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ABSTRACT

A stochastic model of atmospheric surface conditions, developed from 30 years of data at Ocean Weather
Station P in the northeast Pacific, is used to drive 2 mixed layer model of the upper ocean. The spectral char-
acteristics of anomalies in the four atmospheric variables: air and dewpoint temperature, wind speed and solar
radiation, and many ocean features, including the seasonal cycle are reasonably well reproduced in a 500-year
model simulation. However, the ocean model slightly underestimates the range of the mean and standard devi-
ation of both temperature and mixed layer depth over the course of the year. The spectrum of the monthly SST
anomalies from the model simulation are in close agreement with observations, especially when atmospheric
forcing associated with El Nifio is included. The spectral characteristics of the midlatitude SST anomalies is
consistent with stochastic climate theory proposed by Frankignoul and Hasselmann (1977) for periods up to ~6
months.

Lead/lag correlations and composites indicate a clear connection between the observed SST anomalies in
spring and the following fall, as anomalous warm or cold water created in the deep mixed layer during winter/
spring remain below the shallow mixed layer in summer and is then reentrained into the surface layer in the
following fall and winter. This re-emergence mechanism also occurs in the model but the temperature anomaly
pattern is more diffuse and influences the surface layer over a longer period compared with observations.

A detailed analysis of the simulated mixed layer temperature tendency indicates that the anomalous net surface
heat flux plays an important role in the growth of SST anomalies throughout the year and is the dominant term
during winter. Entrainment of water into the mixed Jayer from below strongly influences SST anomalies in fall
when the mixed layer is relatively shallow and thus has little thermal inertia. Mixed layer depth anomalies are
highly correlated with the anomalous surface mechanical mixing in summer and surface buoyancy forcing in

winter.

1. Introduction

Recent observational analyses by Deser and Black-
mon (1993), Kushnir (1994), Trenberth and Hurrell
(1994}, and Deser et al. (1996) have found interan-
nual, decadal, and multidecadal variability in the sur-
face layers of both the atmosphere and ocean over the
North Atlantic and North Pacific, Several different
physical mechanisms have been proposed for the for-
mation of midlatitude sea surface temperature (SST)
anomalies including, air—sea feedback and ocean wave
propagation (Latif and Barnett 1994), fluctuations in
the thermohaline circulation (Weaver and Sarachik
1991; Delworth et al. 1993), and as a remote response
to El Nifio conditions in the tropical Pacific (Alexander
1992; Jacobs et al. 1994).

In contrast to climate variability resulting from de-
terministic processes, fluctuations on seasonal to cen-
tury timescales and longer can result from random forc-
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ing of parts of the climate system. For example,
Wunsch (1992) showed that a simple integration of
white noise (random fluctuations with no preferred pe-
riodicities ) has rich temporal structure, similar to some
observed ocean time series. In a landmark paper, Has-
selmann (1976) proposed that climate could be repre-
sented by a slow system that integrates white noise or
stachastic forcing representing ‘‘weather’’as a fast sys-
tem.! Like particles undergoing Brownian motion, the
slow climate system exhibits random walk behavior,
where the variability increases (decreases) with the
square of the period (frequency). Variability in a sto-
chastic climate system is unbounded unless processes
that provide negative feedbacks are included.

The study by Frankignoul and Hasselmann (1977)
was one of the first to apply a stochastic model to the
real climate system in a study of midlatitude SST vari-
ability. Here, the upper ocean, the slow system, acts to
integrate the white noise atmospheric forcing. This
forcing represents the passage of atmospheric storms,

! Some preliminary ideas on using stochastic models to represent
air~sea interaction and climate fluctuations were discussed by Mitch-
ell (1976).
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where the rapid decorrelation time between synoptic
events results in a nearly white spectrum in the fre-
quency domain over the evolution timescale of SST
anomalies. The system is damped by a linear negative
air—sea feedback, which represents the enhanced loss
of heat to the atmosphere from anomalous warm waters
and vice versa. Frankignoul and Hasselmann tested this
paradigm for midlatitude SST anomalies using a simple
atmospheric model coupled to a fixed slab ocean, and
by estimating the stochastic parameters, the white noise
forcing and linear air—sea feedback factor, from data.
Both the simple coupled model and the stochastic pa-
rameterization showed similar spectral characteristics
as the observed SST anomalies: increasing variability
with period for periods less than ~1 year and then a
flattening of the spectra at longer periods as the air—
sea feedback limited the magnitude of the SST anom-
alies. More detailed analyses by Reynolds (1978),
Frankignoul (1979), and Frankignoul and Reynolds
(1983) indicated that away from coasts and regions of
strong currents much of the midlatitude SST variability
can be explained using stochastic climate theory. Re-
cently, models driven by stochastic forcing have been
used to examine atmospheric variability (Farrell and
loannou 1993; Newman et al. 1996, manuscript sub-
mitted to J. Atmos. Sci.), the thermohaline circulation
in the ocean (Mikolajewicz and Maier-Reimer 1990);
Griffies and Tziperman 1995), and El Nifio (Lau 1985;
Penland and Sardeshmukh 1995).

Interactions between the surface and deeper ocean
layers may also influence SST anomalies. Namias and
Born (1970, 1974) noted a tendency for midlatitude
SST anomalies to recur from one winter to the next
without persisting through the intervening summer.
They speculated that temperature anomalies that form
at the surface and extend into the relatively deep ocean
mixed layer in winter, could remain intact in the sea-
sonal thermocline during the following summer. The
anomalies would be insulated from surface processes
by the reformed, shallow mixed layer and could then
reappear at the surface when the mixed layer again
deepened in the following fall/winter via entrainment.
This ‘‘re-emergence mechanism’’ was examined in
greater detail by Alexander and Deser (1995) using
subsurface ocean temperature measurements collected
at ocean weather stations (OWSs) and simulations with
a mixed layer model. They concluded that the reemer-
gence of SST anomalies from one winter to the next
appeared to occur at several locations in the North At-
lantic and North Pacific Oceans.

Many studies, including Elsberry and Garwood
(1978), Miyakoda and Rosati (1984 ), Martin (1985),
and Large et al. (1994) have used mixed layer ocean
models driven by observed atmospheric conditions to
examine midlatitude SSTs. In this study, we use at-
mospheric data collected at OWS P in the northeast
Pacific (50°N, 145°W) to derive an extended time se-
ries of surface atmospheric variables with statistical
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characteristics similar to the original observations. The
simulated atmospheric variables are then used in com-
puting the surface boundary conditions for a variable
depth mixed layer ocean model. The results from this
model run are then compared to ocean data and used
to investigate temperature variability in the upper
ocean, the re-emergence mechanism, and the relative
importance of competing terms in the mixed layer mod-
el’s heat budget.

There are several benefits of using stochastic forcing
instead of the actual atmospheric data as boundary con-
ditions for the ocean model. This experiment design
enables us to extend the work of Frankignoul and Has-
selmann (1977) by including a variable depth ocean
and stochastic surface forcing whose spectrum is not
white. A second benefit is the ability to perform very
long simulations, which allows for multiple occur-
rences of upper-ocean features, enhancing the signal to
noise ratio in our model calculations. In a statistical
sense the model’s behavior is well sampled and thus
error bars about the results from such a simulation are
very small. The longest nearly continuous surface data
records are only about 30 years long, and a model run
of this duration may provide a sample that is not rep-
resentative of the true model behavior.

A third benefit of using stochastic forcing is that it
provides a better test of the model’s fidelity. Using the
actual surface atmospheric variables or even the ob-
served surface energy fluxes as boundary conditions
strongly constrains the ocean model to track observa-
tions, giving a false impression of the model’s accu-
racy. For example, anomalous ocean heat advection
could lead to SST anomalies, which then influence the
overlying atmosphere, as the air and sea temperature
tend to come in to equilibrium on interannual time-
scales. A one-dimensional ocean model driven by these
atmospheric conditions may obtain realistic SSTs even
though the model contains no ocean currents. Another
example results from seasonal autocorrelations in the
observed surface energy fluxes. If the fluxes are
strongly correlated in spring and fall it would be dif-
ficuit to isolate the role of entrainment in the re-emer-
gence mechanism from upper-ocean temperature
anomalies, which are primarily responding to surface
forcing. Low-frequency variability of the atmospheric
variables in the stochastic model occurs randomly as
the decay time of anomalies are short (<1 month) and
they evolve independently of the SSTs. Thus, the low- |
frequency variability of model SSTs is due to the dy-
namics of the model rather than a simple forced re-
sponse. Surface fluxes are computed with SSTs from
the mixed layer model to allow for damping caused by
air—sea feedback, an important process in the real
world.

Here a stochastic/physical model of the air—sea sys-
tem is used to address questions concerning how sur-
face energy fluxes and the entrainment of water into
the mixed layer from below influence midiatitude SST
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anomalies. Entrainment is very difficult to measure
from observations and few studies have examined its
impact on SSTs. Haney and Davies (1976) investigated
the role of entrainment on the mean seasonal cycle,
while Camp and Elsberry (1978) performed ~50 case
studies to examine the relative effect of entrainment
and the net surface energy flux on SSTs during storms.
However, the net influence of entrainment on SST
anomalies over the course of the seasonal cycle is not
well known. If entrainment does affect SST anomalies,
is it via changes in the entrainment rate, the temperature
of the entrained water, and/or the mixed layer depth?
What is the relative importance of wind stirring, surface
buoyancy forcing, and the stability of the upper ocean
on entrainment and the depth of the mixed layer? And
to what extent does subsurface heat storage and the
subsequent entrainment of these thermal anomalies into
the mixed layer influence SST?

These questions are addressed using a 500-yr simu-
lation of the statistical atmosphere/physical ocean
model. The observations at P, the stochastic atmo-
sphere and mixed layer ocean models, the surface flux
parameterizations, and procedures for model verifica-
tion are described in section 2. Simulations of the mean
seasonal cycle and its variability are presented in sec-
tion 3. In section 4, the temporal characteristics of the
simulated ocean temperature and mixed layer depth
anomalies are shown and compared with observations
and stochastic theory. In this section we also explore
the response of the model to atmospheric forcing as-
sociated with El Nifio. The seasonal recurrence of SST
anomalies and relationships between surface forcing,
entrainment, and ocean variability, are examined in
sections 5 and 6, respectively. The results are summa-
rized and discussed in section 7.

2. Observations and modeling of conditions at OWS P
a. Data and analyses methods

Ocean weather stations were established in the North
Atlantic and Pacific at the end of World War II to par-
ticipate in search and rescue missions and to collect
data. They are unique in oceanography in having long-
term, nearly continuous records at the same location.
OWS P, in the Gulf of Alaska, was chosen in this study
because of its long record of high quality surface and
subsurface data and because it is located far from strong
currents, so that a one-dimensional model may be ade-
quate for examining conditions there. Surface obser-
vations of air and dewpoint temperature, wind speed,
sea level pressure, cloud fraction, etc., were taken al-
most continuously from 1950 to 1979 in 3-h intervals.
Average daily atmospheric values, used to compute the
stochastic variables, were calculated for days with six
or more observations. Air—sea energy exchange is
computed using the stochastic atmospheric values and
SSTs provided by the mixed layer model. Results from
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the mixed layer model simulation are compared with
subsurface data collected using mechanical bathyther-
mographs (MBTs) at OWS P from 1953 to 1974.
Ocean temperatures were routinely recorded at 5 m in-
crements from the surface to a maximum depth of 135
m prior to 1957 and 270 m thereafter. Additional in-
formation about the surface and subsurface data and
data processing can be found in Alexander and Deser
(1995).

One method used to test the simulated ocean and
atmosphere quantities is to compare their spectral char-
acteristics with observations. SST and mixed layer
depth spectra are calculated using monthly anomalies,
estimated from the departure of the average of the in-
dividual observations within a given month from the
long-term monthly mean. To compute daily spectra of
atmospheric observations, we linearly interpolated
across data gaps of one or, at most, two days and were
left with eight nonoverlapping time series segments,
each at least 2 years long. Segments of daily data
smaller than this length were not used to calculate spec-
tra. Spectra were obtained using Thomson’s (1982,
1990) multitaper method (MTM), designed to mini-
mize both the ‘‘leakage’’ inherent in discrete Fourier
spectral analysis and the variance of the spectral esti-
mate. Leakage occurs when the true frequency of a
spectral peak lies somewhere between the frequencies
at which a discrete Fourier transform is evaluated.
Thomson’s insight was that the reliability of the spec-
tral estimates could be increased while minimizing
leakage out of a frequency band by applying multiple
tapers to the time series and averaging the results. The
number of appropriate tapers involves a trade-off be-
tween leakage and variance; we used seven tapers,
which results in fairly smooth spectra. A detailed de-
scription of the MTM method is given by Yiou et al.
(1991) and several studies have applied MTM analyses
to observed times series, including Slepian (1983) and
Vautard et al. (1992).

b. The stochastic atmospheric model

Frankignoul and Hasselmann (1977) suggested that
the atmospheric forcing of SST anomalies could be pa-
rameterized as white noise with constant variance.
Here, we extend their model by including atmospheric
variability whose variance is time dependent, and
whose spectrum is not white. Our philosophy for de-
veloping the stochastic atmospheric model was to de-
rive the simplest model that could reproduce most of
the observed properties. The four atmospheric variables
included in the model are the anomalous air tempera-
ture (7T, ), dewpoint temperature (7., ), shortwave ra-
diation (g.w), and wind speed (V). With the exception
of T, and Ty, correlations between daily anomalies
in these variables are small, with magnitudes of less
than 0.2 (Table 1). Thus, anomalies in 7, gsw, and V
are computed independently using different Markov
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TaBLE 1. Correlations between air temperature, dewpoint
temperature, wind speed, and shortwave radiation at the surface using
daily values.

Tair Tdcw 14 Gow
Tair 1.00
Toew 0.84 1.00
vV -.03 0.02 1.00
Gow -.06 -.18 -.07 1.00

models, while Ty, which predominantly depends on
the T, anomaly, is calculated from a regression rela-
tionship. The four atmospheric anomaly models are de-
scribed in the appendix. The stochastic anomalies are
then added to the daily climatological values of the
respective variable, thereby including the mean sea-
sonal cycle. The diurnal cycle is not represented, but
the atmosphere and ocean models are integrated using
a 1-h time step in order to obtain reasonable statistics
for the stochastic atmospheric variables.

Here, T, was modeled using a combination of two
noninteracting linear Markov processes, where the two
decay timescales are likely associated with different
physical mechanisms. The faster Markov process rep-
resents the passage of storms. The slower system in-
cludes variability associated with ultralong waves
(Hartmann 1974 ) and the associated passage of differ-
ent air masses (Fissel et al. 1976). It also includes the
effect of thermal feedback of SST anomalies on the
local air temperature ( Frankignoul 1985) so that some
air—sea coupling is implicitly included in the model.
The spectra of T';;, from the eight observed time series
segments (dotted lines) along with the spectrum from
the stochastic model (bold line) are shown in Fig. 1a.
Both the observed and simulated spectra are red for
periods less than ~200 days and have nearly constant
variability at longer periods. The flattening of the sim-
ulated spectra at lower frequencies results from linear
damping, as described in the appendix. The simulated
spectrum falls within the spread among the observed
spectra at nearly all periods. However, the model tends
to have less variability compared with the mean of the
eight observed spectra at periods less than about 20
days but more variability at periods longer than 50
days. Before including the fast Markov process, the
T 3 model overestimated the increase in variability
with period for periods less than ~150 days (cf. Al-
exander and Penland 1995).

A scatterplot between T §.,, and T j; is shown in Fig.
1b. Given that the correlation between the two is nearly
0.85, we were able to model T /., from a regression on
T &, with a random component added to account for
the independent variability.

The observed daily g/, values are derived from the
formula developed by Reed (1977), which depends on
the solar radiation at the top of the atmosphere, the
cloud fraction, and the surface albedo (obtained from
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Payne 1972). This variable is modeled using a single
linear Markov process, but one whose parameters
changes with the time of year. In contrast to T g, the
spectra of observed and modeled g, shown in Fig. Ic,
are nearly white at periods longer than about 10 days.

The prognostic model for the wind speed anomalies
consists of a linear system driven by both multiplicative
and additive white noise forcing. Including multipli-
cative noise, where the variable, V', is multiplied by a
random component, enhanced the variability at less
then 10 days enabling an especially good fit to the data
on these timescales (Fig. 1d). The model and observed
spectra are red at periods less than 20 days, nearly white
for periods between 20 and 150 days, but then show a
slight increase in variability at 200 days. Hartmann
(1974) and Fissel et al. (1976) have found enhanced
variability on synoptic timescales, ~5 days, in some
atmospheric quantities over the oceans. While maxima
at these timescales are not readily apparent from the
observed MTM spectra shown in Fig. 1, when the ob-
served wind speed spectra are subjected to the smooth-
ing procedure described by Fissel et al. (1976), the
broad synoptic peak between 2 and 10 days, which they
detected at OWS P, is also found in our data (not
shown).

¢. Mixed layer ocean model

The near-surface layer of much of the world’s oceans
is vertically well mixed with nearly uniform tempera-
ture and salinity. A one-dimensional ocean model de-
veloped by Gaspar (1988), which has been formulated
with climate simulations in mind, is used to examine
the influence of surface forcing and entrainment on the
temperature and depth of the mixed layer. The temper-
ature tendency of the mixed layer is controlled by the
net surface energy flux, penetrating solar radiation, en-
trainment and diffusion:

ﬂrﬁ _ qnel ~ Gswh _ WeAT
ot pch h

v, 0T

- 1
+ h 8Z z=h b ( )

where 7, is the mixed layer temperature, AT = T,
— Ty, T, being the temperature just below the mixed
layer, W, is the entrainment rate, p the density of sea-
water, 4 the mixed layer depth, g, the net surface en-
ergy flux into the ocean, g, the penetrating solar ra-
diation at %, v, the molecular diffusion coefficient for
heat, and z the vertical coordinate (positive down-
ward). We chose to specify salinity in the model ac-
cording to climatology, since long time series of pre-
cipitation data over the oceans, which strongly influ-
ences salinity, are unavailable. Since salinity influences
the density profile and, thus, £, its impact on variability
in the surface layer should be examined in the future.
The mixed layer depth increases via entrainment,
which depends on the surface buoyancy forcing, wind
stress, and penetrating solar radiation. The entrainment
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FiG. 1. Observed (dashed lines) and simulated (bold line) spectra for (a) Ty, (¢) ¢s., and (d) V, computed using the multitaper method.
The observed spectra are calculated using daily data from eight independent 2-yr periods at OWS P, the model spectrum is from an average
of 60 2-yr periods. (b) Scatterplot of the observed daily values of Ty, vs T (°C).

equation [see Eq. (50) in Gaspar 1988] has several
adjustable parameters; we have used Gaspar’s esti-
mates of these time-independent parameters in all of
our simulations. When deepening, A is computed as a
prognostic variable; when shoaling, the mixed layer re-
forms closer to the surface, entrainment is set to zero,
and h is computed as a diagnostic quantity by assuming
a balance between wind stirring and surface buoyancy
forcing. When the mixed layer shoals, the temperature
profile is adjusted according to Adamec et al. (1981),
in order to conserve both heat and potential energy.
The region beneath the mixed layer is represented
by a multilayer system, where heat is redistributed
through convective overturning, vertical diffusion, and
penetrating solar radiation. The vertical diffusion is cal-
culated using a constant coefficient of 2 X 107> m s 72,
estimated from analyses of subsurface data in the Pa-
cific by White and Bernstein (1981). The absorption
of solar radiation is parameterized following Paulson
and Simpson (1977). The model contains 30 unequally
spaced layers between the surface and 1000 m, 15 of
the layers are within the first 100 m in order to ade-
quately resolve the summer thermocline. The temper-
ature of layers that are entirely above 4 are set to 7,

while T, is obtained directly from the layer in which A
resides. The mixed layer model is described in more
detail by Battisti et al. (1995), while Alexander and
Deser (1995) present results from model simulations
where the observed atmospheric conditions at P and at
OWS C (in the north Atlantic) are used as boundary
conditions.

d. Surface flux parameterization

The exchange of heat and momentum across the
ocean surface are computed using standard bulk aero-
dynamic formulas (e.g., Gill 1982; Kraus and Businger
1994). The net surface energy flux, g,., defined here
to be positive for fluxes which heat the ocean, is com-
posed of the shortwave radiation, g.,; net longwave
radiation, q,; and the sensible and latent heat fluxes,
g and gy, respectively. The method used to obtain g,
is described in section 2b; g, is computed using the
formula of Isemer and Hasse (1987) and depends on
the SST, T,;, and the daily average cloud fraction. The
bulk transfer coefficients used in computing g, and gi,
and the wind stress, 7, are calculated using the formulas
of Large and Pond (1982) and Large et al. (1994),
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which depend on wind speed and the air—sea temper-
ature difference. The surface energy fluxes are com-
puted using 7, from the model, which is assumed to be
equal to the SST.

Errors in the atmospheric forcing, including the pa-
rameterizations used to compute the surface fluxes, de-
ficiencies in the mixed layer model, and the absence of
horizontal processes in the ocean model, particularly
heat advection, can all cause the simulated ocean tem-
peratures to drift from observations. As in previous
modeling studies (e.g., Sausen et al. 1988; Manabe and
Stouffer 1988; and Battisti et al. 1995) the surface heat
fluxes have been adjusted in order to obtain an accurate
representation of the true mean ocean state. Following
Alexander and Deser (1995), a constant 16 W m™2 is
subtracted from the surface fluxes at each time step
during the simulation, allowing for a reasonable sim-
ulation of the annual mean and seasonal cycle of SST.

e. Model verification

The model’s fidelity is assessed by computing the
pattern correlations between corresponding observed
and simulated fields whose axes are calendar month
and depth. The pattern correlation (PC) is given by

mons levs
2 P (xa - fo)(xs - fs)
n=1 I=1

mons levs

PC =

(2)

mons levs 4
[ z Z (-xo - fo)z DI (-xs - is)z]llz
n=1 (=1 n=1 I=1

where x is the value at a given month (n) and level (1),
X is the field mean, and subscripts s and o indicate sim-
ulated and observed, respectively. While the statistical
significance of the PC values can be tested using the ¢
statistic (Snedecor and Cochran 1980), the true num-
ber of degrees of freedom is difficult to determine be-
cause of the interdependence of the data in both time
and space. We estimate the number of degrees of free-
dom using the *‘N rule’” described by Preisendorfer
(1988, pp. 199-204). This method uses empirical or-
thogonal functions (EOFs) to find the number of ei-
genvalues that exceed a background noise level esti-
mated from Monte Carlo simulations. This procedure,
which gives a conservative estimate of the number of
meaningful EOFs, indicates that the observed and sim-
ulated fields have 4 and 8 significant EOFs, respec-
tively. Using a one-sided ¢ test with 10 degrees of free-
dom, the sum of the significant EOFs in each system
minus two, PC values of 0.50 (0.66) are significant at
the 95% (99%) confidence level.

3. The seasonal cycle of the upper ocean

As a first step, we performed a 500-yr simulation in
which the mixed layer model was driven only by the
daily mean seasonal cycle of the surface fluxes (no
stochastic forcing). The resulting simulated seasonal
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cycle of ocean temperature and mixed layer depth are
compared with observations in Fig. 2. Following Lev-
itus (1982), the observed 4 is defined as the level at
which the temperature is more than 0.5°C less than the
SST. In both the model and observations, the mixed
layer extends to a maximum depth of ~150 m in
March, then shoals rapidly in spring, reaching a mini-
mum depth of ~25 m in July. The maximum SST,
which exceeds 12°C, tends to occur 1 to 2 months after
the minimum # is reached. The lag between the maxi-
mum SST and the temperature at a given level increases
as the depth increases. A seasonal thermocline, where
the temperature decreases rapidly with depth, forms in
summer between the base of the mixed layer and 75—
100 m. The model temperatures closely resemble ob-
servations as indicated by a PC value of 0.98 both be-
fore and after the annual mean is removed at each level;
recall, however, that a small constant surface cooling
was applied at each model time step. Model deficien-
cies include ocean temperatures that tend to be roughly
0.5°C too warm in winter and throughout the year be-
low 100 m, and an underestimation of the amplitude of
the seasonal cycle especially beneath the mixed layer.

The 500-yr simulation was then repeated with the
stochastic atmospheric anomalies included. (Hereafter,
discussion of the model results will primarily refer to
this simulation.) The inclusion of stochastic forcing
slightly improved the mean seasonal cycle of temper-
ature (not shown); for example, the root-mean-square
difference between the observed and simulated mean
SST for the 12 calendar months is 0.26°C in the run
with stochastic forcing and 0.36°C without it. However,
the stochastic forcing results in a degradation of the
simulated / (Fig. 3a); now, it is too shallow throughout
the year, especially in spring as a result of the model
shoaling 1-2 months too early.

Several factors may explain this discrepancy be-
tween the observed and the stochastically driven sim-
ulation of A: (i) Gaspar (1988) notes that most mixed
layer models, including his, tend to shallow too rapidly
under stable conditions. In the simulation with the
mean seasonal cycle forcing, relatively strong winds
and negative surface buoyancy forcing (upward net
heat flux) maintain a deep 4 through late winter. In
contrast, including stochastic forcing results in days
with low wind and surface heat gain causing a refor-
mation of A much closer to the surface. Once shallow,
the model tends to resist mixing down to the previous
depth. This also occurs in model simulations where the
surface fluxes are computed from the actual daily data
(not shown). (ii) The observed % has a diurnal cycle
with an amplitude of ~10 m during the winter months
(not shown), while the model does not contain a di-
urnal cycle. Diurnal variability results from the surface
buoyancy forcing, which creates shallow but weak
mixed layers during the day that are overturned by oce-
anic convection at night (Woods and Barkmann 1986).
If the diurnal fluctuations in /4 are asymmetric about the
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FiG. 2. Monthly mean observed and simulated temperature (°C) in the upper 200 m. Also shown is A, the mixed layer depth (*); the
observed h is determined by finding the depth at which SST — Ty, > 0.5°C, while the simulated 4 is obtained directly from the model
when its driven by the mean atmospheric seasonal cycle. Note that the first 3 months of the year are repeated in order to clearly display the
seasonal cycle.

daily mean, they could influence the monthly average its maximum mean depth in late winter/early spring.
mixed layer depth. (iii) Compared with observations, At this time of year the base of the mixed layer can
the stochastic model has fewer occurrences of very reform more than 75 m closer to the surface and the
strong surface heat 10ss (gne: < —300 W m™2). Camp timing of this shoaling can lead to large monthly vari-
and Elsberry (1978), Elsberry and Garwood (1978), ability in /4. Thus, like the maximum mean mixed layer
and Price et al. (1978) have shown that % increases depth, the variability in % is smaller and occurs sooner
rapidly during storms, when the buoyancy and me- in the model compared with observations. The largest
chanical forcing are large. (iv) Defining & where the A variability occurs in March (April) with a maximum
temperature is 0.5°C colder than the surface, will tend standard deviation of 30 m (35 m) in the model (data).
to miss transient thermoclines that form in spring and In contrast to the mixed layer depth, the maximum
is more representative of the lower extent of the sea- variability in ocean temperatures occur in late summer/
sonal thermocline (Gaspar 1988). Selecting a temper- early fall in both the model and observations (Fig. 4).
ature threshold of 0.1°C, following Martin (1985) and The maximum observed standard deviation of SST ex-
Yan and Okubo (1992), results in smaller observed A ceeds 0.8°C in August, October, and November, while
estimates, although they are still deeper than the sim- the model exceeds 0.8°C in September.”? During early
ulated A values by ~10—20 m in spring. (v) Salinity fall the mixed layer is shallow (Fig. 3a) and both sur-
influences the density profile and hence the base of the face fluxes and entrainment can generate large changes
mixed layer; at OWS P there tends to be a mean pyc- in SST (see section 6). In both the model and data a
nocline at ~150 m. The mean salinity profile is in- region of enhanced subsurface variability extends from
cluded in the ocean model acting to constrain s, but
salinity was not included in calculating the observed
mixed layer depth as it was measured infrequently. ) ) 1 30 vears of surface observations
The standard deviation of monthly averaged 4 from ¢ g;}zail; :bfoxslts ({;lét?i;:rftrr?an c?;btgined from the MBT data used
the model and observations are shown in Fig. 3b. The j, Fig. 4, with values ranging from ~0.6°C from January—April and
maximum variability tends to occur when £ shoals from  ~1.0°C from August—October.
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F1G. 3. Observed (solid line) and simulated (dashed line) (a) mean and (b) standard deviation of the monthly mixed
layer depth (m). Here the model includes stochastic atmospheric forcing.

roughly 30 m in July to 75 m in November, and exceeds
0.9°C near 45 m during September. This axis coincides
with the location of the mean k; displacements from
the mean during summer and fall can result in large
temperature anomalies as there are strong vertical gra-
dients in the seasonal thermocline (Fig. 2). Although
the model tends to underestimate the standard deviation
range over the course of the seasonal cycle, it repro-
duces most features of the observed temperature vari-
ability, resulting in a significant PC value of 0.74.

4. Timescales of ocean variability

Numerous studies have tested mixed layer models
by examining their ability to reproduce the mean sea-
sonal cycle or by correlating simulated and observed
SST anomalies. Gill (1979) states that it would be use-
ful to test upper-ocean models by comparing simulated
with observed spectra of SST time series. The spectra

of monthly SST anomalies from the 500-yr stochastic
run lie within the 95% confidence intervals of the MTM
spectral estimates for the observations at nearly all fre-
quencies (Fig. 5). However, the model tends to under-
estimate the variability at most frequencies, with values
that are ~40% less than observed at periods of 2050
months and 20% less for periods greater than a 100
months. Several processes missing from the model
could account for this underestimate, including covari-
ability between the stochastic atmospheric variables.
While the correlations among T 4., V', and ¢/, are neg-
ligible on daily timescales (Table 1), the covariability
between variables increases at certain periods. For ex-
ample, the correlation between monthly anomalies of
V and T, is —0.25, indicating that stronger winds are
associated with colder air temperatures, which would
enhance surface heat fluxes and the generation of SST
anomalies. Tabata (1965) and Large et al. (1986)
found evidence for subsurface heat convergence in the



24352

JOURNAL OF CLIMATE VOLUME 9
OBSERVED SIMULATED
J M JFMAMUJJASONDITFM
0 0 L | | |- | | | ] | 1 | Il 0
. . v 1 -
: : : .70 .60 :
255 25 - 25
e =S ) -
g °°2 - %93 e - %
g C 50 C
o, 754 - 75 - ' - 75
] - - n L
[} - - - P
100:\ :100: :50—‘:100
. sl .40\/:
125- :125:\/ C125
—\ .‘40 | — —
[ | 1 i f | | { 1 ] [ 1 T T T T I [ I [ 1

FiG. 4. Observed and simulated standard deviation of the monthly temperature anomalies (°C).

northeast Pacific during fall; fluctuations in the heat
advection, not included in the model, could influence
SST variability especially at longer periods.

The model also omits fluctuations in the strength and
position of the Aleutian low associated with El Nifio/
Southern Oscillation (ENSO) in the tropical Pacific
(Bjerknes 1969; Blackmon et al. 1983; Emery and
Hamilton 1985), which have been shown to cause SST
anomalies to form in the North Pacific (Alexander
1990, 1992; Lau and Nath 1996). To test the possible
connection between ENSO and SST variability at OWS
P, we performed an additional model experiment as
follows. First, a long synthetic time series of SLP
anomalies at Darwin, Australia, which is representative
of the state of ENSO, is constructed using an autore-
gressive model developed by Trenberth (1996). Then,
correlation and regression values for each calendar
month are calculated between the observed 3-month
running mean of SLP' at Darwin and monthly anom-
alies of atmospheric variables in the vicinity of OWS
P obtained from the Comprehensive Ocean—Atmo-
sphere Data Set (COADS). Only the air and dewpoint
temperatures near P are found to be significantly cor-
related with Darwin SLP between 1949 and 1992 when
good data are available from COADS. Next, the ob-
served regression values of 77, on Darwin SLP are
multiplied by the simulated Darwin pressure anomalies
to generate a 500-yr time series of monthly air tem-
perature anomalies at P ‘‘associated with ENSO.”” Fi-
nally, these T;, anomalies are interpolated to daily val-
ues using a cubic spline and then added to the stochastic
atmospheric model; the resulting change in humidity is
included via Eq. (A4). We note that the ENSO signal
can be added directly to the atmospheric forcing as it

operates at a much longer timescale ( >20 months) and
is nearly independent from the stochastic processes
whose decay times are all less than a month.

Spectra of the monthly SST ' from observations, the
original model, and the mixed layer model run driven
by the stochastic plus ENSO forcing are shown in Fig.
5b. Including the ENSO signal enhances the variability
in the mixed layer model and results in a better fit to
the observed spectra for periods greater than ~2 years.
The difference between the two model runs indicates
that the SST anomalies at P associated with telecon-
nections to ENSO result in a red spectra up to periods
of ~100 months without large peaks in the spectra,
consistent with the recent findings of Lau and Nath
(1996). We also performed a similar experiment in
which the ENSO signal was provided by a linear in-
verse model of SSTs in the tropical Pacific (Penland
1996); the SST ' spectrum at P from this model (not
shown) were within 6% of those forced by Darwin SLP
model.

Linear stochastic climate theory (Hasselmann 1976)
suggests that SST anomalies can be represented by a
first-order Markov process with the ocean response in
the frequency domain given by ‘

F

W=y

(3)

where F is the variance of the white noise forcing, w
the angular frequency, and X the linear damping factor.
In such a system, which represents a fixed depth ocean
without currents driven by white noise, the SST anom-
aly variance at high frequencies increases with the
square of the period, indicated by a line with a slope
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FiG. 5. Observed (thick solid line) and simulated (thick short
dashed line) spectra of monthly SST’ calculated with the multitaper
method using (a) log—log, (b) log-linear (in y) axes. The simulated
spectra is from an average of 16 30-yr periods. In (a) the thin dashed
lines show the 95% confidence interval about the observed spectra.
The line in the upper left corner has a slope of 2, representing the
increase in variance with the square of the period as predicted by
Hasselmann’s stochastic theory. In (b) the long dashed line depicts a
model simulation in which atmospheric forcing associated with
ENSO is included.

of 2 at high frequencies (w > \) on a log-log plot
(Fig. 5a). The slope obtained by a linear fit to the SST’
spectrum for periods less than a year is 1.90 in the
mixed layer model, closer to the observed value of 1.75
than the Markov model. The subtheoretical observed
and simulated slopes may result from inclusion of more
than one timescale in the atmospheric forcing, and non-
linearities in both the surface flux formulas and within
the ocean model. On longer timescales, negative feed-
backs associated with air—sea interaction and entrain-
ment suppress the variability, causing the spectra to
become white at periods greater than ~ 150 months. In
Hasselmann’s stochastic climate theory this occurs
when w < \, as indicated by Eq. (3).
Autocorrelations of SST '’ indicate the rate at which
anomalies decay and provide a means of estimating \.
The log of the observed and simulated SST anomaly
correlations out to lags of 15 months are shown in Fig.
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6. SST anomalies decay slightly faster in the model
than in observations at lags of less than 7 months, while
the reverse is true at longer lags. Linear stochastic the-
ory indicates that the points in Fig. 6 should lie along
a straight line with slope —\. Here \ is estimated by
minimizing the mean square difference between the
monthly SST autocorrelation values C(7) and the cor-
relation function appropriate to Hasselmann’s stochas-
tic model, which has the form exp(— A7 ). The damping
timescale, A !, calculated from the data (model) is 3.1
(2.9) months when lags up to 15 months are included;
N decreases slightly when fewer lags are included.
Stochastic theory gives an excellent fit to the model and
data for lags of 5 months or less, but underestimates
the correlation at greater lags. One reason for the de-
viation from a constant SST decay rate is that the mixed
layer depth and, thus, the thermal inertia vary with the
seasons. In addition, the slight enhancement of SST'
correlations from the model at 9—11 months lag (Fig.
6), first noted in the observed SSTs over the North
Pacific by Namias and Born (1970, 1974), is related
to the re-emergence mechanism as discussed in the fol-
lowing section. This feature is less pronounced in the
observed SSTs at P, but the decay rate still decreases
more slowly than the Markov model estimate.

The spectra of the observed and simulated mixed
layer depths for the non-ENSO case are shown in Fig.
7. The model tends to underestimate the variability at
nearly all frequencies and drops below the lower error
limit of the observations for periods greater than ~80
months. Including the effect of ENSO forcing does en-
hance the model’s mixed layer depth spectrum at low
frequencies by 20%—-30%. However, the model spec-
trum still lies below the observed confidence intervals

0.1

C(7)
ALY |

001 b 1

1 (months)

FIG. 6. Log plot of the observed (thick solid line) and simulated
(thick dashed line) autocorrelation {C(7)] of monthly SST’, where 7
is the lag in months. Thin solid (dashed) line, which represents a first-
order Markov process, is obtained by minimizing the mean square
difference between the observed (simulated) monthly SST autocor-
relation values and the function exp(—A7). The decay constant ™!,
estimated from the data (model), is 3.1 (2.9) months when lags up to
15 months are included.
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line) spectra of monthly mixed layer depth anomalies, computed as
in Fig. 5. Thin dashed lines represent the 95% confidence interval
about the observed spectra.

for periods greater than 100 months. The reasons for this
deficiency are unclear but not completely unexpected
given the difficulty in both simulating / and estimating
it from observations, as discussed in section 3.

5. The recurrence of SST anomalies

Alexander and Deser (1995) found evidence that
ocean temperature anomalies created over the deep
mixed layer in winter could be maintained within the
summer seasonal thermocline and then reappear at the
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surface when they are entrained into the mixed layer in
the subsequent fall/winter. They examined this re-
emergence mechanism by correlating ocean tempera-
ture anomalies in a base region within the summer ther-
mocline with temperatures at depth during the previous
and following 8 months. A similar analysis is per-
formed here using observations and the stochastic
model run with 45—55 m in August serving as the base
region (Fig. 8). In both the data and the model a clear
connection between surface temperature anomalies in
spring with those in the summer seasonal thermocline
is indicated by the 0.8 contour, while SSTs in summer
are uncorrelated with concurrent temperatures in the
base region. The correlations between the base region
and the surface layers increase from summer to winter
reaching a maximum in January of 0.46 (0.35) in the
observations (model). While the model pattern is
slightly more diffuse than the observed, the overall cor-
respondence between the two is quite good as indicated
by a PC value of 0.84, which is significant at the 99%
level.

The magnitude of the anomalies and the difference
between warm and cold cases is examined using com-
posites of the temperature anomalies. Warm and cold
composites, shown in Fig. 9, are constructed based on
when the temperature anomaly in the base region ex-
ceeds plus or minus one standard deviation. The ob-
served composites are based on an average of four to
six values at each month/depth, while 78 values were
used for the simulated composites. The PC between the
observed and simulated warm and cold composites are
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FiG. 8. Observed and simulated lead/lag correlations between the temperature anomaly in the base region 45-55 m in August and
temperature anomalies in 5-m increments for the previous and following 8 months. The contour interval is 0.2 with the addition of the 0.3
contour. The data have been smoothed using 1-2-1 filter in time.
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FiG. 9. Observed and simulated warm (cold) temperature composites to 135 m of monthly temperatures based on when the temperature
between 45 and 55 m during August, is greater (less) than one standard deviation, ~0.4°C. Approximately 5 (80) values are included at each
point in the observed (simulated) composite. The data have been smoothed using 1~2-1 filter in time. The contour interval is 0.2°C and the

0.5°C contour is also shown in bold.

0.64 and 0.81, significant at the 95% and 99% level,
respectively. Like the lead-lag analyses, the compos-
ites support the re-emergence mechanism, with anom-
alies of one sign in the surface layers in spring moving
to the seasonal thermocline in summer and returning to
the surface layers in fall. However, the return branch
is weak with the exception of the observed warm com-
posite. We note that due to the small data sample the
details of the observed composites were sensitive to the

choice of the base region; the lack of observations
likely contributes to some of the model data differ-
ences.

In the observed warm composite, the 0.5°C contour
extends from the surface in late spring down to between
30 and 60 m in summer and then returns to the surface
in the following November. The model reproduces the
first part of this pattern, the 0.5 contour extends from
the surface in spring downward into the summer ther-
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mocline. However, in the simulated warm composite
positive anomalies cover a much thicker layer in sum-
mer and only a weak warming occurs at the surface in
the subsequent winter, when the SST’ is between 0.2°
and 0.3°C from November through March. The differ-
ence in the observed and simulated temperature profile
in summer may influence the re-emergence of the tem-
perature anomalies in the following fall. In the ob-
served warm composite, entrainment of the heat con-
centrated in a thin layer leads to strong warming in
November, which then dissipates by March; while in
the model, the entrainment of heat spread over a thicker
layer in summer, subsequently heats the surface layer
less intensely but over a longer period of time.

While the warm and cold composites generally re-
semble each other there are differences between the
two. In both the observed and simulated cold composite
the T, develops earlier in the year and extends down-
ward through a deeper mixed layer relative to the warm
composite. In addition, the anomalous cold water ex-
tends over a ~25-m thicker layer in the summer. The
cold anomalies penetrate deeper than warm anomalies
as they are more dense relative to the ambient water.

6. The influence of surface forcing and entrainment
on SST and A

Entrainment is very difficult to measure yet may play
an important role in heat budget of the surface layer in
the ocean. Here, we investigate the relative roles of
entrainment and the net surface energy flux on the de-
velopment of SST anomalies over the course of the
seasonal cycle using the 500-yr mixed layer model sim-
ulation. Entrainment can influence SSTs directly via
the heat flux through the base of the mixed layer and
indirectly by controlling the mixed layer depth, the
thickness of the layer over which the fluxes act. The
magnitude of both of these processes, as well as those
which control anomalies in mixed layer depth, are ex-
amined in detail below.

Splitting the variables into daily mean () and de-
partures from the mean ('), and given that gu > G
and that the diffusion of heat at £ is small, the mixed
layer temperature tendency equation (Eq. 1) can be
approximated by

OTw +Th) _ G + G
ot ~ pc(h +h")
_ (W + WH(AT + AT")

h+h' )

Using Taylor’s expansion for (h + h')™' assuming
h'lh <1,

® Daily anomalies in A may not be small compared with the mean.
The affects of this assumption on the monthly mean results are dis-
cussed later in this section.
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' +h) 1+h'Ih A higher-order terms,

the anomalous mixed layer temperature tendency can
then be approximated by

OT)  qhe  Gouh’ <q,:eth' _q;,eth"> _ WAT

ot  pch  pch? pch?  pch? h
I i 111 v
B WAT’ _(WIAT'  WIAT’
h h h
\Y4 VI
W,ATh' W h'AT — Wih' AT
+ =+ =
h K>
VIl
WAT'h' — W.AT'H’
712

W.AT'h' — W, AT'h’
+ h2 b (5)

where terms I-1III and IV-VII are derived from ( g,/
pch)’ and [—(W,AT/h)]’.

To examine how the terms in (5) influence the de-
velopment of SST anomalies over the seasonal cycle,
each term is calculated using the daily mean output
from the non-ENSO model simulation and then aver-
aged over a month. A composite of each term is con-
structed for the 12 calendar months based on when the
monthly value of 9T ,,/ 0t exceeds one standard devia-
tion, which varied from ~0.4°C mo~' in February to
1.4°C mo ™! in August; approximately 80 monthly val-
ues went into each composite. A composite of the most
rapidly cooling SST anomalies was also computed but
not presented as the results are broadly similar but with
the signs reversed, suggesting that the dynamics of the
model are only weakly nonlinear.

Terms I-III, the components involving g, are
shown in Fig. 10a. Term I, which represents the tem-
perature tendency anomaly caused by anomalies in the
net surface heat flux, is large throughout the year.
While g, is largest during winter, so is & (Fig. 3a),
the result is that term I is largest from May through
October when it exceeds 0.5°C mo ~!. The second term
makes a significant contribution to the development of
positive SST ' during spring and summer. Physically,
when the mixed layer shoals more than usual, the net
surface heating is spread over a thinner layer increasing
the temperature tendency. These results are consistent
with the analyses of Elsberry and Garwood (1978) and
Lanzante and Harnack (1983) who found that at OWS
P when the mixed layer shoaled early relative to the
norm, the summer SST was anomalously warm. Net
surface heating causes a more buoyant and thus shal-
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lower mixed layer, which leads to a negative correla-
tion between g/, and A’. This results in a small but
positive value of Term III over most months for both
the positive and negative 97 ,,/0t composite, so term
III enhances the development of warm SST anomalies
and suppresses cold anomaly development.

Terms IV~VII, components which directly involve
entrainment, are shown in Fig. 10b. All four terms
have a pronounced seasonal cycle, with minimum
values in winter as both W, and AT are small, while
h is large. From May through September term IV
[—(W.AT/h)], causes positive 8T },/0t as a reduced
entrainment rate (W, < 0) brings in less cold water
from below (T,, — T, = AT > 0). Term V, which
represents the mean entrainment of the anomalous
temperature jump across £, has the largest values of
the four entrainment terms and acts to strongly warm
surface waters from August through November. These
anomalies result from warmer than normal subsurface
conditions (AT’ < 0), as W, and k are always posi-
tive. Term VI, which is generally small, acts to en-
hance the rate of SST ' growth in October and Novem-
ber but damps it in August and September. Term VII
damps 9T ,,/ 0t especially from May through October.
When &’ is negative, VII is also negative, as the mean
cooling due to entrainment is contained within a thin-
ner layer, and so this component tends to impede the
growth of the SST anomaly.

The impact of entrainment on SST anomaly growth
and the association between its components is compli-
cated as a result of interrelationships between T,,, T,
W,, and h. If the temperature anomalies within the
mixed layer were much larger than those in the layer
below, then AT’ > (, and Term V would act to damp
SST anomalies. However, due to the storage of sub-
surface thermal anomalies (see section 5), T, can be
large and uncorrelated with 7°),. As a result, the mean
entrainment of these subsurface anomalies can cause
SST anomalies to grow rapidly, especially in fall. The
entrainment rate depends, in part, on the density jump
at the base of the mixed layer; as AT’ decreases so
does the stability of the water column, leading to en-
hanced W,. Thus, one would expect a negative corre-
lation between AT’ and W, and between terms IV and
V as well. These two terms have opposite signs in 8 of
the 12 months with the exception of March, and July
through September (Fig. 10b). During late summer a
decrease in wind stirring leads to W, < 0, but the sup-
ply of anomalously warm water below the surface
maintains AT’ < 0, thus both terms IV and V can
contribute to SST anomaly growth at times. The last
three components of term VII depend on the relation-
ship between entrainment and mixed layer depth, when
W!. > 0sois h’ as W, = dh/dt, but recall that when &
decreases, W, is set to zero. Thus, over the course of a
month, the correlation between W, and A’ is not nec-
essarily positive and depends upon the magnitude and
frequency of shoaling.
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Fig. 10. The (a) surface and (b) entrainment heat flux terms
(°C mo™") obtained from the decomposition of the SST tendency
equation. The seven terms, derived from a composite of when the
simulated monthly SST’ tendency exceeded one standard deviation,
are given by (5).

Comparing the effects of the heating due to surface
energy fluxes and entrainment, the sum of terms [-III
and IV-VII, in Figs. 10a and 10b, respectively, indi-
cates that g, forcing of SST anomalies is important
throughout the year while entrainment is important in
the fall, in agreement with Alexander and Deser
(1995). However, in decomposing the temperature ten-
dency equation we assumed that 4’ < /. This is a good
approximation during most of the year except in sum-
mer and early fall when 4’ and 4 are of the same order
of magnitude. As a result, the sum of terms IV-VII
tends to slightly underestimate the positive contribution
of the anomalous net entrainment heat flux, (— W.AT/
h)’, to the growth of the SST’. The same is also true
for the net surface heat flux.

The nonlinear equation that governs mixed layer
depth [Eq. (50) in Gaspar 1988] is influenced by sev-
eral processes including wind stirring, negative surface
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buoyancy flux, and the density jump at the base of the
mixed layer. These processes, represented by the fric-
tion velocity, [u* = (7/pu)*"?1, —Guet, and — AT(T,
— T,), respectively, are then correlated with the
monthly 4 values (Table 2). The anomaly correlation
between all three variables and £, using all months of
the 500-yr simulation, exhibits a pronounced seasonal
cycle. The correlation between u* and % is greatest
frorn May through September when it exceeds 0.75.
(Correlations between u**, which is used directly in
the entrainment equation, and % exhibit a similar sea-
sonal cycle as the u* — h correlations but were ap-
proximately 1/2—3/4 as large.) In contrast, the correla-
tion between —gy, and % is a minimum in summer but
exceeds 0.6 from January through April. While, in gen-
eral, it is difficult to interpret cause and effect relation-
ships using correlations, given that / has a limited in-
fluence on the surface heat and momentum fluxes, these
large correlation values are indicative of the atmo-
sphere forcing mixed layer depth anomalies.

Initially positive correlations were expected between
h and — AT, that is, the mixed layer depth would in-
crease (h' > 0) when instability in the water column
increased [ — AT = (T, — T,,)’ > 0] and vice versa.
The correlation between s and — AT is negative in Jan-
vary and February and from June through November.
Other processes, such as wind stirring, could control 4’
and lead to negative correlations between & and — AT.
In addition, low or negative correlations between . and
— AT can result from the decoupling between the two
during shoaling, when /4 is computed from a balance
between the surface mechanical and buoyancy forcing
and is independent of AT. The correlations between W,
and — AT (not shown) are positive for all months ex-
cept March and April, indicating that reducing the den-
sity jump at the base of the mixed layer does tend to
increase ki via entrainment.

The relationships between h and u*, —ge, and AT
are not independent as the latter three variables are
physically related to each other, for example, V is used
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in computing both #* and —g,.,, and —gq, regulates 7,,,
and thus AT. The linear part of this dependence can be
removed using the method of partial correlations (e.g.,
Snedecor and Cochran 1980). The partial correlation
values between u* and h (Table 2), are slightly higher
from May through July and lower over the remainder
of the year compared with the correlations where the
linear influence of —g,.,, and — AT have not been re-
moved. The partial correlations between A and —gqpe
are positive for all 12 months, indicating that heat loss
from the surface, which causes the surface water to
sink, acts to deepen the mixed layer throughout the
year. The partial correlations between - and — AT are
relatively small, with absolute values of less than 0.3.
Overall, the correlations in Table 2 indicate that wind
mixing is the dominant term forcing mixed layer depth
anomalies in summer, the surface buoyancy flux is
most important in winter, while the stability of the wa-
ter column, given by the jump in temperature at the
base of the mixed layer, is of secondary importance
throughout the year.

7. Summary and conclusions

A 500-yr simulation has been performed in which a
stochastic model of atmospheric surface conditions in
the northeast Pacific is used to drive an upper-ocean
model. The atmospheric model, based on 30 years of
data collected at OWS P, consists of three independent
Markov models for the anomalous air temperature,
wind speed, and solar. radiation, while the dewpoint
temperature anomaly mainly depends on T;,. The
spectral values of the atmospheric quantities provide a
good fit to their observed counterparts at most frequen-
cies. The stochastic anomalies are then added to the
mean seasonal cycle of their respective fields and used
in computing the boundary conditions for the bulk
mixed layer model developed by Gaspar (1988). This
stochastic/physical model is used to study air—sea in-
teraction and upper-ocean processes.

TABLE 2. Correlations and partial correlations of the monthly mixed layer depth (k) with the upward net surface heat flux (—guer), the
friction velocity (u*), and the temperature jump at the base of the mixed layer (—AT = (T}, — T,)).

Month
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Correlations
u* 0.20 0.28 042 0.59 0.80 0.89 0.88 0.90 0.79 0.51 0.32 0.21
— et 0.66 0.77 0.83 0.61 0.15 —-0.06 —0.17 —-0.22 0.10 0.56 0.47 0.53
—-AT —0.09 -0.29 0.05 0.56 0.21 —-0.08 —0.04 -0.53 —0.58 —0.60 —0.28 0.11
Partial correlation
u* 0.15 0.27 0.38 0.59 0.82 0.90 0.89 0.87 0.73 0.46 0.28 0.14
—Gnet 0.68 0.75 0.83 0.26 0.09 0.22 0.20 0.30 0.42 0.51 0.40 0.55
—AT 0.30 0.15 0.15 0.27 0.28 0.10 0.21 —0.04 —0.20 —0.27 —0.03 0.27
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The ocean model realistically simulates both the
mean and standard deviation of ocean temperatures
over the seasonal cycle, though due to errors in the
surface fluxes and model deficiencies it was necessary
to apply a constant surface cooling of 16 W m™> to
obtain a reasonable mean state. The rms difference be-
tween the model and observations of the mean surface
temperature for the 12 calendar months is ~0.25°C,
compared to a seasonal cycle amplitude of ~3.5°C.
However, the model underestimates the magnitude of
the seasonal cycle especially below 100 m and the
mixed layer shoals one to two months earlier than ob-
served. Like the observations, the model exhibits max-
imum SST variability in the fall and a region of en-
hanced subsurface temperature variability in the sum-
mer seasonal thermocline, associated with fluctuations
in the depth of the mixed layer depth (#). However,
the model tends to underestimate the range of variabil-
ity of both temperature and A over the course of the
year.

The spectrum of the monthly SST anomalies from
the 500-yr stochastic model run are in general agree-
ment with observations, although the mixed layer
model tends to slightly underestimate the variability at
most periods. This suggests that neglected processes
such as oceanic advection, covariability between the
atmospheric forcing terms on monthly and longer time-
scales, and changes in surface forcing associated with
ENSO contribute to SST variability in the northeast
Pacific. To test the latter we performed an additional
model simulation in which an approximation of the
ENSO signal over the northeast Pacific was added to
the stochastic forcing at OWS P. The results indicate
that the low-frequency (periods > 2 years) response
of the model’s SST '’ agreed better with observations
when ENSO forcing is included.

The increase in SST variance with nearly the square
of the period up to about a year and a flattening of the
spectra at longer periods is consistent with the stochas-
tic climate theory for midlatitude SST anomalies pro-
posed by Frankignoul and Hasselmann (1977). The
flattening of the spectra results from air—sea feedback
and entrainment, which can be represented by linear
damping, —\ SST'. We estimate A !, the decay con-
stant, to be ~3 months in both the model and obser-
vations, which gave an excellent fit to the autocorre-
lation of SST anomalies out to approximately half a
year, but overestimates the SST decay at longer lags.
Linear stochastic theory appears to be valid on the time-
scales of less than ~6 months, even when the atmo-
spheric forcing is not completely white (see Fig. 1a).
If the mixed layer model acted as a simple integrator
of T, the resulting SST spectrum would be inversely
proportional to a fourth-order polynomial in frequency.
However, SST’ is forced by the net surface energy
flux, which depends on a multiplication of T}, with
rapidly changing variables such as wind speed. The re-
sult is that g, varies rapidly (with a ~2 day decay
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time) and is nearly white on the timescales that SST
varies.

A detailed analysis of the mixed layer temperature
tendency has been performed to elucidate the role of
surface and entrainment heat fluxes on SST anomalies.
The anomalous net surface heat flux plays an important
role in the growth of SST anomalies throughout the
year and is the dominant term during winter. Entrain-
ment of subsurface water into the mixed layer strongly
influenced SST anomalies in fall, in agreement with
Camp and Elsberry (1978) and Alexander and Deser
(1995). Entrainment also influences the upper-ocean
heat budget by controlling the depth of the mixed layer.
Mixed layer depth anomalies are highly correlated with
surface mechanical mixing in summer and surface
buoyancy forcing in winter. Heat fluxes into the mixed
layer are most effective in generating SST anomalies
in late summer and early fall when the mixed layer is
relatively shallow and thus has little thermal inertia. In
addition, anomalies in 4 have a significant impact on
the anomalous SST tendency during spring and sum-
mer. These results suggest that while a fixed slab rep-
resentation of the upper ocean may be reasonable in
winter, changes in 4 and the heat flux through the base
of the mixed layer play an important role in the devel-
opment of SST anomalies during the remainder of the
year.

The seasonal cycle in mixed layer depth can also
contribute to the recurrence of SST anomalies: anom-
alous warm or cold water created in the deep mixed
layer during winter/spring can remain sequestered be-
low the shallow mixed layer in summer and then be
entrained into the surface layer in the following fall.
Lead-lag correlations and composite analyses of the
data indicate a clear connection between SST anoma-
lies in spring and fall through the summer seasonal
thermocline. This pattern also occurs in the model sim-
ulation but the connection to the surface in fall is less
clear, and the pattern is more diffuse and extended over
a longer portion of the seasonal cycle.

Given the importance of surface energy fluxes in
forcing SST anomalies, the seasonal evolution of the
ocean temperature anomalies clearly depends on the
autocorrelation of surface flux anomalies. In addition,
the close association between air temperature and SST,
which strongly influences surface fluxes, makes it dif-
ficult to separate cause and effect relationships in the
observed air—sea system. Hence, one must use caution
when trying to confirm the re-emergence mechanism
solely from observed ocean temperature data. Auto-
correlations between monthly surface flux anomalies
from the stochastic atmospheric model are near zero
beyond 2 months lag (not shown); thus, aside from the
slow decay of SST anomalies, seasonal lead-lag rela-
tionships between ocean thermal anomalies must result
from other processes operating in the ocean model, pri-
marily the re-emergence mechanism. A key feature of
this mechanism appears to be the mean entrainment of
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the anomalous difference in temperature between the
water within and below the mixed layer (W, AT '/h),
which dominates the surface heat budget during Sep-
tember and October (Fig. 10), where the temperature
anomalies in the sub-mixed-layer water were created
during the previous winter and spring. The ability of
the stochastic/physical model of the air—sea system to
obtain the signature of the re-emergence mechanism
gives us greater confidence in its existence.

Here, we have studied upper-ocean variability using
a relatively simple model at one location in the North
Pacific driven by a statistical representation of surface
atmospheric conditions. This model experiment gave
similar results to a run in which the mixed layer ocean
model was driven by observed atmospheric conditions
at weathership P, suggesting that stochastic forcing can
be an appropriate tool for studying aspects of the cli-
mate system. However, the results may be model and
location dependent. So the ocean processes examined
here, especially entrainment and the re-emergence
mechanism, and the domain over which these processes
are important, should be confirmed using additional ob-
servations and other models.

Acknowledgments. We thank Clara Deser, Joseph
Barsugli, Matthew Newman, Shiling Peng, and two
anonymous reviewers for their valuable comments.
This work was supported by a Grant from the NOAA
office of Global Programs.

APPENDIX
Stochastic Atmosphere Model Equations
a. Surface air temperature

Here, T';;; was modeled using a combination of two
noninteracting linear Markov processes driven by
white noise, T, = T] + T3. The time evolution of

i and T} is given by

drT|

=BT| + &;
dt ¢

i=1,2, (A1)
where the feedback parameter, B;, corresponds to the
inverse of the decay timescale of the system. The white
noise forcing, &;, is cyclostationary with respect to the
seasonal cycle, and has variance (£7 )dt = Q;(t), where
angle brackets indicate an ensemble average. We found
the best fit to the observed spectrum by splitting the
variability between the relatively slow system i = 1,
which explains 75% of the variance and the faster sys-
tem, { = 2, which explains the remaining 25%. A value
of Bi' = —28 days, was obtained from the covariance
properties of the observations, while selecting B
= —2 days, gave the best overall fit to the data.

Each of the two Markov processes obeys a fluctua-
tion—dissipation relation (FDR: e.g., Penland and Ma-
trosova 1994), which is essentially conservation of
variance:
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d(Ti?)
dt

Seasonally varying values of Q,(t) and Q,(¢) were ob-
tained from (A2) by using the 30 years of daily data
to estimate (7}2) and, hence, (T{2) and (T4?); the
latter was chosen to be consistent with the observed
spectra. Following Riimelin (1982), Kloeden and
Platen (1992), and Penland and Matrosova (1994),
T was numerically generated using a forward time
stepping scheme,

=2B(T!*)+ Qi(t); i=1,2. (A2)

2 2
Tau(t)=2Ti(t)=X [Ti(t-¥6)
; i=t

i=1

+ BT (t—6)6 +V0;(t — 6)6R;], (A3)

where ¢ is the time step and R; a Gaussian random
deviate with mean zero and unit variance.

b. Dewpoint temperature

Here, T}, is modeled as a linear regression on
T i, plus a Gaussian random component added to ac-
count for the scatter around the regression line:

Tl = 0.12461 + 1.4135T.(f) + V1.3734R. (A4)

¢. Shortwave radiation
Here, g, is modeled using a single Markov process,

dq ,

pra B (1)qé + s
but B, in addition to Q, vary with the seasonal cycle,
where — B! ranges between one and two days. As with
T .., the variance of the stochastic forcing is obtained
from the time-dependent FDR and a forward-stepping
technique is used to calculate the synthetic time series
of 4.

(€5)dt = 0 (1),  (AS5)

d. Wind speed

The stochastic model for the time tendency of V'
consists of a continuous, stable linear system driven by
both multiplicative (£,V') and additive (&,) stochastic
forcing; that is,

av'’
— =BV’ + &V + &,
dt Sl 52
where (£3)dt = Q,,, and (£3)dt = Q.. Including mul-
tiplicative forcing influences the decay time of the sys-
tem as seen from the lagged autocorrelation function
for V' with lag 7:

V" + V() = exp[(Bv + % QW)T] (vV'%)

(A6)

= exp(BYT)I(V'?), (AT)



OCTOBER 1996

for small 7. Since By is negative, while Qy, is neces-
sarily positive, the effect of the ‘‘noise-induced drift’’
%Qv,) due to the multiplicative noise is to increase the
decay time. It is not By but rather B¥ that is obtained
from the observed covariance properties of V'. Further,
the FDR is

d(v'?)

” (A8a)

=2BY(V'?) + Qu(V'?) + Qy,

= 2(Bv + Qv,)(Vlz} + sz-

The effective decay time — B} — 1 varies daily from
approximately 1.3 days in winter to 2.5 days in sum-
mer. The additive noise, obtained from [Eq. (A8)] and
consideration of the observed spectrum, contains
92.5% of the total noise variance, while the multipli-
cative noise accounts for the remaining 7.5%.

The forward-stepping technique used to integrate
[Eqg. (A6)] does not include the effect of the noise-
induced drift (Riimelin 1982). Rather than use the
more complicated Runge—Kutta method, we compen-
sated for the deficiency in the forward-stepping tech-
nique by adjusting the deterministic part of the equa-
tion; that is, By was replaced by B :

(A8b)

V(1) = V'(t—8) + BEV'(t — )8

+ VO, 0V (t - R, +V0y,0R,. (A9)

The probability distribution of the wind anomalies
generated by this model is symmetric. However, the
total wind speed, the anomaly plus the climatological
value, is not allowed to exceed 50 m s ™! or fall below
1 m s~'. These restrictions introduced a slight skew in
the wind speed distribution (not shown), which also
occurs in the observations.
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