Plant Sciences Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: QUALITY MAINTENANCE AND EVALUATION OF FRESH PRODUCE

Location: Plant Sciences

Title: Heritability Patterns of Elastic and Viscoelastic Components of Tomato Firmness Derived from Intra and Interspecific Genetic Backgrounds

Authors
item Abbott, Judith
item Stommel, John
item Camp, Mary

Submitted to: Meeting Abstract
Publication Type: Abstract
Publication Acceptance Date: February 15, 2004
Publication Date: May 15, 2004
Citation: Abbott, J.A., Stommel, J.R., Camp, M.J. Heritability patterns of elastic and viscoelastic components of tomato firmness derived from intra- and interspecific genetic backgrounds. Meeting Abstract. HortScience. 2004. V. 39. P. 812.

Technical Abstract: Tomato fruit firmness is a key quality component of tomatoes produced for processing applications. Fruit firmness is generally considered a quantitatively inherited trait. Pericarp firmness of modern tomato cultivars is believed to be derived from a fairly narrow genetic background and is the result of the cumulative effort of numerous breeders over many years. Despite inferior phenotypes, wild species contain loci that can substantially increase tomato fruit quality. In the current study, inheritance of fruit firmness in firm and ultra-firm processing tomato germplasm developed from transgressive segregants of interspecific Lycopersicon esculentum x L. hirsutum and intraspecific L. esculentum crosses was characterized. Large-fruited breeding lines that varied in fruit firmness from soft to firm were identified for genetic analyses. A six-parent diallel of these advanced breeding lines was developed for field trials over multiple locations. Fruit firmness in the resulting 36 lines was determined by measuring fruit elastic properties during fruit puncture and compression. Following loading for compression, stress relaxation was recorded for 15 s. A three-parameter model was used to fit the relaxation curves. There was little correlation between firmness (maximum force) and the three relaxation parameters, i.e., firmness measured the elastic component and the relaxation parameters measured the viscous portions of the texture. General and specific combining ability for firmness derived from the respective genetic backgrounds was determined. Genetic variance components for fruit firmness were estimated using a diallel analysis and narrow sense heritability was measured using parent-offspring regression.

   

 
Project Team
Wang, Chien-Yi
Saftner, Robert - Bob
 
Publications
   Publications
 
Related National Programs
  Quality and Utilization of Agricultural Products (306)
 
 
Last Modified: 05/13/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House