TABLE OF CONTENTS

Section	<u>Page</u>
List of Acrony	yms xiv
Executive Sur	nmary
CHAPTER 1	INTRODUCTION 1-1
1.1 1.2 1.3 1.4	Purpose and Scope of the Background Information Document 1-1 EPA's Regulatory Authority for the Rulemaking 1-3 The National Academy of Sciences Recommendations 1-3 History of EPA's Rulemaking 1-6 1.4.1 Legislative History 1-8 1.4.2 The Development of EPA's Role in the Federal Program 1-11 1.4.3 Early Federal Action 1-12 1.4.4 40 CFR Part 191 1-14
References .	1-18
CHAPTER 2	HISTORY OF RADIATION PROTECTION IN THE UNITED STATES AND CURRENT REGULATIONS
2.1 2.2	Introduction
2.3 2.4	Federal Radiation Council Guidance
2.5	Nuclear Regulatory Commission
2.6	Department of Energy
References.	

<u>Section</u>			<u>Page</u>
CHAPTER 3	SPEN'	Γ NUCLEAR FUEL AND HIGH-LEVEL WASTE	
	DISPO	OSAL PROGRAMS IN OTHER COUNTRIES	3-1
3.1	Belgiu	m	3-3
	3.1.1	Nuclear Power Utilization	
	3.1.2	Disposal Programs and Management Organizations	
	3.1.3	Regulatory Organizations and Their Regulations	
3.2	Canad	a	3-7
	3.2.1	Nuclear Power Utilization	3-7
	3.2.2	Disposal Programs and Management Organizations	3-8
	3.2.3	Regulatory Organizations and Their Regulations	3-10
3.3	Finlan	d	
	3.3.1	Nuclear Power Utilization	
	3.3.2	Disposal Programs and Management Organizations	
	3.3.3	Regulatory Organizations and Their Regulations	3-12
3.4		9	
	3.4.1	Nuclear Power Utilization	
	3.4.2	Disposal Programs and Management Organizations	
	3.4.3	Regulatory Organizations and Their Regulations	
3.5		iny	
	3.5.1	Nuclear Power Utilization	
	3.5.2	Disposal Programs and Management Organizations	
2.6	3.5.3	Regulatory Organizations and Their Regulations	
3.6	Japan	N. 1. B. T. W	
	3.6.1	Nuclear Power Utilization	
	3.6.2	Disposal Programs and Management Organizations	
2.7	3.6.3	Regulatory Organizations and Their Regulations	
3.7	Spain 3.7.1	Nuclear Power Utilization	
	3.7.1	Disposal Programs and Management Organizations	
	3.7.2	Regulatory Organizations and Their Regulations	
3.8		en	
5.0	3.8.1	Nuclear Power Utilization	
	3.8.2	Disposal Programs and Management Organizations	
	3.8.3	Regulatory Organizations and Their Regulations	
3.9	Switze		
2.7	3.9.1	Nuclear Power Utilization	
	3.9.2	Disposal Programs and Management Organizations	
		5	

<u>Section</u>		Page Page
	3.9.3 Regulatory Organizations and Their Regulations	
3.10	United Kingdom	
	3.10.1 Nuclear Power Utilization	
	3.10.2 Disposal Programs and Management Organizations	
	3.10.3 Regulatory Organizations and Their Regulations	
References .		3-33
CHADTED 4	U.S. PROGRAMS FOR THE MANAGEMENT AND DISPOSAL OF	
CHAFTER 4	SPENT NUCLEAR FUEL AND HIGH-LEVEL RADIOACTIVE	
	WASTE AND THE EVALUATION OF YUCCA MOUNTAIN	<i>1</i> _1
4.1	Introduction	
4.2	The Department of Energy	
7.2	4.2.1 DOE's Office of Civilian Radioactive Waste Management (OCRWM)	
	Bot some of cryman readloaetre waste management (och with)	
	4.2.2 DOE Management and Disposal of Defense Wastes	
4.3	The Nuclear Regulatory Commission	
	4.3.1 Legislative Requirements and Regulatory Framework	
	4.3.2 Status of NRC's Program	
4.4	Nuclear Waste Technical Review Board	
4.5	State and Local Agencies	
4.6	Native American Tribes	. 4-9
References .		4-11
a		
CHAPTER 5	QUANTITIES, SOURCES, AND CHARACTERISTICS OF SPENT NUCLE	
	FUEL AND HIGH-LEVEL WASTE IN THE UNITED STATES	. 5-1
5.1	Introduction	5-1
5.2	Spent Nuclear Fuel	
–	5.2.1 Commercial Spent Nuclear Fuel Inventory and Projection	
	5.2.2 DOE Spent Nuclear Fuel	
5.3	Defense High-level Radioactive Waste	
	5.3.1 High-level Waste Inventories at the Hanford Site	5-11
	5.3.2 High-level Waste Inventories at INEEL	5-12
	5.3.3 High-level Waste Inventories at the Savannah River Site	5-13
	5.3.4 High-level Waste Inventories at the West Valley	
	Demonstration Project	5-13
5.4	Significant Radionuclides Contained in Spent Nuclear Fuel	
	and High-level Waste	
References .		5-16

Section		<u>Page</u>
CHAPTER 6	DOSE AND RISK ESTIMATION	6-1
6.1	Introduction	6-1
6.2	Dose Estimation	6-1
6.3	Cancer Risk Estimation	6-3
6.4	Genetic Effects	6-4
6.5	Developmental Effects	6-7
	6.5.1 <i>In Utero</i> Carcinogenesis	6-7
	6.5.2 Brain Teratology	6-7
	6.5.3 Other Effects of Prenatal Irradiation	6-8
	6.5.4 Summary of Developmental Effects	6-9
References .		. 6-10
CHAPTER 7	CURRENT INFORMATION CONCERNING A POTENTIAL WASTE REPOSITORY AT YUCCA MOUNTAIN	7-1
7.1	Principal Features of the Natural Environment	7-1
	7.1.1 Geologic Features	
	7.1.2 Hydrologic Features	
	7.1.3 Climate Considerations	
7.2	Repository Concepts under Consideration for Yucca Mountain	7-121
	7.2.1 Conceptual Repository Systems	7-121
	7.2.2 Design Concepts for Engineered Features of the VA Repository	7-123
7.3	Repository System Performance Assessments	
	7.3.1 DOE's Historic Performance Assessments	7-139
	7.3.2 DOE's TSPA for the Viability Assessment (TSPA-VA)	7-143
	7.3.3 TSPA-VA Results	7-156
	7.3.4 Reviews of the TSPA-VA	7-172
	7.3.5 NRC Total System Performance Assessments	7-181
	7.3.6 EPRI Total System Performance Assessments	7-192
	7.3.7 Comparison of DOE, NRC, and EPRI TSPA Results	
	for the VA Repository	7-200
	7.3.8 Performance Assessments in the Yucca Mountain DEIS	7-202
	7.3.9 Preliminary TSPA Results for the EDA II Design	7-209
	7.3.10 Performance Evaluation for the Site Recommendation	
	7.3.11 Uncertainties in Projecting Repository Performance over Very	
	Long Time Periods	7-234
References		7-247

Section	<u>Pa</u>	<u>ge</u>
CHAPTER 8	RADIOLOGICAL PATHWAYS THROUGH THE BIOSPHERE 8	-1
8.1	Introduction	-1
8.2	Past, Current, and Potential Use of the Yucca Mountain Region 8	-3
	8.2.1 Past Use of the Yucca Mountain Region	-3
	8.2.2 Current Demographics and Land Use	
	8.2.3 Factors Affecting Future Use of the Region	
8.3	Radiation Protection of Individuals	46
	8.3.1 The Critical Group Concept	17
	8.3.2 Probabilistic Scenario Modeling	
	8.3.3 Exposed Individuals and Exposure Scenarios for Yucca Mountain 8-:	52
	8.3.4 Details and Analyses for the Subsistence Farmer Scenario 8-:	
	8.3.5 Alternative Exposure Scenarios for Consideration	
	at Yucca Mountain 8-	70
8.4	The Repository Intrusion Scenario: a Special Case	74
	8.4.1 Site Resources as Potential Cause for Intrusion 8-	75
	8.4.2 Types of Human Intrusion	81
	8.4.3 Parameters and Assumptions Associated with	
	Ground Water Withdrawal 8-8	87
	8.4.4 Parameters and Assumptions Associated with Human Intrusion 8-8	88
References	8-9	98
CHAPTER 9	YUCCA MOUNTAIN EXPOSURE SCENARIOS	
	AND COMPLIANCE ASSESSMENT ISSUES	-1
9.1	Introduction	-1
9.2	Gaseous Releases: a Secondary Pathway for Human Exposure 9	-3
	9.2.1 Production and Early Containment of Carbon-14	
	9.2.2 Impacts of Thermal Loading on Gaseous Releases and Transport 9	
	9.2.3 Estimates of Travel Time	
	9.2.4 Dose Modeling and Exposure Estimates	-7
	9.2.5 Dose Estimates from Repository Releases	
	9.2.6 Potential Non-radiological Impacts of C-14 9-	10
9.3	Development of Performance Scenarios and Compliance Issues 9-	
	9.3.1 Identification of Improbable Phenomena 9-	
	9.3.2 Screening of Events and Processes	
	9.3.3 Compliance With a Standard 9-	
	9.3.4 Development of Site Performance Issues9-	
References .		

Section	<u>Page</u>
CHAPTER 10	RADIOLOGICAL RISKS FOR DEEP GEOLOGICAL DISPOSAL AND SURFACE STORAGE OF SPENT NUCLEAR FUEL 10-1
10.1	Background Information
10.2	Regulatory Limits
	10.2.1 Power Reactors
	10.2.2 Research Reactors
	10.2.3 Independent Spent Fuel Storage Installations (ISFSIS) 10-4
	10.2.4 DOE Facilities
	10.2.5 Summary of Regulatory Limits
10.3	Report by the Monitored Retrievable Storage Review Commission 10-6
	10.3.1 At-Reactor Storage Options
	10.3.2 Radiation Exposure Modeling Assumptions
	for At-Reactor Storage of SNF
	10.3.3 Model Assumptions for MRS Storage of SNF
	10.3.4 Transportation Models for SNF With and Without MRS 10-10
	10.3.5 Public Exposure from SNF Storage
10.4	Other Information Sources
	10.4.1 "An Assessment of LWRS Spent Fuel Disposal Options" 10-15
	10.4.2 "Generic Environmental Impact Statement, Management of
	Commercially Generated Radioactive Waste" 10-16
	10.4.3 "Review of Dry Storage Concepts Using Probabilistic Risk
	Assessment"
	10.4.4 "Requirement for the Independent Storage of Spent Fuel and
	High-Level Radioactive Waste"
	10.4.5 "Environmental Assessment Related to the Construction and Operation of
	the Surry Dry Cask Independent Spent Fuel Storage Installation" 10-18
	10.4.6 "Environmental Assessment Deaf Smith County Site, Texas" 10-18
	10.4.7 "Preliminary Assessment of Radiological Doses in Alternative Waste
	Management Systems Without an MRS Facility" 10-19
	10.4.8 "Monitored Retrievable Storage Submission to Congress" 10-20
	10.4.9 "The Safety Evaluation of Tunnel Rack and Dry Well Monitored
	Retrievable Storage Concepts"
D 0	10.4.10 Summary Assessment of Available Data
References	10-25

Section	<u>Page</u>
GLOS	SSARY G-1
	APPENDICES
I.	Demography and Ecosystems I-1
II.	Radionuclide Exposures to Persons in the Vicinity of the Nevada Test Site/Yucca
	Mountain Site
III.	Soil Types Found in the Yucca Mountain Area
IV.	Well Drilling and Pumping Costs
V.	New and Unusual Farming Practices
VI.	Current Information Regarding Ground Water Flow and Radionuclide Transport in the
	Unsaturated and Saturated Zones

TABLES

<u>No.</u> ES-1	Programs for HLW and SNF Disposal in Other Nations	<u>Page</u> ES-11
1-1	Significant Events in the History of High-Level Radioactive Waste and Spent Nuclei Fuel Disposal	
3-1	National and International Criteria and Objectives for the Disposal of Long-Lived Radioactive Wastes	3-4
5-1 5-2 5-3 5-4	Historical and Projected Mass and Radioactivity of Commercial Spent Nuclear Fue Historical and Projected* Installed Nuclear Electric Power Capacity	5-4 5-8 te
5-5	Radionuclide Inventories in Spent Nuclear Fuel and High-Level Wastes Expected to be Disposed in a Yucca Mountain Repository	
6-1	Estimated Frequency of Genetic Disorders in a Birth Cohort Due to Exposure of Each of the Parents to 001 Gy (1 rad) per Reproductive Generation (30 yr)	6-6
6-2	Possible Effects of <i>In Utero</i> Radiation Exposure	
7-1 7-2 7-3	Stratigraphy of the Southern Great Basin	. 7-15
7-4 7-5 7-6	Site	. 7-35
7-7	Aquifer in the Vicinity of and Downgradient of the Yucca Mountain Area Design Parameters for the Enhanced Design Alternatives	
7-8	Principal Results of Enhanced Design Alternative Analyses	7-135
7-9	Comparison of EDA II and Viability Assessment Design Features	
7-10 7-11	Principal Performance Factors for TSPA-VA Modeling	
7-11	Peak Dose Rates at 10,000 Years for the Proposed Action Inventory and Alternative Distances and Thermal Loads	
7-13	Comparison of DEIS Ground Water Concentrations With MCLs	
7-14	Impact of EDA II Design Features on VA Performance Uncertainties	
	Identified by Reviewers of the TSPA-VA	
7-15	Factors Potentially Important to Postclosure Safety	
7-16	Comparison of Major Dose Milestones for the VA and EDA II Repositories	7-217

TABLES (Continued)

<u>No.</u>	<u>I</u>	Page
7-17	Comparison of Rev 3 and Rev 4 Repository Safety Strategies	7-218
7-18	Potential Performance Assessment Vulnerabilities and Mitigation Measures	7-219
7-19	Implementation of Regulatory Requirements in the TSPA-SR for Regulatory	
	Requirements (Excerpted from TRW00b)	. 7-221
7-20	Technical Assumptions Implemented in the Human Intrusion Scenario in TSPA-SF	_
	(Table excerpted from TRW00a)	7-223
8-1	Range in Concentration of Dissolved Constituents in Ground Water in the	
	Amargosa Desert	8-18
8-2	Hydrographic Basins in the Vicinity of Yucca Mountain	. 8-20
8-3	Water Appropriations by Hydrographic Basin in the Study Area	. 8-23
8-4	1993 Ground Water Pumpage Inventory for Basin No 230	. 8-23
8-5	Wells and Boreholes in the Amargosa Valley	. 8-27
8-6	Ground Water Budget for Hydrographic Basins in Study Area	. 8-36
8-7	Estimates of Acreage Under Cultivation for Feedstock	. 8-40
8-8	Ground Water Storage Values for Relevant Hydrographic Basins	. 8-41
8-9	Concentration Ratios and Transfer Coefficients By Element	. 8-61
8-10	Dose Conversion Factors for a Resident Farmer in Current Biosphere By Exposure	
	Pathway and Radionuclide for Ground Water Source	. 8-66
8-11	Summary of Mean TEDE Results From CNWRA	
	Unit Concentration Evaluations for Water	. 8-67
8-12	Comparison of Inhalation, Drinking Water and Food Consumption Rate	
	Parameter Values From Various Sources	
8-13	Likely Human Intrusion Scenarios for Different Types of Resources	
8-14	Typical Borehole Characteristics	. 8-90
9-1	Annual Average Doses Resulting from the Release of 100 Ci ¹⁴ CO ₂	
	for Distances Out to 50 Miles	. 9-10
9-2	Potentially Disruptive Events and Processes	
9-3	Techniques for Quantifying or Reducing Uncertainty in the Performance Assessme	nt 9-16
10-1	Spent Fuel Accumulation at Shutdown Commercial Light Water Power Reactors .	. 10-9
10-2	Reduction in Dry Storage Needs At Reactor Facilities with Linked MRS	10-10
10-3	Life-Cycle Transportation Risk Measures	10-11
10-4	Total Life-Cycle Doses in Person-Rem from Spent Nuclear Fuel Management With	l
	and Without MRS	
10-5	Location of Spent Fuel With MRS in 2010 and Repository in 2013 (MTUs)	
10-6	Comparison of Public Exposures Resulting from Three SNF Storage Alternatives	10-14
10-7	Public Doses for Normal Repository Operation and From Shaft-Drop Accident	10-15

TABLES (Continued)

No.		Page Page
10-8	At-Reactor Storage Accidents: Summary of Results (ORV84)	10-17
10-9	Preclosure Exposure Associated with a Reference Salt Repository	10-19
10-10	Public-Dose Estimates for Reference Reactor and Repository Surface Facility	
	(Based on data from SCH86)	10-20
10-11a	Public Doses From Routine Operations at MRS and Repository	10-21
10-11b	Public Doses from Accidental Releases at MRS and Repository	10-21
10-12	Normalized Population Doses	. 10-22
10-13	Summary Data of Public Doses Associated with SNF Storage At-Reactor, MRS,	
	and Repository	. 10-24

FIGURES

<u>No.</u>	<u>Pa</u>	<u>ige</u>
ES5-1	Schematic North/South Cross-Sectional Illustration of Thinning of Volcanic Units Beneath the Amargosa Desert	ES-25
ES5-3	Repository Layout for the TSPA-VA Design	ES-31 ES-32
	to Humans	2S-38
7-1	Location of Yucca Mountain	. 7-2
7-2	Boundaries and Larger Subdivisions of the Basin and Range Physiographic Province	7-3
7-3	Physiographic Features in the Yucca Mountain Site Area	. 7-5
7-4	Generalized Regional Stratigraphic Column Showing Geologic Formations and	
	Hydrological Units in the Nevada Test Site Area	. 7-7
7-5	Late Precambrian Through Mid-Paleozoic Paleography of the Great Basin	. 7-8
7-6	Late Devonian and Mississippian Paleogeography of the Great Basin	. 7-9
7-7	Simplified Geologic Map Showing the Distribution of Major Lithostratigraphic	
	Units in the Yucca Mountain Area	
7-8	East-West Geologic Cross Section for the Yucca Mountain Site	
7-9	The Walker Lane Belt and Major Associated Faults	
7-10	Major North-Trending Faults in the Vicinity of Yucca Mountain	
7-11	Index Map of Faults at and near Yucca Mountain	
7-12	Index Map of Known or Suspected Quaternary Faults in the Yucca Mountain Region	
7-13	Sketch Map of the Western United States Showing Some Major Structural Features	
7-14	Magnitude 3 or Greater Earthquakes Within 320 Km (200 Miles) of Yucca Mountain	
7.15	from 1850 to 1992	
7-15	Index Map Showing Outlines of Calderas in the Southwestern Nevada Volcanic Fiel	
7.16	the Extent of the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group	
7-16	Distribution of Basalts in the Yucca Mountain Region with Ages Less Than 12 MA.	
7-17	Unsaturated Zone Hydrogeologic Units (USG84a)	
7-18	Locations of Deep Boreholes in the Vicinity of Yucca Mountain	7-62
7-19	Early Conceptual Model of Ground Water Flow in the Unsaturated Zone at Yucca	7 70
7.20	Mountain	/-/0
7-20	Current Conceptual Model of Ground Water Flow in the Unsaturated Zone at Yucca Mountain	7 71
7-21	Saturated Zone Hydrostratigraphy of Volcanic Rocks	
7-21	Schematic North/South Cross-Sectional Illustration of Thinning of Volcanic Units	7-80
1-22	Beneath the Amargosa Desert	7 83
7-23	Schematic Illustration of Ground Water Flow System in the Great Basin	
7-23 7-24	Death Valley Ground Water Flow System	
7-25	Alkali Flat-Fumace Creek Ranch Ground Water Subbasin	
7-26	Potentiometric Surface in the Death Valley Ground Water Flow System	
, 20	1 oversion of the contract in the Death 1 and 9 of out 1 feet 1 for by south	, 100

FIGURES (Continued)

<u>No.</u>		<u>Page</u>
7-27 7-28	Potentiometric Surface in the Amargosa Desert	
		. 7-117
7-29	Model Simulations of Past and Future Climate Conditions	
7-30	Repository Layout for the VA Reference Design	
7-31	Repository Location Within Yucca Mountain	
7-32	North Portal Facilities Layout for the VA Reference Design	
7-33	21-PWR Waste Package Design for the VA Reference Design	
7-34	Defense HLW Package Design for the VA Reference Design	
7-35	Drift Cross-Section for the VA Reference Design	
7-36	Computer Code Configuration for the TSPA-VA	. 7-151
7-37	TSPA-VA Base Case Dose Rates for Periods Up to 10,000 Years (DOE98)	
		. 7-158
7-38	TSPA-VA Base Case Dose Rates for Periods Up to 100,000 Years	. 7-158
7-39	TSPA-VA Base Case Dose Rates for Periods Up to One Million Years	
7-40	Uncertainties in the TSPA-VA Base Case Results	. 7-162
7-41	Structure of Performance Factors for NRC Performance Assessments	
		. 7-182
7-42	Structure of NRC Computer Codes for Performance Assessments	. 7-183
7-43	NRC TSPA Results for Alternative Conceptual Models	. 7-188
7-44	NRC TSPA Results for Mean-Values Data Set	. 7-190
7-45	EPRI's IMARC Logic Tree	. 7-193
7-46	Results of EPRI's IMARC-4 Dose Evaluations	. 7-199
7-47	Comparison of DOE, NRC, and EPRI Performance Assessment Results	. 7-201
7-48	Emplacement Block Layout for DEIS Disposal Option	. 7-204
7-49	Time History of Projected Dose to 10,000 Years, VA and	
	DEIS Evaluations	. 7-207
7-50	DEIS Dose Rate Time Histories for Periods Up to One Million Years	. 7-207
7-51	Barriers Importance Analysis to Assess Natural Barriers of the	
	Repository System-Early Waste Package Failure Scenario	. 7-215
7-52	Comparison of VA and EDA 10,000-Year Doses	
7-53	Comparison of VA and EDA Million-Year Doses	
7-54	Comparison of Proposed Radiation Protection Standards with Expected Values of	
	TSPA-SR Calculations for a Repository at Yucca Mountain for Nominal and	
	Igneous Scenarios (Figure adapted from TRW00b)	7-226
7-55	Expected Values of TSPA-SR Calculations for a Repository at Yucca Mountain	
	for the Inadvertent Human Intrusion Scenario (Figure adapted from TRW00b)	. 7-227
7-56	Summary of Groundwater Protection Performance Results of the TSPA-SR:	·•
, 23	Combined Beta and Photon-Emitting Radionuclides (Figure adapted from TRW00)b)
	(1 igure dampied nom 11e v o	/

FIGURES (Continued)

No.		<u>Page</u>
7-57	Summary of Groundwater protection Results for TSPA-SR for Gross Alpha Activ (Figure adapted from TRW00b)	•
8-1	Schematic Illustration of the Major Pathways from a Repository	
	at Yucca Mountain to Humans	8-2
8-2	Yucca Mountain and Surrounding Land Use	
8-3	Winter Sites Near Beatty and Belted Range	8-7
8-4	Major Winter Sites in Ash Meadows and Pahrump Valley	8-8
8-5	Major Winter Sites in Northern and Central Death Valley	8-9
8-6	Map Showing Boundaries of Ground Water Subbasins in the Study Area	8-20
8-7	Ground Water Usage in the Amargosa Desert	
8-8	Locations of Water Wells in the Amargosa Farms Area	8-26
8-9	Wells and Boreholes in the Amargosa Valley	
0.40	Only 15 Persons Currently Live at the 20 km Distance	
8-10 8-11	Examples of Current Agriculture Activities in the Yucca Mountain Region Ground Water Pathway Model for Subsistence Farmer	
9-1	Schematic Illustration of the Major Pathways from a Repository	0.2
9-2	at Yucca Mountain to Humans (NAS95)	9-2 log
9-2	Released at 1,000 Years	
9-3	Retarded Travel Time of C-14 Particles from the Repository to the Atmosphere for	
, ,	Particles Released at 10,000 Years	
9-4	Annual Average Concentration for Uniform Continuous Source and Specific Acti	
	(in Parentheses) for 100 Ci/year	
9-5	An Illustration of Hypothetical Individual Dose Rates Associated with a Disruptive Event Happening at Two Different Times after Disposal of Radioactive Waste	ve
	1	

LIST OF ACRONYMS

ACHP Advisory Council On Historic Preservation

AEA Atomic Energy Act

AEC Atomic Energy Commission

AECB Canadian Atomic Energy Control Board

AECL Atomic Energy of Canada Limited

AFCN Belgian Nuclear Inspection Agency

AGNEB Swiss Interagency Working Group on Licensing of Nuclear Waste Facilities

AGR Advanced Gas-Cooled Reactor

AIRFA American Indian Religious Freedom Act

ALARA As Low As is Reasonably Achievable

ALI Annual Limit on Intake

ANDRA French Radioactive Waste Management Agency

ANL-W Argonne National Laboratory - West

Bq Becquerel

BEW Swiss Energy Office

BfS German Institute for Radiation Protection

BID Background Information Document

BMFT German Ministry for Research and Technology

BMU German Ministry for Environment, Protection of Nature and Reactor

Safety

BNFL British Nuclear Fuels Limited

BRGM French Bureau of Geological and Mineral Research

BSS Basic Safety Standards

BWR Boiling Water Reactor

CAA Clean Air Act

CCDF Complementary Cumulative Distribution Function

CEA French Atomic Energy Commission

CEC Council of the European Communities

CEDE Committed Effective Dose Equivalent

CEN Belgian Nuclear Research Center

CFR Code of Federal Regulations

Ci Curie

CLAB Swedish Centralized Spent Fuel Storage Facility

CNWRA Center for Nuclear Waste and Regulatory Analysis

CRPPH Committee on Radiation Protection and Public Health

CRWM Committee on Radioactive Waste Management

DACs Derived Air Concentrations

DCF Dose Conversion Factors

DDREF Dose, Dose Rate Effectiveness Factor

DOD U.S. Department of Defense

DOE U.S. Department of Energy

DSIN French Directorate for the Safety of Nuclear Installations

EBS Engineered Barrier System

EDE Effective Dose Equivalent

EDI Swiss Department of Interior

EIA Environmental Impact Assessment

EIR Swiss Institute for Reactor Research

EIS Environmental Impact Statement

EMSL-LV Environmental Monitoring Systems Laboratory - Las Vegas

EnPA Energy Policy Act

EPA U.S. Environmental Protection Agency

EPRI Electric Power Research Institute

ERA Energy Reorganization Act

EURATOM European Atomic Energy Community

EVED Swiss Department of Transport, Communications, and Energy

FEIS Final Environmental Impact Statement

FERC Federal Energy Regulatory Commission

FFTF Fast Flux Test Facility

FRC Federal Radiation Council

GTCC Greater-Than-Class-C

Gy Gray

GW (e) Gigawatt - Electric

HEU Highly Enriched Uranium

HI Human Intrusion

HLW High-Level Waste

HSK Swiss Nuclear Safety Division

HTGR High-Temperature Gas-Cooled Reactor

IAEA International Atomic Energy Agency

ICPP Idaho Chemical Processing Plant

ICRP International Commission on Radiological Protection

IMARC Integrated Multiple Assumptions and Release Calculations

INEEL Idaho National Engineering and Environmental Laboratory

IPA Iterative Performance Assessment

IPSN French Institute for Nuclear Protection and Safety

IRG Interagency Review Group

IRSR Issue Resolution Status Report

JAERI Japan Atomic Energy Research Institute

JNFL Japan Nuclear Fuel Services Limited

KASAM Swedish Consultative Committee for Nuclear Waste Management

KSA Swiss Commission for the Safety of Nuclear Installations

KTI Key Technical Issue

LET Linear Energy Transfer

LMFBR Liquid-Metal Fast-Breeder Reactor

LWR Light Water Reactor

MCLs Maximum Contaminant Levels

MCLG Maximum Contaminant Level Goal

MFRP Midwest Fuel Recovery Plant

MITI Japanese Ministry of International Trade and Industry

MPC Multi-Purpose Canister

mrem Millirem

MRS Monitored Retrievable Storage

mSv Millisieverts

MTHM Metric Tons of Heavy Metal

MTIHM Metric Tons of Initial Heavy Metal

MWd Megawatt Days

NAGRA Swiss Cooperative for the Storage of Radioactive Waste

NAS National Academy of Sciences

NCI National Cancer Institute

NCRP National Council on Radiation Protection and Measurements

NEPA National Environmental Policy Act

NHPA National Historic Preservation Act

NIREX British Nuclear Industry Radioactive Waste Executive

NPRM Notice of Proposed Rulemaking

NRC U.S. Nuclear Regulatory Commission

NRPB National Radiological Protection Board of the United Kingdom

NSC Japanese Nuclear Safety Commission

NTS Nevada Test Site

NUCEF Japanese Nuclear Fuel Cycle Engineering Facility

NWPA Nuclear Waste Policy Act

NWPAA Nuclear Waste Policy Amendments Act

NWPO Nuclear Waste Project Office

NWTRB Nuclear Waste Technical Review Board

OECD/NEA Organization for Economic Cooperation and Development/Nuclear Energy Agency

OCRWM Office of Civilian Radioactive Waste Management

OMB Office of Management and Budget

ONDRAF Belgian Agency for Radioactive Waste and Fissle Materials

ORERP Off-Site Radiation Exposure Review Project

ORNL Oak Ridge National Laboratory

ORSP Off-Site Radiological Safety Program

PA Programmatic Agreement

PARCLAY Belgian Preliminary Demonstration Test for Clay Disposal

PBF Power Burst Facility

PICs Pressurized Ion Chambers

PNC Japanese Power Reactor and Nuclear Fuel Development Corporation

PPA Project Programmatic Agreement (Yucca Mountain)

PUREX Plutonium-Uranium Extraction

PWR Pressurized Water Reactor

QAP Quality Assurance Plan

R Roentgen

R&D Research and Development

RADWASS Radioactive Waste Safety Standards Radioactive Waste Management

RBE Relative Biological Effectiveness

rem Roentgen Equivalent Man

RBOF Receiving Basin for Off-site Fuels

RETF Japanese Recycling Equipment Testing Facility

RMEI Resaonably, Maximally Exposed Individual

ROD Record of Decision

RSK German Reactor Safety Commission

SAB Science Advisory Board

SAR Safety Analysis Report

SCP Site Characterization Plan

SDWA Safe Drinking Water Act

SGN French Agency Providing Architectural and Engineering Services

SHP Japanese Steering Committee on High-Level Radioactive Waste

SKB Swedish Nuclear Fuel and Waste Management Company

SKI Swedish Nuclear Power Inspectorate

SKN Swedish Board for Spent Nuclear Fuel

SNF Spent Nuclear Fuel

SNTZ Southern Nevada Transverse Zone

SRS Savannah River Site

SSI Swedish Institute for Radiation Protection

SSK German Committee on Radiological Protection

STA Japanese Science and Technology Agency

Sv Sievert

SZ Saturated Zone

TBM Tunnel Boring Machine

TEDE Total Effective Dose Equivalent

THORP Thermal Oxide Reprocessing Plant

TLD Thermoluminescent Dosimeter

TRU Transuranic

TSPA Total System Performance Assessment

TSPAI Total System Performance Assessment and Integration

UK United Kingdom

UNSCEAR United Nations Scientific Committee on the Effects of Atomic Radiation

URL Underground Research Laboratory

USDW Underground Sources Drinking Water

UZ Unsaturated Zone

VA Viability Assessment

WL Working Level

WLM Working Level Month

WIPP LWA Waste Isolation Pilot Plant Land Withdrawal Act

WVDP West Valley Demonstration Project

YMS Yucca Mountain Site

ZWILAG Swiss Cooperative of Nuclear Utility Operators