Environmental Microbial and Food Safety Laboratory Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
Research Areas by Scientist
 

Research Project: Glycoprotein Micelles for Live Agent Collection and Stabilization

Location: Environmental Microbial and Food Safety Laboratory

Project Number: 1265-32420-004-07
Project Type: Specific Cooperative Agreement

Start Date: Jan 23, 2009
End Date: Sep 30, 2009

Objective:
The objective of this agreement is to establish the proof-of-concept that floating glycoprotein film-coated micelles can be used to capture pathogens from aqueous matrices and stabilize them during transport and storage. Initial research conducted at The MITRE Corporation (MITRE) was patented and licensed to Quickpath Bioscience.

Approach:
Fimbriae, hair-like structures produced by many species of bacteria, vary in the composition of the fimbrial shaft and protein adhesins found on the tips. Bacterial adhesins selectively bind to tissue-specific glycans. For example, pathogens such as Salmonella and E. coli expressing Type I fimbriae attach to tissues/micelles coated with mannose. There are about twenty-two known fimbrial types. However, reproducibility and predictably of attachment is uncertain. Little is known about how the environment influences fimbrial production. Furthermore, Type I fimbriae are distributed among many bacterial species and there can be variations in the shaft fimbrin protein while the tip adhesin protein remains the same. We have selected a model strain, uropathogenic Escherichia coli (UPEC), to which we will obtain monoclonal antibodies produced against the target fimbriae. Immunoassay studies elucidating fimbrial expression as a function of environmental parameters will be conducted with methods developed for the Signalyte spectrofluorimeter (Creativ MicroTech) and imaged by Epifluorescent and Atomic Force Microscopy (NIST). Environmental parameters to be investigated include: pH (including shifts in pH), redox, temperature, culture age, nutrient ratios (carbon:nitrogen: phosphorus), nutrient composition, ionic strength, and cell chemical signaling effects. After establishing environmental conditions that reliably produce fimbrial expression, attachment studies to lipid-filled glycoprotein micelles provided by MITRE will be performed to establish optimal binding kinetics and survival. Target fimbriae will also be screened against available glycan microarrays.

   

 
Project Team
Shelton, Daniel
 
Related National Programs
  Food Safety, (animal and plant products) (108)
 
 
Last Modified: 05/08/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House