm, for each day type and demographic group, one daily activity pattern per category is randomly selected from the corresponding CHAD data to represent that category. That is, if there are 3 cluster categories for each of 3 day types, 9 unique activity patterns are selected to be averaged together to create an annual average activity pattern to represent an individual in a given demographic group and census tract.

The weighting for each of the 9 activity patterns used in the averaging process is determined by the product of two factors. The first is the relative frequency of its day type, i.e., 0.18 for summer weekdays, 0.54 for non-summer weekdays, and 0.28 for weekends.

The second factor in the weighting for the selected activity pattern is determined by simulating a sequence of category-types as a one-stage Markov chain process using the transition probabilities. The category for the first day is selected according to the relative frequencies of each category. The category for the second day is selected according to the category-to-category transition probabilities for the category selected for the first day. The category for the third day is selected according to the transition probabilities for the category

selected for the second day. This is repeated for all days in the day type (65 for summer weekdays, 195 for non-summer weekdays, 104 for weekends), producing a sequence of daily categories. The relative frequency of the category-type in the sequence associated with the selected activity pattern is the second factor in the weighting.

PROPOSED ALGORITHM STEPS

The proposed algorithm is summarized in Figure 1. Each step is explained in this section.

Data Preparation

<u>Step 1</u>: Each daily activity pattern in the CHAD data base is summarized by the total minutes in each of five micro-environments: indoors – residence; indoors – other building; outdoors – near road; outdoors – away from road; in vehicle. These five numbers are assumed to represent the most important features of the activity pattern for their exposure impact.

<u>Step 2:</u> All CHAD activity patterns for a given day-type and demographic group are subjected to cluster analysis, resulting in 2 or 3 cluster categories. Each daily activity pattern is tagged with a cluster category.

<u>Step 3:</u> For each day-type and demographic group, the relative frequency of each day-type in the CHAD data base is determined.

Step 4: All CHAD activity patterns for a given day-type and demographic group that are consecutive days for a single individual, are analyzed to determine the category-to-category transition frequencies in the CHAD data base. These transition frequencies are used to calculate category-to-category transition probabilities.

For example, if there are 2 categories, A and B, then

 P_{AA} = the probability that a type A pattern is followed by a type A pattern,

 P_{AB} = the probability that a type A pattern is followed by a type B pattern (P_{AB} = $1 - P_{AA}$),

P_{BB} = the probability that a type B pattern is followed by a type B pattern, and

 P_{BA} = the probability that a type B pattern is followed by a type A pattern (P_{BA} = $1 - P_{BB}$).

Activity Pattern Selection

For each day-type and demographic group in each census tract:

<u>Step 5:</u> One activity pattern is randomly selected from each cluster category group (i.e., 2 to 3 activity patterns)

Creating Weights for Day-type Averaging

For each day-type and demographic group in each census tract:

- <u>Step 6:</u> A cluster category is selected for the first day of the day-type sequence, according to the relative frequency of the cluster category days in the CHAD data set.
- <u>Step 7:</u> A cluster category is selected for each subsequent day in the day-type sequence day by day using the category-to-category transition probabilities.
- <u>Step 8:</u> The relative frequency of each cluster category in the day-type sequence is determined.
- <u>Step 9:</u> The activity patterns selected for each cluster category (Step 5) are averaged together using the cluster category frequencies (Step 8) as weights, to create a day-type average activity pattern.

Creating Annual Average Activity Patterns

For each demographic group in each census tract:

<u>Step 10:</u> The day-type average activity patterns are averaged together using the relative frequency of day-types as weights, to create an annual average activity pattern.

Creating Replicates

For each demographic group in each census tract:

<u>Step 11:</u> Steps 5 through 10 are repeated 29 times to create 30 annual average activity patterns.

EVALUATING THE ALGORITHM

The purpose of this study is to evaluate how well the proposed one-stage Markov chain algorithm can reproduce observed multi-day activity patterns with respect to demographic group means and inter-individual variability, while using one-day selection.

In order to accomplish this we propose to apply the algorithm to observed multi-day activity patterns provided by the WAM, and compare the means and variances of the predicted multi-day patterns with the observed patterns.

Current APEX Algorithm

Because the algorithm is being considered for incorporation into APEX, we would like the evaluation to be consistent with the approach taken in APEX for selection of activity patterns for creating multi-day sequences. The APEX approach for creating multi-day activity sequences is as follows.

Step1: A profile for a simulated individual is generated by selection of gender, age group, and home sector from a given set of distributions consistent with the population of the study area.

Step 2: A specific age within the age group is selected from a uniform distribution.

Step 3: The employment status is simulated as a function of the age.

Step 4: For each simulated day, the user defines an initial pool of possible diary days based on a user-specified function of the day type (e.g., weekday/weekend) and temperature.

Step 5: The pool is further restricted to match the target gender and employment status exactly and the age within 2A years for some parameter A. The diary days within the pool are assigned a weight of 1 if the age is within A years of the target age and a weight of w (user-defined parameter) if the age difference is between A and 2A years. For each simulated day, the probability of selecting a given diary day is equal to the age weight divided by the total of the age weights for all diary days in the pool for that day.

Approach to Incorporation of Day-to-Day Dependence into APEX Algorithm

If we were going to incorporate day-to-day dependence of activity patterns into the APEX model, we would propose preparing the data with cluster analysis and transition probabilities as described in Steps 1-4 for the proposed HAPEM 5 algorithm, with the following modifications.

- For Step 2 the activity patterns would be divided into groups based on day-type (weekday, weekend), temperature, gender, employment status, and age, with cluster analysis applied to each group. However, because the day-to-day transitions in the APEX activity selection algorithm can cross temperature bins, we would propose to use broad temperature bins for the clustering and transition probability calculations so that the cluster definitions would be fairly uniform across temperature bins. Thus we would probably define the bins according to season (e.g., summer, non-summer).
- In contrast to HAPEM, the sequence of activity patterns may be important in APEX. Therefore, for Step 4 transition probabilities would be specified for transitions between days with the same day-type and season, as in HAPEM, and also between days with different day-types and/or seasons. For example, transition probabilities would be specified for transitions between summer weekdays of each category and summer weekends of each category.

Another issue for dividing the CHAD activity records for the purposes of clustering and calculating transition probabilities is that the diary pools specified for the APEX activity selection algorithm use varying and overlapping age ranges. One way to address this problem would be to simply not include consideration of age in the clustering process, under the assumption that cluster categories are similar across age groups, even if the frequency of each cluster category varies by age group. This assumption could be tested by examination of the cluster categories stratified by age group that were developed for HAPEM5. If the assumption is found to be valid, then the cluster categories could be pre-determined for input

to APEX, while the transition probabilities could be calculated within APEX during the simulation for each age range specified for dairy pools.

If the assumption is found to be invalid, then an alternative approach could be implemented that would create overlapping age groups for purposes of clustering as follows. APEX age group ranges and age window percentages would be constrained to some maximum values. Then a set of overlapping age ranges that would be at least as large as the largest possible dairy pool age ranges would be defined for the purposes of cluster analysis and transition probability calculation. The resulting sets of cluster categories and transition probabilities would be pre-determined for input into APEX and the appropriate set used by APEX for each diary pool used during the simulation.

The activity pattern sequence selection would be implemented as follows. The activity pattern for first day in the year would be selected exactly as is currently done in APEX, as described above. For the selecting the second day's activity pattern, each age weight would be multiplied by the transition probability P_{AB} where A is the cluster for the first day's activity pattern and B is the cluster for a given activity pattern in the available pool of diary days for day 2. (Note that day 2 may be a different day-type and/or season than day 1). The probability of selecting a given diary day on day 2 is equal to the age weight times P_{AB} divided by the total of the products of age weight and P_{AB} for all diary days in the pool for day 2. Similarly, for the transitions from day 2 to day 3, day 3 to day 4, etc.

Testing the Approach with the Multi-day Data set

We tested this approach using the available multi-day data set. For purposes of clustering we characterized the activity pattern records according to time spent in each of 5 microenvironments: indoors-home, indoors-school, indoors-other, outdoors (aggregate of the 3 outdoor microenvironments), and in-transit.

For purposes of defining diary pools and for clustering and calculating transition probabilities we divided the activity pattern records by day type (i.e., weekday, weekend), season (i.e., summer or ozone season, non-summer or non-ozone season), age (6-10 and 11-12), and gender. Since all the subjects are 6-12 years of age and all are presumably unemployed, we need not account for differences in employment status. For each day type, season, age, and gender, we found that the activity patterns appeared to group in three clusters.

In this case, we simulated week-long sequences (Wednesday through Tuesday) for each of 100 people in each age/gender group for each season, using the transition probabilities. To evaluate the algorithm we calculated the following statistics for the predicted multi-day activity patterns for comparison with the actual multi-day diary data.

- For each age/gender group for each season, the average time in each microenvironment
- For each age/gender group, season, and microenvironment, the average of the within-person variance across all simulated persons (We defined the within-

person variance as the variance of the total time per day spent in the microenvironment across the week.)

For each age/gender group, season, and microenvironment, the variance across persons of the mean time spent in that microenvironment

In each case we compared the predicted statistic for the stratum to the statistic for the corresponding stratum in the actual diary data.5

We also calculated the mean normalized bias for the statistic, which is a common performance measure used in dispersion model performance and which is calculated as follows.

$$NBIAS = \frac{100}{N} \sum_{1}^{N} \frac{(predicted - observed)}{observed} \%$$

RESULTS

Comparisons of simulated and observed data for time in each of the 5 microenvironments are presented in Tables 1-3 and Figures 2-5.

Average Time in Microenvironment

Table 1 and Figure 2 show the comparisons for the average time spent in each of the 5 microenvironments for each age/gender group and season. Figure 3 shows the comparison for all the microenvironments except indoor, home in order to highlight the lower values.

Table 1 and the figures show that the predicted time-in-microenvironment averages match well with the observed values. For combinations of microenvironment/age/gender/season the normalized bias ranges from -35% to +41%. Sixty percent of the predicted averages have bias between -9% and +9%, and the mean bias across any microenvironment ranges from -9% to +4%. Fourteen predictions have positive bias and 23 have negative bias. A Wilcoxon signed rank test that the median bias across the 40 combinations = 0% was not significant (p-value = 0.40) supporting the conclusion of no overall bias.

Variance Across Persons

Table 2 and Figure 4 show the comparisons for the variance across persons for the average time spent in each microenvironment. In this case the bias ranges from -40% to +120% for any microenvironment/age/gender/season. Sixty-five percent of the predicted variances have bias between -22% and +24%. The mean normalized bias across any microenvironment ranges from -10% to +28%. Eighteen predictions have positive bias and 20 have negative bias. Figure 4 suggests a reasonably good match of predicted to observed

⁵ For the diary data, because the number of days per person varies, the average of the within-person variances was calculated as a weighted average, where the weight is the degrees of freedom, i.e., one less than the number of days simulated. Similarly, the variance across persons of the mean time was appropriately adjusted for the different degrees of freedom using analysis of variance.

variance in spite of 2 or 3 outliers. A Wilcoxon signed rank test that the median bias across the 40 combinations = 0 % was not significant (p-value = 0.93) supporting the conclusion of no overall bias.

Within-Person Variance for Persons

Table 3 and Figure 5 show the comparisons for the within-person variance for time spent in each microenvironment. In this case the bias ranges from –47% to +150% for any microenvironment/age/gender/season. Seventy percent of the predicted variances have bias between –25% and +30%. The mean normalized bias across any microenvironment ranges from –11% to +47%. Twenty-eight predictions have positive bias and 12 have negative bias, suggesting some tendency for overprediction of this variance measure. And indeed a Wilcoxon signed rank test that the median bias across the 40 combinations = 0 % was very significant (p-value = 0.01) showing that the within-person variance was significantly overpredicted. Still, Figure 4 suggests a reasonably good match of predicted to observed variance in most cases, with a few overpredicting outliers at the higher end of the distribution. So although the positive bias is significant in a statistical sense (i.e., the variance is more likely to be overpredicted than underpredicted), it is not clear whether the bias is large enough to be important.

CONCLUSIONS

The proposed algorithm appears to be able to replicate the observed data reasonably well, although the within-person variance is somewhat overpredicted.

It would be informative to compare this algorithm with the earlier alternative approaches in order to gain perspective on the degree of improvement, if any, afforded by this approach.

Two earlier approaches were:

- 1. Select a single activity pattern for each day-type/season combination from the appropriate set, and use that pattern for every day in the multi-day sequence that corresponds to that day-type and season.
- 2. Re-select an activity pattern for each day in the multi-day sequence from the appropriate set for the corresponding day-type and season.

Goodness-of-fit statistics could be developed to compare the three approaches and find which model best fits the data for a given stratum.

 Table 1. Average time spent in each microenvironment: comparison of predicted and observed.

Microenvironment	Demographic Group	Season	Observed (hours/day)	Predicted (hours/day)	Normalized Bias
Indoor, home	Girls, 6-10	Summer	15.5	16.5	6%
		Not Summer	15.8	15.5	-2%
	Boys, 6-10	Summer	15.7	15.2	-3%
		Not Summer	15.8	16.4	4%
	Girls, 11- 12	Summer	16.2	15.3	-5%
		Not Summer	16.5	16.5	0%
	Boys, 11- 12	Summer	16.0	15.6	-3%
		Not Summer	16.2	16.1	-1%
	MEAN				-1%
Indoor, school	Girls, 6-10	Summer	0.7	0.7	-9%
		Not Summer	2.3	2.5	7%
	Boys, 6-10	Summer	0.8	0.5	-34%
		Not Summer	2.2	2.2	0%
	Girls, 11- 12	Summer	0.7	0.7	6%
		Not Summer	2.1	2.4	13%
	Boys, 11- 12	Summer	0.6	0.9	38%
		Not Summer	2.4	2.7	11%
	MEAN				4%
Indoor, other	Girls, 6-10	Summer	2.9	2.4	-14%
		Not Summer	2.4	2.7	13%
	Boys, 6-10	Summer	2.2	2.7	21%
		Not Summer	1.9	1.8	-3%
	Girls, 11-	Summer	2.2	1.6	-25%

	12				
		Not Summer	2.2	2.1	-2%
	Boys, 11- 12	Summer	2.3	2.2	-5%
		Not Summer	1.9	2.0	4%
	MEAN				-2%
Outdoors	Girls, 6-10	Summer	3.7	3.5	-6%
		Not Summer	2.5	2.5	0%
	Boys, 6-10	Summer	4.1	4.3	4%
		Not Summer	3.1	2.7	-12%
	Girls, 11- 12	Summer	3.7	5.2	41%
		Not Summer	2.3	2.1	-5%
	Boys, 11- 12	Summer	3.9	4.3	9%
		Not Summer	2.6	2.4	-7%
	MEAN				3%
In-vehicle	Girls, 6-10	Summer	1.1	0.9	-20%
		Not Summer	1.0	0.9	-13%
	Boys, 6-10	Summer	1.1	1.3	13%
		Not Summer	1.0	0.9	-16%
	Girls, 11- 12	Summer	1.2	1.1	-12%
		Not Summer	0.9	0.8	-15%
	Boys, 11- 12	Summer	1.1	1.0	-5%
		Not Summer	0.9	0.8	-7%
	MEAN				-9%

Table 2. Variance across persons for time spent in each microenvironment: comparison of predicted and observed.

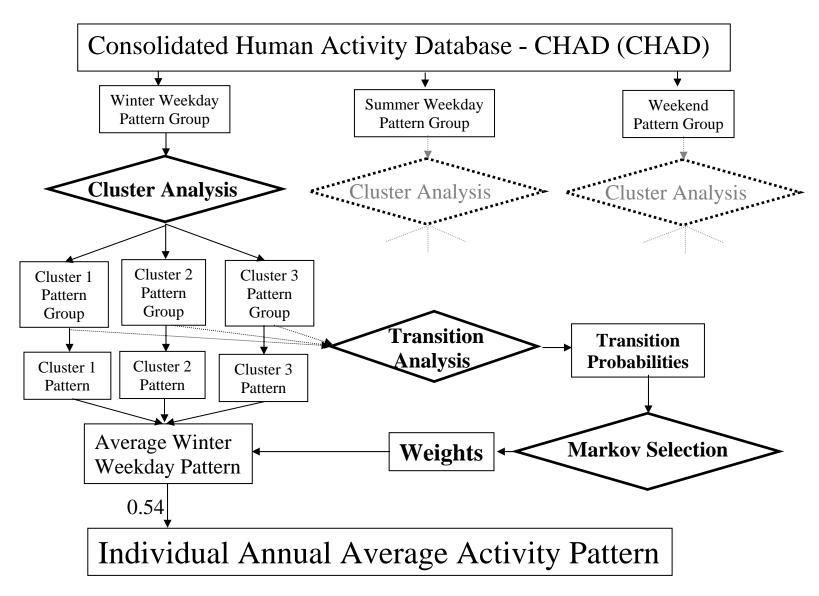
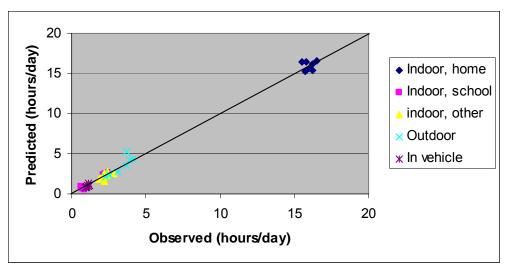
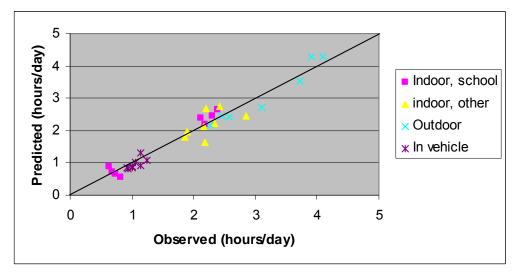
Microenvironment	Demographic Group	Season	Observed (hours/day) ²	Predicted (hours/day) ²	Normalized Bias
Indoor, home	Girls, 6-10	Summer	70	42	-40%
		Not			-0/
		Summer	67	60	-9%
	Boys, 6-10	Summer	54	49	-9%
		Not Summer	35	30	-12%
	Girls, 11- 12	Summer	56	47	-17%
		Not Summer	42	38	-10%
	Boys, 11- 12	Summer	57	63	12%
		Not Summer	39	42	8%
	MEAN				-10%
Indoor, school	Girls, 6-10	Summer	6.0	5.2	-13%
		Not Summer	9.5	5.9	-38%
	Boys, 6-10	Summer	5.6	3.8	-32%
		Not Summer	5.3	8.2	53%
	Girls, 11- 12	Summer	4.9	5.5	11%
		Not Summer	5.4	5.3	-1%
	Boys, 11- 12	Summer	5.6	6.0	6%
		Not Summer	9.2	11	23%
	MEAN				1%
Indoor, other	Girls, 6-10	Summer	46	32	-30%
		Not Summer	44	46.	6%
	Boys, 6-10	Summer	34	33	-4%
		Not Summer	23	16	-27%
	Girls, 11-	Summer	21	18	-15%

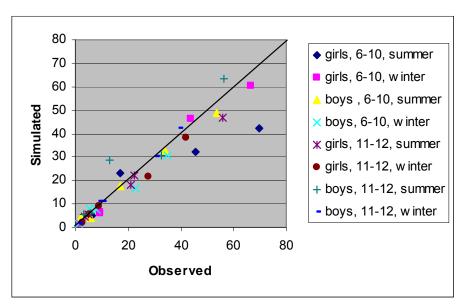
	12				
		Not Summer	28	22	-22%
	Boys, 11- 12	Summer	33	31	-6%
		Not Summer	30	30	0%
	MEAN				-12%
Outdoors	Girls, 6-10	Summer	17	23	37%
		Not Summer	9.3	6.8	-27%
	Boys, 6-10	Summer	17	18	3%
		Not Summer	8.3	7.6	-8%
	Girls, 11- 12	Summer	22	22	0%
		Not Summer	9.0	9.1	1%
	Boys, 11- 12	Summer	13	29	120%
		Not Summer	10	11	8%
	MEAN				17%
In-vehicle	Girls, 6-10	Summer	1.9	2.3	24%
		Not Summer	1.8	1.6	-11%
	Boys, 6-10	Summer	2.5	4.7	93%
		Not Summer	1.5	1.6	9%
	Girls, 11- 12	Summer	3.5	4.7	34%
		Not Summer	2.8	2.0	-28%
	Boys, 11- 12	Summer	3.2	5.4	69%
		Not Summer	1.3	1.7	35%
	MEAN				28%

Table 3. Average within person variance for time spent in each microenvironment: comparison of predicted and observed.

Microenvironment	Demographic Group	Season	Observed (hours/day) ²	Predicted (hours/day) ²	Normalized Bias
Indoor, home	Girls, 6-10	Summer	20	29	49%
		Not			
		Summer	18	23	25%
	Boys, 6-10	Summer	17	30	75%
		Not Summer	15	24	64%
	Girls, 11- 12	Summer	22	42	93%
		Not Summer	22	25	13%
	Boys, 11- 12	Summer	21	24	16%
		Not Summer	17	24	38%
	MEAN				47%
Indoor, school	Girls, 6-10	Summer	2.3	2.4	5%
		Not Summer	7.3	6.4	-12%
	Boys, 6-10	Summer	2.0	1.5	-25%
		Not Summer	6.7	5.8	-14%
	Girls, 11- 12	Summer	1.7	2.1	29%
		Not Summer	7.4	7.6	3%
	Boys, 11- 12	Summer	1.4	2.9	101%
		Not Summer	7.3	7.8	6%
	MEAN				12%
Indoor, other	Girls, 6-10	Summer	14	14	-4%
		Not Summer	14	18	30%
	Boys, 6-10	Summer	12	17	42%
		Not Summer	10	13	26%
	Girls, 11-	Summer	10	10	1%

	12				
		Not Summer	14	15	7%
	Boys, 11- 12	Summer	11	14	26%
		Not Summer	12	13	7%
	MEAN				17%
Outdoors	Girls, 6-10	Summer	8.4	9.5	13%
		Not Summer	3.4	3.2	-3%
	Boys, 8-10	Summer	6.7	9.5	42%
		Not Summer	3.4	4.4	28%
	Girls, 11- 12	Summer	10	25	150%
		Not Summer	4.0	4.5	11%
	Boys, 11- 12	Summer	9.2	7.4	-20%
		Not Summer	4.3	3.7	-15%
	MEAN				26%
In-vehicle	Girls, 6-10	Summer	1.0	0.90	-13%
		Not Summer	0.90	0.48	-47%
	Boys, 6-10	Summer	1.1	1.4	31%
		Not Summer	0.81	0.71	-12%
	Girls, 11- 12	Summer	1.3	1.3	4%
		Not Summer	1.3	1.1	-16%
	Boys, 11- 12	Summer	2.4	1.6	-34%
		Not Summer	0.85	0.85	1%
	MEAN				-11%


Figure 1. Flow diagram of proposed algorithm for creating annual average activity patterns for HAPEM5.

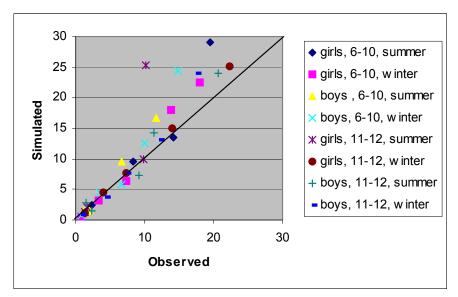

Figure 2. Comparison of predicted and observed average time in each of 5 microenvironments for age/gender groups and seasons.

Figure 3. Comparison of predicted and observed average time in each of 4 microenvironments for age/gender groups and seasons.

Figure 4. Comparison of predicted and observed variance across persons for time spent in each of 5 microenvironments for age/gender groups and seasons.

Figure 5. Comparison of predicted and observed the average within-person variance for time spent in each of 5 microenvironments by age/gender groups and seasons.

ATTACHMENT 5: TECHNICAL MEMORANDUM ON ANALYSIS OF AIR EXCHANGE RATE DATA

DRAFT MEMORANDUM

To: John Langstaff

From: Jonathan Cohen, Hemant Mallya, Arlene Rosenbaum

Date: September 30, 2005

Re: EPA 68D01052, Work Assignment 3-08. Analysis of Air Exchange Rate Data

EPA is planning to use the APEX exposure model to estimate ozone exposure in 12 cities / metropolitan areas: Atlanta, GA; Boston, MA; Chicago, IL; Cleveland, OH; Detroit, MI; Houston, TX; Los Angeles, CA; New York, NY; Philadelphia, PA; Sacramento, CA; St. Louis, MO-IL; Washington, DC. As part of this effort, ICF Consulting has developed distributions of residential and non-residential air exchange rates (AER) for use as APEX inputs for the cities to be modeled. This memorandum describes the analysis of the AER data and the proposed APEX input distributions. Also included in this memorandum are proposed APEX inputs for penetration and proximity factors for selected microenvironments.

Residential Air Exchange Rates

Studies. Residential air exchange rate (AER) data were obtained from the following seven studies:

Avol: Avol et al, 1998. In this study, ozone concentrations and AERs were measured at 126 residences in the greater Los Angeles metropolitan area between February and December, 1994. Measurements were taken in four communities: Lancaster, Lake Gregory, Riverside, and San Dimas. Data included the daily average outdoor temperature, the presence or absence of an air conditioner (either central or room), and the presence or absence of a swamp (evaporative) cooler. Air exchange rates were computed based on the total house volume and based on the total house volume corrected for the furniture. These data analyses used the corrected AERs.

RTP Panel: Williams et al, 2003a, 2003b. In this study particulate matter concentrations and daily average AERs were measured at 37 residences in central North Carolina during 2000 and 2001 (averaging about 23 AER measurements per residence). The residences belong to two specific cohorts: a mostly Caucasian, non-smoking group aged at least 50 years having cardiac defibrillators living in Chapel Hill; a group of non-smoking, African Americans aged at least 50 years with controlled hypertension living in a low-to-moderate SES neighborhood in Raleigh. Data included the daily average outdoor temperature, and the number of air conditioner units (either central or room). Every residence had at least one air conditioner unit.

RIOPA: Meng et al, 2004, Weisel et al, 2004. The Relationship of Indoor, Outdoor, and Personal Air (RIOPA) study was undertaken to estimate the impact of outdoor sources of air toxics to indoor concentrations and personal exposures. Volatile organic compounds,

carbonyls, fine particles and AERs were measured once or twice at 310 non-smoking residences from summer 1999 to spring 2001. Measurements were made at residences in Elizabeth, NJ, Houston TX, and Los Angeles CA. Residences in California were randomly selected. Residences in New Jersey and Texas were preferentially selected to be close (< 0.5 km) to sources of air toxics. The AER measurements (generally over 48 hours) used a PMCH tracer. Data included the daily average outdoor temperature, and the presence or absence of central air conditioning, room air conditioning, or a swamp (evaporative) cooler.

TEACH: Chillrud at al, 2004, Kinney et al, 2002, Sax et al, 2004. The Toxic Exposure Assessment, a Columbia/Harvard (TEACH) study was designed to characterize levels of and factors influencing exposures to air toxics among high school students living in inner-city neighborhoods of New York City and Los Angeles, CA. Volatile organic compounds, aldehydes, fine particles, selected trace elements, and AER were measured at 87 high school student's residences in New York City and Los Angeles in 1999 and 2000. Data included the presence or absence of an air conditioner (central or room) and hourly outdoor temperatures (which were converted to daily averages for these analyses).

Wilson 1984: Wilson et al, 1986, 1996. In this 1984 study, AER and other data were collected at about 600 southern California homes with three seven-day tests (in March and July 1984, and January, 1985) for each home. We obtained the data directly from Mr. Wilson. The available data consisted of the three seven-day averages, the month, the residence zip code, the presence or absence of a central air conditioner, and the presence or absence of a window air conditioner. We matched these data by month and zip code to the corresponding monthly average temperatures obtained from EPA's SCRAM website as well as from the archives in www.wunderground.com (personal and airport meteorological stations). Residences more than 25 miles away from the nearest available meteorological station were excluded from the analysis. For our analyses, the city/location was defined by the meteorological station, since grouping the data by zip code would not have produced sufficient data for most of the zip codes.

Wilson 1991: Wilson et al, 1996. Colome et al, 1993, 1994. In this 1991 study, AER and other data were collected at about 300 California homes with one two-day test in the winter for each home. We obtained the data directly from Mr. Wilson. The available data consisted of the two-day averages, the date, city name, the residence zip code, the presence or absence of a central air conditioner, the presence or absence of a swamp (evaporative) cooler, and the presence or absence of a window air conditioner. We matched these data by date, city, and zip code to the corresponding daily average temperatures obtained from EPA's SCRAM website as well as from the archives in www.wunderground.com (personal and airport meteorological stations). Residences more than 25 miles away from the nearest available meteorological station were excluded from the analysis. For our analyses, the city/location was defined by the meteorological station, since grouping the data by zip code would not have produced sufficient data for most of the zip codes.

Murray and Burmaster: Murray and Burmaster (1995). For this article, Murray and Burmaster corrected and compiled nationwide residential AER data from several studies conducted between 1982 and 1987. These data were originally compiled by the Lawrence Berkeley National Laboratory. We acknowledge Mr. Murray's assistance in obtaining

these data for us. The available data consisted of AER measurements, dates, cities, and degree-days. Information on air conditioner presence or absence was not available.

Table A-1 summarizes these studies.

For each of the studies, air conditioner usage, window status (open or closed), and fan status (on or off) was not part of the experimental design, although some of these studies included information on whether air conditioners or fans were used (and for how long) and whether windows were closed during the AER measurements (and for how long).

As described above, in the following studies the homes were deliberately sampled from specific subsets of the population at a given location rather than the entire population: The RTP Panel study selected two specific cohorts of older subjects with specific diseases. The RIOPA study was biased towards residences near air toxics sources. The TEACH study focused on inner-city neighborhoods. Nevertheless, we included all these studies because we determined that any potential bias would be likely to be small and we preferred to keep as much data as possible.

Table A-1. Summary of Studies of Residential Air Exchange Rates

	Avol	RTP Panel	RIOPA	ТЕАСН	Wilson 1984	Wilson 1991	Murray and Burmaster
Locations	Lancaster, Lake Gregory, Riverside, San Dimas. All in Southern CA	Research Triangle Park, NC	CA; NJ; TX	Los Angeles, CA; New York City, NY	Southern CA	Southern CA	AZ, CA, CO, CT, FL, ID, MD, MN, MT, NJ
Years	1994	2000; 2001	1999; 2000; 2001	1999; 2000	1984, 1985	1984	1982 – 1987
Months/Seasons	Feb; Mar; Apr; May; Jun; Jul; Aug; Sep; Oct; Nov	2000 (Jun; Jul; Aug; Sep; Oct; Nov), 2001 (Jan; Feb; Apr; May)	1999 (July to Dec); 2000 (all months); 2001 (Jan and Feb)	1999 (Feb; Mar; Apr; Jul; Aug); 2000 (Jan; Feb; Mar; Sep; Oct)	Mar 1984, Jul 1984, Jan 1985	Jan, Mar, Jul	Various
Number of Homes	86	37	284	85	581	288	1,884
Total AER Measurements	161	854	524	151	1,362	316	2,844
Average Number of Measurements per Home	1.87	23.08	1.85	1.78	2.34	1.10	1.51
Measurement Duration	Not Available	24 hour	24 to 96 hours	Sample time (hours) reported. Ranges from about 1 to 7 days.	7 days	7 days	Not available
Measurement Technique	Not Available	Perflourocarbon tracer.	PMCH tracer	Perflourocarbon tracer.	Perflourocarbon tracer.	Perflourocarbon tracer.	Not available
Min AER Value	0.01	0.02	0.08	0.12	0.03	0.01	0.01
Max AER Value	2.70	21.44	87.50	8.87	11.77	2.91	11.77
Mean AER Value	0.80	0.72	1.41	1.71	1.05	0.57	0.76
Min Temperature (C)	-0.04	-2.18	-6.82	-1.36	11.00	3.00	Not available

	Avol	RTP Panel	RIOPA	ТЕАСН	Wilson 1984	Wilson 1991	Murray and Burmaster
Max Temperature (C)	36.25	30.81	32.50	32.00	28.00	25.00	Not available
Air Conditioner Categories	No A/C; Central or Room A/C; Swamp Cooler only; Swamp + [Central or Room]	Central or Room A/C (Y/N)	Window A/C (Y/N); Evap Coolers (Y/N)	Central or Room A/C (Y/N)	Central A/C (Y/N); Room A/C (Y/N);	Central A/C (Y/N); Room A/C (Y/N); Swamp Cooler(Y/N)	Not available
Air Conditioner Measurements	A/C use in minutes	Not Available	Duration measurements in Hrs and Mins	Not Available	Not Available	Not Available	Not available
Fan Categories	Not available	Fan (Y/N)	Fan (Y/N)	Not Available	Not Available	Not Available	Not available
Fan Measurements	Time on or off for various fan types during sampling was recorded, but not included in database provided.	Not Available	Duration measurements in Hrs and Mins	Not Available	Not Available	Not Available	Not available
Window Open/ Closed Data	Duration open between times 6am-12 pm; 12pm - 6 pm; and 6pm - 6am	Windows (open / closed along with duration open in inch-hours units	Windows (Open / Closed) along with window open duration measurements	Not Available	Not Available	Not Available	Not available
Comments			CA sample was a random sample of homes. NJ and TX homes were deliberately chosen to be near to ambient sources.	Restricted to inner- city homes with high school students.	Contemporaneous temperature data obtained for these analyses from SCRAM and www.wunderground.com meteorological data.	Contemporaneous temperature data obtained for these analyses from SCRAM and www.wunderground.com meteorological data.	

We compiled the data from these seven studies to create the following variables, of which some had missing values:

- Study
- Date
- Time Time of the day that the AER measurement was made
- House_ID Residence identifier
- Measurement_ID Uniquely identifies each AER measurement for a given study
- AER Air Exchange Rate (per hour)
- AER_Duration Length of AER measurement period
- Have_AC Indicates if the residence has any type of air conditioner (A/C), either a room A/C or central A/C or swamp cooler or any of them in combination. "Y" = "Yes." "No."
- Type_of_AC1 Indicates the types of A/C or swamp cooler available in each house measured. Possible values: "Central A/C" "Central and Room A/C" "Central or Room A/C" "No A/C" "Swamp + (Central or Room)" "Swamp Cooler only" "Window A/C" "Window and Evap"
- Type_of_AC2 Indicates if a house measured has either no A/C or some A/C. Possible values are "No A/C" and "Central or Room A/C."
- Have_Fan Indicates if the house studied has any fans
- Mean_Temp Daily average outside temperature
- Min_Temp Minimum hourly outside temperature
- Max_Temp Maximum hourly outside temperature
- State
- City
- Location Two character abbreviation
- Flag Data status. Murray and Burmaster study: "Used" or "Not Used." Other studies: "Used"; "Missing" (missing values for AER, Type_of_AC2, and/or Mean_Temp); "Outlier".

The main data analysis was based on the first six studies. The Murray and Burmaster data were excluded because of the absence of information on air conditioner presence. (However, a subset of these data was used for a supplementary analysis described below.) .

Based on our review of the AER data we excluded seven outlying high AER values – above 10 per hour. The main data analysis used all the remaining data that had non-missing values for AER, Type_of_AC2, and Mean_Temp. We decided to base the A/C type variable on the broad characterization "No A/C" versus "Central or Room A/C" since this variable could be calculated from all of the studies (excluding Murray and Burmaster). Information on the presence or absence of swamp coolers was not available from all the studies, and, also importantly, the corresponding information on swamp cooler prevalence for the subsequent ozone modeling cities was not available from the American Housing Survey. It is plausible that AER distributions

depend upon the presence or absence of a swamp cooler. It is also plausible that AER distributions also depend upon whether the residence specifically has a central A/C, room or window A/C, or both. However we determined to use the broader A/C type definition, which in effect assumes that the exact A/C type and the presence of a swamp cooler are approximately proportionately represented in the surveyed residences.

Most of the studies had more than one AER measurement for the same house. It is reasonable to assume that the AER varies with the house as well as other factors such as the temperature. (The A/C type can be assumed to be the same for each measurement of the same house). We expected the temperature to be an important factor since the AER will be affected by the use of the available ventilation (air conditioners, windows, fans), which in turn will depend upon the outside meteorology. Therefore it is not appropriate to average data for the same house under different conditions, which might have been one way to account for dependence between multiple measurements on the same house. To simplify the data analysis, we chose to ignore possible dependence between measurements on the same house on different days and treat all the AER values as if they were statistically independent.

Summary Statistics. We computed summary statistics for AER and its natural logarithm LOG_AER on selected strata defined from the study, city, A/C type, and mean temperature. Cities were defined as in the original databases, except that for Los Angeles we combined all the data in the Los Angeles ozone modeling region, i.e. the counties of Los Angeles, Orange, Ventura, Riverside, and San Bernardino. A/C type was defined from the Type_of_AC2 variable, which we abbreviated as "NA" = "No A/C" and "AC" = "Central or Room A/C." The mean temperature was grouped into the following temperature bins: -10 to 0 °C, 0 to 10 °C, 10 to 20 °C, 20 to 25 °C, 25 to 30 °C, 30 to 40 °C.(Values equal to the lower bounds are excluded from each interval.) Also included were strata defined by study = "All" and/or city = "All," and/or A/C type = "All" and/or temperature bin = "All." The following summary statistics for AER and LOG_AER were computed:

- Number of values
- Arithmetic Mean
- Arithmetic Standard Deviation
- Arithmetic Variance
- Deciles (Min, 10th, 20th ... 90th percentiles, Max)

These calculations exclude all seven outliers and results are not used for strata with 10 or fewer values, since those summary statistics are extremely unreliable.

Examination of these summary tables clearly demonstrates that the AER distributions vary greatly across cities and A/C types and temperatures, so that the selected AER distributions for the modeled cities should also depend upon the city, A/C type and temperature. For example, the mean AER for residences with A/C ranges from 0.39 for Los Angeles between 30 and 40 °C to 1.73 for New York between 20 and 25 °C. The mean AER for residences without A/C ranges from 0.46 for San Francisco between 10 and 20 °C to 2.29 for New York between 20 and 25 °C. The need to account for the city as well as the A/C type and temperature is illustrated by the

result that for residences with A/C and between 20 and 25 °C, the mean AER ranges from 0.52 for Research Triangle Park to 1.73 for New York. Statistical comparisons are described below.

Statistical Comparisons. Various statistical comparisons were carried out between the different strata, for the AER and its logarithm. The various strata are defined as in the Summary Statistics section, excluding the "All" cases. For each analysis, we fixed one or two of the variables Study, City, A/C type, temperature, and tested for statistically significant differences among other variables. The comparisons are listed in Table A-2.

Table A-2. Summary of Comparisons of Means

Comparison	Comparison	Stratification	Total	Cases with	significantly
Analysis	Variable(s)	Variable(s)	Comparisons	different m	eans (5 %
Number.	"Groups	(not missing in		level)	
	Compared"	worksheet)		AER	Log AER
1.	City	Type of A/C AND	12	8	8
		Temp. Range			
2.	Temp. Range	Study AND City	12	5	5
3.	Type of A/C	Study AND City	15	5	5
4.	City	Type of A/C	2	2	2
5.	City	Temp. Range	6	5	6
6.	Type of A/C	Study AND City	17	6	6
	AND Temp.				
	Range				

For example, the first set of comparisons fix the Type of A/C and the temperature range; there are twelve such combinations. For each of these twelve combinations, we compare the AER distributions across different cities. This analysis determines whether the AER distribution is appropriately defined by the A/C type and temperature range, without specifying the city. Similarly, for the sixth set of comparisons, the study and city are held fixed (17 combinations) and in each case we compare AER distributions across groups defined by the combination of the A/C type and the temperature range.

The F Statistic comparisons compare the mean values between groups using a one way analysis of variance (ANOVA). This test assumes that the AER or log(AER) values are normally distributed with a mean that may vary with the comparison variable(s) and a constant variance. We calculated the F Statistic and its P-value. P-values above 0.05 indicate cases where all the group means are not statistically significantly different at the 5 percent level. Those results are summarized in the last two columns of the above table "Summary of Comparisons of Means" which gives the number of cases where the means are significantly different. Comparison analyses 2, 3, and 6 show that for a given study and city, slightly less than half of the comparisons show significant differences in the means across temperature ranges, A/C types, or both. Comparison analyses 1, 4, and 5 show that for the majority of cases, means vary significantly across cities, whether you first stratify by temperature range, A/C type, or both.

The Kruskal-Wallis Statistic comparisons are non-parametric tests that are extensions of the more familiar Wilcoxon tests to two or more groups. The analysis is valid if the AER minus the group median has the same distribution for each group, and tests whether the group medians are equal. (The test is also consistent under weaker assumptions against more general alternatives) The P-values show similar patterns to the parametric F test comparisons of the means. Since the logarithm is a strictly increasing function and the test is non-parametric, the Kruskal-Wallis tests give identical results for AER and Log (AER).

The Mood Statistic comparisons are non-parametric tests that compare the scale statistics for two or more groups. The scale statistic measures variation about the central value, which is a non-parametric generalization of the standard deviation. Specifically, suppose there is a total of N AER or log(AER) values, summing across all the groups. These N values are ranked from 1 to N, and the j'th highest value is given a score of $\{j - (N+1)/2\}^2$. The Mood statistic uses a one way ANOVA statistic to compare the total scores for each group. Generally, the Mood statistics show that in most cases the scale statistics are not statistically significantly different. Since the logarithm is a strictly increasing function and the test is non-parametric, the Mood tests give identical results for AER and Log (AER).

Fitting Distributions. Based on the summary statistics and the statistical comparisons, the need to fit different AER distributions to each combination of A/C type, city, and temperature is apparent. For each combination with a minimum of 11 AER values, we fitted and compared exponential, log-normal, normal, and Weibull distributions to the AER values.

The first analysis used the same stratifications as in the above "Summary Statistics" and "Statistical Comparisons" sections. Results are not reported for all strata because of the minimum data requirement of 11 values. Results for each combination of A/C type, city, and temperature (i.e., A, C, and T) were analyzed. Each combination has four rows, one for each fitted distribution. For each distribution we report the fitted parameters (mean, standard deviation, scale, shape) and the p-value for three standard goodness-of-fit tests: Kolmogorov-Smirnov (K-S), Cramer-Von-Mises (C-M), Anderson-Darling (A-D). Each goodness-of-fit test compares the empirical distribution of the AER values to the fitted distribution. The K-S and C-M tests are different tests examining the overall fit, while the Anderson-Darling test gives more weight to the fit in the tails of the distribution. For each combination, the best-fitting of the four distributions has the highest p-value and is marked by an x in the final three columns. The mean and standard deviation (Std_Dev) are the values for the fitted distribution. The scale and shape parameters are defined by:

- Exponential: density = σ^{-1} exp(-x/ σ), where shape = mean = σ
- Log-normal: density = $\{\sigma x \sqrt{(2\pi)}\}^{-1} \exp\{-(\log x \zeta)^2/(2\sigma^2)\}$, where shape = σ and scale = ζ . Thus the geometric mean and geometric standard deviation are given by $\exp(\zeta)$ and $\exp(\sigma)$, respectively.
- Normal: density = $\{\sigma \sqrt{(2\pi)}\}^{-1} \exp\{-(x \mu)^2 / (2\sigma^2)\}$, where mean = μ and standard deviation = σ
- Weibull: density = $(c/\sigma)(x/\sigma)^{c-1} \exp\{-(x/\sigma)^c\}$, where shape = c and scale = σ

Generally, the log-normal distribution was the best-fitting of the four distributions, and so, for consistency, we recommend using the fitted log-normal distributions for all the cases.

One limitation of the initial analysis was that distributions were available only for selected cities, and yet the summary statistics and comparisons demonstrate that the AER distributions depend upon the city as well as the temperature range and A/C type. As one option to address this issue, we considered modeling cities for which distributions were not available by using the AER distributions across all cities and dates for a given temperature range and A/C type.

Another important limitation of the initial analysis was that distributions were not fitted to all of the temperature ranges due to inadequate data. There are missing values between temperature ranges, and the temperature ranges are all bounded. To address this issue, the temperature ranges were regrouped to cover the entire range of temperatures from minus to plus infinity, although obviously the available data to fit these ranges have finite temperatures. Stratifying by A/C type, city, and the new temperature ranges produces results for four cities: Houston (AC and NA); Los Angeles (AC and NA); New York (AC and NA); Research Triangle Park (AC). For each of the fitted distributions we created histograms to compare the fitted distributions with the empirical distributions.

AER Distributions for The First Nine Cities. Based upon the results for the above four cities and the corresponding graphs, we propose using those fitted distributions for the three cities Houston, Los Angeles, and New York. For another 6 of the cities to be modeled, we propose using the distribution for one of the four cities thought to have similar characteristics to the city to be modeled with respect to factors that might influence AERs. These factors include the age composition of housing stock, construction methods, and other meteorological variables not explicitly treated in the analysis, such as humidity and wind speed patterns. The distributions proposed for these cities are as follows:

- Atlanta, GA, A/C: Use log-normal distributions for Research Triangle Park. Residences with A/C only.
- Boston, MA: Use log-normal distributions for New York
- Chicago, IL: Use log-normal distributions for New York
- Cleveland, OH: Use log-normal distributions for New York
- Detroit, MI: Use log-normal distributions for New York
- Houston, TX: Use log-normal distributions for Houston
- Los Angeles, CA: Use log-normal distributions for Los Angeles
- New York, NY: Use log-normal distributions for New York
- Philadelphia, PA: Use log-normal distributions for New York

Since the AER data for Research Triangle Park was only available for residences with air conditioning, AER distributions for Atlanta residences without air conditioning are discussed below.

To avoid unusually extreme simulated AER values, we propose to set a minimum AER value of 0.01 and a maximum AER value of 10.

Obviously, we would be prefer to model each city using data from the same city, but this approach was chosen as a reasonable alternative, given the available AER data.

AER Distributions for Sacramento and St. Louis. For these two cities, a direct mapping to one of the four cities Houston, Los Angeles, New York, and Research Triangle Park is not recommended because the cities are likely to be too dissimilar. Instead, we decided to use the distribution for the inland parts of Los Angeles to represent Sacramento and to use the aggregate distributions for all cities outside of California to represent St. Louis. The results for the city Sacramento were obtained by combining all the available AER data for Sacramento, Riverside, and San Bernardino counties. The results for the city St. Louis were obtained by combining all non-California AER data.

AER Distributions for Washington DC. Washington DC was judged likely to have similar characteristics both to Research Triangle Park and to New York City. To choose between these two cities, we compared the Murray and Burmaster AER data for Maryland with AER data from each of those cities. The Murray and Burmaster study included AER data for Baltimore and for Gaithersburg and Rockville, primarily collected in March. April, and May 1987, although there is no information on mean daily temperatures or A/C type. We collected all the March, April, and May AER data for Research Triangle Park and for New York City, and compared those distributions with the Murray and Burmaster Maryland data for the same three months.

The results for the means and central values show significant differences at the 5 percent level between the New York and Maryland distributions. Between Research Triangle Park and Maryland, the central values and the mean AER values are not statistically significantly different, and the differences in the mean log (AER) values are much less statistically significant than between New York and Maryland. The scale statistic comparisons are not statistically significantly different between New York and Maryland, but were statistically significantly different between Research Triangle Park and Maryland. Since matching central and mean values is generally more important than matching the scales, we propose to model Washington DC residences with air conditioning using the Research Triangle Park distributions, stratified by temperature:

• Washington DC, A/C: Use log-normal distributions for Research Triangle Park. Residences with A/C only.

Since the AER data for Research Triangle Park was only available for residences with air conditioning, the estimated AER distributions for Washington DC residences without air conditioning are discussed below.

AER Distributions for Washington DC and Atlanta GA Residences With No A/C. For Atlanta and Washington DC we have proposed to use the AER distributions for Research Triangle Park. However, all the Research Triangle Park data (from the RTP Panel study) were from houses with air conditioning, so there are no available distributions for the "No A/C" cases. For these two cities, one option is to use AER distributions fitted to all the study data for residences without A/C, stratified by temperature. We propose applying the "No A/C"

distributions for modeling these two cities for residences without A/C. However, since Atlanta and Washington DC residences are expected to be better represented by residences outside of California, we instead propose to use the "No A/C" AER distributions aggregated across cities outside of California, which is the same as the recommended choice for the St. Louis "No A/C" AER distributions.

A/C Type and Temperature Distributions. Since the proposed AER distribution is conditional on the A/C type and temperature range, these values also need to be simulated using APEX in order to select the appropriate AER distribution. Mean daily temperatures are one of the available APEX inputs for each modeled city, so that the temperature range can be determined for each modeled day according to the mean daily temperature. To simulate the A/C type, we obtained estimates of A/C prevalence from the American Housing Survey. Thus for each city/metropolitan area, we obtained the estimated fraction of residences with Central or Room A/C (see Table A-3), which gives the probability p for selecting the A/C type "Central or Room A/C." Obviously, 1-p is the probability for "No A/C." For comparison with Washington DC and Atlanta, we have included the A/C type percentage for Charlotte, NC (representing Research Triangle Park, NC). As discussed above, we propose modeling the 96-97 % of Washington DC and Atlanta residences with A/C using the Research Triangle Park AER distributions, and modeling the 3-4 % of Washington DC and Atlanta residences without A/C using the combined study No A/C AER distributions.

Table A-3. Fraction of residences with central or room A/C (from American Housing Survey)

CITY	SURVEY AREA & YEAR	PERCENTAGE
Atlanta	Atlanta, 2003	97.01
Boston	Boston, 2003	85.23
Chicago	Chicago, 2003	87.09
Cleveland	Cleveland, 2003	74.64
Detroit	Detroit, 2003	81.41
Houston	Houston, 2003	98.70
Los Angeles	Los Angeles, 2003	55.05
New York	New York, 2003	81.57
Philadelphia	Philadelphia, 2003	90.61
Sacramento	Sacramento, 2003	94.63
St. Louis	St. Louis, 2003	95.53
Washington DC	Washington DC, 2003	96.47
Research Triangle Park	Charlotte, 2002	96.56

Other AER Studies

We recently became aware of some additional residential and non-residential AER studies that might provide additional information or data. Indoor / outdoor ozone and PAN distributions were studied by Jakobi and Fabian (1997). Liu et al (1995) studied residential ozone and AER distributions in Toronto, Canada. Weschler and Shields (2000) describes a modeling study of

ventilation and air exchange rates. Weschler (2000) includes a useful overview of residential and non-residential AER studies.

AER Distributions for Other Indoor Environments

To estimate AER distributions for non-residential, indoor environments (e.g., offices and schools), we obtained and analyzed two AER data sets: "Turk" (Turk et al, 1989); and "Persily" (Persily and Gorfain 2004; Persily et al. 2005).

The earlier "Turk" data set (Turk et al, 1989) includes 40 AER measurements from offices (25 values), schools (7 values), libraries (3 values), and multi-purpose (5 values), each measured using an SF6 tracer over two- or four-hours in different seasons of the year.

The more recent "Persily" data (Persily and Gorfain 2004; Persily et al. 2005) were derived from the U.S. EPA Building Assessment Survey and Evaluation (BASE) study, which was conducted to assess indoor air quality, including ventilation, in a large number of randomly selected office buildings throughout the U.S. The data base consists of a total of 390 AER measurements in 96 large, mechanically ventilated offices; each office was measured up to four times over two days, Wednesday and Thursday AM and PM. The office spaces were relatively large, with at least 25 occupants, and preferably 50 to 60 occupants. AERs were measured both by a volumetric method and by a CO2 ratio method, and included their uncertainty estimates. For these analyses, we used the recommended "Best Estimates" defined by the values with the lower estimated uncertainty; in the vast majority of cases the best estimate was from the volumetric method.

Another study of non-residential AERs was performed by Lagus Applied Technology (1995) using a tracer gas method. That study was a survey of AERs in 16 small office buildings, 6 large office buildings, 13 retail establishments, and 14 schools. We plan to obtain and analyze these data and compare those results with the Turk and Persily studies.

Due to the small sample size of the Turk data, the data were analyzed without stratification by building type and/or season. For the Persily data, the AER values for each office space were averaged, rather using the individual measurements, to account for the strong dependence of the AER measurements for the same office space over a relatively short period.

Summary statistics of AER and log (AER) for the two studies are presented in Table A-4.

Table A-4. AER summary statistics for offices and other non-residential buildings

Study	Variable	N	Mean	Std Dev	Min	25 th %ile	Median	75 th %ile	Max
Persily	AER	96	1.9616	2.3252	0.0712	0.5009	1.0795	2.7557	13.8237
Turk	AER	40	1.5400	0.8808	0.3000	0.8500	1.5000	2.0500	4.1000
Persily	Log(AER)	96	0.1038	1.1036	-2.6417	-0.6936	0.0765	1.0121	2.6264
Turk	Log(AER)	40	0.2544	0.6390	-1.2040	-0.1643	0.4055	0.7152	1.4110

The mean values are similar for the two studies, but the standard deviations are about twice as high for the Persily data. The proposed AER distributions were derived from the more recent Persily data only.

Similarly to the analyses of the residential AER distributions, we fitted exponential, log-normal, normal, and Weibull distributions to the 96 office space average AER values. The results are shown in Table A-5.

Table A-5. Best fitting office AER distributions from the Persily et al. (2004, 2005)

Scale	Shape	Mean	Std_Dev	Distribution	P-Value Kolmogorov- Smirnov	P-Value Cramer- von Mises	P-Value Anderson- Darling
1.9616		1.9616	1.9616	Exponential	0.13	0.04	0.05
0.1038	1.1036	2.0397	3.1469	Lognormal	0.15	0.46	0.47
		1.9616	2.3252	Normal	0.01	0.01	0.01
1.9197	0.9579	1.9568	2.0433	Weibull		0.01	0.01

(For an explanation of the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling P-values see the discussion residential AER distributions above.) According to all three goodness-of-fit measures the best-fitting distribution is the log-normal. Reasonable choices for the lower and upper bounds are the observed minimum and maximum AER values.

We therefore propose the following indoor, non-residential AER distributions.

• AER distribution for indoor, non-residential microenvironments: Lognormal, with scale and shape parameters 0.1038 and 1.1036, i.e., geometric mean = 1.1094, geometric standard deviation = 3.0150. Lower Bound = 0.07. Upper bound = 13.8.

Proximity and Penetration Factors For Outdoors, In-vehicle, and Mass Transit

For the APEX modeling of the outdoor, in-vehicle, and mass transit micro-environments, an approach using proximity and penetration factors is proposed, as follows.

Outdoors Near Road

Penetration factor = 1.

For the Proximity factor, we propose using ratio distributions developed from the Cincinnati Ozone Study (American Petroleum Institute, 1997, Appendix B; Johnson et al. 1995). The field study was conducted in the greater Cincinnati metropolitan area in August and September, 1994. Vehicle tests were conducted according to an experimental design specifying the vehicle type, road type, vehicle speed, and ventilation mode. Vehicle types were defined by the three study vehicles: a minivan, a full-size car, and a compact car. Road types were interstate highways (interstate), principal urban arterial roads (urban), and local roads (local). Nominal vehicle

speeds (typically met over one minute intervals within 5 mph) were at 35 mph, 45 mph, or 55 mph. Ventilation modes were as follows:

- Vent Open: Air conditioner off. Ventilation fan at medium. Driver's window half open. Other windows closed.
- Normal A/C. Air conditioner at normal. All windows closed.
- Max A/C: Air conditioner at maximum. All windows closed.

Ozone concentrations were measured inside the vehicle, outside the vehicle, and at six fixed site monitors in the Cincinnati area.

The proximity factor can be estimated from the distributions of the ratios of the outside-vehicle ozone concentrations to the fixed-site ozone concentrations, reported in Table 8 of Johnson et al. (1995). Ratio distributions were computed by road type (local, urban, interstate, all) and by the fixed-site monitor (each of the six sites, as well as the nearest monitor to the test location). For this analysis we propose to use the ratios of outside-vehicle concentrations to the concentrations at the nearest fixed site monitor, as shown in Table A-6.

Table A-6. Ratio of outside-vehicle ozone to ozone at nearest fixed site¹

Road Type ¹	Number of cases ¹	Mean ¹	Standard Deviation ¹	25 th Percentile ¹	50 th Percentile ¹	75 th Percentile ¹	Estimated 5 th
							Percentile ²
Local	191	0.755	0.203	0.645	0.742	0.911	0.422
Urban	299	0.754	0.243	0.585	0.722	0.896	0.355
Interstate	241	0.364	0.165	0.232	0.369	0.484	0.093
All	731	0.626	0.278	0.417	0.623	0.808	0.170

- 1. From Table 8 of Johnson et al. (1995). Data excluded if fixed-site concentration < 40 ppb.
- 2. Estimated using a normal approximation as Mean $-1.64 \times$ Standard Deviation

For the outdoors-near-road microenvironment, we recommend using the distribution for local roads, since most of the outdoors-near-road ozone exposure will occur on local roads. The summary data from the Cincinnati Ozone Study are too limited to allow fitting of distributions, but the 25th and 75th percentiles appear to be approximately equidistant from the median (50th percentile). Therefore we propose using a normal distribution with the observed mean and standard deviation. A plausible upper bound for the proximity factor equals 1. Although the normal distribution allows small positive values and can even produce impossible, negative values (with a very low probability), the titration of ozone concentrations near a road is limited. Therefore, as an empirical approach, we recommend a lower bound of the estimated 5th percentile, as shown in the final column of the above table. Therefore in summary we propose:

• Penetration factor for outdoors, near road: 1.

• Proximity factor for outdoors, near road: Normal distribution. Mean = 0.755. Standard Deviation = 0.203. Lower Bound = 0.422. Upper Bound = 1.

Outdoors, Public Garage / Parking Lot

This micro-environment is similar to the outdoors-near-road microenvironment. We therefore recommend the same distributions as for outdoors-near-road:

- Penetration factor for outdoors, public garage / parking lot: 1.
- Proximity factor for outdoors, public garage / parking lot: Normal distribution. Mean = 0.755. Standard Deviation = 0.203. Lower Bound = 0.422. Upper Bound = 1.

Outdoors, Other

The outdoors, other ozone concentrations should be well represented by the ambient monitors. Therefore we propose:

- Penetration factor for outdoors, other: 1.
- Proximity factor for outdoors, other: 1.

In-Vehicle

For the proximity factor for in-vehicle, we also recommend using the results of the Cincinnati Ozone Study presented in Table A-6. For this microenvironment, the ratios depend upon the road type, and the relative prevalences of the road types can be estimated by the proportions of vehicle miles traveled in each city. The proximity factors are assumed, as before, to be normally distributed, the upper bound to be 1, and the lower bound to be the estimated 5th percentile.

- Proximity factor for in-vehicle, local roads: Normal distribution. Mean = 0.755. Standard Deviation = 0.203. Lower Bound = 0.422. Upper Bound = 1.
- Proximity factor for in-vehicle, urban roads: Normal distribution. Mean = 0.754. Standard Deviation = 0.243. Lower Bound = 0.355. Upper Bound = 1.
- Proximity factor for in-vehicle, interstates: Normal distribution. Mean = 0.364. Standard Deviation = 0.165. Lower Bound = 0.093. Upper Bound = 1.

To complete the specification, the distribution of road type needs to be estimated for each city to be modeled. Vehicle miles traveled (VMT) in 2003 by city (defined by the Federal-Aid urbanized area) and road type were obtained from the Federal Highway Administration. (http://www.fhwa.dot.gov/policy/ohim/hs03/htm/hm71.htm). For local and interstate road types, the VMT for the same DOT categories were used. For urban roads, the VMT for all other road types was summed (Other freeways/expressways, Other principal arterial, Minor arterial, Collector). The computed VMT ratios for each city are shown in Table A-7.

Table A-7. Vehicle Miles Traveled by City and Road Type in 2003 (FHWA, October 2004)

	FRACTION VMT BY ROAD TYPE				
FEDERAL-AID URBANIZED AREA	INTERSTATE	URBAN	LOCAL		
Atlanta	0.38	0.45	0.18		
Boston	0.31	0.55	0.14		
Chicago	0.30	0.59	0.12		
Cleveland	0.39	0.45	0.16		
Detroit	0.26	0.63	0.11		
Houston	0.24	0.72	0.04		
Los Angeles	0.29	0.65	0.06		
New York	0.18	0.67	0.15		
Philadelphia	0.23	0.65	0.11		
Sacramento	0.21	0.69	0.09		
St. Louis	0.36	0.45	0.19		
Washington	0.31	0.61	0.08		

Note that a "Federal-Aid Urbanized Area" is an area with 50,000 or more persons that at a minimum encompasses the land area delineated as the urbanized area by the Bureau of the Census. Urbanized areas that have been combined with others for reporting purposes are not shown separately. The Illinois portion of Round Lake Beach-McHenry-Grayslake has been reported with Chicago.

Thus to simulate the proximity factor in APEX, we propose to first select the road type according to the above probability table of road types, then select the AER distribution (normal) for that road type as defined in the last set of bullets.

For the penetration factor for in-vehicle, we recommend using the inside-vehicle to outside-vehicle ratios from the Cincinnati Ozone Study. The ratio distributions were summarized for all the data and for stratifications by vehicle type, vehicle speed, road type, traffic (light, moderate, or heavy), and ventilation. The overall results and results by ventilation type are shown in Table A-8.

Table A-8. Ratio of inside-vehicle ozone to outside-vehicle ozone¹

Ventilation ¹	Number of cases ¹	Mean ¹	Standard Deviation ¹	25 th Percentile ¹	50 th Percentile ¹	75 th Percentile ¹	Estimated 5 th Percentile ²
Vent Open	226	0.361	0.217	0.199	0.307	0.519	0.005
Normal A/C	332	0.417	0.211	0.236	0.408	0.585	0.071
Maximum A/C	254	0.093	0.088	0.016	0.071	0.149	0.000^3
All	812	0.300	0.232	0.117	0.251	0.463	0.000^3

- 1. From Table 7 of Johnson et al.(1995). Data excluded if outside-vehicle concentration < 20 ppb.
- 2. Estimated using a normal approximation as Mean $-1.64 \times$ Standard Deviation
- 3. Negative estimate (impossible value) replaced by zero.

Although the data in Table A-8 indicate that the inside-to-outside ozone ratios strongly depend upon the ventilation type, it would be very difficult to find suitable data to estimate the ventilation type distributions for each modeled city. Furthermore, since the Cincinnati Ozone Study was scripted, the ventilation conditions may not represent real-world vehicle ventilation scenarios. Therefore, we propose to use the overall average distributions.

• Penetration factor for in-vehicle: Normal distribution. Mean = 0.300. Standard Deviation = 0.232. Lower Bound = 0.000. Upper Bound = 1.

Mass Transit

The mass transit microenvironment is expected to be similar to the in-vehicle microenvironment. Therefore we recommend using the same APEX modeling approach:

- Proximity factor for mass transit, local roads: Normal distribution. Mean = 0.755. Standard Deviation = 0.203. Lower Bound = 0.422. Upper Bound = 1.
- Proximity factor for mass transit, urban roads: Normal distribution. Mean = 0.754. Standard Deviation = 0.243. Lower Bound = 0.355. Upper Bound = 1.
- Proximity factor for mass transit, interstates: Normal distribution. Mean = 0.364. Standard Deviation = 0.165. Lower Bound = 0.093. Upper Bound = 1.
- Road type distributions for mass transit: See Table A-6
- Penetration factor for mass transit: Normal distribution. Mean = 0.300. Standard Deviation = 0.232. Lower Bound = 0.000. Upper Bound = 1.

References

American Petroleum Institute (1997). *Sensitivity testing of pNEM/O3 exposure to changes in the model algorithms*. Health and Environmental Sciences Department.

Avol, E. L., W. C. Navidi, and S. D. Colome (1998) Modeling ozone levels in and around southern California homes. *Environ. Sci. Technol.* 32, 463-468.

Chilrud, S. N., D. Epstein, J. M. Ross, S. N. Sax, D. Pederson, J. D. Spengler, P. L. Kinney (2004). Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City's subway system. *Environ. Sci. Technol.* 38, 732-737.

Colome, S.D., A. L. Wilson, Y. Tian (1993). *California Residential Indoor Air Quality Study*, *Volume 1, Methodology and Descriptive Statistics*. Report prepared for the Gas Research Institute, Pacific Gas & Electric Co., San Diego Gas & Electric Co., Southern California Gas Co.

- Colome, S.D., A. L. Wilson, Y. Tian (1994). *California Residential Indoor Air Quality Study, Volume 2, Carbon Monoxide and Air Exchange Rate: An Univariate and Multivariate Analysis. Chicago, IL.* Report prepared for the Gas Research Institute, Pacific Gas & Electric Co., San Diego Gas & Electric Co., Southern California Gas Co. GRI-93/0224.3
- Jakobi, G and Fabian, P. (1997). Indoor/outdoor concentrations of ozone and peroxyacetyl nitrate (PAN). *Int. J. Biometeorol.* 40: 162-165..
- Johnson, T., A. Pakrasi, A. Wisbeth, G. Meiners, W. M. Ollison (1995). Ozone exposures within motor vehicles results of a field study in Cincinnati, Ohio. *Proceedings* 88th annual meeting and exposition of the Air & Waste Management Association, June 18-23, 1995. San Antonio, TX. Preprint paper 95-WA84A.02.
- Kinney, P. L., S. N. Chillrud, S. Ramstrom, J. Ross, J. D. Spengler (2002). Exposures to multiple air toxics in New York City. *Environ Health Perspect* 110, 539-546.
- Lagus Applied Technology, Inc. (1995) Air change rates in non-residential buildings in *California*. Sacramento CA, California Energy Commission, contract 400-91-034.
- Liu, L.-J. S, P. Koutrakis, J. Leech, I. Broder, (1995) Assessment of ozone exposures in the greater metropolitan Toronto area. *J. Air Waste Manage. Assoc.* 45: 223-234.
- Meng, Q. Y., B. J. Turpin, L. Korn, C. P. Weisel, M. Morandi, S. Colome, J. J. Zhang, T. Stock, D. Spektor, A. Winer, L. Zhang, J. H. Lee, R. Giovanetti, W. Cui, J. Kwon, S. Alimokhtari, D. Shendell, J. Jones, C. Farrar, S. Maberti (2004). Influence of ambient (outdoor) sources on residential indoor and personal PM_{2.5} concentrations: Analyses of RIOPA data. *Journal of Exposure Analysis and Environ Epidemiology*. Preprint.
- Murray, D. M. and D. E. Burmaster (1995). Residential Air Exchange Rates in the United States: Empirical and Estimated Parametric Distributions by Season and Climatic Region. *Risk Analysis*, Vol. 15, No. 4, 459-465.
- Persily, A. and J. Gorfain.(2004). *Analysis of ventilation data from the U.S. Environmental Protection Agency Building Assessment Survey and Evaluation (BASE) Study.* National Institute of Standards and Technology, NISTIR 7145, December 2004.
- Persily, A., J. Gorfain, G. Brunner. (2005). Ventilation design and performance in U.S. office buildings. *ASHRAE Journal*. April 2005, 30-35.
- Sax, S. N., D. H. Bennett, S. N. Chillrud, P. L. Kinney, J. D. Spengler (2004) Differences in source emission rates of volatile organic compounds in inner-city residences of New York City and Los Angeles. *Journal of Exposure Analysis and Environ Epidemiology*. Preprint.
- Turk, B. H., D. T. Grimsrud, J. T. Brown, K. L. Geisling-Sobotka, J. Harrison, R. J. Prill (1989). *Commercial building ventilation rates and particle concentrations*. ASHRAE, No. 3248.

Weschler, C. J. (2000) Ozone in indoor environments: concentration and chemistry. Indoor Air 10: 269-288.

Weschler, C. J. and Shields, H. C. (2000) The influence of ventilation on reactions among indoor pollutants: modeling and experimental observations. *Indoor Air*. 10: 92-100.

Weisel, C. P., J. J. Zhang, B. J. Turpin, M. T. Morandi, S. Colome, T. H. Stock, D. M. Spektor, L. Korn, A. Winer, S. Alimokhtari, J. Kwon, K. Mohan, R. Harrington, R. Giovanetti, W. Cui, M. Afshar, S. Maberti, D. Shendell (2004). Relationship of Indoor, Outdoor and Personal Air (RIOPA) study; study design, methods and quality assurance / control results. *Journal of Exposure Analysis and Environ Epidemiology*. Preprint.

Williams, R., J. Suggs, A. Rea, K. Leovic, A. Vette, C. Croghan, L. Sheldon, C. Rodes, J. Thornburg, A. Ejire, M. Herbst, W. Sanders Jr. (2003a). The Research Triangle Park particulate matter panel study: PM mass concentration relationships. *Atmos Env* 37, 5349-5363.

Williams, R., J. Suggs, A. Rea, L. Sheldon, C. Rodes, J. Thornburg (2003b). The Research Triangle Park particulate patter panel study: modeling ambient source contribution to personal and residential PM mass concentrations. *Atmos Env* 37, 5365-5378.

Wilson, A. L., S. D. Colome, P. E. Baker, E. W. Becker (1986). *Residential Indoor Air Quality Characterization Study of Nitrogen Dioxide, Phase I, Final Report.* Prepared for Southern California Gas Company, Los Angeles.

Wilson, A. L., S. D. Colome, Y. Tian, P. E. Baker, E. W. Becker, D. W. Behrens, I. H. Billick, C. A. Garrison (1996). California residential air exchange rates and residence volumes. *Journal of Exposure Analysis and Environ Epidemiology*. Vol. 6, No. 3.

ATTACHMENT 6. TECHNICAL MEMORANDUM ON THE UNCERTAINTY ANALYSIS OF RESIDENTIAL AIR EXCHANGE RATE DISTRIBUTIONS

MEMORANDUM

To: John Langstaff, EPA OAQPS

From: Jonathan Cohen, Arlene Rosenbaum, ICF International

Date: June 5, 2006

Re: Uncertainty analysis of residential air exchange rate distributions

This memorandum describes our assessment of some of the sources of the uncertainty of city-specific distributions of residential air exchange rates that were fitted to the available study data. City-specific distributions for use with the APEX ozone model were developed for 12 modeling cities, as detailed in the memorandum by Cohen, Mallya and Rosenbaum, 20056 (Appendix A of this report). In the first part of the memorandum, we analyze the between-city uncertainty by examining the variation of the geometric means and standard deviations across cities and studies. In the second part of the memorandum, we assess the within-city uncertainty by using a bootstrap distribution to estimate the effects of sampling variation on the fitted geometric means and standard deviations for each city. The bootstrap distributions assess the uncertainty due to random sampling variation but do not address uncertainties due to the lack of representativeness of the available study data, the matching of the study locations to the modeled cities, and the variation in the lengths of the AER monitoring periods.

Variation of geometric means and standard deviations across cities and studies

The memorandum by Cohen, Mallya and Rosenbaum, 20057 (Attachment 5 of this report) describes the analysis of residential air exchange rate (AER) data that were obtained from seven studies. The AER data were subset by location, outside temperature range, and the A/C type, as defined by the presence or absence of an air conditioner (central or window). In each case we chose to fit a log-normal distribution to the AER data, so that the logarithm of the AER for a given city, temperature range, and A/C type is assumed to be normally distributed. If the AER data has geometric mean GM and geometric standard deviation GSD, then the logarithm of the AER is assumed to have a normal distribution with mean log(GM) and standard deviation log(GSD).

Table D-1 shows the assignment of the AER data to the 12 modeled cities. Note that for Atlanta, GA and Washington DC, the Research Triangle Park, NC data for houses with A/C was used to represent the AER distributions for houses with A/C, and the non-California data for houses without A/C was used to represent the AER distributions for houses without A/C. Sacramento, CA AER distributions were estimated using the AER data from the inland California counties of

⁶ Cohen, J., H. Mallya, and A. Rosenbaum. 2005. Memorandum to John Langstaff. *EPA 68D01052, Work Assignment 3-08. Analysis of Air Exchange Rate Data*. September 30, 2005. 7 *Op. Cit.*

Sacramento, Riverside, and San Bernardino; these combined data are referred to by the City Name "Inland California." St Louis, MO AER distributions were estimated using the AER data from all states except for California and so are referred to be the City Name "Outside California."

Table D-1. Assignment of Residential AER distributions to modeled cities

Modeled city	AER distribution
Atlanta, GA, A/C	Research Triangle Park, A/C only
Atlanta, GA, no A/C	All non-California, no A/C ("Outside California")
Boston, MA	New York
Chicago, IL	New York
Cleveland, OH	New York
Detroit, MI	New York
Houston, TX	Houston
Los Angeles, CA	Los Angeles
New York, NY	New York
Philadelphia, PA	New York
Sacramento	Inland parts of Los Angeles ("Inland California")
St. Louis	All non-California ("Outside California")
Washington, DC, A/C	Research Triangle Park, A/C only
Washington, DC, no A/C	All non-California, no A/C ("Outside California")

It is evident from Table D-1 that for some of the modeled cities, some potentially large uncertainty was introduced because we modeled their AER distributions using available data from another city or group of cities thought to be representative of the first city on the basis of geography and other characteristics. This was necessary for cities where we did not have any or sufficient AER data measured in the same city that also included the necessary temperature and A/C type information. One way to assess the impact of these assignments on the uncertainty of the AER distributions is to evaluate the variation of the fitted log-normal distributions across the cities with AER data. In this manner we can examine the effect on the AER distribution if a different allocation of study data to the modeled cities had been used.

Even for the cities where we have study AER data, there is uncertainty about the fitted AER distributions. First, the studies used different measurement and residence selection methods. In some cases the residences were selected by a random sampling method designed to represent the entire population. In other cases the residences were selected to represent sub-populations. For example, for the RTP study, the residences belong to two specific cohorts: a mostly Caucasian,

non-smoking group aged at least 50 years having cardiac defibrillators living in Chapel Hill; a group of non-smoking, African Americans aged at least 50 years with controlled hypertension living in a low-to-moderate SES neighborhood in Raleigh. The TEACH study was restricted to residences of inner-city high school students. The RIOPA study was a random sample for Los Angeles, but was designed to preferentially sample locations near major air toxics sources for Elizabeth, NJ and Houston TX. Furthermore, some of the studies focused on different towns or cities within the larger metropolitan areas, so that, for example, the Los Angeles data from the Avol study was only measured in Lancaster, Lake Gregory, Riverside, and San Dimas but the Los Angeles data from the Wilson studies were measured in multiple cities in Southern California. One way to assess the uncertainty of the AER distributions due to variations of study methodologies and study sampling locations is to evaluate the variation of the fitted log-normal distributions within each modeled city across the different studies.

We evaluated the variation between cities, and the variation within cities and between studies, by tabulating and plotting the AER distributions for all the study/city combinations. Since the original analyses by Cohen, Mallya and Rosenbaum, 2005 clearly showed that the AER distribution depends strongly on the outside temperature and the A/C type (whether or not the residence has air conditioning), this analysis was stratified by the outside temperature range and the A/C type. Otherwise, study or city differences would have been confounded by the temperature and A/C type differences and you would not be able to tell how much of the AER difference was due to the variation of temperature and A/C type across cities or studies. In order to be able to compare cities and studies we could not use different temperature ranges for the different modeled cities as we did for the original AER distribution modeling. For these analyses we stratified the temperature into the ranges <= 10, 10-20, 20-25, and >25 °C and categorized the A/C type as "Central or Window A/C" versus 'No A/C," giving 8 temperature and A/C type strata.

Table D-2 shows the geometric means and standard deviations by city and study. These geometric mean and standard deviation pairs are plotted in Figure D-1 through D-8. Each figure shows the variation across cities and studies for a given temperature range and A/C type. The results for a city with only one available study are shown with a blank study name. For cities with multiple studies, results are shown for the individual studies and the city overall distribution is designated by a blank value for the study name.

Table D-2. Geometric means and standard deviations by city and study.

A/C Type	Temperature	City	Study*	N	Geo Mean	Geo Std Dev**
Central or Room A/C	<= 10	Houston		2	0.32	1.80
Central or Room A/C	<= 10	Los Angeles		5	0.62	1.51
Central or Room A/C	<= 10	Los Angeles	Avol	2	0.72	1.22
Central or Room A/C	<= 10	Los Angeles	RIOPA	1	0.31	
Central or Room A/C	<= 10	Los Angeles	Wilson 1991	2	0.77	1.12
Central or Room A/C	<= 10	New York City		20	0.71	2.02
Central or Room A/C	<= 10	Research Triangle Park		157	0.96	1.81
Central or Room A/C	<= 10	Sacramento		3	0.38	1.82
Central or Room A/C	<= 10	San Francisco		2	0.43	1.00
Central or Room A/C	<= 10	Stockton		7	0.48	1.64
Central or Room A/C	10-20	Arcata		1	0.17	

Table D-2. Geometric means and standard deviations by city and study.

A/C Type	Temperature	City	Study*	N	Geo Mean	Geo Std Dev**
Central or Room A/C	10-20	Bakersfield		2	0.36	1.34
Central or Room A/C	10-20	Fresno		8	0.30	1.62
Central or Room A/C	10-20	Houston		13	0.42	2.19
Central or Room A/C	10-20	Los Angeles		716	0.59	1.90
Central or Room A/C	10-20	Los Angeles	Avol	33	0.48	1.87
Central or Room A/C	10-20	Los Angeles	RIOPA	11	0.60	1.87
Central or Room A/C	10-20	Los Angeles	TEACH	1	0.68	
Central or Room A/C	10-20	Los Angeles	Wilson 1984	634	0.59	1.89
Central or Room A/C	10-20	Los Angeles	Wilson 1991	37	0.64	2.11
Central or Room A/C	10-20	New York City		5	1.36	2.34
Central or Room A/C	10-20	New York City	RIOPA	4	1.20	2.53
Central or Room A/C	10-20	New York City	TEACH	1	2.26	
Central or Room A/C	10-20	Redding		1	0.31	
Central or Room A/C	10-20	Research Triangle Park		320	0.56	1.91
Central or Room A/C	10-20	Sacramento		7	0.26	1.67
Central or Room A/C	10-20	San Diego		23	0.41	1.55
Central or Room A/C	10-20	San Francisco		5	0.42	1.25
Central or Room A/C	10-20	Santa Maria		1	0.23	
Central or Room A/C	10-20	Stockton		4	0.73	1.42
Central or Room A/C	20-25	Houston		20	0.47	1.94
Central or Room A/C	20-25	Los Angeles		273	1.10	2.36
Central or Room A/C	20-25	Los Angeles	Avol	32	0.61	1.95
Central or Room A/C	20-25	Los Angeles	RIOPA	26	0.90	2.42
Central or Room A/C	20-25	Los Angeles	Wilson 1984	215	1.23	2.33
Central or Room A/C	20-25	New York City		37	1.11	2.74
Central or Room A/C	20-25	New York City	RIOPA	20	0.93	2.91
Central or Room A/C	20-25	New York City	TEACH	17	1.37	2.52
Central or Room A/C	20-25	Red Bluff		2	0.61	3.20
Central or Room A/C	20-25	Research Triangle Park		196	0.40	1.89
Central or Room A/C	> 25	Houston		79	0.43	2.17
Central or Room A/C	> 25	Los Angeles		114	0.72	2.60
Central or Room A/C	> 25	Los Angeles	Avol	25	0.37	3.10
Central or Room A/C	> 25	Los Angeles	RIOPA	10	0.94	1.71
Central or Room A/C	> 25	Los Angeles	Wilson 1984	79	0.86	2.33
Central or Room A/C	> 25	New York City	DIODA	19	1.24	2.18
Central or Room A/C	> 25	New York City	RIOPA	14	1.23	2.28
Central or Room A/C	> 25	New York City	TEACH	5	1.29	2.04
Central or Room A/C	> 25	Research Triangle Park		145	0.38	1.71
No A/C	<= 10	Houston		13	0.66	1.68
No A/C No A/C	<= 10 <= 10	Los Angeles	Arrol	18	0.54	3.09
No A/C	<= 10 <= 10	Los Angeles	Avol RIOPA	14	0.51 0.72	1.11
No A/C	<= 10 <= 10	Los Angeles Los Angeles	Wilson 1991	2	0.72	1.11
No A/C	<= 10 <= 10	New York City	VV 115011 1991	48	1.02	2.14
No A/C	<= 10 <= 10	New York City	RIOPA	44	1.02	2.14
No A/C		•				
NO A/C	<= 10	New York City	TEACH	4	0.79	1.28

Table D-2. Geometric means and standard deviations by city and study.

A/C Type	Temperature	City	Study*	N	Geo Mean	Geo Std Dev**
No A/C	<= 10	Sacramento		3	0.58	1.30
No A/C	<= 10	San Francisco		9	0.39	1.42
No A/C	10-20	Bakersfield		1	0.85	
No A/C	10-20	Fresno		4	0.90	2.42
No A/C	10-20	Houston		28	0.63	2.92
No A/C	10-20	Los Angeles		390	0.75	2.09
No A/C	10-20	Los Angeles	Avol	23	0.78	2.55
No A/C	10-20	Los Angeles	RIOPA	87	0.78	1.96
No A/C	10-20	Los Angeles	TEACH	9	2.32	2.05
No A/C	10-20	Los Angeles	Wilson 1984	241	0.70	2.06
No A/C	10-20	Los Angeles	Wilson 1991	30	0.75	1.82
No A/C	10-20	New York City		59	0.79	2.04
No A/C	10-20	Sacramento		1	1.09	
No A/C	10-20	San Diego		49	0.47	1.95
No A/C	10-20	San Francisco		15	0.34	3.05
No A/C	10-20	Santa Maria		2	0.27	1.23
No A/C	20-25	Houston		10	0.92	2.41
No A/C	20-25	Los Angeles		148	1.37	2.28
No A/C	20-25	Los Angeles	Avol	19	0.95	1.87
No A/C	20-25	Los Angeles	RIOPA	38	1.30	2.11
No A/C	20-25	Los Angeles	Wilson 1984	91	1.52	2.40
No A/C	20-25	New York City		26	1.62	2.24
No A/C	20-25	New York City	RIOPA	19	1.50	2.30
No A/C	20-25	New York City	TEACH	7	1.99	2.11
No A/C	20-25	Red Bluff		1	0.55	
No A/C	> 25	Houston		2	0.92	3.96
No A/C	> 25	Los Angeles		25	0.99	1.97
No A/C	> 25	Los Angeles	Avol	6	1.56	1.36
No A/C	> 25	Los Angeles	RIOPA	4	1.33	1.37
No A/C	> 25	Los Angeles	TEACH	3	0.86	1.02
No A/C	> 25	Los Angeles	Wilson 1984	12	0.74	2.29
No A/C	> 25	New York City		6	1.54	1.65
No A/C	> 25	New York City	RIOPA	3	1.73	2.00
No A/C	> 25	New York City	TEACH	3	1.37	1.38

^{*} For a given city, if AER data were available from only one study, then the study name is missing. If AER data were available for two or more studies, then the overall city distribution is shown in the row where the study name is missing, and the distributions by study and city are shown in the rows with a specific study name.

In general, there is a relatively wide variation across different cities. This implies that the AER modeling results would be very different if the matching of modeled cities to study cities was changed, although a sensitivity study using the APEX model would be needed to assess the impact on the ozone exposure estimates. In particular the ozone exposure estimates may be sensitive to the assumption that the St. Louis AER distributions can be represented by the combined non-California AER data. One way to address this is to perform a Monte Carlo analysis where the first stage is to randomly select a city outside of California, the second stage picks the A/C type, and the third stage picks the AER value from the assigned distribution for the

^{**} The geometric standard deviation is undefined if the sample size equals 1.

city, A/C type and temperature range. Note that this will result in a very different distribution to the current approach that fits a single log-normal distribution to all the non-California data for a given temperature range and A/C type. The current approach weights each data point equally, so that cities like New York with most of the data values get the greatest statistical weight. The Monte Carlo approach gives the same total statistical weight for each city and fits a mixture of log-normal distributions rather than a single distribution.

In general, there is also some variation within studies for the same city, but this is much smaller than the variation across cities. This finding tends to support the approach of combining different studies. Note that the graphs can be deceptive in this regard because some of the data points are based on very small sample sizes (N); those data points are less precise and the differences would not be statistically significant. For example, for the No A/C data in the range 10-20 °C, the Los Angeles TEACH study had a geometric mean of 2.32 based on only nine AER values, but the overall geometric mean, based on 390 values, was 0.75 and the geometric means for the Los Angeles Avol, RIOPA, Wilson 1984, and Wilson 1991 studies were each close to 0.75. One noticeable case where the studies show big differences for the same city is for the A/C houses in Los Angeles in the range 20-25 °C where the study geometric means are 0.61 (Avol, N=32), 0.90 (RIOPA, N=26) and 1.23 (Wilson 1984, N=215).

Bootstrap analyses

The 39 AER subsets defined in the Cohen, Mallya, and Rosenbaum, 2005 memorandum (Appendix A of this report) and their allocation to the 12 modeled cities are shown in Table D-3. To make the distributions sufficiently precise in each AER subset and still capture the variation across temperature and A/C type, different modeled cities were assigned different temperature range and A/C type groupings. Therefore these temperature range groupings are sometimes different to those used to develop Table D-2 and Figure D-1 through D-8.

Table D-3. AER subsets by city, A/C type, and temperature range.

Subset City Name	Study Cities	Represents Modeled Cities:	A/C Type	Temperature Range (°C)
Houston	Houston	Houston, TX	Central or Room A/C	<=20
Houston	Houston	Houston, TX	Central or Room A/C	20-25
Houston	Houston	Houston, TX	Central or Room A/C	25-30
Houston	Houston	Houston, TX	Central or Room A/C	>30
Houston	Houston	Houston, TX	No A/C	<=10
Houston	Houston	Houston, TX	No A/C	10-20
	Houston	Houston, TX	No A/C	>20
Inland California	Sacramento, Riverside, and San Bernardino counties, CA	Sacramento, CA	Central or Room A/C	<=25
Inland California	Sacramento, Riverside, and San Bernardino counties, CA	Sacramento, CA	Central or Room A/C	>25
Inland California	Sacramento, Riverside, and San Bernardino counties, CA	Sacramento, CA	No A/C	<=10
Inland California	Sacramento, Riverside, and San Bernardino counties, CA	Sacramento, CA	No A/C	10-20

Table D-3. AER subsets by city, A/C type, and temperature range.

Table D-3. AER subsets by city, A/C type, and temperature range.							
Subset City Name	Study Cities	Represents Modeled Cities:	A/C Type	Temperature Range (°C)			
Inland California	Sacramento, Riverside, and San Bernardino counties, CA	Sacramento, CA	No A/C	20-25			
Inland California	Sacramento, Riverside, and San Bernardino counties, CA	Sacramento, CA	No A/C	>25			
Los Angeles	Los Angeles, Orange, Riverside, San Bernardino, and Ventura counties, CA	Los Angeles, CA	Central or Room A/C	<=20			
Los Angeles	Los Angeles, Orange, Riverside, San Bernardino, and Ventura counties, CA	Los Angeles, CA	Central or Room A/C	20-25			
Los Angeles	Los Angeles, Orange, Riverside, San Bernardino, and Ventura counties, CA	Los Angeles, CA	Central or Room A/C	25-30			
Los Angeles	Los Angeles, Orange, Riverside, San Bernardino, and Ventura counties, CA	Los Angeles, CA	Central or Room A/C	>30			
Los Angeles	Los Angeles, Orange, Riverside, San Bernardino, and Ventura counties, CA	Los Angeles, CA	No A/C	<=10			
Los Angeles	Los Angeles, Orange, Riverside, San Bernardino, and Ventura counties, CA	Los Angeles, CA	No A/C	10-20			
Los Angeles	Los Angeles, Orange, Riverside, San Bernardino, and Ventura counties, CA	Los Angeles, CA	No A/C	20-25			
Los Angeles	Los Angeles, Orange, Riverside, San Bernardino, and Ventura counties, CA	Los Angeles, CA	No A/C	>25			
New York City	New York, NY	Boston, MA, Chicago, IL, Cleveland, OH, Detroit, MI, New York, NY, Philadelphia, PA	Central or Room A/C	<=10			
New York City	New York, NY	Boston, MA, Chicago, IL, Cleveland, OH, Detroit, MI, New York, NY, Philadelphia, PA	Central or Room A/C	10-25			
New York City	New York, NY	Boston, MA, Chicago, IL, Cleveland, OH, Detroit, MI, New York, NY, Philadelphia, PA	Central or Room A/C	>25			
New York City	New York, NY	Boston, MA,	No A/C	<=10			

Table D-3. AER subsets by city, A/C type, and temperature range.

Subset City	Study Cities	Represents	A/C Type	Temperature
Name	·	Modeled Cities:		Range (°C)
		Chicago, IL,		
		Cleveland, OH,		
		Detroit, MI,		
		New York, NY,		
		Philadelphia, PA		
New York City	New York, NY	Boston, MA,	No A/C	10-20
		Chicago, IL,		
		Cleveland, OH,		
		Detroit, MI,		
		New York, NY,		
		Philadelphia, PA		
New York City	New York, NY	Boston, MA,	No A/C	>20
		Chicago, IL,		
		Cleveland, OH,		
		Detroit, MI,		
		New York, NY,		
		Philadelphia, PA		
Outside California	Cities outside CA	St. Louis, MO	Central or Room A/C	<=10
Outside California	Cities outside CA	St. Louis, MO	Central or Room A/C	10-20
Outside California	Cities outside CA	St. Louis, MO	Central or Room A/C	20-25
Outside California	Cities outside CA	St. Louis, MO	Central or Room A/C	25-30
Outside California	Cities outside CA	St. Louis, MO	Central or Room A/C	>30
Outside California	Cities outside CA	St. Louis, MO	No A/C	<=10
		Atlanta, GA		
		Washington DC		
Outside California	Cities outside CA	St. Louis, MO	No A/C	10-20
		Atlanta, GA		
		Washington DC		
Outside California	Cities outside CA	St. Louis, MO	No A/C	>20
		Atlanta, GA		
		Washington DC		
Research Triangle Park	Research Triangle	Atlanta, GA	Central or Room A/C	<=10
	Park, NC	Washington DC		
Research Triangle Park	Research Triangle	Atlanta, GA	Central or Room A/C	10-20
	Park, NC	Washington DC		
Research Triangle Park	Research Triangle	Atlanta, GA	Central or Room A/C	20-25
	Park, NC	Washington DC		
Research Triangle Park	Research Triangle	Atlanta, GA	Central or Room A/C	>25
	Park, NC	Washington DC		

The GM and GSD values that define the fitted log-normal distributions for these 39 AER subsets are shown in Table D-4. Examples of these pairs are also plotted in Figures D-9 through D-19, to be further described below. Each of the example figures D-9 through D-19 corresponds to a single GM/GSD "Original Data" pair. The GM and GSD values for the "Original Data" are at the intersection of the horizontal and vertical lines that are parallel to the x- and y-axes in the figures.

Table D-4. Geometric means and standard deviations for AER subsets by city, A/C type,

and temperature range.

Subset City Name	A/C Type	Temperature Range (°C)	N	Geometric Mean	Geometric Standard Deviation
Houston	Central or Room A/C	<=20	15	0.4075	2.1135
Houston	Central or Room A/C	20-25	20	0.4675	1.9381
Houston	Central or Room A/C	25-30	65	0.4221	2.2579
Houston	Central or Room A/C	>30	14	0.4989	1.7174
Houston	No A/C	<=10	13	0.6557	1.6794
Houston	No A/C	10-20	28	0.6254	2.9162
	No A/C	>20	12	0.9161	2.4512
Inland California	Central or Room A/C	<=25	226	0.5033	1.9210
Inland California	Central or Room A/C	>25	83	0.8299	2.3534
Inland California	No A/C	<=10	17	0.5256	3.1920
Inland California	No A/C	10-20	52	0.6649	2.1743
Inland California	No A/C	20-25	13	1.0536	1.7110
Inland California	No A/C	>25	14	0.8271	2.2646
Los Angeles	Central or Room A/C	<=20	721	0.5894	1.8948
Los Angeles	Central or Room A/C	20-25	273	1.1003	2.3648
Los Angeles	Central or Room A/C	25-30	102	0.8128	2.4151
Los Angeles	Central or Room A/C	>30	12	0.2664	2.7899
Los Angeles	No A/C	<=10	18	0.5427	3.0872
Los Angeles	No A/C	10-20	390	0.7470	2.0852
Los Angeles	No A/C	20-25	148	1.3718	2.2828
Los Angeles	No A/C	>25	25	0.9884	1.9666
New York City	Central or Room A/C	<=10	20	0.7108	2.0184
New York City	Central or Room A/C	10-25	42	1.1392	2.6773
New York City	Central or Room A/C	>25	19	1.2435	2.1768
New York City	No A/C	<=10	48	1.0165	2.1382
New York City	No A/C	10-20	59	0.7909	2.0417
New York City	No A/C	>20	32	1.6062	2.1189
Outside California	Central or Room A/C	<=10	179	0.9185	1.8589
Outside California	Central or Room A/C	10-20	338	0.5636	1.9396
Outside California	Central or Room A/C	20-25	253	0.4676	2.2011
Outside California	Central or Room A/C	25-30	219	0.4235	2.0373

Table D-4. Geometric means and standard deviations for AER subsets by city, A/C type,

and temperature range.

Subset City Name	A/C Type	Temperature Range (°C)	N	Geometric Mean	Geometric Standard Deviation
Outside California	Central or Room A/C	>30	24	0.5667	1.9447
Outside California	No A/C	<=10	61	0.9258	2.0836
Outside California	No A/C	10-20	87	0.7333	2.3299
Outside California	No A/C	>20	44	1.3782	2.2757
Research Triangle Park	Central or Room A/C	<=10	157	0.9617	1.8094
Research Triangle Park	Central or Room A/C	10-20	320	0.5624	1.9058
Research Triangle Park	Central or Room A/C	20-25	196	0.3970	1.8887
Research Triangle Park	Central or Room A/C	>25	145	0.3803	1.7092

To evaluate the uncertainty of the GM and GSD values, a bootstrap simulation was performed, as follows. Suppose that a given AER subset has N values. A bootstrap sample is obtained by sampling N times at random with replacement from the N AER values. The first AER value in the bootstrap sample is selected randomly from the N values, so that each of the N values is equally likely. The second, third, ..., N'th values in the bootstrap sample are also selected randomly from the N values, so that for each selection, each of the N values is equally likely. The same value can be selected more than once. Using this bootstrap sample, the geometric mean and geometric standard deviation of the N values in the bootstrap sample was calculated. This pair of values is plotted as one of the points in a figure for that AER subset. 1,000 bootstrap samples were randomly generated for each AER subset, producing a set of 1,000 geometric mean and geometric standard deviation pairs, which were plotted in example Figures D-9 through D-19.

The bootstrap distributions display the part of the uncertainty of the GM and GSD that is entirely due to random sampling variation. The analysis is based on the assumption that the study AER data are a random sample from the population distribution of AER values for the given city, temperature range, and A/C type. On that basis, the 1,000 bootstrap GM and GSD pairs estimate the variation of the GM and GSD across all possible samples of N values from the population. Since each GM, GSD pair uniquely defines a fitted log-normal distribution, the pairs also estimate the uncertainty of the fitted log-normal distribution. The choice of 1,000 was made as a compromise between having enough pairs to accurately estimate the GM, GSD distribution and not having too many pairs so that the graph appears as a smudge of overlapped points. Note that even if there were infinitely many bootstrap pairs, the uncertainty distribution would still be an estimate of the true uncertainty because the N is finite, so that the empirical distribution of the N measured AER values does not equal the unknown population distribution.

In most cases the uncertainty distribution appears to be a roughly circular or elliptical geometric mean and standard deviation region. The size of the region depends upon the sample size and on the variability of the AER values; the region will be smallest when the sample size N is large

and/or the variability is small, so that there are a large number of values that are all close together.

The bootstrap analyses show that the geometric standard deviation uncertainty for a given CMSA/air-conditioning-status/temperature-range combination tends to have a range of at most from "fitted GSD-1.0 hr⁻¹" to "fitted GSD+1.0 hr⁻¹", but the intervals based on larger AER sample sizes are frequently much narrower. The ranges for the geometric means tend to be approximately from "fitted GM-0.5 hr⁻¹" to "fitted GM+0.5 hr⁻¹", but in some cases were much smaller.

The bootstrap analysis only evaluates the uncertainty due to the random sampling. It does not account for the uncertainty due to the lack of representativeness, which in turn is due to the fact that the samples were not always random samples from the entire population of residences in a city, and were sometimes used to represent different cities. Since only the GM and GSD were used, the bootstrap analyses does not account for uncertainties about the true distributional shape, which may not necessarily be log-normal. Furthermore, the bootstrap uncertainty does not account for the effect of the calendar year (possible trends in AER values) or of the uncertainty due to the AER measurement period; the distributions were intended to represent distributions of 24 hour average AER values although the study AER data were measured over a variety of measurement periods.

To use the bootstrap distributions to estimate the impact of sample size on the fitted distributions, a Monte Carlo approach could be used with the APEX model. Instead of using the Original Data distributions, a bootstrap GM, GSD pair could be selected at random and the AER value could be selected randomly from the log-normal distribution with the bootstrap GM and GSD.

Figure D-1

Geometric mean and standard deviation of air exchange rate
For different cities and studies
Air Conditioner Type: Central or Room A/C
Temperature Range: <= 10 Degrees Celsius

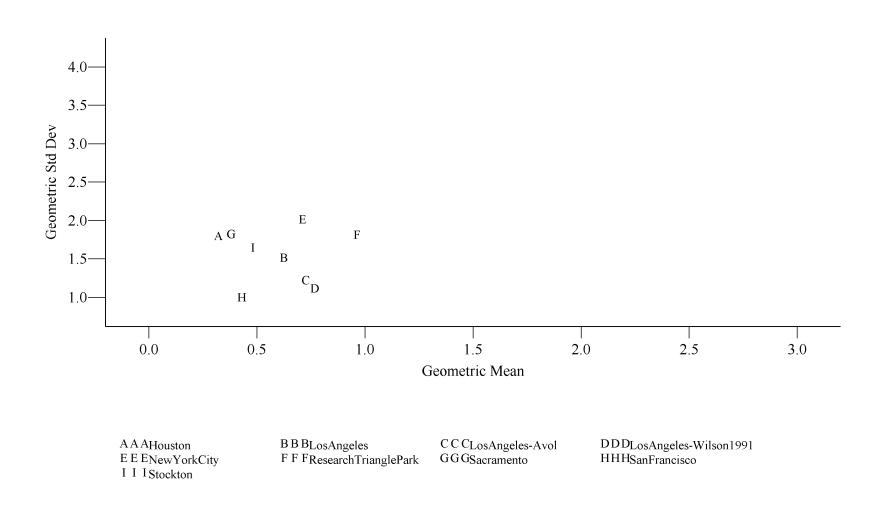


Figure D-2

Geometric mean and standard deviation of air exchange rate
For different cities and studies
Air Conditioner Type: Central or Room A/C
Temperature Range: 10-20 Degrees Celsius

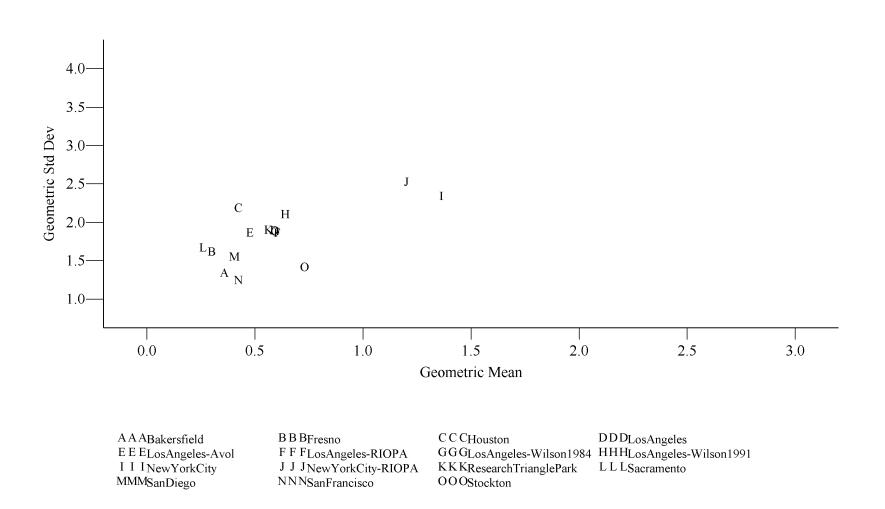


Figure D-3

Geometric mean and standard deviation of air exchange rate
For different cities and studies
Air Conditioner Type: Central or Room A/C
Temperature Range: 20-25 Degrees Celsius

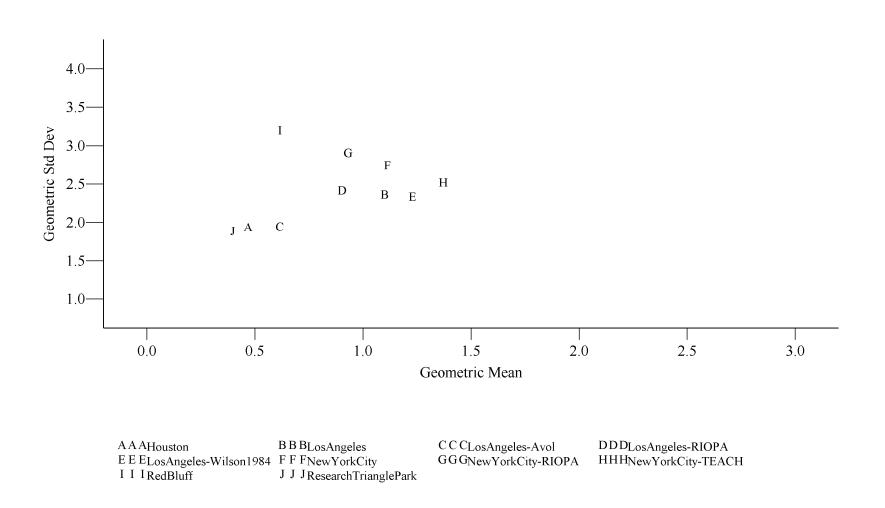


Figure D-4

Geometric mean and standard deviation of air exchange rate
For different cities and studies
Air Conditioner Type: Central or Room A/C
Temperature Range: > 25 Degrees Celsius

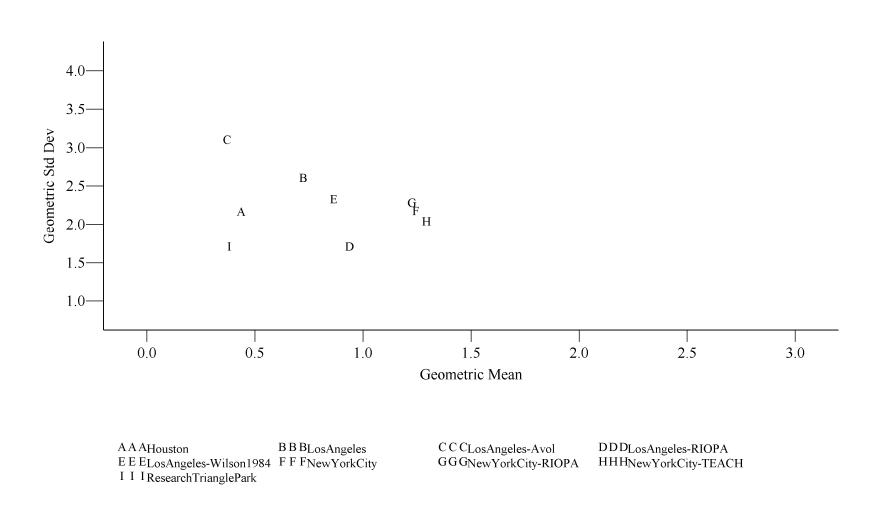


Figure D-5

Geometric mean and standard deviation of air exchange rate
For different cities and studies
Air Conditioner Type: No A/C
Temperature Range: <= 10 Degrees Celsius

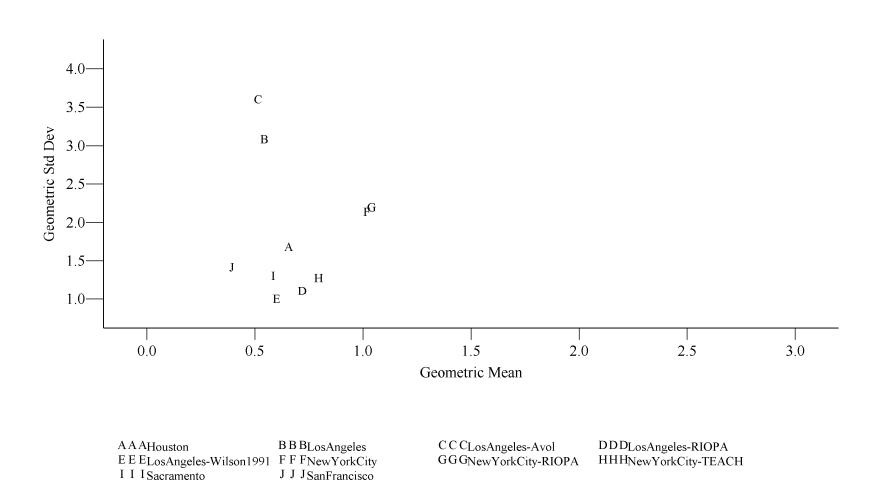


Figure D-6

Geometric mean and standard deviation of air exchange rate
For different cities and studies
Air Conditioner Type: No A/C
Temperature Range: 10-20 Degrees Celsius

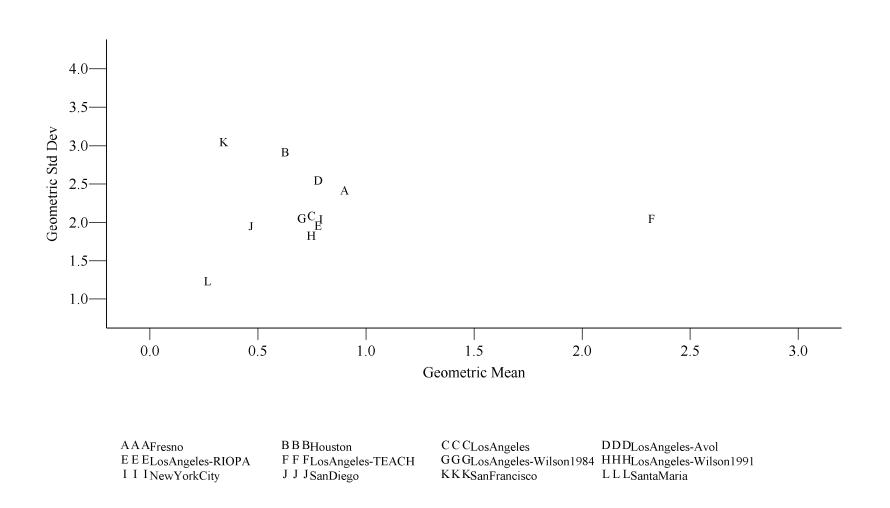
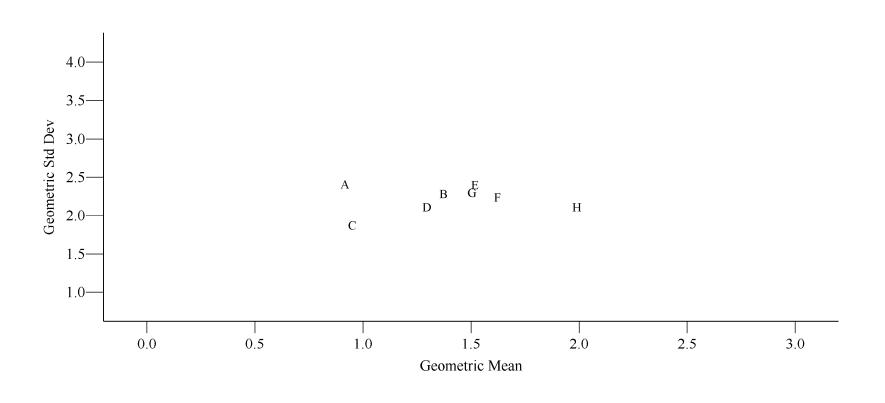



Figure D-7

Geometric mean and standard deviation of air exchange rate
For different cities and studies
Air Conditioner Type: No A/C
Temperature Range: 20-25 Degrees Celsius

A A A Houston B B B Los Angeles E E E Los Angeles-Wilson 1984 F F F New York City CCCLosAngeles-Avol GGGNewYorkCity-RIOPA DDDLosAngeles-RIOPA HHHNewYorkCity-TEACH

Figure D-8

Geometric mean and standard deviation of air exchange rate
For different cities and studies
Air Conditioner Type: No A/C
Temperature Range: > 25 Degrees Celsius

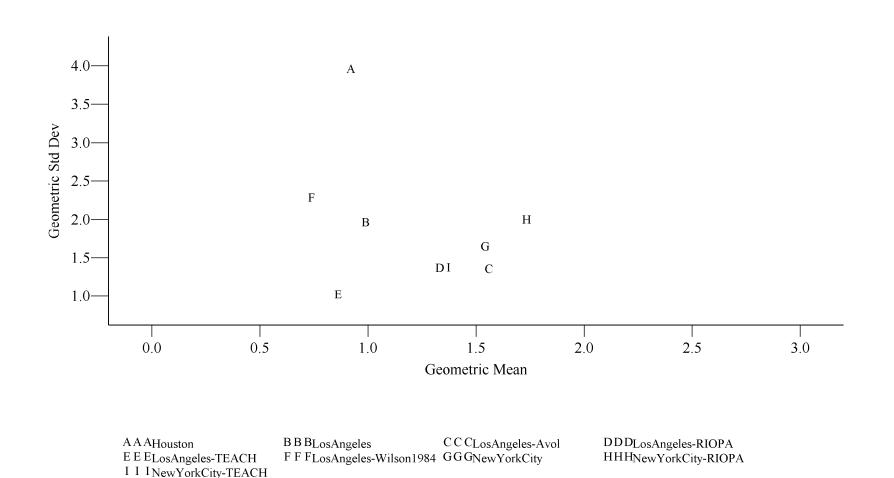


Figure D-9

City: Houston

Air Conditioner Type: Central or Room A/C Temperature Range: 20-25 Degrees Celsius

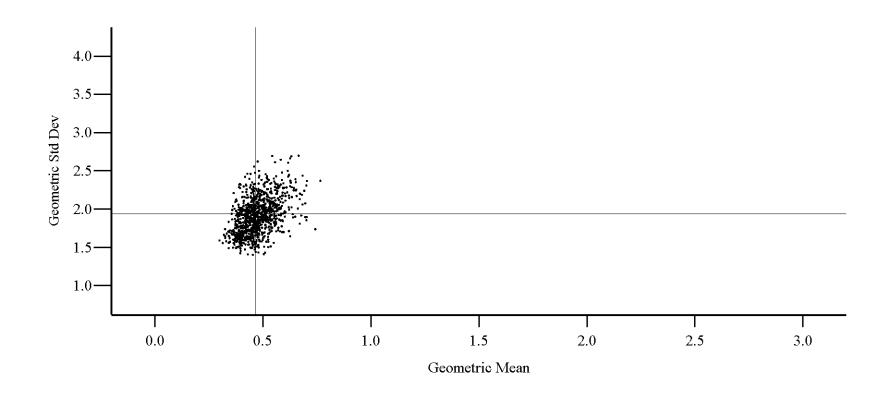


Figure D-10

City: Houston
Air Conditioner Type: No A/C
Temperature Range: >20 Degrees Celsius

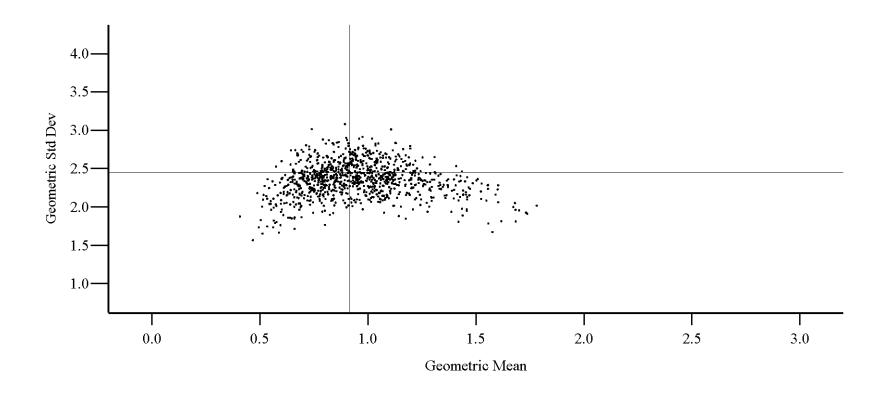


Figure D-11

Geometric mean and standard deviation of air exchange rate

Bootstrapped distributions for different cities City: Inland California

Air Conditioner Type: Central or Room A/C

Temperature Range: <=25 Degrees Celsius

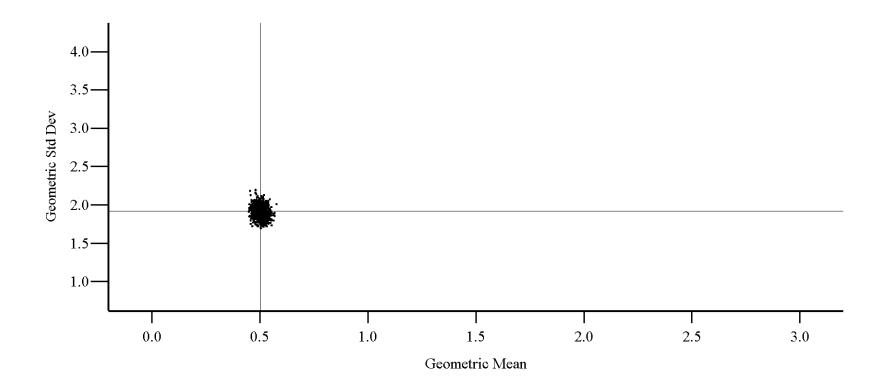


Figure D-12

Air Conditioner Type: No A/C Temperature Range: 20-25 Degrees Celsius

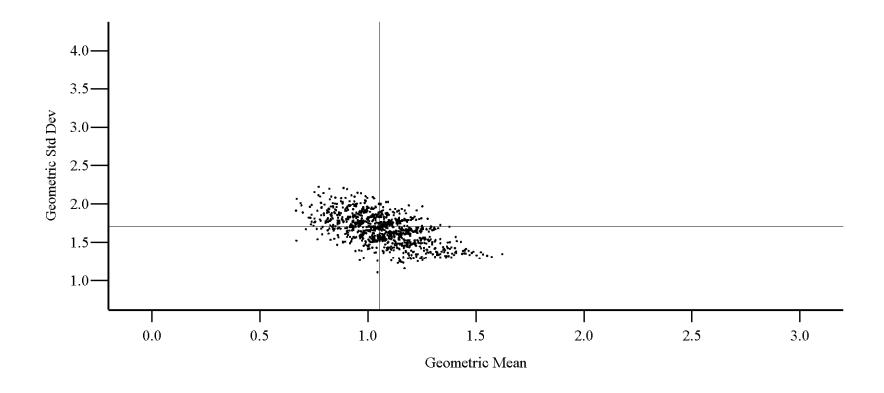


Figure D-13

City: Los Angeles

Air Conditioner Type: Central or Room A/C Temperature Range: 20-25 Degrees Celsius

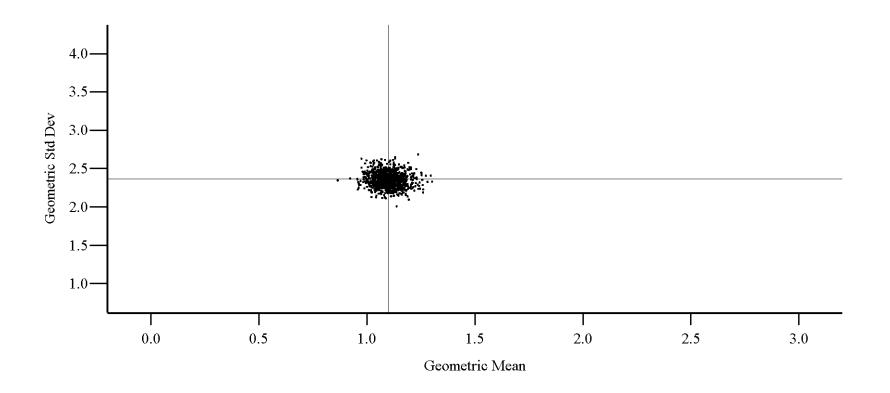


Figure D-14

City: Los Angeles
Air Conditioner Type: No A/C

Temperature Range: 20-25 Degrees Celsius

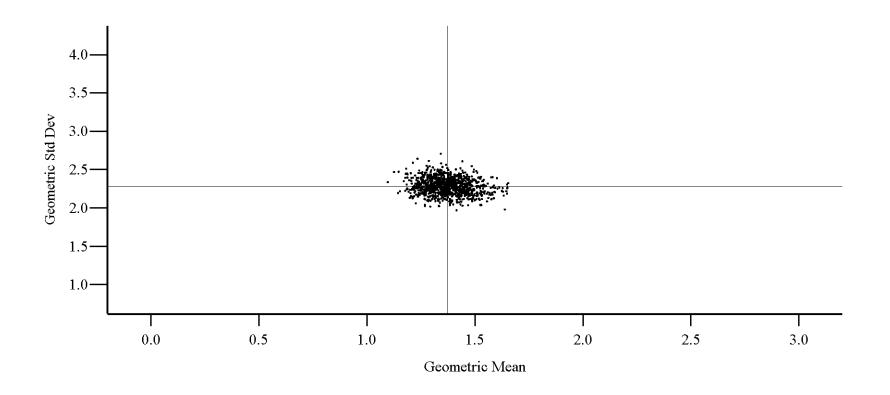


Figure D-15

City: New York City
Air Conditioner Type: Central or Room A/C
Temperature Range: 10-25 Degrees Celsius

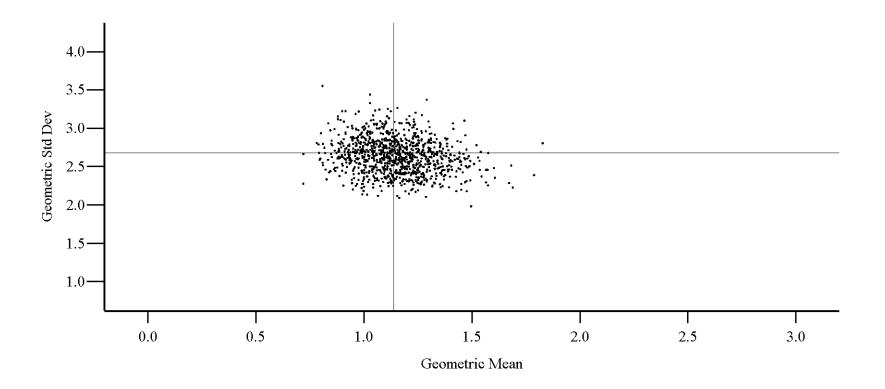


Figure D-16

Geometric mean and standard deviation of air exchange rate Bootstrapped distributions for different cities City: New York City Air Conditioner Type: No A/C

Temperature Range: >20 Degrees Celsius

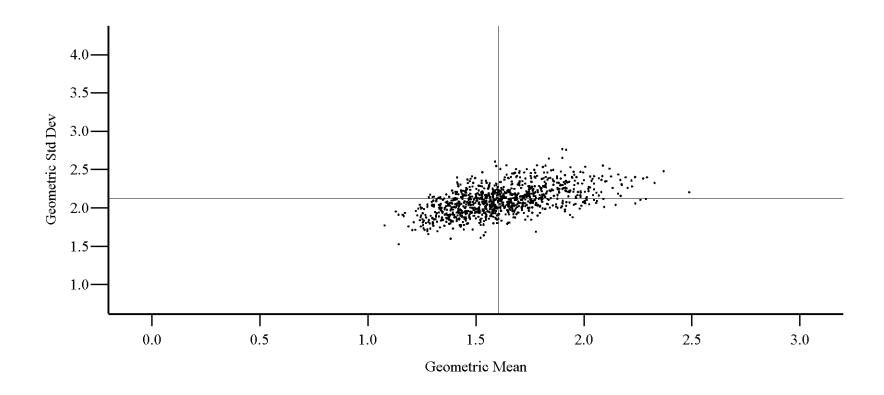


Figure D-17

Geometric mean and standard deviation of air exchange rate Bootstrapped distributions for different cities City: Outside California

Air Conditioner Type: Central or Room A/C Temperature Range: 20-25 Degrees Celsius

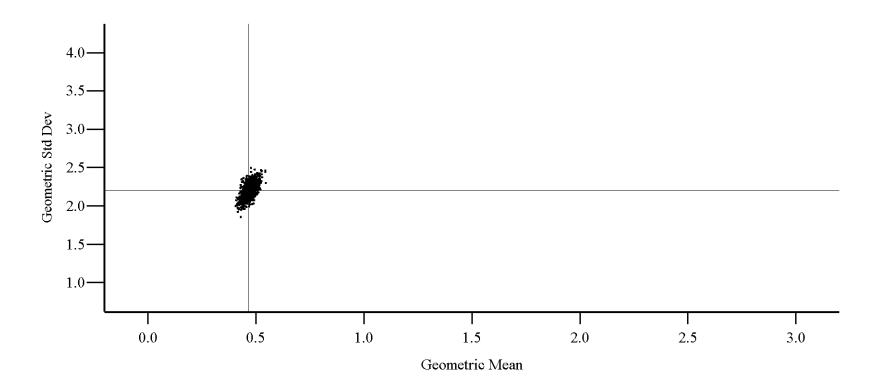


Figure D-18

Geometric mean and standard deviation of air exchange rate Bootstrapped distributions for different cities City: Outside California Air Conditioner Type: No A/C

Temperature Range: >20 Degrees Celsius

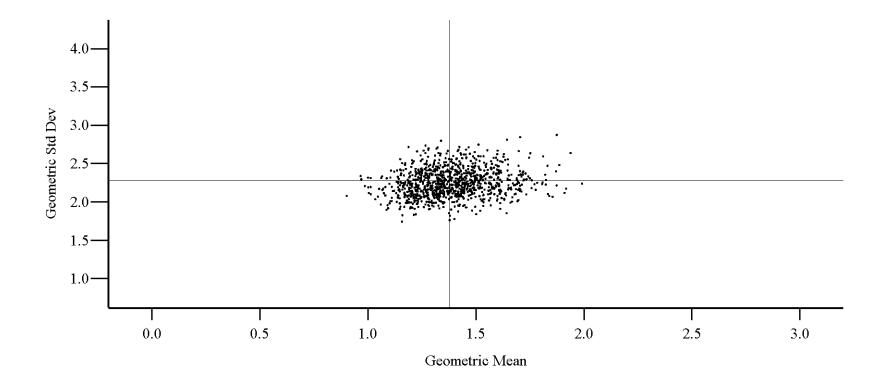
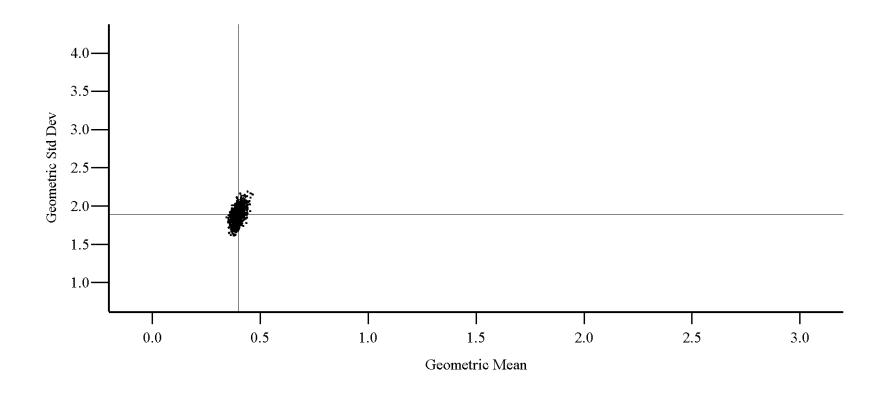



Figure D-19

Geometric mean and standard deviation of air exchange rate
Bootstrapped distributions for different cities
City: Research Triangle Park
Air Conditioner Type: Central or Room A/C
Temperature Range: 20-25 Degrees Celsius

••• Bootstrapped Data +++ Original Data

ATTACHMENT 7. TECHNICAL MEMORANDUM ON THE DISTRIBUTIONS OF AIR EXCHANGE RATE AVERAGES OVER MULTIPLE DAYS

MEMORANDUM

To: John Langstaff, EPA OAQPS

From: Jonathan Cohen, Arlene Rosenbaum, ICF International

Date: June 8, 2006

Re: Distributions of air exchange rate averages over multiple days

As detailed in the memorandum by Cohen, Mallya and Rosenbaum, 20058 (Appendix A of this report) we have proposed to use the APEX model to simulate the residential air exchange rate (AER) using different log-normal distributions for each combination of outside temperature range and the air conditioner type, defined as the presence or absence of an air conditioner (central or room).

Although the averaging periods for the air exchange rates in the study databases varied from one day to seven days, our analyses did not take the measurement duration into account and treated the data as if they were a set of statistically independent daily averages. In this memorandum we present some analyses of the Research Triangle Park Panel Study that show extremely strong correlations between consecutive 24-hour air exchange rates measured at the same house. This provides support for the simplified approach of treating all averaging periods as if they were 24-hour averages.

In the current version of the APEX model, there are several options for stratification of time periods with respect to AER distributions, and for when to re-sample from a distribution for a given stratum. The options selected for this current set of simulations resulted in a uniform AER for each 24-hour period and re-sampling of the 24-hour AER for each simulated day. This re-sampling for each simulated day implies that the simulated AERs on consecutive days in the same microenvironment are statistically independent. Although we have not identified sufficient data to test the assumption of uniform AERs throughout a 24-hour period, the analyses described in this memorandum suggest that AERs on consecutive days are highly correlated. Therefore, we performed sensitivity simulations to assess the impact of the assumption of temporally independent air exchange rates, but found little difference between APEX predictions for the two scenarios (i.e., temporally independent and autocorrelated air exchange rates).

⁻

⁸ Cohen, J., H. Mallya, and A. Rosenbaum. 2005. Memorandum to John Langstaff. *EPA 68D01052*, *Work Assignment 3-08*. *Analysis of Air Exchange Rate Data*. September 30, 2005.

Distributions of multi-day averages from the RTP Panel Study

The RTP Panel study included measurements of 24-hour averages at 38 residences for up to four periods of at least seven days. These periods were in different seasons and/or calendar years. Daily outside temperatures were also provided. All the residences had either window or room air conditioners or both. We used these data to compare the distributions of daily averages taken over 1, 2, 3, ... 7 days.

The analysis is made more complicated because the previous analyses showed the dependence of the air exchange rate on the outside temperature, and the daily temperatures often varied considerably. Two alternative approaches were employed to group consecutive days. For the first approach, A, we sorted the data by the HOUSE_ID number and date and began a new group of days for each new HOUSE ID and whenever the sorted measurement days on the same HOUSE_ID were 30 days or more apart. In most cases, a home was measured over four different seasons for seven days, potentially giving $38 \times 4 = 152$ groups; the actual number of groups was 124. For the second approach, B, we again sorted the data by the HOUSE_ID number and date, but this time we began a new group of days for each new HOUSE_ID and whenever the sorted measurement days on the same HOUSE_ID were 30 days or more apart or were for different temperature ranges. We used the same four temperature ranges chosen for the analysis in the Cohen, Mallya, and Rosenbaum, 2005, memorandum (Appendix A): <= 10, 10-20, 20-25, and > 25 °C. For example, if the first week of measurements on a given HOUSE_ID had the first three days in the <= 10 °C range, the next day in the 10-20 °C range, and the last three days in the <= 10 °C range, then the first approach would treat this as a single group of days. The second approach would treat this as three groups of days, i.e., the first three days, the fourth day, and the last three days. Using the first approach, the days in each group can be in different temperature ranges. Using the second approach, every day in a group is in the same temperature range. Using the first approach we treat groups of days as being independent following a transition to a different house or season. Using the second approach we treat groups of days as being independent following a transition to a different house or season or temperature range.

To evaluate the distributions of multi-day air exchange rate (AER) averages, we averaged the AERs over consecutive days in each group. To obtain a set of one-day averages, we took the AERs for the first day of each group. To obtain a set of two-day averages, we took the average AER over the first two days from each group. We continued this process to obtain three-, four-, five-, six-, and seven-day averages. There were insufficiently representative data for averaging periods longer then seven days. Averages over non-consecutive days were excluded. Each averaging period was assigned the temperature range using the average of the daily temperatures for the averaging period. Using Approach A, some or all of the days in the averaging period might be in different temperature ranges than the overall average. Using Approach B, every day is in the same temperature range as the overall average. For each averaging period and temperature range, we calculated the mean, standard deviation, and variance of the period average AER and of its natural logarithm. Note than the geometric mean equals *e* raised to the power Mean log (AER) and the geometric standard deviation equals *e* raised to the power Std Dev log (AER). The results are shown in Tables E-1 (Approach A) and E-2 (Approach B).

Table E-1. Distribution of AER averaged over K days and its logarithm. Groups defined by Approach A.

Temperature			Mean	Mean	Std Dev	Std Dev	Variance	Variance
(°C)	K	Groups	AER	log(AER)	AER	log(AER)	AER	log(AER)
<= 10	1	35	1.109	-0.066	0.741	0.568	0.549	0.322
<= 10	2	30	1.149	-0.009	0.689	0.542	0.474	0.294
<= 10	3	28	1.065	-0.088	0.663	0.546	0.440	0.298
<= 10	4	28	1.081	-0.090	0.690	0.584	0.476	0.341
<= 10	5	24	1.103	-0.082	0.754	0.598	0.568	0.358
<= 10	6	24	1.098	-0.083	0.753	0.589	0.567	0.347
<= 10	7	29	1.054	-0.109	0.704	0.556	0.496	0.309
10-20	1	48	0.652	-0.659	0.417	0.791	0.174	0.625
10-20	2	55	0.654	-0.598	0.411	0.607	0.169	0.368
10-20	3	51	0.641	-0.622	0.416	0.603	0.173	0.363
10-20	4	50	0.683	-0.564	0.440	0.619	0.194	0.384
10-20	5	53	0.686	-0.546	0.419	0.596	0.175	0.355
10-20	6	49	0.677	-0.533	0.379	0.544	0.144	0.296
10-20	7	34	0.638	-0.593	0.343	0.555	0.118	0.308
20-25	1	32	0.500	-1.005	0.528	0.760	0.279	0.577
20-25	2	28	0.484	-0.972	0.509	0.623	0.259	0.388
20-25	3	27	0.495	-0.933	0.491	0.604	0.241	0.365
20-25	4	17	0.536	-0.905	0.623	0.652	0.389	0.425
20-25	5	17	0.543	-0.905	0.672	0.649	0.452	0.421
20-25	6	17	0.529	-0.899	0.608	0.617	0.370	0.381
20-25	7	14	0.571	-0.889	0.745	0.683	0.555	0.466
> 25	1	9	0.470	-1.058	0.423	0.857	0.179	0.734
> 25	2	11	0.412	-1.123	0.314	0.742	0.098	0.551
> 25	3	12	0.411	-1.036	0.243	0.582	0.059	0.339
> 25	4	23	0.385	-1.044	0.176	0.429	0.031	0.184
> 25	5	23	0.390	-1.028	0.175	0.425	0.031	0.181
> 25	6	23	0.399	-1.010	0.193	0.435	0.037	0.189
> 25	7	17	0.438	-0.950	0.248	0.506	0.061	0.256

Using both approaches, Tables E-1 and E-2 show that the mean values for the AER and its logarithm are approximately constant for the same temperature range but different averaging periods. This is expected if the daily AER values all have the same statistical distribution, regardless of whether or not they are independent. More interesting is the observation that the standard deviations and variances are also approximately constant for the same temperature range but different averaging periods, except for the data at > 25 °C where the standard deviations and variances tend to decrease as the length of the averaging period increases. If the daily AER values were statistically independent, then the variance of an average over K days is given by Var / K, where Var is the variance of a single daily AER value. Clearly this formula does not apply. Since the variance is approximately constant for different values of K in the same temperature range (except for the relatively limited data at > 25 °C), this shows that the daily AER values are strongly correlated. Of course the correlation is not perfect, since otherwise the AER for a given day would be identical to the AER for the next day, if the temperature range were the same, which did not occur.

Table E-2. Distribution of AER averaged over K days and its logarithm. Groups defined by Approach B.

Temperature			Mean	Mean Mean	Std Dev	Std Dev	Variance	Variance
(°C)	K	Groups	AER	log(AER)	AER	log(AER)	AER	log(AER)
<= 10	1	62	1.125	-0.081	0.832	0.610	0.692	0.372
<= 10	2	41	1.059	-0.063	0.595	0.481	0.355	0.231
<= 10	3	32	1.104	-0.040	0.643	0.530	0.413	0.281
<= 10	4	17	1.292	0.115	0.768	0.531	0.590	0.282
<= 10	5	5	1.534	0.264	1.087	0.608	1.182	0.370
10-20	1	109	0.778	-0.482	0.579	0.721	0.336	0.520
10-20	2	81	0.702	-0.532	0.451	0.603	0.204	0.363
10-20	3	63	0.684	-0.540	0.409	0.580	0.167	0.336
10-20	4	27	0.650	-0.626	0.414	0.663	0.171	0.440
10-20	5	22	0.629	-0.660	0.417	0.654	0.174	0.428
10-20	6	12	0.614	-0.679	0.418	0.638	0.175	0.407
10-20	7	6	0.720	-0.587	0.529	0.816	0.280	0.667
20-25	1	107	0.514	-0.915	0.518	0.639	0.269	0.409
20-25	2	63	0.511	-0.930	0.584	0.603	0.341	0.364
20-25	3	23	0.577	-0.837	0.641	0.659	0.411	0.434
20-25	4	3	1.308	-0.484	1.810	1.479	3.277	2.187
> 25	1	54	0.488	-0.949	0.448	0.626	0.201	0.392
> 25	2	32	0.486	-0.900	0.351	0.595	0.123	0.354
> 25	3	23	0.427	-0.970	0.218	0.506	0.048	0.256
> 25	4	12	0.401	-1.029	0.207	0.509	0.043	0.259
> 25	5	12	0.410	-1.003	0.207	0.507	0.043	0.257
> 25	6	6	0.341	-1.164	0.129	0.510	0.017	0.261
> 25	7	6	0.346	-1.144	0.125	0.494	0.016	0.244

These arguments suggest that, based on the RTP Panel study data, to a reasonable approximation, the distribution of an AER measurement does not depend upon the length of the averaging period for the measurement, although it does depend upon the average temperature. This supports the methodology used in the Cohen, Mallya, and Rosenbaum, 2005, analyses that did not take into account the length of the averaging period.

The above argument suggests that the assumption that daily AER values are statistically independent is not justified. Statistical modeling of the correlation structure between consecutive daily AER values is not easy because of the problem of accounting for temperature effects, since temperatures vary from day to day. In the next section we present some statistical models of the daily AER values from the RTP Panel Study.

Statistical models of AER auto-correlations from the RTP Panel Study

We used the MIXED procedure from SAS to fit several mixed models with fixed effects and random effects to the daily values of AER and log(AER). The fixed effects are the population average values of AER or log(AER), and are assumed to depend upon the temperature range. The random effects have expected values of zero and define the correlations between pairs of

measurements from the same Group, where the Groups are defined either using Approach A or Approach B above. As described above, a Group is a period of up to 14 consecutive days of measurements at the same house. For these mixed model analyses we included periods with one or more missing days. For all the statistical models, we assume that AER values in different Groups are statistically independent, which implies that data from different houses or in different seasons are independent.

The main statistical model for AER was defined as follows:

```
AER = Mean(Temp Range) + A(Group, Temp Range)
+ B(Group, Day Number) + Error(Group, Day Number)
```

Mean(Temp Range) is the fixed effects term. There is a different overall mean value for each of the four temperature ranges.

A(Group, Temp Range) is the random effect of temperature. For each Group, four error terms are independently drawn from four different normal distributions, one for each temperature range. These normal distributions all have mean zero, but may have different variances. Because of this term, there is a correlation between AER values measured in the same Group of days for a pair of days in the same temperature range.

B(Group, Day Number) is the repeated effects term. The day number is defined so that the first day of a Group has day number 1, the next calendar day has day number 2, and so on. In some cases AER's were missing for some of the day numbers. B(Group, Day Number) is a normally distributed error term for each AER measurement. The expected value (i.e., the mean) is zero. The variance is V. The covariance between B(Group g, day i) and B(Group h, day j) is zero for days in different Groups g and h, and equals $V \times \exp(d \times |i-j|)$ for days in the same Group. V and d are fitted parameters. This is a first order auto-regressive model. Because of this term, there is a correlation between AER values measured in the same Group of days, and the correlation decreases if the days are further apart.

Finally, Error(Group, Day Number) is the Residual Error term. There is one such error term for every AER measurement, and all these terms are independently drawn from the same normal distribution, with mean 0 and variance W.

We can summarize this rather complicated model as follows. The AER measurements are uncorrelated if they are from different Groups. If they are in the same Group, they have a correlation that decreases with the day difference, and they have an additional correlation if they are in the same temperature range.

Probably the most interesting parameter for these models is the parameter d, which defines the strength of the auto-correlation between pairs of days. This parameter d lies between -1 (perfect negative correlation) and +1 (perfect positive correlation) although values exactly equal to +1 or -1 are impossible for a stationary model. Negative values of d would be unusual since they would imply a tendency for a high AER day to be followed by a low AER day, and vice versa. The case d=0 is for no auto-correlation.

Table E-3 gives the fitted values of d for various versions of the model. The variants considered were:

- model AER or log(AER)
- include or exclude the term A(Group, Temp Range) (the "random" statement in the SAS code)
- use Approach A or Approach B to define the Groups

Since Approach B forces the temperature ranges to be the same for very day in a Group, the random temperature effect term is difficult to distinguish from the other terms. Therefore this term was not fitted using Approach B.

Table E-3. Autoregressive parameter d for various statistical models for the RTP Panel Study AERs.

Dependent variable	Include A(Group, Temp Range)?	Approach	d
AER	Yes	A	0.80
AER	No	A	0.82
AER	No	В	0.80
Log(AER)	Yes	A	0.87
Log(AER)	No	A	0.87
Log(AER)	No	В	0.85

In all cases, the parameter d is 0.8 or above, showing the very strong correlations between AER measurements on consecutive or almost consecutive days.

Impact of accounting for daily average AER auto-correlation

In the current version of the APEX model, there are several options for stratification of time periods with respect to AER distributions, and for when to re-sample from a distribution for a given stratum. The options selected for this current set of simulations resulted in a uniform AER for each 24-hour period and re-sampling of the 24-hour AER for each simulated day. This resampling for each simulated day implies that the simulated AERs on consecutive days in the same microenvironment are statistically independent. Although we have not identified sufficient data to test the assumption of uniform AERs throughout a 24-hour period, the analyses described in this memorandum suggest that AERs on consecutive days are highly correlated.

Therefore, in order to determine if bias was introduced into the APEX estimates with respect to either the magnitudes or variability of exposure concentrations by implicitly assuming uncorrelated air exchange rates, we re-ran the 2002 base case simulations using the option to not re-sample the AERs. For this option APEX selects a single AER for each microenvironment/stratum combination and uses it throughout the simulation.

The comparison of the two scenarios indicates little difference in APEX predictions, probably because the AERs pertain only to indoor microenvironments and for the base cases most exposure to elevated concentrations occurs in the "other outdoors" microenvironment. Figures E-

1 and E-2 below present the comparison for exceedances of 8-hour average concentration during moderate exertion for active person in Boston and Houston, respectively.

Figure E-1

Air Exchange Rate Resampling Sensitivity:

active person in boston and nouston, respectively.

Days/Person with Exceedances of 8-Hour Average Exposure Concentration During Moderate Exertion -- Active Persons, Boston, 2002--200 base-.01 150 Days/Person rsoff - .01 base - .02 100 rsoff - .02 base -.03 rsoff - .03 50 base - .04 rsoff - .04 0 base - .05

Figure E-2

Cumulative Percentile

40

60

80

80

100

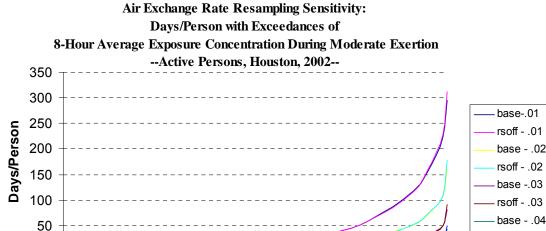
rsoff - .05

rsoff - .04

base - .05

rsoff - .05

100


0

0

0

20

20

Cumulative Percentile

40

60

Appendix C

Sulfur Dioxide Health Risk Assessment

Draft Report

March 2009

Prepared for Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, NC

Prepared by
Ellen Post
Jin Huang
Andreas Maier
Hardee Mahoney
Abt Associates Inc.

Work funded through Contract No. EP-W-05-022 Work Assignments 2-63 and 3-63, and Contract No. EP-D-08-100 Work Assignment 0-04

Harvey Richmond, Work Assignment Manager Catherine Turner, Project Officer, Contract No. EP-W-05-022 Nancy Riley, Project Officer, Contract No. EP-D-08-100

DISCLAIMER

This report is being furnished to the U.S. Environmental Protection Agency (EPA) by Abt Associates Inc. in partial fulfillment of Contract No. EP-W-05-022, Work Assignments 2-63 and 3-63, and Contract No. EP-D-08-100, Work Assignment 0-4. Any opinions, findings, conclusions, or recommendations are those of the authors and do not necessarily reflect the views of the EPA or Abt Associates. Any questions concerning this document should be addressed to Harvey Richmond, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, C504-06, Research Triangle Park, North Carolina 27711 (email: richmond.harvey@epa.gov).

Table of Contents

1	INTI	RODUCTION	1-1
2	PRE	LIMINARY CONSIDERATIONS	2-1
	2.1	The Broad Empirical Basis for a Relationship Between SO ₂ and	Adverse
		Health Effects	2-1
	2.2	Basic Structure of the Risk Assessment	
	2.3	Air Quality Considerations	2-2
3	MET	THODS	3-1
	3.1	Selection of health endpoints and target population	3-1
	3.2	Development of exposure-response functions	3-3
	3	2.1 Calculation of risk estimates	
	3	2.2 Selection of urban areas	3-11
	3	2.3 Addressing variability and uncertainty	
4	Resu	lts	4-15
5	REF	ERENCES	5-1

List of Tables

Table 3-1. Study-Specific SO ₂ Exposure-Response Data for Lung Function Decrements	3-4
Table 3-2. Example: Calculation of Number of Occurrences of Lung Function	
Response, Defined as an Increase in sRaw ≥ 100%, Among Asthmatics in St.	
Louis Engaged in Moderate or Greater Exertion Associated with Exposure to	
SO ₂ Concentrations that Just Meet an Alternative 1-Hour 99 th Percentile 100	2 10
11	3-10
Table 3-3. Example: Calculation of the Number of Asthmatics in St. Louis Engaged	l
in Moderate or Greater Exertion Estimated to Experience at Least One Lung	
Function Response, Defined as an Increase in sRaw $\geq 100\%$, Associated with	
Exposure to SO ₂ Concentrations that Just Meet an Alternative 1-Hour 99 th	2 11
Percentile 100 ppb Standard	3-11
Table 4-1. Number of Occurrences (in Hundreds) of Lung Function Response	
(Defined in Terms of sRaw) Among Asthmatics Engaged in Moderate or	
Greater Exertion Associated with Exposure to "As Is" SO ₂ Concentrations,	
SO ₂ Concentrations that Just Meet the Current Standards, and SO ₂ Concentrations that Just Meet Alternative Standards	1 16
Table 4-2. Number of Occurrences (in Hundreds) of Lung Function Response	4-10
(Defined in Terms of sRaw) Among Asthmatic Children Engaged in	
Moderate or Greater Exertion Associated with Exposure to "As Is" SO ₂	
Concentrations, SO ₂ Concentrations that Just Meet the Current Standards,	
and SO ₂ Concentrations that Just Meet Alternative Standards	4-17
Table 4-3. Number of Occurrences (in Hundreds) of Lung Function Response	1 1 /
(Defined in Terms of FEV ₁) Among Asthmatics Engaged in Moderate or	
Greater Exertion Associated with Exposure to "As Is" SO ₂ Concentrations,	
SO ₂ Concentrations that Just Meet the Current Standards, and SO ₂	
	4-18
Table 4-4. Number of Occurrences (in Hundreds) of Lung Function Response	
(Defined in Terms of FEV ₁) Among Asthmatic Children Engaged in	
Moderate or Greater Exertion Associated with Exposure to "As Is" SO ₂	
Concentrations, SO ₂ Concentrations that Just Meet the Current Standards,	
and SO ₂ Concentrations that Just Meet Alternative Standards	4-19
Table 4-5. Number of Asthmatics Engaged in Moderate or Greater Exertion	
Estimated to Experience At Least One Lung Function Response (Defined in	
Terms of sRaw) Associated with Exposure to "As Is" SO ₂ Concentrations,	
SO ₂ Concentrations that Just Meet the Current Standards, and SO ₂	
Concentrations that Just Meet Alternative Standards	4-20
Table 4-6. Number of Asthmatic Children Engaged in Moderate or Greater Exertion	
Estimated to Experience At Least One Lung Function Response (Defined in	
Terms of sRaw) Associated with Exposure to "As Is" SO ₂ Concentrations,	
SO ₂ Concentrations that Just Meet the Current Standards, and SO ₂	
Concentrations that Just Meet Alternative Standards	4-21

Table 4-7. Number of Asthmatics Engaged in Moderate or Greater Exertion
Estimated to Experience At Least One Lung Function Response (Defined in
Terms of FEV ₁) Associated with Exposure to "As Is" SO ₂ Concentrations,
SO ₂ Concentrations that Just Meet the Current Standards, and SO ₂
Concentrations that Just Meet Alternative Standards 4-22
Table 4-8. Number of Asthmatic Children Engaged in Moderate or Greater Exertion
Estimated to Experience At Least One Lung Function Response (Defined in
Terms of FEV ₁) Associated with Exposure to "As Is" SO ₂ Concentrations,
SO ₂ Concentrations that Just Meet the Current Standards, and SO ₂
Concentrations that Just Meet Alternative Standards 4-23
Table 4-9. Percent of Asthmatics Engaged in Moderate or Greater Exertion
Estimated to Experience At Least One Lung Function Response (Defined in
Terms of sRaw) Associated with Exposure to "As Is" SO ₂ Concentrations,
SO ₂ Concentrations that Just Meet the Current Standards, and SO ₂
Concentrations that Just Meet Alternative Standards
Table 4-10. Percent of Asthmatic Children Engaged in Moderate or Greater Exertion
Estimated to Experience At Least One Lung Function Response (Defined in
Terms of sRaw) Associated with Exposure to "As Is" SO ₂ Concentrations,
SO ₂ Concentrations that Just Meet the Current Standards, and SO ₂
Concentrations that Just Meet Alternative Standards
Table 4-11. Percent of Asthmatics Engaged in Moderate or Greater Exertion
Estimated to Experience At Least One Lung Function Response (Defined in
Terms of FEV ₁) Associated with Exposure to "As Is" SO ₂ Concentrations,
SO ₂ Concentrations that Just Meet the Current Standards, and SO ₂
Concentrations that Just Meet Alternative Standards
Table 4-12. Percent of Asthmatic Children Engaged in Moderate or Greater Exertion
Estimated to Experience At Least One Lung Function Response (Defined in
Terms of FEV ₁) Associated with Exposure to "As Is" SO ₂ Concentrations,
SO ₂ Concentrations that Just Meet the Current Standards, and SO ₂
Concentrations that Just Meet Alternative Standards 4-27

List of Figures

Figure	3-1. Components of SO ₂ Health Risk Assessment Based on Controlled Human Exposure Studies	. 3-2
Figure	3-2. Bayesian-Estimated Median Exposure-Response Functions: Increase in sRaw > 100% for 5-Minute Exposures of Asthmatics Engaged in Moderate or Greater Exertion.	. 3-7
Figure	3-3. Bayesian-Estimated Median Exposure-Response Functions: Increase in sRaw > 200% for 5-Minute Exposures of Asthmatics Engaged in Moderate or Greater Exertion	.3-7
		. 3-8
Figure	3-5. Bayesian-Estimated Median Exposure-Response Functions: Decrease in $FEV_1 > 20\%$ for 5-Minute Exposures of Asthmatics Engaged in Moderate or Greater Exertion.	.3-8
Figure	4-1. Percent of Asthmatics Engaged in Moderate or Greater Exertion Exhibiting Lung Function Response (Defined as an Increase in sRaw ≥ 100%) Attributable to SO₂ Within Given Ranges Under Different Air Quality Scenarios	4-28
Figure	4-2. Percent of Asthmatic Children Engaged in Moderate or Greater Exertion Exhibiting Lung Function Response (Defined as an Increase in sRaw \geq 100%) Attributable to SO ₂ Within Given Ranges Under Different Air Quality	4-29
Figure	4-3. Percent of Asthmatics Engaged in Moderate or Greater Exertion Exhibiting Lung Function Response (Defined as a Decrease in $FEV_1 \ge 15\%$) Attributable to SO_2 Within Given Ranges Under Different Air Quality Scenarios.	4-30
Figure	4-4. Percent of Asthmatic Children Engaged in Moderate or Greater Exertion Exhibiting Lung Function Response (Defined as a Decrease in $FEV_1 \ge 15\%$) Attributable to SO_2 Within Given Ranges Under Different Air Quality Scenarios	4-31
Figure	4-5. Number of Occurrences of Lung Function Response (Defined as an Increase in sRaw $\geq 100\%$) Among Asthmatics Engaged in Moderate or Greater Exertion Attributable to SO ₂ Within Given Ranges Under Different Air Quality Scenarios.	4-32
Figure	4-6. Number of Occurrences of Lung Function Response (Defined as an Increase in sRaw ≥ 100%) Among Asthmatic Children Engaged in Moderate or Greater Exertion Attributable to SO₂ Within Given Ranges Under Different Air Quality Scenarios	
Figure	4-7. Number of Occurrences of Lung Function Response (Defined as a Decrease in FEV ₁ \geq 15%) Among Asthmatics Engaged in Moderate or Greater Exertion Attributable to SO ₂ Within Given Ranges Under Different Air Quality Scenarios.	
Figure	4-8. Number of Occurrences of Lung Function Response (Defined as a Decrease in FEV ₁ \geq 15%) Among Asthmatic Children Engaged in Moderate	

or Greater Exertion Attributable to SO ₂ Within Given Ranges Under	
Different Air Quality Scenarios	4-35
Figure 4-9. Legend for Figures 4-1 - 4-8.	4-36

Sulfur Dioxide Health Risk Assessment

1 INTRODUCTION

The U.S. Environmental Protection Agency (EPA) is presently conducting a review of the national ambient air quality standards (NAAQS) for sulfur dioxide (SO₂). Sections 108 and 109 of the Clean Air Act (Act) govern the establishment and periodic review of the NAAQS. These standards are established for pollutants that may reasonably be anticipated to endanger public health and welfare, and whose presence in the ambient air results from numerous or diverse mobile or stationary sources. The NAAOS are to be based on air quality criteria, which are to accurately reflect the latest scientific knowledge useful in indicating the kind and extent of identifiable effects on public health or welfare that may be expected from the presence of the pollutant in ambient air. The EPA Administrator is to promulgate and periodically review, at fiveyear intervals, "primary" (health-based) and "secondary" (welfare-based) NAAQS for such pollutants. Based on periodic reviews of the air quality criteria and standards, the Administrator is to make revisions in the criteria and standards, and promulgate any new standards, as may be appropriate. The Act also requires that an independent scientific review committee advise the Administrator as part of this NAAQS review process, a function performed by the Clean Air Scientific Advisory Committee (CASAC).

EPA's plan and schedule for this SO_2 NAAQS review is presented in the "Integrated Plan for Review of the Primary National Ambient Air Quality Standards for Sulfur Oxides" (U.S. EPA, 2007a). The plan discusses the preparation of two key components in the NAAQS review process: an Integrated Science Assessment (ISA) and risk/exposure assessments. The ISA critically evaluates and integrates scientific information on the health effects associated with exposure to oxides of sulfur (SO_x) in the ambient air. The risk/exposure assessments develop, as appropriate, quantitative estimates of human exposure and health risk and related variability and uncertainties, drawing upon the information summarized in the ISA.

In May 2008 EPA's National Center for Environmental Assessment (NCEA) released a draft version of the "Integrated Science Assessment for Oxides of Sulfur – Health Criteria, henceforth referred to as the draft ISA (U.S. EPA, 2008a). In June 2008, EPA's Office of Air Quality Planning and Standards (OAQPS) released a first draft of its "Risk and Exposure Assessment to Support the Review of the SO₂ Primary National Ambient Air Quality Standard," henceforth referred to as the 1st draft REA (U.S. EPA, 2008b). Both of these documents were reviewed by the CASAC SO₂ Panel on July 30-31, 2008. Based on its review of the draft ISA, OAQPS decided to expand the health risk assessment to include a quantitative assessment of lung function responses indicative of

¹ Section 109(b)(1) [42 U.S.C. 7409] of the Act defines a primary standard as one "the attainment and maintenance of which in the judgment of the Administrator, based on such criteria and allowing an adequate margin of safety, are requisite to protect the public health."

bronchoconstriction experienced by asthmatic subjects associated with 5 to 10 minute exposures to SO₂ while engaged in moderate or greater exertion. In September 2008, NCEA released the final version of the ISA, "Integrated Science Assessment for Oxides of Sulfur – Health Criteria, henceforth referred to as the ISA (U.S. EPA, 2008c).

 SO_2 is one of a group of compounds known as sulfur oxides (SO_x), which include multiple chemicals (e.g., SO_2 , SO_3). However only SO_2 is present at concentrations significant for human exposures and the ISA indicates there is limited adverse health effect data for the other gaseous compounds. Therefore, as in past NAAQS reviews, SO_2 is considered as a surrogate for gaseous SO_x species in this assessment, with the secondarily formed particulate species (i.e., sulfate or SO_4) addressed as part of the particulate matter (PM) NAAQS review.

In the previous review, concluded in 1996, it was clearly established that subjects with asthma are more sensitive to the respiratory effects of SO_2 exposure than healthy individuals (ISA, section 3.1.3.2). Asthmatics exposed to SO_2 concentrations as low as 0.2-0.3 ppm for 5-10 minutes during exercise have been shown to experience significant bronchoconstriction, measured as an increase in specific airway resistance (sRaw) ($\geq 100\%$) or a decrease in forced expiratory volume in one second (FEV₁) ($\geq 15\%$) after correction for exercise-induced responses in clean air.

The basic structure of the SO_2 health risk assessment described in this document reflects the fact that we have available controlled human exposure study data from several studies involving volunteer asthmatic subjects who were exposed to SO_2 concentrations at specified exposure levels while engaged in moderate or greater exertion for 5- or 10-minute exposures.² The risk assessment estimates lung function risks for (1) recent ambient levels of SO_2 , (2) air quality adjusted to simulate just meeting the current primary 24-hour and annual standards,³ and (3) air quality adjusted to simulate just meeting selected alternative 1-hour standards in selected locations encompassing a variety of SO_2 emission source types in the Greene County and the St. Louis area within Missouri.

The SO_2 health risk assessment builds upon the methodology, analyses, and lessons learned from the assessments conducted for the last SO_2 NAAQS review in 1996, as well as the methodology and lessons learned from the health risk assessment work conducted for the recently concluded O_3 NAAQS review (Abt Associates, 2007a) – in particular, the assessment of risk based on controlled human exposure studies described in Chapter 3 of that document. The SO_2 risk assessment is based on our current understanding of the SO_2 scientific literature as reflected in the evaluation provided in the final ISA.

 $^{^2}$ An additional characterization of risk may involve use of concentration-response functions, if sufficient and relevant epidemiological data are identified in the ISA to support development of functions that are related to ambient SO₂ concentrations.

³ There is a 3-hr secondary standard as well. However, this risk assessment is taking into account only the primary standards. The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

The goals of this SO₂ health risk assessment are: (1) to develop health risk estimates of the number and percent of the asthmatic population in the selected study area locations that would experience moderate or greater lung function decrements in response to daily 5-minute maximum peak exposures while engaged in moderate or greater exertion for a recent year of air quality and under a scenario in which the SO₂ concentrations are adjusted to simulate just meeting the current 24-hour standard; (2) to develop a better understanding of the influence of various inputs and assumptions on the risk estimates; and (3) to gain insights into the risk levels and patterns of risk reductions associated with air quality simulating just meeting alternative 1-hour SO₂ standards. The risk assessment is intended as a tool that, together with other information on lung function and other health effects evaluated in the SO₂ ISA, can aid the Administrator in judging whether the current primary standards protect public health with an adequate margin of safety, or whether revisions to the standards are appropriate.

Preliminary considerations and the basic structure of the risk assessment are described in section 2. Section 3 describes the methods used, and section 4 presents the results of the risk assessment.

2 PRELIMINARY CONSIDERATIONS

The health risk assessment described in this document estimated lung function decrements (measured as increases in sRaw or decreases in FEV_1) associated with SO_2 exposures under several scenarios: (1) recent ambient levels of SO_2 , (2) air quality adjusted to simulate just meeting the current 24-hour and annual standards, and (3) air quality adjusted to simulate just meeting several alternative 1-hour standards. In this section we address preliminary considerations. Section 2.1 briefly discusses the broad empirical basis for a relationship between SO_2 exposures and adverse health effects. Section 2.2 describes the basic structure of the risk assessment. Finally, section 2.3 addresses air quality considerations.

2.1 The Broad Empirical Basis for a Relationship Between SO₂ and Adverse Health Effects

The ISA concludes that the health evidence "is *sufficient to infer a causal* relationship between respiratory morbidity and short-term exposure to SO₂" (ISA, p. 3-33). In support of this conclusion, the ISA notes the following:

The strongest evidence for this causal relationship comes from human clinical studies reporting respiratory symptoms and decreased lung function following peak exposures of 5-10 min duration to SO₂. These effects have been observed consistently across studies involving exercising mild to moderate asthmatics. Statistically significant decrements in lung function accompanied by respiratory symptoms including wheeze and chest tightness have been clearly demonstrated following exposure to 0.4-0.6 ppm SO₂. Although studies have not reported statistically significant respiratory effects following exposure to 0.2-0.3 ppm SO₂, some asthmatic subjects (5-30%) have been shown to experience moderate to large decrements in lung function at these exposure concentrations.

A larger body of evidence supporting this determination of causality comes from numerous epidemiological studies reporting associations with respiratory symptoms, ED visits, and hospital admissions with short-term SO₂ exposures, generally of 24-h avg. Important new multicity studies and several other studies have found an association between 24-h avg ambient SO₂ concentrations and respiratory symptoms in children, particularly those with asthma....

... Collectively, the findings from both human clinical and epidemiological studies provide a strong basis for concluding a causal relationship between respiratory morbidity and short-term exposure to SO₂.

2.2 Basic Structure of the Risk Assessment

As noted above, this SO₂ health risk assessment is based on controlled human exposure studies involving volunteer subjects who were exposed while engaged in different exercise regimens to specified levels of SO₂ under controlled conditions for 5 or 10 minute periods. The responses measured in these studies were measures of lung function decrements, including increases in SRaw and decreases in FEV₁. We used probabilistic exposure-response relationships, based on analysis of individual data, that describe the relationships between a measure of personal exposure to SO₂ and the measure(s) of lung function recorded in these studies. These probabilistic exposureresponse relationships were combined with daily 5-minute maximum peak exposure estimates associated with the air quality scenarios mentioned above for mild and moderate asthmatics engaged in moderate or greater exertion. Estimates of personal exposures to varying ambient concentrations associated with several air quality scenaros including recent air quality levels, and air quality levels simulating just meeting the current SO2 primary standard and several alternative primary 1-hour standards were derived through exposure modeling. The details of the exposure modeling are described in Chapter 8 and Appendix B of the second draft Risk and Exposure Assessment document (EPA, 2009).

The characteristics that are relevant to carrying out a risk assessment based on controlled human exposure studies can be summarized as follows:

- A risk assessment based on controlled human exposure studies uses exposureresponse functions, and therefore requires as input (modeled) personal exposures to SO₂.
- Controlled human exposure studies, carried out in laboratory settings, are generally not specific to any particular real world location. A controlled human exposure studies-based risk assessment can therefore appropriately be carried out for any location for which there are adequate air quality data on which to base the modeling of personal exposures.

The methods for the SO₂ risk assessment are discussed in section 3 below. The risk assessment was implemented within a new probabilistic version of TRIM.Risk, the component of EPA's Total Risk Integrated Methodology (TRIM) model that estimates human health risks.⁴

2.3 Air Quality Considerations

The SO_2 health risk assessment estimates lung function risks associated with (1) "as is" ambient levels of SO_2 , (2) air quality simulating just meeting the current 24-hour

-

⁴ TRIM.Risk was most recently applied to EPA's O₃ health risk assessment. A User's Guide for the Application of TRIM.Risk to the O₃ health risk assessment (Abt Associates, 2007b) is available online at: http://epa.gov/ttn/fera/data/trim/trimrisk ozone ra userguide 8-6-07.pdf.

and annual standards, and (3) air quality simulating just meeting several alternative 1-hour standards in a recent year (2002) in two selected locations encompassing a variety of SO₂ emission source types in Greene County, Missouri and St. Louis, Missouri.

In order to estimate health risks associated with just meeting the current 24-hour and annual standards and alternative 1-hour SO_2 standards, it is necessary to estimate the distribution of short-term (5-minute) SO_2 concentrations that would occur under any given standard. Since compliance with the current SO_2 standards is based on a single year, air quality data from 2002 were used to determine the change in SO_2 concentrations required to meet the current standards. Estimated design values were used to determine the adjustment necessary to just meet the current 24-hour and annual standards. The approach to simulating just meeting the current standards and alternative 1-hour standards is described in section 8.8.1 of the second draft Risk and Exposure Assessment document (EPA, 2009).

The risk estimates developed for the recently concluded PM and O₃ NAAQS reviews represented risks associated with PM and O₃ levels in excess of estimated policy-relevant background (PRB) levels in the U.S. PRB levels have been historically defined by EPA as concentrations of a pollutant that would occur in the U.S. in the absence of anthropogenic emissions in continental North America (defined as the United States, Canada, and Mexico). The ISA notes that PRB SO₂ concentrations are below 10 parts per trillion (ppt) over much of the United States and are generally less than 30 ppt. With the exception of a few locations on the West Coast and locations in Hawaii, where volcanic SO₂ emissions cause high PRB concentrations, PRB contributes less than 1% to present-day SO₂ concentrations in surface air. Since PRB is well below concentrations that might cause potential health effects, there was no adjustment made for risks associated with PRB concentrations in the current SO₂ health risk assessment.

3 METHODS

The major components of the SO_2 lung function risk assessment are illustrated in Figure 3-1. The air quality and exposure analysis components that are integral to the risk assessment are discussed in Chapters 6 and 7, respectively, of the 2^{nd} draft REA. As described in the ISA and the 2^{nd} draft REA, there are numerous controlled human exposure studies reporting lung function decrements (as measured by increases in SRaw and/or decreases in FEV₁) among mild and/or moderate asthmatic adults associated with short-term (5 or 10 minute) peak exposures to various levels of SO_2 while engaged in moderate or greater exercise. The SO_2 lung function risk assessment focuses on these lung function responses among asthmatic children and adults.

3.1 Selection of health endpoints and target population

The ISA concluded that there is sufficient evidence to infer a causal relationship between respiratory morbidity and short-term exposure to SO₂ (ISA, section 5.2). This determination was based in large part on controlled human exposure studies demonstrating a relationship between short-term (5- or 10-minute) peak SO₂ exposures and adverse effects on the respiratory system in exercising asthmatics. More specifically, the ISA found consistent evidence from numerous controlled human exposure studies demonstrating increased respiratory symptoms (e.g. cough, chest tightness, wheeze) and decrements in lung function in a substantial proportion of exercising asthmatics (generally classified as mild to moderate asthmatics) following short-term peak exposures to SO₂ at concentrations ≥ 0.4 ppm. As in previous reviews, the ISA also concluded that at concentrations below 1.0 ppm, healthy individuals are relatively insensitive to the respiratory effects of short-term peak SO₂ exposures (ISA, sections 3.1.3.2). Therefore, the SO₂ lung function risk assessment focuses on asthmatics. Exposure estimates for asthmatic children and adult asthmatics were combined separately with probabilistic exposure-response relationships (described below) for lung function response associated with daily 5-minute maximum peak exposures while engaged in moderate or greater exertion.5

_

⁵ Only the highest 5-minute peak exposure (with moderate or greater exertion) on each day will be considered in the lung function risk assessment, since the controlled human exposure studies have shown an acute-phase response that was followed by a short refractory period where the individual was relatively insensitive to additional SO₂ challenges.

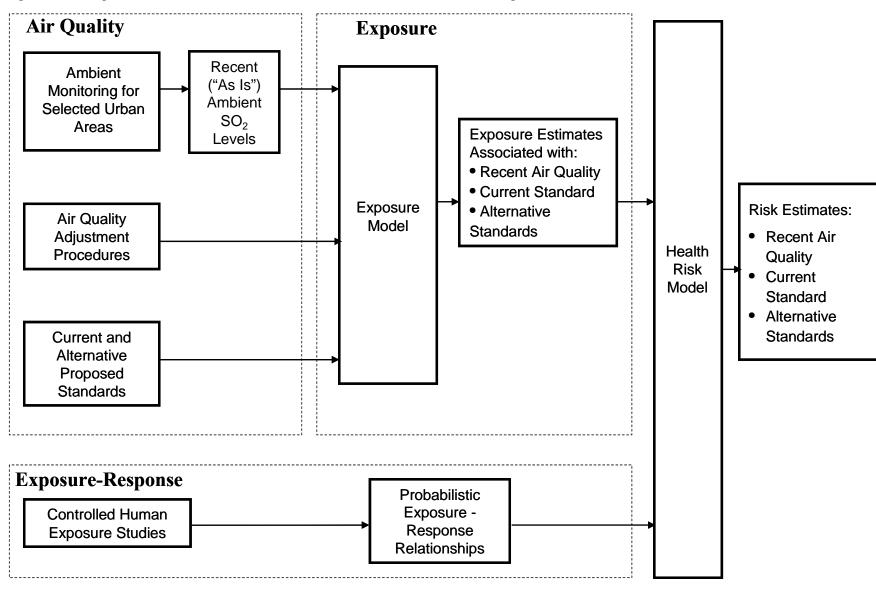


Figure 3-1. Components of SO₂ Health Risk Assessment Based on Controlled Human Exposure Studies

Two measures of lung function response – specific airway resistance (sRaw) and forced expiratory volume in one second (FEV₁) – have been used in the controlled human exposure studies that have focused on the effects of exposure to SO_2 on exercising asthmatics. Negative effects are measured as the percent increase in sRaw or the percent decrease in FEV₁. As explained below, we estimated exposure-response relationships for four different definitions of response:

- An increase in sRaw $\geq 100\%$
- An increase in sRaw $\geq 200\%$
- A decrease in $FEV_1 \ge 15\%$
- A decrease in FEV₁ \geq 20%.

3.2 Development of exposure-response functions

We used a Bayesian Markov Chain Monte Carlo approach to estimate probabilistic exposure-response relationships for lung function decrements associated with 5- or 10-minute exposures at moderate or greater exertion, using the WinBUGS software (Spiegelhalter et al. (1996)). For an explanation of these methods, see Gelman et al. (1995) or Gilks et al. (1996). We treated both 5- and 10-minute exposures as if they were all 5-minute exposures.

The combined data set from Linn et al. (1987, 1988, 1990), Bethel et al. (1983, 1985), Roger et al. (1985), and Kehrl et al. (1987) provide data with which to estimate exposure-response relationships between responses defined in terms of sRaw and 5- or 10-minute exposures to SO_2 at levels of 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, and 1.0 ppm. As noted above, two definitions of response were used: (1) an increase in sRaw \geq 100% and (2) an increase in sRaw \geq 200%.

The combined data set from Linn et al. (1987, 1988, 1990) provide data with which to estimate exposure-response relationships between responses defined in terms of FEV₁ and 5- or 10-minute exposures to SO₂ at levels of 0.2, 0.3, 0.4, and 0.6 ppm. As noted above, two definitions of response were used: a decrease in FEV₁ \geq 15% and a decrease in FEV₁ \geq 20%.

Before being used to estimate exposure-response relationships for 5-minute exposures, the data from these controlled human exposure studies were corrected for the effect of exercising in clean air to remove any systematic bias that might be present in the data attributable to an exercise effect. Generally, this correction for exercise in clean air is small relative to the total effects measures in the SO₂-exposed cases. The resulting study-specific results, based on the corrected data, are shown in Table 3-1.

Abt Associates Inc. 3-3 March 2009

_

⁶ Data from Magnussen et al. (1990) were not used in the estimation of sRaw exposure-response functions because exposures in this study were conducted using a mouthpiece rather than a chamber.

⁷ Corrections were subject-specific. A correction was made by subtracting the subject's percent change (in FEV₁ or sRaw) under the no-SO₂ protocol from his or her percent change (in FEV₁ or sRaw) under the given SO₂ protocol, and rounding the result to the nearest integer. For example, if a subject's percent change in sRaw under the no-SO₂ protocol was 110.12% and his percent change in sRaw under the 0.6 ppm SO₂ protocol was 185.92%, then his percent change in sRaw *due to SO*₂ is 185.92% - 110.12% = 75.8%, which rounds to 76%.

Table 3-1. Study-Specific SO₂ Exposure-Response Data for Lung Function Decrements

	Increase in	sRaw ≥ 100%	Increase in s	sRaw ≥ 200%	Decrease in	FEV ₁ ≥15%	Decrease in FEV₁≥20%	
Study and SO ₂ Level	Number	Number	Number	Number	Number	Number	Number	Number
-	Exposed	Responding	Exposed	Responding	Exposed	Responding	Exposed	Responding
0.2 ppm SO ₂							_	
Linn et al. (1987)	40	2	40	0	40	5	40	2
0.25 ppm SO ₂								
Bethel et al. (1985)	19	6	19	3				
	9	2	9	0				
Roger et al. (1985)	28	1	28	0				
0.3 ppm SO ₂								
Linn et al. (1988)	20	2	20	1	20	3	20	0
Linn et al. (1990)	21	7	21	2	21	5	21	3
0.4 ppm SO ₂								
Linn et al. (1987)	40	9	40	3	40	12	40	9
0.5 ppm SO ₂								
Bethel et al. (1983)	10	6	10	4				
Roger et al. (1985)	28	5	28	1				
Magnussen et al. (1990)*	45	16	45	7				
0.6 ppm SO ₂								
Linn et al. (1987)	40	14	40	11	40	21	40	19
Linn et al. (1988)	20	12	20	7	20	11	20	11
Linn et al. (1990)	21	13	21	6	21	9	21	7
1.0 ppm SO ₂								
Roger et al. (1985)	28	14	28	7			·	
Kehrl et al. (1987)	10	6	10	2			•	
*Data from Magnussan at	-1 (1000)				C		·	14-1

^{*}Data from Magnussen et al. (1990) were not used in the estimation of sRaw exposure-response functions because exposures in this study were conducted using a mouthpiece rather than a chamber.

We considered two different functional forms for the exposure-response functions: a 2-parameter logistic model and a probit model. In particular, we used the data in Table 3-1 to estimate the logistic function,

$$y(x; \beta, \gamma) = \frac{1}{(1 + e^{\beta + \gamma * \ln(x)})}$$
 (3-1)

and the probit function,

$$y(x; \beta, \gamma) = \frac{1}{(2\pi)^{1/2}} \int_{-\infty}^{\beta + \gamma \ln(x)} e^{-t^2/2} dt$$
 (3-2)

for each of the four lung function responses defined above, where x denotes the SO_2 concentration (in ppm) to which the individual is exposed, ln(x) is the natural logarithm of x, y denotes the corresponding probability of response (increase in $sRaw \ge 100\%$ or $\ge 200\%$ or decrease in $FEV_1 \ge 15\%$ or $\ge 20\%$), and β and γ are the two parameters whose values are estimated 8

We assumed that the number of responses, s_i , out of N_i subjects exposed to a given SO_2 concentration, x_i , has a binomial distribution with response probability given by equation (3-1) when we assume the logistic model and equation (3-2) when we assume the probit model. The likelihood function is therefore

$$L(\beta, \gamma; data) = \prod_{i} {N_i \choose s_i} y(x_i; \beta, \gamma)^{s_i} [1 - y(x_i; \beta, \gamma)]^{N_i - s_i}.$$

In some of the controlled human exposure studies, subjects were exposed to a given SO₂ concentration more than once. However, because there were insufficient data to estimate subject-specific response probabilities, we assumed a single response probability (for a given definition of response) for all individuals and treated the repeated exposures for a single subject as independent exposures in the binomial distribution.

For each model, we derived a Bayesian posterior distribution using this binomial likelihood function in combination with uniform prior distributions for each of the unknown parameters. We used 4000 iterations as the "burn-in" period followed by a sufficient number of iterations to ensure convergence of the resulting posterior density. Each iteration corresponds to a set of values for the parameters of the logistic or probit exposure-response function.

⁸ For ease of exposition, we use the same two Greek letters to indicate two unknown parameters in the logistic and probit models; this does not imply, however, that the values of these two parameters are the same in the two models.

⁹ We used the following uniform prior distributions for the 2-parameter logistic model: $\beta \sim U(-10, 0)$; and $\gamma \sim U(-10,0)$; we used the following normal prior distributions for the probit model: $\beta \sim N(0, 1000)$; and $\gamma \sim N(0,1000)$.

For any SO₂ concentration, x, we could then derive the n^{th} percentile response value, for any n, by evaluating the exposure-response function at x using each of the 18,000 sets of parameter values. The resulting median (50th percentile) logistic and probit exposure-response functions are shown together, along with the data used to estimate these functions, for increases in sRaw \geq 100% and \geq 200% and decreases in FEV₁ \geq 15% and \geq 20% in Figures 3-2, 3-3, 3-4, and 3-5, respectively.

As can be seen in Figures 3-2 through 3-5, there were only limited data with which to estimate the logistic and probit exposure-response functions, and in all cases it wasn't clear that one function fit the data better than the other. In fact, for each of the four lung function response definitions there was little difference between the estimated logistic and probit models. Because the estimated exposure-response functions based on these two models were so similar to each other, for each of the four lung function definitions, and because the risk results from the two models for the same lung function definition would thus be almost the same, we used only one of the models, the logistic, to estimate the risks associated with exposure to SO₂ under the different air quality scenarios considered. The 2.5th percentile, median, and 97.5th percentile logistic exposure-response curves, along with the response data to which they were fit, are shown separately for each of the four response definitions in Appendix A.

Figure 3-2. Bayesian-Estimated Median Exposure-Response Functions: Increase in sRaw ≥ 100% for 5-Minute Exposures of Asthmatics Engaged in Moderate or Greater Exertion

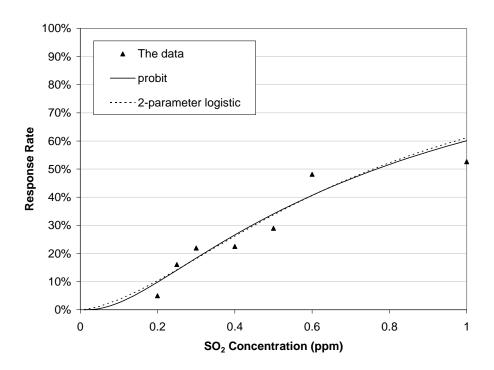


Figure 3-3. Bayesian-Estimated Median Exposure-Response Functions: Increase in sRaw ≥ 200% for 5-Minute Exposures of Asthmatics Engaged in Moderate or Greater Exertion

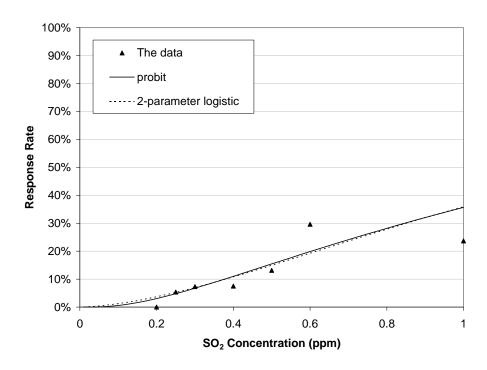


Figure 3-4. Bayesian-Estimated Median Exposure-Response Functions: Decrease in $FEV_1 \ge 15\%$ for 5-Minute Exposures of Asthmatics Engaged in Moderate or Greater Exertion

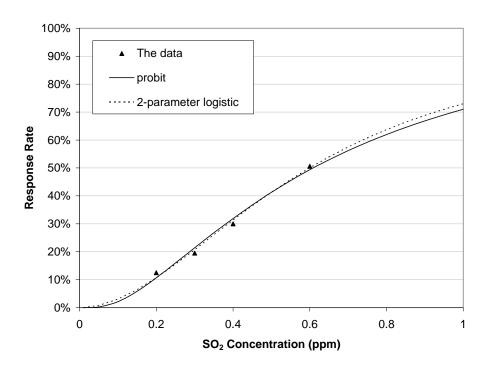
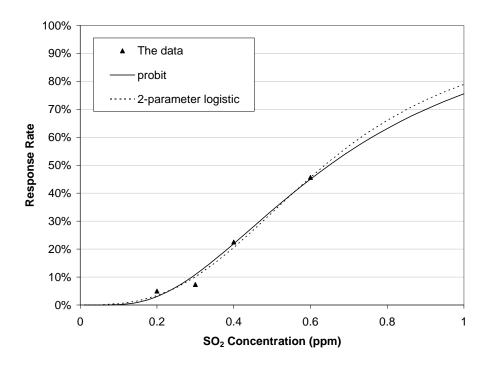



Figure 3-5. Bayesian-Estimated Median Exposure-Response Functions: Decrease in $FEV_1 \ge 20\%$ for 5-Minute Exposures of Asthmatics Engaged in Moderate or Greater Exertion

3.2.1 Calculation of risk estimates

We generated two measures of risk for each of the lung function response definitions. The first measure of risk is simply the number of occurrences of the lung function response in the designated population (e.g., asthmatics) in a year associated with SO_2 concentrations under a given air quality scenario. To calculate this measure of risk we started with the number of exposures among the population that are at or above each benchmark level (i.e., 0 ppb, 50 ppb, 100 ppb, etc.), estimated from the exposure modeling. From this we calculated the number of exposures within each 50 ppb exposure "bin" (e.g., < 50 ppb, 50 – 100 ppb, etc.). We then calculated the number of occurrences of lung function response by multiplying the number of exposures in an exposure bin by the response probability (given by our logistic exposure-response function for the specified definition of lung function response) associated with the midpoint of that bin and summing the results across the bins.

Because response probabilities are calculated for each of several percentiles of a probabilistic exposure-response distribution, estimated numbers of occurrences are similarly percentile-specific. The k^{th} percentile number of occurrences, O_k , associated with SO_2 concentrations under a given air quality scenario is:

$$O_k = \sum_{j=1}^{n} N_j x (R_k | e_j)$$
 (3-3)

where:

 e_i = (the midpoint of) the jth category of personal exposure to SO₂;

 N_j = the number of exposures to e_j ppb SO₂, given ambient SO₂ concentrations under the specified air quality scenario;

 $R_k \mid e_j$ = the kth percentile response probability at SO₂ concentration e_j ; and

n = the number of intervals (categories) of SO₂ personal exposure concentration.

An example calculation is given in Table 3-2.

.

 $^{^{10}}$ The final exposure bin was from 750 to 800 ppb SO₂. In at least one of the alternative standard scenarios, there were exposures greater than 800 ppb. For any exposures that exceeded 800 ppb, we assumed a final bin from 800 to 850 ppb, and assigned them the midpoint value of that bin, 825 ppb. This will result in a slight downward bias in the estimate of risk.

Table 3-2. Example: Calculation of Number of Occurrences of Lung Function Response, Defined as an Increase in sRaw \geq 100%, Among Asthmatics in St. Louis Engaged in Moderate or Greater Exertion Associated with Exposure to SO₂ Concentrations that Just Meet an Alternative 1-Hour 99th Percentile 100 ppb Standard

S	SO ₂ Exposure Bin		Number of	Probability of	Expected Number of
Lower	Upper	Midpoint	Exposures	Response at Midpoint	Occurrences of Lung
Bound	Bound			SO ₂ Level	Function Response
		(1)	(2)	(3)	$=(2) \times (3)$
0	0.05	0.025	16519000	0.00406	67067
0.05	0.1	0.075	136621	0.02334	3189
0.1	0.15	0.125	15760	0.05162	814
0.15	0.2	0.175	3826	0.08563	328
0.2	0.25	0.225	1051	0.12300	129
0.25	0.3	0.275	413	0.16220	67
0.3	0.35	0.325	175	0.20210	35
0.35	0.4	0.375	83	0.24190	20
0.4	0.45	0.425	31	0.28060	9
0.45	0.5	0.475	24	0.31830	8
0.5	0.55	0.525	8	0.35430	3
0.55	0.6	0.575	0	0.38850	0
0.6	0.65	0.625	0	0.42090	0
0.65	0.7	0.675	8	0.45150	4
0.7	0.75	0.725	0	0.46600	0
0.75	0.8	0.775	0	0.49380	0
		•	•	Expected Number	
Tota	al Number o	of Exposures:	16677000	of Occurrences:	71672

The second measure of risk generated for each lung function response definition is the number of individuals in the designated population to experience at least one lung function response in a year associated with SO_2 concentrations under a specified air quality scenario. The calculation of this measure of risk is similar to the calculation of the first measure of risk – however, here we started with estimates, from the exposure modeling, of the number of individuals exposed at least once to x ppb SO_2 or higher, for x = 0, 50, 100, etc. From this we calculated the number of individuals exposed at least once to SO_2 concentrations within each SO_2 exposure bin defined above. We then multiplied the numbers of individuals in an exposure bin by the response probability (given by our logistic exposure-response function for the specified definition of lung function response) corresponding to the midpoint of the exposure bin, and summed the results across the bins.

Because response probabilities are calculated for each of several percentiles of a probabilistic exposure-response distribution, estimated numbers of individuals with at least one lung function response are similarly percentile-specific. The k^{th} percentile number of individuals, Y_k , associated with SO₂ concentrations under a given air quality scenario is:

$$Y_{k} = \sum_{j=1}^{n} NI_{j} x (R_{k} | e_{j})$$
 (3-4)

Where e_j , $R_k \mid e_j$, and n are as defined above, and NI_j is the number of individuals whose highest exposure is to e_j ppb SO₂, given ambient SO₂ concentrations under the specified air quality scenario. An example calculation is given in Table 3-3.

Table 3-3. Example: Calculation of the Number of Asthmatics in St. Louis Engaged in Moderate or Greater Exertion Estimated to Experience at Least One Lung Function Response, Defined as an Increase in sRaw \geq 100%, Associated with Exposure to SO₂ Concentrations that Just Meet an Alternative 1-Hour 99th Percentile 100 ppb Standard

SO ₂ Exposure Bin		Number of	Probability of	Estimated Number of	
Lower	Upper	Midpoint	Asthmatics with	Response at Midpoint	Asthmatics Experiencing
Bound	Bound		At Least One	SO ₂ Level	at Least One Lung
			Exposure in Bin		Function Response
		(1)	(2)	(3)	$=(2) \times (3)$
0	0.05	0.025	53711	0.00406	218
0.05	0.1	0.075	34236	0.02334	799
0.1	0.15	0.125	9835	0.05162	508
0.15	0.2	0.175	3059	0.08563	262
0.2	0.25	0.225	929	0.12300	114
0.25	0.3	0.275	368	0.16220	60
0.3	0.35	0.325	145	0.20210	29
0.35	0.4	0.375	84	0.24190	20
0.4	0.45	0.425	31	0.28060	9
0.45	0.5	0.475	22	0.31830	7
0.5	0.55	0.525	8	0.35430	3
0.55	0.6	0.575	0	0.38850	0
0.6	0.65	0.625	0	0.42090	0
0.65	0.7	0.675	8	0.45150	4
0.7	0.75	0.725	0	0.46600	0
0.75	0.8	0.775	0	0.49380	0
		Total :	102436	Total:	2032

Note that this calculation assumes that individuals who do not respond at the highest SO₂ concentration to which they are exposed will not respond to any lower SO₂ concentrations to which they are exposed.

Note also that, in contrast to the risk estimates calculated for the O_3 health risk assessment, the risk estimates calculated for the SO_2 health risk assessment do not subtract out risk given the personal exposures associated with estimated policy relevant background (PRB) ambient SO_2 concentrations, because PRB SO_2 concentrations are so low (see section 2.3).

3.2.2 Selection of urban areas

Although it would be useful to characterize SO₂-related lung function risks associated with "as is" SO₂ ambient concentrations and SO₂ concentrations that just meet the current and alternative SO₂ standards nationwide, because the modeling of personal exposures is both time and labor intensive, a regional and source-oriented approach was selected instead. The selection of areas to include in the exposure analysis, and therefore the risk assessment, took into consideration the availability of ambient monitoring, the desire to represent a range of geographic areas considering SO₂ emission sources, population demographics, general climatology, and results of the ambient air quality characterization.

The first area of interest was initially identified based on the results of a preliminary screening of the 5-minute ambient SO_2 monitoring data that were available. The state of Missouri was one of only a few states having both 5-minute maximum and continuous 5-minute SO_2 ambient monitoring, as well as having over 30 1-hour SO_2 monitors in operation at some time during the period from 1997 to 2007. In addition, the air quality characterization, described in Chapter 6 of the 1st draft REA, estimated frequent exceedances above the potential health effect benchmark levels at several of the 1-hour ambient monitors. In a ranking of estimated SO_2 emissions reported in the National Emissions Inventory (NEI), Missouri ranked 7th for the number of stacks with > 1000 tpy SO_x emissions out of all U.S. states. These stack emissions were associated with a variety of source types such as electrical power generating units, chemical manufacturing, cement processing, and smelters. For all these reasons, the current SO_2 lung function risk assessment focuses on Missouri and, within Missouri, on those areas within 20 km of a major point source of SO_2 emissions in Greene County and the St. Louis area.

3.2.3 Addressing variability and uncertainty

Any estimation of risks associated with "as is" SO_2 concentrations or with SO_2 concentrations that just meet the current or alternative SO_2 standards should address both the variability and uncertainty that generally underlie such an analysis. *Uncertainty* refers to the lack of knowledge regarding the actual values of model input variables (parameter uncertainty) and of physical systems or relationships (model uncertainty – e.g., the shapes of exposure-response and concentration-response functions). The goal of the analyst is to reduce uncertainty to the maximum extent possible. Uncertainty can be reduced by improved measurement and improved model formulation. In a health risk assessment, however, significant uncertainty often remains.

The degree of uncertainty can be characterized, sometimes quantitatively. For example, the statistical uncertainty surrounding the estimated SO_2 coefficients in the exposure-response functions is reflected in confidence or credible intervals provided for the risk estimates.

As described in section 3.2 above, we used a Bayesian Markov Chain Monte Carlo approach to estimate exposure-response functions as well as to characterize uncertainty attributable to sampling error based on sample size considerations. Using this approach, we could derive the n^{th} percentile response value, for any n, for any SO_2 concentration, x, as described above (see section 3.2). Because our exposure estimates were generated at the midpoints of 0.05 ppm intervals (i.e., for 0.025 ppm, 0.075 ppm, etc.), we derived 2.5^{th} percentile, 50^{th} percentile (median), and 97.5^{th} percentile response estimates for SO_2 concentrations at these midpoint values. The 2.5^{th} percentile and 97.5^{th} percentile response estimates comprise the lower and upper bounds of the credible interval around each point estimate (median estimate) of response.

In addition to uncertainties arising from sampling variability, other uncertainties associated with the use of the exposure-response relationships for lung function responses are briefly summarized below. Additional uncertainties with respect to the exposure inputs to the

risk assessment are described in section 7.1 of the 2nd draft REA. The main additional uncertainties with respect to the approach used to estimate exposure-response relationships include:

- <u>Length of exposure</u>. The 5-minute lung function risk estimates are based on a combined data set from several controlled human exposure studies, most of which evaluated responses associated with 10-minute exposures. However, since some studies which evaluated responses after 5-minute exposures found responses occurring as early as 5-minutes after exposure, we used all of the 5- and 10- minute exposure data to represent responses associated with 5-minute exposures. We do not believe that this approach would appreciably impact the risk estimates.
- Exposure-response for mild/moderate asthmatics. The data set that was used to estimate exposure-response relationships included mild and/or moderate asthmatics. There is uncertainty with regard to how well the population of mild and moderate asthmatics included in the series of controlled human exposure studies represent the distribution of mild and moderate asthmatics in the U.S. population. As indicated in the ISA (p. 3-9), the subjects studied represent the responses "among groups of relatively healthy asthmatics and cannot necessarily be extrapolated to the most sensitive asthmatics in the population who are likely more susceptible to the respiratory effects of exposure to SO₂."
- Extrapolation of exposure-response relationships. It was necessary to estimate responses at SO₂ levels below the lowest exposure levels used in free-breathing controlled human studies (i.e., 0.2 ppm). We did not include alternative models that incorporate hypothetical population thresholds, given the lack of evidence supporting the choice of potential hypothetical threshold levels. As discussed later in this document, we have presented information on the contribution of different exposure intervals to the total estimated lung function risk. This information provides insights on how much of the estimated risk is attributed to SO₂ exposures at the lower exposure levels (i.e., 0 to 50 ppb, 50 to 100 ppb, 100 to 150 ppb, etc.). One can use this information to get a rough sense of the SO₂-related risk that would exist under alternative threshold assumptions.
- Reproducibility of SO_2 -induced responses. The risk assessment assumed that the SO_2 -induced responses for individuals are reproducible. We note that this assumption has some support in that one study (Linn et al., 1987) exposed the same subjects on two occasions to 0.6 ppm and the authors reported a high degree of correlation (r > 0.7 for mild asthmatics and r > 0.8 for moderate asthmatics, p < 0.001), while observing much lower and nonsignificant correlations (r = 0.0 0.4) for the lung function response observed in the clean air with exercise exposures.
- Age and lung function response. Because the vast majority of controlled human exposure studies investigating lung function responses were conducted with adult subjects, the risk assessment relies on data from adult asthmatic subjects to estimate exposure-response relationships that were applied to all asthmatic individuals, including children. The ISA (section 3.1.3.5) indicates that there is a strong body of evidence that suggests adolescents may experience many of the same respiratory effects at similar SO₂ levels, but recognizes that these studies administered SO₂ via inhalation through a mouthpiece rather than an

exposure chamber. This technique bypasses nasal absorption of SO_2 and can result in an increase in lung SO_2 uptake. Therefore, the uncertainty will be greater in the risk estimates for asthmatic children.

- Exposure history. The risk assessment assumed that the SO₂-induced response on any given day is independent of previous SO₂ exposures.
- <u>Interaction between SO₂ and other pollutants.</u> Because the controlled human exposure studies used in the risk assessment involved only SO₂ exposures, it was assumed that estimates of SO₂-induced health responses would not be affected by the presence of other pollutants (e.g., PM_{2.5}, O₃, NO₂).

Variability refers to the heterogeneity in a population or parameter. Even if there is no uncertainty surrounding inputs to the analysis, there may still be variability. For example, there may be variability among exposure-response functions describing the relationship between SO₂ and lung function in different locations. This variability does not imply uncertainty about the exposure-response function in any location, but only that these functions are different in the different locations, reflecting differences in the populations and/or other factors that may affect the relationship between SO₂ and the associated health endpoint. In general, it is possible to have uncertainty but no variability (if, for instance, there is a single parameter whose value is uncertain) or variability but little or no uncertainty (for example, people's heights vary considerably but can be accurately measured with little uncertainty).

The SO_2 lung function risk assessment addresses variability-related concerns by using location-specific inputs for the exposure analysis (e.g., location-specific population data, air exchange rates, air quality and temperature data). The extent to which there may be variability in exposure-response relationships for the populations included in the risk assessment residing in different geographic areas is currently unknown.

Temporal variability is more difficult to address, because the risk assessment focuses on some unspecified time in the future. To minimize the degree to which values of inputs to the analysis may be different from the values of those inputs at that unspecified time, we are using the most current inputs available.

4 Results

The results of the SO₂ risk assessment are presented in Tables 4-1 through 4-12. Each table includes results for both of the locations included in the risk assessment and for all of the air quality scenarios considered. Tables 4-1 and 4-2 show the numbers of occurrences of lung function response in a year, defined in terms of sRaw, for asthmatics and for asthmatic children, respectively, engaged in moderate or greater exertion associated with SO₂ concentrations under each of the different air quality scenarios considered in each of the two locations. Tables 4-3 and 4-4 show the corresponding results when lung function response is defined in terms of FEV₁. Tables 4-5 and 4-6 show the numbers of asthmatics and asthmatic children, respectively, engaged in moderate or greater exertion estimated to experience at least one lung function response in a year, defined in terms of sRaw, under each of the different air quality scenarios in each of the two locations. Tables 4-7 and 4-8 show the corresponding results when lung function response is defined in terms of FEV₁. Finally, Tables 4-9 through 4-12 show results analogous to those shown in Tables 4-5 through 4-8, only as percentages of all asthmatics (asthmatic children) engaged in moderate or greater exertion.

In addition, responses attributable to exposure to SO₂ within different concentration ranges are shown in Figures 4-1 through 4-8. The exposure ranges are in 50 ppb increments – i.e., $SO_2 < 50$ ppb, 50 ppb $\leq SO_2 < 100$ ppb, 100 ppb $\leq SO_2 < 150$ ppb, ..., $SO_2 \ge 500$ ppb. Figures 4-1a and b show the percent of asthmatics engaged in moderate or greater exertion in Greene Co., MO and St. Louis, MO, respectively, estimated to experience at least one lung function response in a year, defined as an increase in sRaw \geq 100%, attributable to exposure to SO₂ in each exposure "bin." Figures 4-2a and b show the corresponding percents for asthmatic children engaged in moderate or greater exertion in each location, respectively. Figures 4-3a and b, and 4-4a and b, show the corresponding percents for asthmatics and asthmatic children, respectively, when lung function response is defined as a decrease in FEV1 \geq 15%. Figures 4-5a and b show the number of occurrences of lung function response, defined as an increase in sRaw $\geq 100\%$, among asthmatics engaged in moderate or greater exertion attributable to exposure to SO₂ in each exposure "bin." Figures 4-6a and b show the corresponding numbers of occurrences among asthmatic children. Finally, Figures 4-7a and b and 4-8a and b show the corresponding numbers of occurrences of lung function response for asthmatics and asthmatic children, respectively, when lung function response is defined as a decrease in FEV1≥ 15%. Figure 4-9 shows the legend that is used in Figures 4-1 through 4-8.

Table 4-1. Number of Occurrences (in Hundreds) of Lung Function Response (Defined in Terms of sRaw) Among Asthmatics Engaged in Moderate or Greater Exertion Associated with Exposure to "As Is" SO₂ Concentrations, SO₂ Concentrations that Just Meet the Current Standards, and SO₂ Concentrations that Just Meet Alternative Standards*

	"As is" SO ₂	SO ₂ Concentrations	SO ₂ Concentrations that Just Meet Alternative nth Percentile 1-Hr Daily Maximum Standards, with ppb) of m (Standard Denoted n/m):					s, with Levels (in		
Location	Concentrations**	that Just Meet the Current Standards***	99/50	99/100	99/150	99/200	99/250	98/200		
Response = Increase in sRaw >= 100%										
Croops County MO	125	127	125	125	125	126	126	126		
Greene County, MO	(24 - 572)	(25 - 577)	(24 - 572)	(24 - 572)	(24 - 573)	(24 - 573)	(24 - 575)	(24 - 574)		
St Louis MO	657	1672	652	686	762	880	1036	997		
St. Louis, MO	(128 - 2985)	(663 - 4740)	(125 - 2975)	(141 - 3041)	(176 - 3184)	(234 - 3398)	(315 - 3673)	(295 - 3604)		
			Response = In	crease in sRaw >	= 200%					
Greene County, MO	38	39	38	38	38	38	39	39		
Greene County, MO	(4 - 310)	(4 - 312)	(4 - 310)	(4 - 310)	(4 - 310)	(4 - 310)	(4 - 311)	(4 - 311)		
St. Louis, MO	201	560	199	211	237	278	332	319		
St. Louis, MO	(21 - 1614)	(165 - 2407)	(20 - 1609)	(24 - 1639)	(32 - 1703)	(47 - 1799)	(68 - 1923)	(63 - 1892)		

^{*}Numbers are median (50th percentile) numbers of asthmatics. Numbers in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Numbers are rounded to the nearest whole number.

^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{***}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

Table 4-2. Number of Occurrences (in Hundreds) of Lung Function Response (Defined in Terms of sRaw) Among Asthmatic Children Engaged in Moderate or Greater Exertion Associated with Exposure to "As Is" SO₂ Concentrations, SO₂ Concentrations that Just Meet the Current Standards, and SO₂ Concentrations that Just Meet Alternative Standards*

	"As is" SO ₂	SO ₂ Concentrations	SO ₂ Concentrations that Just Meet Alternative nth Percentile 1-Hr Daily Maximum Standards, with ppb) of m (Standard Denoted n/m):					s, with Levels (in		
Location	Concentrations**	that Just Meet the Current Standards***	99/50	99/100	99/150	99/200	99/250	98/200		
Response = Increase in sRaw >= 100%										
Croome County MO	71	72	71	71	71	71	71	71		
Greene County, MO	(13 - 324)	(14 - 327)	(13 - 324)	(14 - 324)	(14 - 324)	(14 - 325)	(14 - 325)	(14 - 325)		
St Louis MO	417	1179	413	439	497	586	704	674		
St. Louis, MO	(81 - 1893)	(484 - 3209)	(80 - 1885)	(91 - 1935)	(118 - 2043)	(162 - 2206)	(222 - 2413)	(207 - 2361)		
			Response = In	crease in sRaw >	= 200%			·		
Greene County, MO	22	22	22	22	22	22	22	22		
Greene County, WO	(2 - 175)	(2 - 177)	(2 - 175)	(2 - 175)	(2 - 175)	(2 - 176)	(2 - 176)	(2 - 176)		
St. Louis, MO	128	397	126	135	155	186	227	217		
St. Louis, MO	(13 - 1023)	(122 - 1618)	(13 - 1019)	(15 - 1042)	(22 - 1091)	(33 - 1164)	(49 - 1257)	(45 - 1234)		

^{*}Numbers are median (50th percentile) numbers of asthmatics. Numbers in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Numbers are rounded to the nearest whole number.

^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{***}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

Table 4-3. Number of Occurrences (in Hundreds) of Lung Function Response (Defined in Terms of FEV₁) Among Asthmatics Engaged in Moderate or Greater Exertion Associated with Exposure to "As Is" SO₂ Concentrations, SO₂ Concentrations that Just Meet the Current Standards, and SO₂ Concentrations that Just Meet Alternative Standards*

	"As is" SO ₂	SO ₂ Concentrations	SO ₂ Concentration	ons that Just Meet		centile 1-Hr Daily Nard Denoted n/m):	Maximum Standard	s, with Levels (in		
Location	Concentrations**	that Just Meet the Current Standards***	99/50	99/100	99/150	99/200	99/250	98/200		
Response = Decrease in FEV1 >= 15%										
Croops County MO	69	71	69	69	69	69	70	70		
Greene County, MO	(6 - 675)	(7 - 680)	(6 - 675)	(6 - 675)	(6 - 675)	(6 - 676)	(6 - 677)	(6 - 677)		
St. Louis, MO	366	1341	361	391	461	570	718	681		
St. Louis, MO	(33 - 3520)	(454 - 5632)	(32 - 3507)	(41 - 3587)	(66 - 3759)	(108 - 4016)	(169 - 4346)	(154 - 4264)		
			Response = D	ecrease in FEV1 :	>= 20%					
Greene County, MO	3	3	3	3	3	3	3	3		
Greene County, WO	(0 - 53)	(0 - 54)	(0 - 53)	(0 - 53)	(0 - 53)	(0 - 53)	(0 - 53)	(0 - 53)		
St. Louis, MO	15	310	14	20	35	62	104	93		
	(1 - 279)	(133 - 1045)	(0 - 276)	(2 - 299)	(7 - 351)	(17 - 435)	(34 - 550)	(30 - 521)		

^{*}Numbers are median (50th percentile) numbers of asthmatics. Numbers in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Numbers are rounded to the nearest whole number.

^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{***}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

Table 4-4. Number of Occurrences (in Hundreds) of Lung Function Response (Defined in Terms of FEV₁) Among Asthmatic Children Engaged in Moderate or Greater Exertion Associated with Exposure to "As Is" SO₂ Concentrations, SO₂ Concentrations that Just Meet the Current Standards, and SO₂ Concentrations that Just Meet Alternative Standards*

	"As is" SO ₂	SO ₂ Concentrations	SO ₂ Concentration	ons that Just Meet		centile 1-Hr Daily Nard Denoted n/m):	Maximum Standard	s, with Levels (in		
Location	Concentrations**	that Just Meet the Current Standards***	99/50	99/100	99/150	99/200	99/250	98/200		
Response = Decrease in FEV1 >= 15%										
Creene County MO	39	40	39	39	39	39	40	40		
Greene County, MO	(3 - 382)	(4 - 386)	(3 - 382)	(3 - 382)	(3 - 382)	(3 - 383)	(4 - 384)	(4 - 383)		
St. Louis, MO	232	965	229	252	304	387	499	471		
St. Louis, MO	(21 - 2231)	(338 - 3816)	(20 - 2222)	(27 - 2282)	(46 - 2412)	(77 - 2608)	(123 - 2857)	(112 - 2795)		
			Response = D	ecrease in FEV1	>= 20%			· · ·		
Greene County, MO	1	2	1	1	1	2	2	2		
Greene County, MO	(0 - 30)	(0 - 31)	(0 - 30)	(0 - 30)	(0 - 30)	(0 - 30)	(0 - 30)	(0 - 30)		
St. Louis, MO	10	231	9	13	24	45	76	68		
	(0 - 178)	(99 - 753)	(0 - 175)	(1 - 192)	(5 - 232)	(13 - 295)	(26 - 382)	(22 - 360)		

^{*}Numbers are median (50th percentile) numbers of asthmatics. Numbers in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Numbers are rounded to the nearest whole number.

^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{***}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

Table 4-5. Number of Asthmatics Engaged in Moderate or Greater Exertion Estimated to Experience At Least One Lung Function Response (Defined in Terms of sRaw) Associated with Exposure to "As Is" SO₂ Concentrations, SO₂ Concentrations that Just Meet the Current Standards, and SO₂ Concentrations that Just Meet Alternative Standards*

	"As is" SO ₂	SO ₂ Concentrations	SO ₂ Concentration	ons that Just Meet		centile 1-Hr Daily Nard Denoted n/m):	Maximum Standard	s, with Levels (in		
Location	Concentrations**	that Just Meet the Current Standards***	99/50	99/100	99/150	99/200	99/250	98/200		
Response = Increase in sRaw >= 100%										
Croome County MO	90	210	80	90	100	120	160	140		
Greene County, MO	(20 - 390)	(80 - 620)	(20 - 380)	(20 - 390)	(20 - 420)	(30 - 460)	(50 - 520)	(40 - 500)		
St. Louis, MO	1010	13460	730	1990	3650	5520	7500	7050		
St. Louis, MO	(340 - 3010)	(9740 - 18510)	(220 - 2490)	(860 - 4690)	(1900 - 7100)	(3230 - 9490)	(4770 - 11850)	(4410 - 11320)		
			Response = In	crease in sRaw >	= 200%					
Greene County, MO	30	70	30	30	30	40	50	50		
Greene County, WO	(0 - 210)	(20 - 310)	(0 - 210)	(0 - 210)	(0 - 220)	(10 - 240)	(10 - 270)	(10 - 260)		
St. Louis, MO	330	5520	230	670	1280	2010	2830	2640		
St. Louis, MO	(70 - 1520)	(3400 - 8960)	(40 - 1290)	(210 - 2270)	(510 - 3360)	(940 - 4470)	(1470 - 5590)	(1340 - 5330)		

^{*}Numbers are median (50th percentile) numbers of asthmatics. Numbers in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Numbers are rounded to the nearest ten.

^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{***}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

Table 4-6. Number of Asthmatic Children Engaged in Moderate or Greater Exertion Estimated to Experience At Least One Lung Function Response (Defined in Terms of sRaw) Associated with Exposure to "As Is" SO₂ Concentrations, SO₂ Concentrations that Just Meet the Current Standards, and SO₂ Concentrations that Just Meet Alternative Standards*

		SO ₂ Concentrations	SO ₂ Concentration	ons that Just Meet	Alternative nth Per	centile 1-Hr Daily Mard Denoted n/m):	/laximum Standard	s, with Levels (in		
Location	"As is" SO₂ Concentrations**	that Just Meet the Current Standards***	99/50	99/100	99/150	99/200	99/250	98/200		
Response = Increase in sRaw >= 100%										
Greene County, MO	30	110	30	30	40	50	70	60		
Greene County, WO	(10 - 130)	(40 - 270)	(10 - 130)	(10 - 140)	(10 - 150)	(20 - 180)	(30 - 210)	(20 - 200)		
St. Louis, MO	590	8020	400	1220	2240	3370	4560	4290		
St. Louis, MO	(220 - 1570)	(6080 - 10370)	(130 - 1210)	(560 - 2620)	(1240 - 4010)	(2090 - 5350)	(3060 - 6680)	(2840 - 6390)		
			Response = In	crease in sRaw >	= 200%					
Greene County, MO	10	40	10	10	10	20	20	20		
Greene County, WO	(0 - 70)	(10 - 130)	(0 - 70)	(0 - 70)	(0 - 80)	(0 - 90)	(10 - 110)	(10 - 100)		
St. Louis, MO	190	3380	130	410	800	1250	1750	1640		
St. Louis, MO	(50 - 780)	(2190 - 5070)	(30 - 610)	(140 - 1240)	(340 - 1870)	(620 - 2500)	(970 - 3140)	(890 - 3000)		

^{*}Numbers are median (50th percentile) numbers of asthmatic children. Numbers in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Numbers are rounded to the nearest ten.

^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{***}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

Table 4-7. Number of Asthmatics Engaged in Moderate or Greater Exertion Estimated to Experience At Least One Lung Function Response (Defined in Terms of FEV₁) Associated with Exposure to "As Is" SO₂ Concentrations, SO₂ Concentrations that Just Meet the Current Standards, and SO₂ Concentrations that Just Meet Alternative Standards*

	"As is" SO ₂	SO ₂ Concentrations	SO ₂ Concentration	ons that Just Meet		centile 1-Hr Daily Nard Denoted n/m):	laximum Standard	s, with Levels (in		
Location	Concentrations**	that Just Meet the Current Standards***	99/50	99/100	99/150	99/200	99/250	98/200		
Response = Decrease in FEV ₁ >= 15%										
Croone County MO	50	170	50	50	60	80	110	100		
Greene County, MO	(10 - 460)	(50 - 730)	(0 - 450)	(10 - 460)	(10 - 490)	(20 - 540)	(30 - 610)	(20 - 590)		
St. Louis, MO	750	15220	510	1700	3460	5570	7910	7370		
St. Louis, MO	(180 - 3580)	(10280 - 22530)	(100 - 2950)	(580 - 5590)	(1520 - 8500)	(2880 - 11400)	(4550 - 14280)	(4160 - 13640)		
			Response = D	ecrease in FEV ₁ :	>= 20%					
Greene County, MO	0	30	0	0	0	10	20	10		
Greene County, WO	(0 - 40)	(10 - 130)	(0 - 40)	(0 - 40)	(0 - 50)	(0 - 60)	(0 - 80)	(0 - 80)		
St. Louis, MO	100	9240	50	350	1020	2100	3540	3190		
St. Louis, MO	(20 - 570)	(6110 - 13840)	(10 - 380)	(110 - 1290)	(430 - 2680)	(1060 - 4450)	(1990 - 6540)	(1760 - 6050)		

^{*}Numbers are median (50th percentile) numbers of asthmatics. Numbers in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Numbers are rounded to the nearest ten.

^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{***}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

Table 4-8. Number of Asthmatic Children Engaged in Moderate or Greater Exertion Estimated to Experience At Least One Lung Function Response (Defined in Terms of FEV₁) Associated with Exposure to "As Is" SO₂ Concentrations, SO₂ Concentrations that Just Meet the Current Standards, and SO₂ Concentrations that Just Meet Alternative Standards*

		SO ₂ Concentrations	SO ₂ Concentration	ons that Just Meet		centile 1-Hr Daily Nard Denoted n/m):	Maximum Standard	s, with Levels (in		
Location	"As is" SO ₂ Concentrations**	that Just Meet the Current Standards***	99/50	99/100	99/150	99/200	99/250	98/200		
Response = Decrease in FEV ₁ >= 15%										
Greene County, MO	20	90	20	20	30	40	50	50		
Greene County, WO	(0 - 160)	(30 - 320)	(0 - 150)	(0 - 160)	(0 - 180)	(10 - 210)	(10 - 250)	(10 - 240)		
St. Louis, MO	460	9310	290	1080	2200	3510	4950	4630		
St. Louis, MO	(120 - 1870)	(6620 - 12680)	(60 - 1440)	(390 - 3130)	(1030 - 4810)	(1930 - 6440)	(3030 - 8070)	(2780 - 7720)		
			Response = D	ecrease in FEV ₁ :	>= 20%					
Greene County, MO	0	20	0	0	0	0	10	10		
Greene County, WO	(0 - 10)	(10 - 70)	(0 - 10)	(0 - 10)	(0 - 20)	(0 - 30)	(0 - 40)	(0 - 40)		
St. Louis, MO	70	6150	30	240	700	1430	2410	2170		
St. Louis, MO	(10 - 350)	(4190 - 8700)	(10 - 220)	(80 - 820)	(300 - 1710)	(740 - 2830)	(1400 - 4160)	(1240 - 3850)		

^{*}Numbers are median (50th percentile) numbers of asthmatic children. Numbers in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Numbers are rounded to the nearest hundred.

^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{***}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

Table 4-9. Percent of Asthmatics Engaged in Moderate or Greater Exertion Estimated to Experience At Least One Lung Function Response (Defined in Terms of sRaw) Associated with Exposure to "As Is" SO₂ Concentrations, SO₂ Concentrations that Just Meet the Current Standards, and SO₂ Concentrations that Just Meet Alternative Standards*

	"As is" SO ₂	SO ₂ Concentrations	SO ₂ Concentration	ons that Just Meet		centile 1-Hr Daily Nard Denoted n/m):	Maximum Standard	s, with Levels (in		
Location	Concentrations**	that Just Meet the Current Standards***	99/50	99/100	99/150	99/200	99/250	98/200		
Response = Increase in sRaw >= 100%										
Creene County MO	0.4%	1%	0.4%	0.4%	0.5%	0.6%	0.7%	0.7%		
Greene County, MO	(0.1% - 1.8%)	(0.4% - 2.9%)	(0.1% - 1.8%)	(0.1% - 1.8%)	(0.1% - 2%)	(0.2% - 2.1%)	(0.2% - 2.4%)	(0.2% - 2.3%)		
St. Louis, MO	1%	13.1%	0.7%	1.9%	3.6%	5.4%	7.3%	6.9%		
St. Louis, MO	(0.3% - 2.9%)	(9.5% - 18.1%)	(0.2% - 2.4%)	(0.8% - 4.6%)	(1.9% - 6.9%)	(3.2% - 9.3%)	(4.7% - 11.6%)	(4.3% - 11.1%)		
			Response = In	crease in sRaw >	= 200%					
Greene County, MO	0.1%	0.3%	0.1%	0.1%	0.2%	0.2%	0.2%	0.2%		
Greene County, WO	(0% - 1%)	(0.1% - 1.5%)	(0% - 1%)	(0% - 1%)	(0% - 1%)	(0% - 1.1%)	(0% - 1.3%)	(0% - 1.2%)		
St. Louis, MO	0.3%	5.4%	0.2%	0.7%	1.3%	2%	2.8%	2.6%		
	(0.1% - 1.5%)	(3.3% - 8.7%)	(0% - 1.3%)	(0.2% - 2.2%)	(0.5% - 3.3%)	(0.9% - 4.4%)	(1.4% - 5.5%)	(1.3% - 5.2%)		

^{*}Percents are median (50th percentile) percents of asthmatic children. Percents in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Percents are rounded to the nearest tenth.

^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{***}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

Table 4-10. Percent of Asthmatic Children Engaged in Moderate or Greater Exertion Estimated to Experience At Least One Lung Function Response (Defined in Terms of sRaw) Associated with Exposure to "As Is" SO₂ Concentrations, SO₂ Concentrations that Just Meet the Current Standards, and SO₂ Concentrations that Just Meet Alternative Standards*

		SO ₂ Concentrations	SO ₂ Concentration	ons that Just Meet		centile 1-Hr Daily Nard Denoted n/m):	Maximum Standard	ls, with Levels (in		
Location	"As is" SO ₂ Concentrations**	that Just Meet the Current Standards***	99/50	99/100	99/150	99/200	99/250	98/200		
Response = Increase in sRaw >= 100%										
Croons County MO	0.4%	1.4%	0.4%	0.4%	0.5%	0.7%	1%	0.9%		
Greene County, MO	(0.1% - 1.8%)	(0.6% - 3.7%)	(0.1% - 1.8%)	(0.1% - 1.9%)	(0.1% - 2.1%)	(0.2% - 2.4%)	(0.3% - 2.9%)	(0.3% - 2.7%)		
St. Louis, MO	1.4%	19.2%	0.9%	2.9%	5.4%	8.1%	10.9%	10.3%		
St. Louis, MO	(0.5% - 3.8%)	(14.6% - 24.9%)	(0.3% - 2.9%)	(1.3% - 6.3%)	(3% - 9.6%)	(5% - 12.8%)	(7.3% - 16%)	(6.8% - 15.3%)		
			Response = In	crease in sRaw >	= 200%					
Croone County MO	0.1%	0.5%	0.1%	0.1%	0.2%	0.2%	0.3%	0.3%		
Greene County, MO	(0% - 1%)	(0.1% - 1.8%)	(0% - 1%)	(0% - 1%)	(0% - 1.1%)	(0% - 1.3%)	(0.1% - 1.5%)	(0.1% - 1.4%)		
St. Louis, MO	0.5%	8.1%	0.3%	1%	1.9%	3%	4.2%	3.9%		
St. Louis, WO	(0.1% - 1.9%)	(5.3% - 12.2%)	(0.1% - 1.5%)	(0.3% - 3%)	(0.8% - 4.5%)	(1.5% - 6%)	(2.3% - 7.5%)	(2.1% - 7.2%)		

^{*}Percents are median (50th percentile) percents of asthmatic children. Percents in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Percents are rounded to the nearest tenth.

^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{***}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

Table 4-11. Percent of Asthmatics Engaged in Moderate or Greater Exertion Estimated to Experience At Least One Lung Function Response (Defined in Terms of FEV₁) Associated with Exposure to "As Is" SO₂ Concentrations, SO₂ Concentrations that Just Meet the Current Standards, and SO₂ Concentrations that Just Meet Alternative Standards*

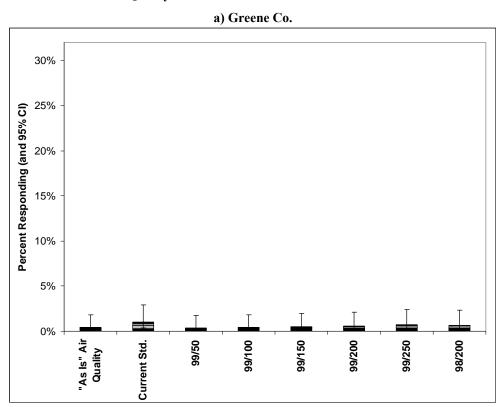
	"As is" SO ₂	SO ₂ Concentrations	SO ₂ Concentration	ons that Just Meet		centile 1-Hr Daily Nard Denoted n/m):	/laximum Standard	s, with Levels (in	
Location	Concentrations**	Ithat Just Meet thel	99/50	99/100	99/150	99/200	99/250	98/200	
Response = Decrease in FEV1 >= 15%									
Croome County MO	0.2%	0.8%	0.2%	0.2%	0.3%	0.4%	0.5%	0.5%	
Greene County, MO	(0% - 2.1%)	(0.2% - 3.4%)	(0% - 2.1%)	(0% - 2.1%)	(0% - 2.3%)	(0.1% - 2.5%)	(0.1% - 2.9%)	(0.1% - 2.8%)	
St. Louis, MO	0.7%	14.9%	0.5%	1.7%	3.4%	5.4%	7.7%	7.2%	
St. Louis, MO	(0.2% - 3.5%)	(10% - 22%)	(0.1% - 2.9%)	(0.6% - 5.5%)	(1.5% - 8.3%)	(2.8% - 11.1%)	(4.4% - 13.9%)	(4.1% - 13.3%)	
			Response = D	ecrease in FEV1 :	>= 20%				
Greene County MO	0%	0.1%	0%	0%	0%	0%	0.1%	0.1%	
Greene County, MO	(0% - 0.2%)	(0% - 0.6%)	(0% - 0.2%)	(0% - 0.2%)	(0% - 0.2%)	(0% - 0.3%)	(0% - 0.4%)	(0% - 0.4%)	
St. Louis, MO	0.1%	9%	0.1%	0.3%	1%	2.1%	3.5%	3.1%	
St. Louis, MO	(0% - 0.6%)	(6% - 13.5%)	(0% - 0.4%)	(0.1% - 1.3%)	(0.4% - 2.6%)	(1% - 4.3%)	(1.9% - 6.4%)	(1.7% - 5.9%)	

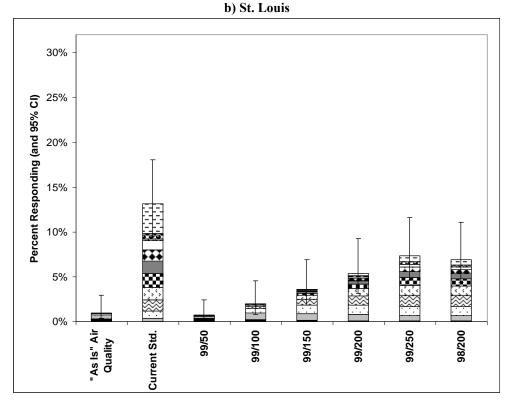
^{*}Percents are median (50th percentile) percents of asthmatic children. Percents in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Percents are rounded to the nearest tenth.

^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{***}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.

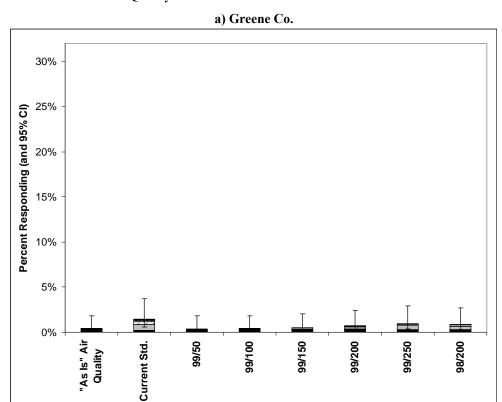
Table 4-12. Percent of Asthmatic Children Engaged in Moderate or Greater Exertion Estimated to Experience At Least One Lung Function Response (Defined in Terms of FEV₁) Associated with Exposure to "As Is" SO₂ Concentrations, SO₂ Concentrations that Just Meet the Current Standards, and SO₂ Concentrations that Just Meet Alternative Standards*

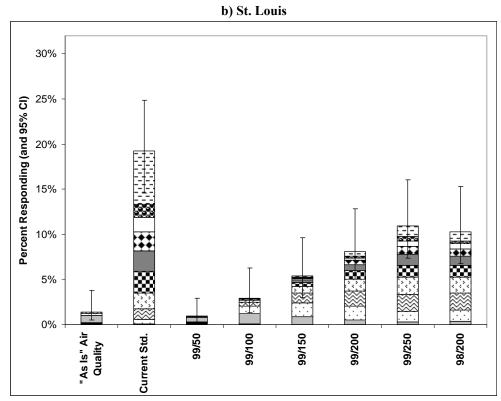

	"As is" SO ₂	SO ₂ Concentrations	SO ₂ Concentration	ons that Just Meet	Alternative nth Per ppb) of m (Standa	centile 1-Hr Daily Nard Denoted n/m):	laximum Standard	s, with Levels (in	
Location	Concentrations**	that Just Meet the Current Standards***	99/50	99/100	99/150	99/200	99/250	98/200	
Response = Decrease in FEV1 >= 15%									
Croome County MO	0.2%	1.2%	0.2%	0.2%	0.3%	0.5%	0.7%	0.6%	
Greene County, MO	(0% - 2.2%)	(0.4% - 4.4%)	(0% - 2.1%)	(0% - 2.2%)	(0.1% - 2.4%)	(0.1% - 2.9%)	(0.2% - 3.5%)	(0.2% - 3.2%)	
St. Louis, MO	1.1%	22.3%	0.7%	2.6%	5.3%	8.4%	11.9%	11.1%	
St. Louis, MO	(0.3% - 4.5%)	(15.9% - 30.4%)	(0.2% - 3.5%)	(0.9% - 7.5%)	(2.5% - 11.5%)	(4.6% - 15.4%)	(7.3% - 19.3%)	(6.7% - 18.5%)	
			Response = D	ecrease in FEV1	>= 20%				
Croons County MO	0%	0.2%	0%	0%	0%	0.1%	0.1%	0.1%	
Greene County, MO	(0% - 0.2%)	(0.1% - 0.9%)	(0% - 0.2%)	(0% - 0.2%)	(0% - 0.3%)	(0% - 0.4%)	(0% - 0.5%)	(0% - 0.5%)	
St. Louis, MO	0.2%	14.7%	0.1%	0.6%	1.7%	3.4%	5.8%	5.2%	
St. Louis, MO	(0% - 0.8%)	(10.1% - 20.8%)	(0% - 0.5%)	(0.2% - 2%)	(0.7% - 4.1%)	(1.8% - 6.8%)	(3.4% - 10%)	(3% - 9.2%)	


^{*}Percents are median (50th percentile) percents of asthmatic children. Percents in parentheses below the median are 95% credible intervals based on statistical uncertainty surrounding the SO₂ coefficient in the 2-parameter logistic exposure-response function. Percents are rounded to the nearest tenth.

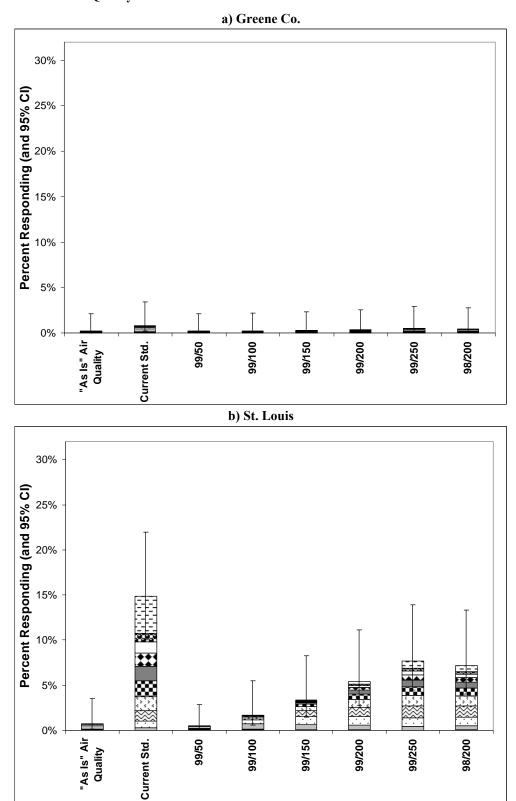
^{**}The "as is" exposure scenario was based on monitoring and modeling using 2002 air quality information.

^{**}The current primary SO₂ standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages.


Figure 4-1. Percent of Asthmatics Engaged in Moderate or Greater Exertion Exhibiting Lung Function Response (Defined as an Increase in sRaw \geq 100%) Attributable to SO₂ Within Given Ranges Under Different Air Quality Scenarios*



^{*}For the legend for these figures see Figure 4-9.


Figure 4-2. Percent of Asthmatic Children Engaged in Moderate or Greater Exertion Exhibiting Lung Function Response (Defined as an Increase in sRaw $\geq 100\%$) Attributable to SO₂ Within Given Ranges Under Different Air Quality Scenarios*

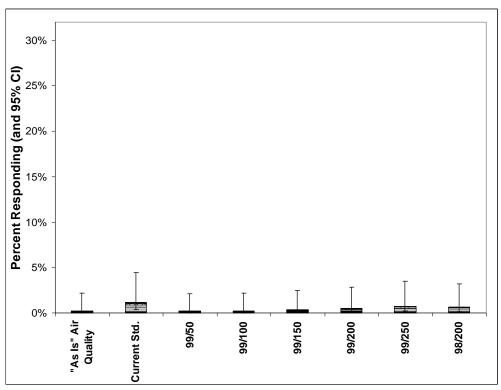
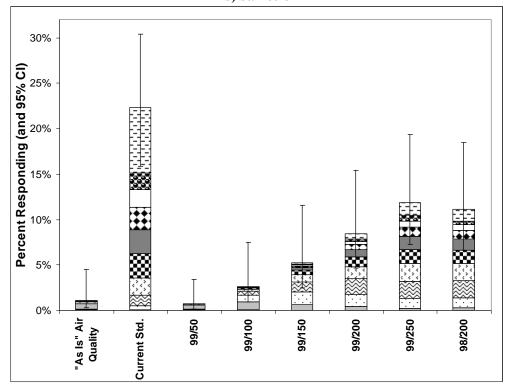
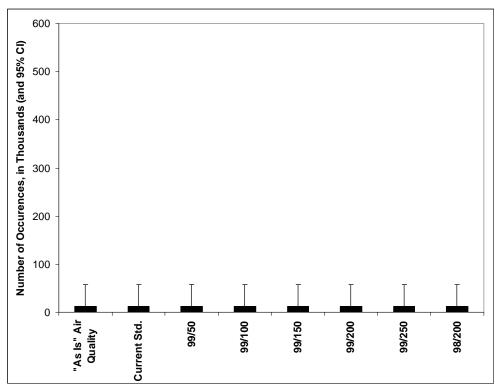

^{*}For the legend for these figures see Figure 4-9.

Figure 4-3. Percent of Asthmatics Engaged in Moderate or Greater Exertion Exhibiting Lung Function Response (Defined as a Decrease in FEV $_1 \ge 15\%$) Attributable to SO $_2$ Within Given Ranges Under Different Air Quality Scenarios*

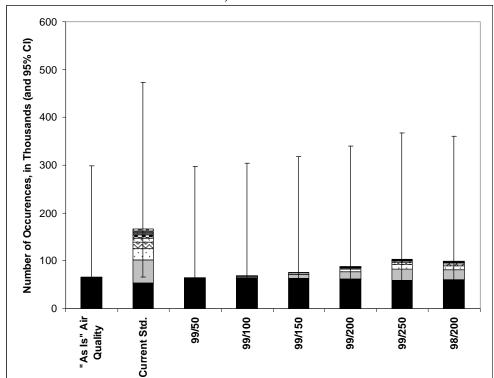


^{*}For the legend for these figures see Figure 4-9.

Figure 4-4. Percent of Asthmatic Children Engaged in Moderate or Greater Exertion Exhibiting Lung Function Response (Defined as a Decrease in FEV₁ \geq 15%) Attributable to SO₂ Within Given Ranges Under Different Air Quality Scenarios*

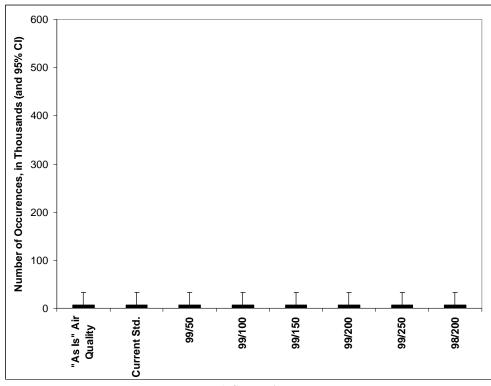


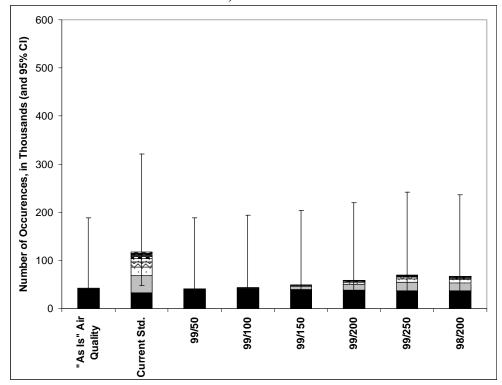
b) St. Louis



^{*}For the legend for these figures see Figure 4-9.

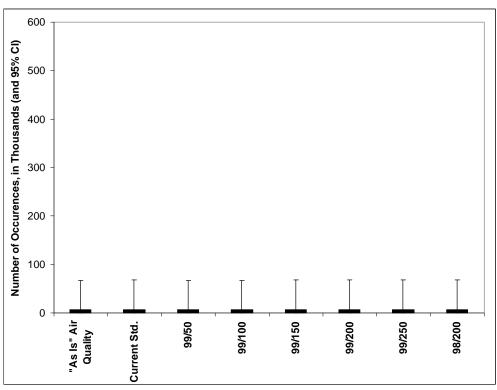
Figure 4-5. Number of Occurrences of Lung Function Response (Defined as an Increase in sRaw \geq 100%) Among Asthmatics Engaged in Moderate or Greater Exertion Attributable to SO₂ Within Given Ranges Under Different Air Quality Scenarios*



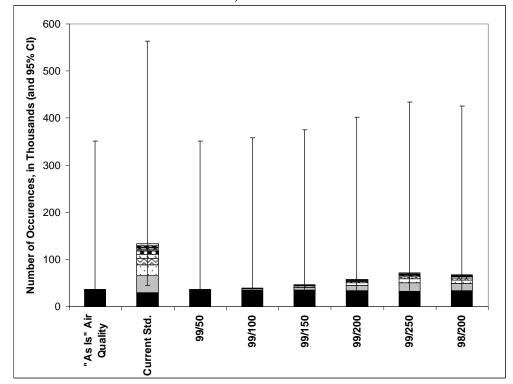


^{*}For the legend for these figures see Figure 4-9.

Figure 4-6. Number of Occurrences of Lung Function Response (Defined as an Increase in sRaw \geq 100%) Among Asthmatic Children Engaged in Moderate or Greater Exertion Attributable to SO₂ Within Given Ranges Under Different Air Quality Scenarios*

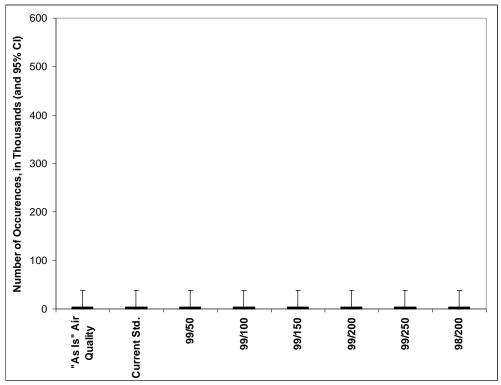


b) St. Louis



^{*}For the legend for these figures see Figure 4-9.

Figure 4-7. Number of Occurrences of Lung Function Response (Defined as a Decrease in $FEV_1 \ge 15\%$) Among Asthmatics Engaged in Moderate or Greater Exertion Attributable to SO_2 Within Given Ranges Under Different Air Quality Scenarios*



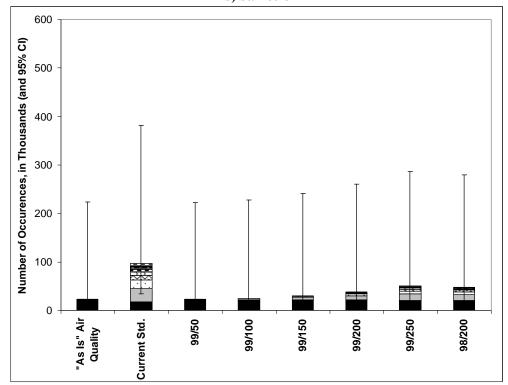
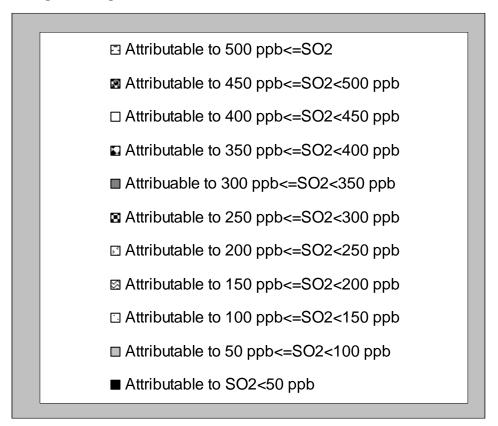

^{*}For the legend for these figures see Figure 4-9.

Figure 4-8. Number of Occurrences of Lung Function Response (Defined as a Decrease in $FEV_1 \ge$ 15%) Among Asthmatic Children Engaged in Moderate or Greater Exertion Attributable to SO_2 Within Given Ranges Under Different Air Quality Scenarios*



b) St. Louis

^{*}For the legend for these figures see Figure 4-9.

Figure 4-9. Legend for Figures 4-1 - 4-8.

The current primary SO_2 standards include a 24-hour standard set at 0.14 parts per million (ppm), not to be exceeded more than once per year, and an annual standard set at 0.03 ppm, calculated as the arithmetic mean of hourly averages. In St. Louis, SO_2 concentrations that are predicted to occur if the current standards were just met are substantially higher than "as is" air quality (based on 2002 monitoring and modeling data) and also substantially higher than they would be under any of the alternative 1-hr standards considered in this analysis. Consequently, the levels of response that would be seen if the current standard were just met are well above the levels that would be seen under the "as is" air quality scenario or under any of the alternative 1-hr standards – for asthmatics and for asthmatic children, and for all four definitions of lung function response.

For example, of the estimated approximately 102,400 asthmatics engaged in moderate or greater exertion in St. Louis, about 13,500 (or 13.1%) are estimated to have at least one lung function response, defined as an increase in sRaw \geq 100%, if the current standards were just met. Under "as is" air quality conditions, the corresponding number is about 1,000 (1%). Only the most stringent alternative 99th percentile 1-hr standard, set at 50 ppb (denoted "99/50" in the above tables of results), is predicted to lower the numbers of responders below the levels estimated under the "as is" scenario. As the

alternative 1-hr standards become less stringent (i.e., as the level is raised from 50 ppb to 100 ppb, to 150 ppb, etc.), the numbers responding correspondingly rise.

The pattern seen in St. Louis for lung function response, defined as an increase in $sRaw \ge 100\%$, is also seen for the other definitions of lung function response. For example, of the estimated roughly 102,400 asthmatics engaged in moderate or greater exertion, 750 are estimated to have at least one lung function response, defined as a decrease in $FEV_1 \ge 15\%$, under the "as is" air quality scenario; the corresponding number (percent) if the current standards were just met is about 15,200 (14.9%); the corresponding numbers for the alternative 1-hr standards denoted 99/50, 99/100, 99/150, 99/200, 99/250, and 98/200 are about 500 (0.5%), 1700 (1.7%), 3500 (3.4%), 5600 (5.4%), 7900 (7.7%), and 7400 (7.2%), respectively.

Although the basic pattern across air quality scenarios seen in St. Louis is repeated in Greene County, the impact of changing from one air quality scenario to another is substantially dampened in Greene County. This is because of the different patterns of exposures in the two locations. In St. Louis there is a wide range of SO₂ concentrations to which asthmatics are exposed under the current standards scenario – i.e., substantial percentages of asthmatics are exposed to relatively higher concentrations of SO₂ under this scenario. There is thus much room for improvement. Under the most stringent alternative 1-hr standard (99/50), much of that exposure is pushed down to the lowest SO₂ concentration "bins." Under the current standards scenario, for example, only about 22 percent of asthmatics in St. Louis have exposures no greater than 100 ppb; under the most stringent alternative 1-hr standard (99/50), that increases to 98 percent.

In Greene County, in contrast, about 95 percent of asthmatics have exposures no greater than 100 ppb under the current standards scenario. There is therefore little room for improvement. Under the most stringent alternative 1-hr standard (99/50), that 95 percent becomes 100 percent. The situation is even more extreme for person days of exposure. Under the current standards scenario, 99.9 percent of person days of exposure are to \leq 100 ppb SO₂ in Greene County; the corresponding figure for St. Louis is 95.2 percent.

The generally lower levels of SO₂ to which asthmatics in Greene County are exposed, relative to asthmatics in St. Louis, and the corresponding greater preponderance of responses associated with the lowest SO₂ concentration "bins" in Greene County, can be readily seen in Figures 4-1 through 4-8.

Although the numbers are smaller for asthmatic children (because the underlying populations are smaller), the patterns seen in St. Louis and in Greene County across the different air quality scenarios, and the comparisons between the two locations, are fairly similar for asthmatic children as for asthmatics for all lung function response definitions.

_

¹¹ In several cases, responses associated with exposures in SO₂ bins cannot be seen in the figures, because the percent responding, or numbers of occurrences of lung function response are so small. We chose to scale the y-axis the same on all comparable figures to facilitate comparisons between figures. This meant, however, that some "response bars" essentially became visually undetectable.

In general, however, the percentages of asthmatic children engaged in moderate or greater exertion who experience at least one lung function response, for each of the different lung function response definitions, tend to be greater than the corresponding percentages of asthmatics. This presumably is a reflection of the greater amount of time spent outdoors by asthmatic children relative to adults.

Finally, we note that, while in several air quality scenarios the great majority of occurrences of lung function response are in the lowest exposure bin, the numbers of individuals with at least one lung function response attributable to exposures in that lowest bin are typically quite small. This is because the calculation of numbers of individuals with at least one lung function response uses individuals' highest exposure only. While individuals may be exposed mostly to low SO₂ concentrations, many are exposed at least occasionally to higher levels. Thus, the percentage of individuals in a designated population with at least one lung function response associated with SO₂ concentrations in the lowest bin is likely to be very small, since most individuals are exposed at least once to higher SO₂ levels. For example, defining lung function response as an increase in sRaw $\geq 100\%$, under a scenario in which SO₂ concentrations just meet an alternative 1-hour 99th percentile 100 ppb standard, about 93 percent of occurrences of lung function response among asthmatics in St. Louis are associated with SO₂ exposures in the lowest exposure bin (0-50 ppb). However, the lowest SO₂ exposure bin accounts for only about 0.2 percent of asthmatics estimated to experience at least 1 SO₂-related lung function response. For this very small percent of the population, the lowest exposure bin represents their highest SO₂ exposures under moderate exertion in a year. Thus Figure 4-5b shows virtually all of the occurrences among asthmatics in St. Louis associated with the lowest SO₂ exposure bin; however, Figure 4-1b shows a relatively small proportion of asthmatics in St. Louis experiencing at least one response to be experiencing those responses because of exposures in that lowest exposure bin.

5 REFERENCES

Abt Associates Inc. 2007a. Ozone Health Risk Assessment for Selected Urban Areas. Prepared for Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC., July 2007, Under Contract No. 68-D-03-002, Work Assignment 3-39 and 4-56. Available electronically on the internet at: http://www.epa.gov/ttn/naags/standards/ozone/s o3 cr td.html.

Abt Associates Inc. 2007b. TRIM: Total Risk Integrated Methodology. Users Guide for TRIM.RiskHuman Health-Probabilistic Application for the Ozone NAAQS Risk Assessment. Available online at:

http://epa.gov/ttn/fera/data/trim/trimrisk ozone ra userguide 8-6-07.pdf.

Bethel RA, Epstein J, Sheppard D, Nadel JA, Boushey HA. 1983. Sulfur dioxide-induced bronchoconstriction in freely breathing, exercising, asthmatic subjects. *Am Rev Respir Dis* 128:987-90.

Bethel RA, Sheppard D, Geffroy B, Tam E, Nadel JA, Boushey HA. 1985. Effect of 0.25 ppm sulfur dioxide on airway resistance in freely breathing, heavily exercising, asthmatic subjects. *Am Rev Respir Dis* 131:659-61.

Gelman, A, Carlin, J. C., Stern, H., and Rubin, D. B. 1995. Bayesian Data Analysis. Chapman and Hall, New York.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (Eds.) 1996. Markov Chain Monte Carlo in Practice. Chapman and Hall, London, UK.

Kehrl HR, Roger LJ, Hazucha MJ, Horstman DH. 1987. Differing response of asthmatics to sulfur dioxide exposure with continuous and intermittent exercise. *Am Rev Respir Dis* 135:350-5.

Linn WS, Avol EL, Peng RC, Shamoo DA, Hackney JD. 1987. Replicated dose-response study of sulfur dioxide effects in normal, atopic, and asthmatic volunteers. *Am Rev Respir Dis* 136:1127-34.

Linn WS, Avol EL, Shamoo DA, Peng RC, Spier CE, Smith MN, Hackney JD. 1988. Effect of metaproterenol sulfate on mild asthmatics' response to sulfur dioxide exposure and exercise. *Arch Environ Health* 43:399-406.

Linn WS, Shamoo DA, Peng RC, Clark KW, Avol EL, Hackney JD. 1990. Responses to sulfur dioxide and exercise by medication-dependent asthmatics: effect of varying medication levels. *Arch Environ Health* 45:24-30.

- Magnussen H, Jorres R, Wagner HM, von Nieding G. 1990. Relationship between the airway response to inhaled sulfur dioxide, isocapnic hyperventilation, and histamine in asthmatic subjects. *Int Arch Occup Environ Health* 62:485-91.
- Roger LJ, Kehrl HR, Hazucha M, Horstman DH. 1985. Bronchoconstriction in asthmatics exposed to sulfur dioxide during repeated exercise. *J Appl Physiol* 59:784-91. Spiegelhalter, D., Thomas, A., Best, N. and Gilks, W. 1996. Bugs .5 Bayesian inference using Gibbs sampling. Manual, version ii. MRC Biostatistics Unit, Institute of Public Health. Cambridge, U.K.
- U.S. EPA. 2007a. Integrated Plan for Review of the Primary National Ambient Air Quality Standards for Sulfur Oxides. October 2007. Available online at: http://www.epa.gov/ttn/naaqs/standards/nox/s nox cr pd.html.
- U.S. EPA, National Center for Environmental Assessment. 2008a. Integrated Science Assessment for Oxides of Sulfur Health Criteria (Second External Review Draft). EPA/600/R-08/047. May 2008. Available online at: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=190346.
- U.S. EPA, National Center for Environmental Assessment. 2008c. Integrated Science Assessment (ISA) for Sulfur Oxides Health Criteria (Final Report). EPA/600/R-08/047F. September 2008. Available online at: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=198843.
- U.S. EPA, Office of Air Quality Planning and Standards. 2008b. Risk and Exposure Assessment to Support the Review of the SO₂ Primary National Ambient Air Quality Standard: First Draft. EPA-452/P-08-003. June 2008. Available online at: http://www.epa.gov/ttn/naags/standards/so2/s so2 cr rea.html.
- U.S. EPA, Office of Air Quality Planning and Standards. 2009. Risk and Exposure Assessment to Support the Review of the SO₂ Primary National Ambient Air Quality Standards: Second Draft. EPA-452/P-09-003. March 2009. Available online at: http://www.epa.gov/ttn/naags/standards/so2/s so2 cr rea.html.

Appendix: Bayesian-Estimated Logistic Exposure-Response Functions: Median, 2.5th Percentile, and 97.5th Percentile Curves

Figure A-1. Bayesian-Estimated Logistic Exposure-Response Function: Increase in sRaw ≥ 100% for 5-Minute Exposures of Asthmatics Engaged in Moderate or Greater Exertion

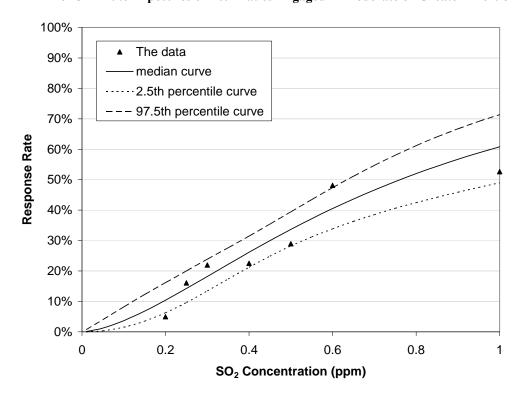


Figure A-2. Bayesian-Estimated Logistic Exposure-Response Function: Increase in sRaw ≥ 200% for 5-Minute Exposures of Asthmatics Engaged in Moderate or Greater Exertion

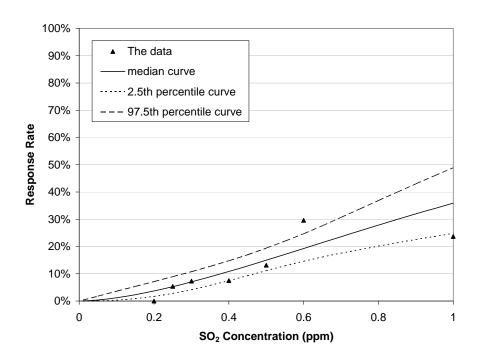


Figure A-3. Bayesian-Estimated Logistic Exposure-Response Function: Decrease in $FEV_1 \ge 15\%$ for 5-Minute Exposures of Asthmatics Engaged in Moderate or Greater Exertion

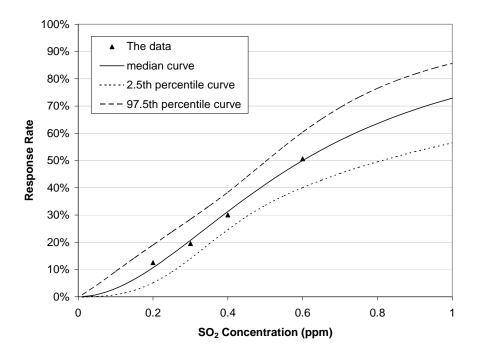
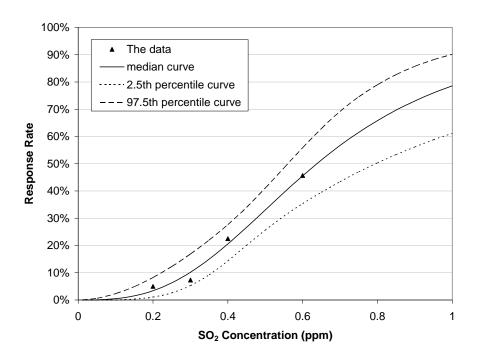



Figure A-4. Bayesian-Estimated Logistic Exposure-Response Function: Decrease in $FEV_1 \ge 20\%$ for 5-Minute Exposures of Asthmatics Engaged in Moderate or Greater Exertion

1 APPENDIX D: SUPPLEMENTAL INFORMATION FOR POLICY ASSESSMENT (CHAPTER 10)

Table D-1. 99^{th} percentile 24-hour average SO_2 concentrations for 2005 given just meeting the alternative 1-hour daily maximum standards analyzed in the risk assessment (concentrations in ppb).

State	County		98 th percentile				
	-	50	100	99 th percentile	200	250	200
AZ	Gila	7	14	20	27	34	36
DE	New Castle	14	27	41	55	69	66
FL	Hillsborough	10	20	31	41	51	56
IL	Madison	11	22	33	44	55	51
IL	Wabash	10	20	29	39	49	56
IN	Floyd	8	15	23	31	38	40
IN	Gibson	5	9	14	19	24	21
IN	Lake	14	27	41	54	68	71
IN	Vigo	9	17	26	34	43	43
IA	Linn	17	35	52	70	87	80
IA	Muscatine	16	32	48	64	79	72
MI	Wayne	13	26	39	52	65	58
MO	Greene	14	28	43	57	71	73
MO	Jefferson	8	17	25	34	42	48
NH	Merrimack	12	25	37	50	62	59
NJ	Hudson	19	38	57	76	96	97
NJ	Union	18	36	55	73	91	90
NY	Bronx	25	49	74	98	123	113
NY	Chautauqua	9	18	28	37	46	44
NY	Erie	12	25	37	50	62	56
ОН	Cuyahoga	17	33	50	66	83	78
ОН	Lake	19	37	56	74	93	89
ОН	Summit	12	24	35	47	59	53
OK	Tulsa	15	30	44	59	74	67
PA	Allegheny	14	29	43	58	72	73
PA	Beaver	10	20	29	39	49	47
PA	Northampton	11	22	33	45	56	71
PA	Warren	16	32	48	65	81	81
PA	Washington	19	38	57	76	95	87
TN	Blount	19	38	56	75	94	87
TN	Shelby	17	35	52	70	87	83
TN	Sullivan	7	13	20	27	33	38
TX	Jefferson	9	18	26	35	44	42
VA	Fairfax	21	43	64	86	107	96
WV	Brooke	13	25	38	51	64	64
WV	Hancock	14	27	41	54	68	64
WV	Monongalia	11	21	32	42	53	54
WV	Wayne	43	87	130	173	217	194

Table D-2. 99th percentile 24-hour average SO₂ concentrations for 2006 given just meeting the alternative 1-hour daily maximum standards analyzed in the risk assessment (concentrations in ppb).

State	County			98 th percentile			
		50	100	99 th percentile 150	200	250	200
DE	New Castle	11	23	34	46	57	55
IL	Madison	9	18	28	37	46	43
IN	Floyd	8	15	23	30	38	40
IN	Lake	5	10	14	19	24	25
IN	Vigo	5	11	16	22	27	27
IA	Linn	11	23	34	45	56	52
IA	Muscatine	15	31	46	62	77	70
MI	Wayne	17	34	51	68	85	76
MO	Greene	17	33	50	66	83	86
MO	Jefferson	7	13	20	26	33	37
NH	Merrimack	14	28	41	55	69	66
NY	Bronx	23	46	69	92	115	106
NY	Chautauqua	7	13	20	27	33	32
NY	Erie	7	15	22	29	36	33
OH	Cuyahoga	14	28	43	57	71	67
OH	Lake	11	23	34	46	57	55
OH	Summit	12	24	35	47	59	53
PA	Allegheny	12	23	35	46	58	59
PA	Beaver	9	19	28	38	47	46
PA	Northampton	16	32	48	63	79	101
PA	Warren	15	29	44	59	73	74
PA	Washington	11	22	33	45	56	51
TN	Blount	16	32	48	65	81	75
TN	Shelby	16	31	47	62	78	74
TN	Sullivan	8	17	25	34	42	49
TX	Jefferson	11	23	34	45	56	53
VA	Fairfax	17	35	52	70	87	78
WV	Brooke	12	24	36	49	61	61
WV	Hancock	14	28	42	56	70	66
WV	Monongalia	10	21	31	42	52	53

Table D-3. 2^{nd} highest 24-hour average SO_2 concentrations (i.e. the current 24-hour standard) for 2005 given just meeting the alternative 1-hour daily maximum standards analyzed in the risk assessment (concentrations in ppb)

State	County		99	th percentile le	vels		98 th percentile level
	0.00000	50	100	150	200	250	200
AZ	Gila	7	15	22	29	37	39
DE	New Castle	18	36	54	72	90	86
FL	Hillsborough	13	26	38	51	64	71
IL	Madison	12	24	36	48	60	56
IL	Wabash	8	20	30	41	51	58
IN	Floyd	9	18	28	37	46	49
IN	Gibson	5	11	16	22	27	25
IN	Lake	19	38	56	75	94	98
IN	Vigo	12	23	35	46	58	57
IA	Linn	19	38	57	76	95	88
IA	Muscatine	18	37	55	73	92	83
MI	Wayne	17	34	50	67	84	75
МО	Greene	18	37	55	73	92	95
MO	Jefferson	10	20	29	39	49	55
NH	Merrimack	18	35	53	71	88	84
NJ	Hudson	22	45	67	89	111	113
NJ	Union	18	45	68	90	113	112
NY	Bronx	29	57	86	115	144	132
NY	Chautauqua	12	19	37	49	62	59
NY	Erie	14	27	41	54	68	61
ОН	Cuyahoga	26	53	79	105	132	125
ОН	Lake	22	44	66	88	110	106
ОН	Summit	12	24	36	49	61	55
OK	Tulsa	16	31	47	63	79	72
PA	Allegheny	18	36	55	73	91	93
PA	Beaver	11	21	32	42	53	52
PA	Northampton	11	23	35	47	58	74
PA	Warren	17	33	50	66	83	84
PA	Washington	23	46	69	92	115	106
TN	Blount	23	46	69	92	115	107
TN	Shelby	22	43	65	87	108	103
TN	Sullivan	9	19	28	37	46	54
TX	Jefferson	10	20	30	39	49	46
VA	Fairfax	22	49	74	98	123	110
WV	Brooke	14	28	42	56	70	71
WV	Hancock	16	32	48	64	80	76
WV	Monongalia	12	23	35	47	58	59
WV	Wayne	48	95	143	190	238	213

Table D-4. 2^{nd} highest 24-hour average SO_2 concentrations (i.e. the current 24-hour standard) for 2006 given just meeting the alternative 1-hour daily maximum standards analyzed in the risk assessment (concentrations in ppb)

2

State	County		98 th percentile level				
		50	100	th percentile level 150	200	250	200
DE	New Castle	18	37	55	73	92	88
IL	Madison	10	20	31	41	51	48
IN	Floyd	12	23	35	47	58	61
IN	Lake	6	11	17	27	34	36
IN	Vigo	7	14	21	28	35	35
IA	Linn	16	32	48	63	79	73
IA	Muscatine	18	36	54	72	90	82
MI	Wayne	24	48	72	96	120	107
MO	Greene	20	40	60	80	100	103
MO	Jefferson	7	14	32	43	54	61
NH	Merrimack	19	38	57	76	95	90
NY	Bronx	25	49	74	99	124	114
NY	Chautauqua	8	15	23	30	38	36
NY	Erie	12	24	36	47	59	54
ОН	Cuyahoga	21	43	64	85	106	101
ОН	Lake	16	33	49	65	82	79
ОН	Summit	13	26	39	52	65	58
PA	Allegheny	13	27	40	53	66	68
PA	Beaver	12	24	35	47	59	57
PA	Northampton	50	101	151	202	252	321
PA	Warren	19	38	57	76	95	96
PA	Washington	14	29	43	58	72	66
TN	Blount	21	41	62	83	104	96
TN	Shelby	20	41	61	82	102	97
TN	Sullivan	10	21	31	42	52	60
TX	Jefferson	13	26	39	52	65	61
VA	Fairfax	20	41	61	82	102	91
WV	Brooke	14	28	42	56	70	71
WV	Hancock	15	31	46	61	76	72
WV	Monongalia	11	22	34	45	56	57

D-5

Table D-5. Annual average SO_2 concentrations for 2005 given just meeting the alternative 1-hour daily maximum standards analyzed in the risk assessment (concentrations in ppb).

			98 th percentile				
State	County		level				
		50	100	150	200	250	200
AZ	Gila	1.5	2.9	4.3	5.8	7.2	7.7
DE	New Castle	2.3	4.6	6.9	9.2	11.5	11.0
∟	Hillsborough	1.5	2.9	4.4	5.8	7.3	8.0
IL	Madison	1.8	3.7	5.5	7.4	9.2	8.6
IL	Wabash	1.5	3.0	4.5	6.0	7.5	8.6
IN	Floyd	2.3	4.5	6.8	9.0	11.3	11.9
IN	Gibson	0.8	1.7	2.5	3.4	4.2	3.8
IN	Lake	1.8	3.6	5.4	7.1	8.9	9.3
IN	Vigo	1.9	3.7	5.5	7.4	9.2	9.1
IA	Linn	2.0	4.1	6.1	8.2	10.2	9.4
IA	Muscatine	2.3	4.6	6.9	9.1	11.4	10.3
MI	Wayne	2.4	4.9	7.3	9.7	12.1	10.8
MO	Greene	1.9	3.8	5.7	7.6	9.5	9.8
MO	Jefferson	1.4	2.8	4.2	5.6	7.1	8.0
NH	Merrimack	2.4	4.8	7.2	9.5	11.9	11.4
NJ	Hudson	6.4	12.9	19.3	25.7	32.1	32.5
NJ	Union	6.2	12.3	18.4	24.6	30.7	30.4
NY	Bronx	6.9	13.7	20.6	27.4	34.3	31.6
NY	Chautauqua	2.1	4.3	6.4	8.6	10.7	10.3
NY	Erie	2.3	4.5	6.8	9.1	11.3	10.2
OH	Cuyahoga	4.6	9.3	13.9	18.6	23.2	22.1
ОН	Lake	2.8	5.7	8.5	11.3	14.1	13.6
ОН	Summit	2.7	5.4	8.1	10.8	13.5	12.1
OK	Tulsa	3.6	7.2	10.7	14.3	17.9	16.3
PA	Allegheny	3.6	7.1	10.7	14.2	17.8	18.1
PA	Beaver	2.8	5.5	8.3	11.0	13.8	13.4
PA	Northampton	2.9	5.9	8.8	11.7	14.6	18.7
PA	Warren	3.2	6.5	9.7	13.0	16.2	16.3
PA	Washington	4.7	9.3	14.0	18.7	23.3	21.5
TN	Blount	2.9	5.8	8.7	11.7	14.6	13.5
TN	Shelby	2.9	5.7	8.6	11.5	14.4	13.6
TN	Sullivan	1.5	3.0	4.5	6.1	7.6	8.7
TX	Jefferson	1.4	2.8	4.2	5.6	7.1	6.6
VA	Fairfax	7.8	15.5	23.2	31.0	38.7	34.7
WV	Brooke	4.5	8.9	13.4	17.9	22.4	22.6
WV	Hancock	4.3	8.6	13.0	17.3	21.6	20.5
WV	Monongalia	2.6	5.2	7.8	10.3	12.9	13.2
WV	Wayne	6.0	12.0	18.0	24.0	30.0	26.8

1

Table D-6. Annual average SO_2 concentrations for 2006 given just meeting the alternative 1-hour daily maximum standards analyzed in the risk assessment (concentrations in ppb).

State	County		98 th percentile level				
	Councy	50	100	h percentile led 150	200	250	200
DE	New Castle	2.2	4.4	6.7	8.9	11.1	10.6
IL	Madison	1.7	3.5	5.2	6.9	8.6	8.1
IN	Floyd	1.6	3.2	4.8	6.3	7.9	8.4
IN	Lake	1.7	3.3	5.0	6.6	8.3	8.7
IN	Vigo	1.4	2.8	4.2	5.6	7.0	6.9
IA	Linn	1.8	3.6	5.4	7.2	9.1	8.3
IA	Muscatine	1.7	3.4	5.2	6.9	8.6	7.8
MI	Wayne	2.2	4.4	6.6	8.8	10.9	9.8
МО	Greene	2.0	4.0	6.1	8.1	10.1	10.4
МО	Jefferson	1.5	3.0	4.5	5.9	7.4	8.4
NH	Merrimack	2.1	4.3	6.4	8.5	10.7	10.1
NY	Bronx	6.5	13.0	19.5	26.0	32.5	29.9
NY	Chautauqua	1.6	3.1	4.6	6.2	7.7	7.4
NY	Erie	1.5	3.1	4.6	6.1	7.6	6.9
ОН	Cuyahoga	4.1	8.2	12.4	16.5	20.6	19.6
ОН	Lake	2.4	4.8	7.2	9.6	12.0	11.6
ОН	Summit	2.2	4.3	6.5	8.7	10.9	9.8
PA	Allegheny	2.7	5.5	8.2	10.9	13.7	13.9
PA	Beaver	2.0	4.0	6.0	8.0	10.0	9.7
PA	Northampton	3.7	7.3	11.0	14.6	18.3	23.3
PA	Warren	2.5	4.9	7.4	9.9	12.3	12.4
PA	Washington	4.3	8.5	12.8	17.1	21.3	19.6
TN	Blount	3.0	6.0	8.9	11.9	14.9	13.8
TN	Shelby	3.7	7.5	11.2	14.9	18.6	17.7
TN	Sullivan	1.8	3.6	5.3	7.1	8.9	10.3
TX	Jefferson	1.4	2.9	4.3	5.7	7.2	6.7
VA	Fairfax	6.9	13.9	20.8	27.7	34.6	31.0
WV	Brooke	3.9	7.7	11.6	15.5	19.3	19.5
WV	Hancock	4.1	8.2	12.3	16.3	20.4	19.4
WV	Monongalia	2.0	3.9	5.8	7.8	9.7	9.9

United States Environmental Protection Agency Office of Air Quality Planning and Standards Air Quality Strategies and Standards Division Research Triangle Park, NC

EPA-452/P-09-003 March 2009