Biothermica

Landfill Gas to Energy Facility at the Nejapa Landfill site, El Salvador

Frédéric Drouin, Eng., M.Sc.

March 29th 2007

PRESENTATION

- The project's actors
- Biothermica: Technology provider
- Nejapa Landfill gas to energy project
- Landfill gas assessment et model
- Basic operational concept

Projects Actors

- Biothermica: CDM project developer and technology provider, owner of the LFG recovery system
- Bioenergía SA de CV: Built and operate a LFG recovery system and, eventualy, a LFG power plant
- MIDES: Landfill operator
- Bionor SA de CV: Developper and owner of a LFG power plant

ESTRATEGIA DE DESARROLLO

Company Profile

Technology Leader in Thermal Treatment of Gases

- Founded in 1987 Family owned (100%)
- Technology & construction firm
- EPCC in air pollution control and landfill gas
- Canadian leader in landfill gas collection & utilization
- R&D in LFG, particulate filtration & VOC oxidation
- Financed and structured private LFG power plant projects on a BOO/BOOT around the World
- Developed, financed & structured emission reduction (ER) Projects in Latin America

Resource Collection and Management Recovery System - Engineering

- Gas piping system designed for handling the maximum biogas generation rate
- The collection system designed such that landfill gas is effectively collected from all areas of the landfill
- Design provisions should be taken for proper soil cover to minimize air intrusion and efficient condensate removal systems

LFG Collection and Utilization Resource Valorization

CDM Project

25 MW
Operating since 1996
Montreal, Canada

Flaring since Oct. 2006 6 MW plant in 2008 Nejapa, El Salvador

Project key dates

Contrat regarding the ownership of LFG signed between Biothermica y el Mides : February 2005

Biothermica has implemented the following activities

Project regristration: June 2005 to March 2006

Engineering and construction: December 2005 to August 2006

Operation (through BioEnergia): Since August 2006

Other important activities realized by Biothermica:

MIGA (World Bank) insurance: June 2006

First worldwide carbon finance project insured by MIGA

ERPA transaction with government of Luxemburgh: January 2007

First Monitoring report: March 2007

Landfill gas flaring Recovery System and Production Data

• Recovery system (Cell no. 3-4-5)

37 wells in operations equiped with pumps 5 horizontal collection (300m) located in the landfilling area

7 liviviat collectors

• LFG burned (March 2007)

2300 Nm3/h at +/- 50% CH4

4 MW equivalent

• Power plant construction will starts in January 2008

2008: 6 MW

2010: 10 MW

2012: 13 MW

2014: 16 MW

2018: 20 MW

Nejapa LFG Proyecto Biogas evaluaccion

Recovery system operation Basic concepts

Cells	Average PPM	Methane emission (m3/h)	Methane flared (m3/h)	Total Methane production (m3/h)
1				
2	172	184	0	184
3	27	30	277	307
4	262	306	259	565
5	212	193	763	957
	168	713	1299	2012

Surface sampling and energy balance have been done the 7th of February 2007

Global energy potential of 5.1 MW according to field measurements

Recovery system operation Basic concepts

Recovery system operation Basic concepts

Recovery System Basic Objective

- Minimizing air intrusion while maximizing methane recovery
- Air intrusion affect anaerobic process

$$CH4/CO2 = 1.5 (60\%/40\%)$$
 (normal condition)

CH4/CO2 < 1.5 (air intrusion)

- → O2 kills methanogenic bacteria
- → O2 reacts with CH4

Methane recovery optimization

In order to maximize methane recovery, two basics concepts must be applied

- Periodic wells calibration
 CH4 concentration > 45%
- Adjust pressure level in the recovery system
 For a given recovery system status exists an optimum pressure set point

System pressure optimization

CH4 flow flared vs pressure applied for a given recovery system status and LFG production rate and flow pattern

- Optimum set point constantly changed
 - Wells calibration change the sytem status
 - Atmospheric pressure changes modified LFG flow rate
- Constant work

Basic activies

- Wells calibration
- Blower power ajustment
- Water level in wells
- Wells depthness
- Systeme drainage
- Flare damper ajustement
- Gas analysor calibration

Energy balance

February 7th 2007

	m3/h	% contribution	
Horizontal collectors	644	50%	
Lixiviat collectors	378	29%	
Wells	277	21%	
Total	1299	100%	

	m3/h	% contribution
Cell 1	0	0%
Cell 2	0	0%
Cell 3	277	21%
Cell 4	259	20%
Cell 5	763	59%
Total	1299	100%

Recovery system operation Recovery System Efficiency

From the surface sampling

Cells	CH4 emission (m3/h)	CH4 recovered (m3/h)	total	Efficiency
1				
2	184	0	184	0
3	30	277	307	90%
4	306	259	565	46%
5	193	763	957	80%
	713	1299	2012	65%

ENERGIA LIMPIA EN EL SALVADOR

