LOCKHEED MARTIN

DATE:

29 March 2007

TO:

David B. Mickunas, U.S. EPA/ERT Work Assignment Manager

THROUGH:

Dennis A. Miller, REAC Program Manager Drift Julian John A. Wood, REAC/Task Leader

FROM:

SUBJECT:

DOCUMENT TRANSMITTAL UNDER WORK ASSIGNMENT #0-234

Attached please find the following document prepared under this work assignment:

FINAL ANALYTICAL TAGA REPORT URBAN AIR TOXICS STUDY HARRIS COUNTY, TX MARCH 2007

cc: Central File - WA #0-234 (w/attachment) Electronic File - I:Archive/REAC4/0234/D/AR/032907 Dennis A. Miller, REAC Program Manager (w/o attachment)

FINAL ANALYTICAL TAGA REPORT URBAN AIR TOXICS STUDY HARRIS COUNTY, TX MARCH 2007

U.S. EPA Work Assignment No.: 0-234 LOCKHEED MARTIN Work Order No.: EAC00234 U.S. EPA Contract No.: EP-C-04-32

Prepared by:

Lockheed Martin/REAC

John A. Wood

REAC Tack Leader

Dennis A. Miller

REAC Program Manager

Prepared for:

U.S. EPA/ERT

David B. Mickunas

Work Assignment Manager

This page left intentionally blank.

TABLE OF CONTENTS

	PA	ΔGE
LIST	OF TABLES	v
LIST	OF FIGURES	vi
1.0 IN	NTRODUCTION	1
2.0 M	IETHODOLOGY	1
2.1	TACA Air Monitoring	1
2.1	TAGA Air Monitoring	I 1
	2.1.2 TAGA Procedure	
	2.1.2.1 TAGA Mass Calibration	
	2.1.2.2 TAGA Response Factor Measurements	
	2.1.2.3 TAGA Air Monitoring	
2.2	2 MultiRAE® Monitoring	3
	3 Jerome H ₂ S Meter Monitoring	
	RA-915 Lumex Mercury Meter Monitoring	
	Global Positioning System and Tracking	
2.6	6 Air Sample Collection	4
2.7	Meteorological Monitoring	4
3.0 A	IR MONITORING RESULTS	5
3 1	Mobile Monitoring Paths	5
	2 TAGA File Event Summaries	
	Graphical Presentations	
	TAGA Target Compound Summaries	
4.0 D	ISCUSSION OF RESULTS	6
4.1	Mobile Monitoring In Harris County, HSC004	6
4.2	· · · · · · · · · · · · · · · · · · ·	
4.3		
4.4	•	
4.5	<i>5</i>	
4.6		
4.7		
4.8	•	
4.9		
4.1 4.1	· · · · · · · · · · · · · · · · · · ·	
4.1		
4.1	· · · · · · · · · · · · · · · · · · ·	
4.1	•	
4.1		
4.1	•	
4.1	•	
4.1		
4.1		16
4.2	Mobile Monitoring In Harris County, HSC033	16

TABLE OF CONTENTS (continued)

4.21	Mobile	Monitoring In Harris County, HSC034	16
4.22	Mobile	Monitoring In Harris County, HSC035	17
4.23		Monitoring In Harris County, HSC036	
4.24		Monitoring In Harris County, HSC037	
50 OII.I	TENZ A C	GUD ANGE (OVAL VEV GONEDO)	10
5.0 QUAL	LIIY AS	SURANCE/QUALITY CONTROL	19
5.1 C	alculatio	ns for the Intermediate Response Factors	19
5.2 E	rror Bars	-	20
5.3 Ic	on Pair D	etection and Quantitation Limits	21
5.4 C	ompoun	Detection and Quantitation Limits	22
APPENDI	X A	Certifications	
APPENDI	X E	Meteorological Data	
APPENDI	X C	SUMMA® Canister Analytical Data	
APPENDI	X D	Graphical MultiRae® Data	
APPENDI	X E	Graphical Jerome Data	
APPENDI	X F	Graphical Lumex Data	
APPENDI	X C	Chain of Custody Records and Sampling Worksheets	

LIST OF TABLES

TABLE

- 1 Summary of Meteorological Conditions During Monitoring for 12 December through 14 December 2006
- 2 Comparison of Canister Samples with TAGA Monitoring for Target Compounds
- Response Factors and Error Bars for 12 December through 14 December 2006
- 4 Summary of Detection and Quantitation Limit Data for 12 December through 14 December 2006

LIST OF FIGURES

1a	Mobile Monitoring Path for Benzene in Harris County
1b	Mobile Monitoring Path for Toluene in Harris County
1c	Mobile Monitoring Path for Xylenes in Harris County
1d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
1e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
1f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
1g	Mobile Monitoring Path for Styrene in Harris County
1h	Mobile Monitoring Path for Mercury in Harris County
1i	TAGA File Event Summary, File: HSC004 Acquired on 12 December 2006 at 02:45:46 UTC, Title: Mobile Monitoring in Harris County
1j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
1k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
11	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
2a	Mobile Monitoring Path for Benzene in Harris County
2b	Mobile Monitoring Path for Toluene in Harris County
2c	Mobile Monitoring Path for Xylenes in Harris County
2d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
2e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
2f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
2g	Mobile Monitoring Path for Styrene in Harris County
2h	Mobile Monitoring Path for Mercury in Harris County
2i	TAGA File Event Summary, File: HSC005 Acquired on 12 December 2006 at 03:35:46 UTC, Title: Mobile Monitoring in Harris County
2j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
2k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
21	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
3a	Mobile Monitoring Path for Benzene in Harris County

3b	Mobile Monitoring Path for Toluene in Harris County
3c	Mobile Monitoring Path for Xylenes in Harris County
3d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
3e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
3f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
3g	Mobile Monitoring Path for Styrene in Harris County
3h	Mobile Monitoring Path for Mercury in Harris County
3i	TAGA File Event Summary, File: HSC006 Acquired on 12 December 2006 at 04:27:27 UTC, Title: Mobile Monitoring in Harris County
3j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
3k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
31	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
4a	Mobile Monitoring Path for Benzene in Harris County
4b	Mobile Monitoring Path for Toluene in Harris County
4c	Mobile Monitoring Path for Xylenes in Harris County
4d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
4e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
4f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
4g	Mobile Monitoring Path for Styrene in Harris County
4h	Mobile Monitoring Path for Mercury in Harris County
4i	TAGA File Event Summary, File: HSC007 Acquired on 12 December 2006 at 05:15:22 UTC, Title: Mobile Monitoring in Harris County
4j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
4k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
41	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
5a	Mobile Monitoring Path for Benzene in Harris County
5b 0234-DF	Mobile Monitoring Path for Toluene in Harris County A-032907/TAGA

5c	Mobile Monitoring Path for Xylenes in Harris County
5d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
5e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
5f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
5g	Mobile Monitoring Path for Styrene in Harris County
5h	Mobile Monitoring Path for Mercury in Harris County
5i	TAGA File Event Summary, File: HSC008 Acquired on 12 December 2006 at 06:46:37 UTC, Title: Mobile Monitoring in Harris County
5j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
5k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
51	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
5m	TAGA Target Compound Averages during Sample Collection
ба	Mobile Monitoring Path for Benzene in Harris County
бb	Mobile Monitoring Path for Toluene in Harris County
бс	Mobile Monitoring Path for Xylenes in Harris County
5d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
бе	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
6f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
бg	Mobile Monitoring Path for Styrene in Harris County
бh	Mobile Monitoring Path for Mercury in Harris County
бi	TAGA File Event Summary, File: HSC009 Acquired on 12 December 2006 at 07:41:53 UTC, Title: Mobile Monitoring in Harris County
бj	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
бk	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
5l	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
7a	Mobile Monitoring Path for Benzene in Harris County
7b	Mobile Monitoring Path for Toluene in Harris County

FIGURE

0234-DFA-032907/TAGA

7c	Mobile Monitoring Path for Xylenes in Harris County
7d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
7e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
7f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
7g	Mobile Monitoring Path for Styrene in Harris County
7h	Mobile Monitoring Path for Mercury in Harris County
7i	TAGA File Event Summary, File: HSC010 Acquired on 12 December 2006 at 08:31:32 UTC, Title: Mobile Monitoring in Harris County
7j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
7k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
71	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
Ba	Mobile Monitoring Path for Benzene in Harris County
3b	Mobile Monitoring Path for Toluene in Harris County
Вс	Mobile Monitoring Path for Xylenes in Harris County
3d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
3e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
3f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
3g	Mobile Monitoring Path for Styrene in Harris County
3h	Mobile Monitoring Path for Mercury in Harris County
3i	TAGA File Event Summary, File: HSC011 Acquired on 12 December 2006 at 09:19:44 UTC, Title: Mobile Monitoring in Harris County
3j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
3k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
31	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
9a	Mobile Monitoring Path for Benzene in Harris County
Эb	Mobile Monitoring Path for Toluene in Harris County
Эс	Mobile Monitoring Path for Xylenes in Harris County

9d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
9e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
9f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
9g	Mobile Monitoring Path for Styrene in Harris County
9h	Mobile Monitoring Path for Mercury in Harris County
9i	TAGA File Event Summary, File: HSC017 Acquired on 13 December 2006 at 02:39:08 UTC, Title: Mobile Monitoring in Harris County
9j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
9k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
91	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
9m	TAGA Target Compound Averages during Sample Collection
10a	Mobile Monitoring Path for Benzene in Harris County
10b	Mobile Monitoring Path for Toluene in Harris County
10c	Mobile Monitoring Path for Xylenes in Harris County
10d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
10e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
10f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
10g	Mobile Monitoring Path for Styrene in Harris County
10h	Mobile Monitoring Path for Mercury in Harris County
10i	TAGA File Event Summary, File: HSC018 Acquired on 13 December 2006 at 03:26:36 UTC, Title: Mobile Monitoring in Harris County
10j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
10k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
101	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
10m	TAGA Target Compound Averages during Sample Collection
11a	Mobile Monitoring Path for Benzene in Harris County
11b	Mobile Monitoring Path for Toluene in Harris County
0224 DE/	A 032907/TA GA

11c	Mobile Monitoring Path for Xylenes in Harris County
11d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
11e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
11f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
11g	Mobile Monitoring Path for Styrene in Harris County
11h	Mobile Monitoring Path for Mercury in Harris County
11i	TAGA File Event Summary, File: HSC019 Acquired on 13 December 2006 at 04:17:16 UTC, Title: Mobile Monitoring in Harris County
11j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
11k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
111	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
12a	Mobile Monitoring Path for Benzene in Harris County
12b	Mobile Monitoring Path for Toluene in Harris County
12c	Mobile Monitoring Path for Xylenes in Harris County
12d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
12e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
12f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
12g	Mobile Monitoring Path for Styrene in Harris County
12h	Mobile Monitoring Path for Mercury in Harris County
12i	TAGA File Event Summary, File: HSC020 Acquired on 13 December 2006 at 05:05:55 UTC, Title: Mobile Monitoring in Harris County
12j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
12k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
121	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
13a	Mobile Monitoring Path for Benzene in Harris County
13b	Mobile Monitoring Path for Toluene in Harris County
13c 0234-DFA	Mobile Monitoring Path for Xylenes in Harris County A-032907/TAGA

13d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
13e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
13f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
13g	Mobile Monitoring Path for Styrene in Harris County
13h	Mobile Monitoring Path for Mercury in Harris County
13i	TAGA File Event Summary, File: HSC021 Acquired on 13 December 2006 at 05:53:57 UTC, Title: Mobile Monitoring in Harris County
13j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
13k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
131	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
13m	TAGA Target Compound Averages during Sample Collection
14a	Mobile Monitoring Path for Benzene in Harris County
14b	Mobile Monitoring Path for Toluene in Harris County
14c	Mobile Monitoring Path for Xylenes in Harris County
14d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
14e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
14f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
14g	Mobile Monitoring Path for Styrene in Harris County
14h	Mobile Monitoring Path for Mercury in Harris County
14i	TAGA File Event Summary, File: HSC022 Acquired on 13 December 2006 at 07:13:11 UTC, Title: Mobile Monitoring in Harris County
14j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
14k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
141	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
15a	Mobile Monitoring Path for Benzene in Harris County
15b	Mobile Monitoring Path for Toluene in Harris County
15c 0234-DFA	Mobile Monitoring Path for Xylenes in Harris County A-032907/TAGA xii

15d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
15e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
15f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
15g	Mobile Monitoring Path for Styrene in Harris County
15h	Mobile Monitoring Path for Mercury in Harris County
15i	TAGA File Event Summary, File: HSC023 Acquired on 13 December 2006 at 08:01:41 UTC, Title: Mobile Monitoring in Harris County
15j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
15k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
151	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
15m	TAGA Target Compound Averages during Sample Collection
16a	Mobile Monitoring Path for Benzene in Harris County
16b	Mobile Monitoring Path for Toluene in Harris County
16c	Mobile Monitoring Path for Xylenes in Harris County
16d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
16e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
16f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
16g	Mobile Monitoring Path for Styrene in Harris County
16h	Mobile Monitoring Path for Mercury in Harris County
16i	TAGA File Event Summary, File: HSC024 Acquired on 13 December 2006 at 08:49:34 UTC, Title: Mobile Monitoring in Harris County
16j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
16k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
161	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
17a	Mobile Monitoring Path for Benzene in Harris County
17b	Mobile Monitoring Path for Toluene in Harris County
17c 0234-DFA	Mobile Monitoring Path for Xylenes in Harris County A-032907/TAGA

17d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
17e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
17f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
17g	Mobile Monitoring Path for Styrene in Harris County
17h	Mobile Monitoring Path for Mercury in Harris County
17i	TAGA File Event Summary, File: HSC030 Acquired on 14 December 2006 at 02:50:26 UTC, Title: Mobile Monitoring in Harris County
17j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
17k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
171	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
17m	TAGA Target Compound Averages during Sample Collection
18a	Mobile Monitoring Path for Benzene in Harris County
18b	Mobile Monitoring Path for Toluene in Harris County
18c	Mobile Monitoring Path for Xylenes in Harris County
18d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
18e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
18f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
18g	Mobile Monitoring Path for Styrene in Harris County
18h	Mobile Monitoring Path for Mercury in Harris County
18i	TAGA File Event Summary, File: HSC031 Acquired on 14 December 2006 at 04:05:25 UTC, Title: Mobile Monitoring in Harris County
18j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
18k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
181	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
18m	TAGA Target Compound Averages during Sample Collection
19a	Mobile Monitoring Path for Benzene in Harris County
19b	Mobile Monitoring Path for Toluene in Harris County
0234-DF	A-032907/TAGA xiv

19c	Mobile Monitoring Path for Xylenes in Harris County
19d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
19e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
19f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
19g	Mobile Monitoring Path for Styrene in Harris County
19h	Mobile Monitoring Path for Mercury in Harris County
19i	TAGA File Event Summary, File: HSC032 Acquired on 14 December 2006 at 04:53:11 UTC, Title: Mobile Monitoring in Harris County
19j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
19k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
191	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
20a	Mobile Monitoring Path for Benzene in Harris County
20b	Mobile Monitoring Path for Toluene in Harris County
20c	Mobile Monitoring Path for Xylenes in Harris County
20d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
20e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
20f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
20g	Mobile Monitoring Path for Styrene in Harris County
20h	Mobile Monitoring Path for Mercury in Harris County
20i	TAGA File Event Summary, File: HSC033 Acquired on 14 December 2006 at 06:00:26 UTC, Title: Mobile Monitoring in Harris County
20j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
20k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
201	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
21a	Mobile Monitoring Path for Benzene in Harris County
21b	Mobile Monitoring Path for Toluene in Harris County
21c 0234-DF	Mobile Monitoring Path for Xylenes in Harris County A-032907/TAGA

21d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
21e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
21f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
21g	Mobile Monitoring Path for Styrene in Harris County
21h	Mobile Monitoring Path for Mercury in Harris County
21i	TAGA File Event Summary, File: HSC034 Acquired on 14 December 2006 at 06:48:16 UTC, Title: Mobile Monitoring in Harris County
21j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
21k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
211	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
22a	Mobile Monitoring Path for Benzene in Harris County
22b	Mobile Monitoring Path for Toluene in Harris County
22c	Mobile Monitoring Path for Xylenes in Harris County
22d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
22e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
22f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
22g	Mobile Monitoring Path for Styrene in Harris County
22h	Mobile Monitoring Path for Mercury in Harris County
22i	TAGA File Event Summary, File: HSC035 Acquired on 14 December 2006 at 07:35:47 UTC, Title: Mobile Monitoring in Harris County
22j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
22k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
221	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
22m	TAGA Target Compound Averages during Sample Collection
23a	Mobile Monitoring Path for Benzene in Harris County
23b	Mobile Monitoring Path for Toluene in Harris County
23c	Mobile Monitoring Path for Xylenes in Harris County
0234-DFA	A-032907/TAGA xvi

11001	
23d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
23e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
23f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
23g	Mobile Monitoring Path for Styrene in Harris County
23h	Mobile Monitoring Path for Mercury in Harris County
23i	TAGA File Event Summary, File: HSC036 Acquired on 14 December 2006 at 08:54:28 UTC, Title: Mobile Monitoring in Harris County
23j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
23k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
231	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury
24a	Mobile Monitoring Path for Benzene in Harris County
24b	Mobile Monitoring Path for Toluene in Harris County
24c	Mobile Monitoring Path for Xylenes in Harris County
24d	Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County
24e	Mobile Monitoring Path for Methyl-t-butyl ether in Harris County
24f	Mobile Monitoring Path for 1,3-Butadiene in Harris County
24g	Mobile Monitoring Path for Styrene in Harris County
24h	Mobile Monitoring Path for Mercury in Harris County
24i	TAGA File Event Summary, File: HSC037 Acquired on 14 December 2006 at 09:42:01 UTC, Title: Mobile Monitoring in Harris County
24j	Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes
24k	Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether
241	Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

This page left intentionally blank.

1.0 INTRODUCTION

The United States Environmental Protection Agency (EPA)/Environmental Response Team (ERT) issued Work Assignment (WA) Number 0-234, Urban Air Toxics Study in Harris County, Texas (TX), to Lockheed Martin under the Response Engineering and Analytical Contract (REAC). An element of this WA was to conduct ambient air monitoring at various locations selected by EPA personnel, in Harris County, TX to assist EPA Region VI in its evaluation of urban air quality.

The air monitoring events were conducted on 12 December through 14 December 2006 (all dates and times are based on Coordinated Universal Time (UTC)) and were screening in nature. Mobile air monitoring for benzene (BNZ), toluene (TOL), xylenes (XYL), 1,3-butadiene (1,3-BDE), styrene (STYR), methyl-t-butyl ether (MTBE), and 1,2,3-trichloropropane (1,2,3-TCPA) was performed in accordance with the REAC Draft Standard Operating Procedure (SOP) # 1711, Trace Atmospheric Gas Analyzer (TAGA) IIe Operations. Monitoring for these target compounds was performed using a selected ion technique. Mobile air monitoring was performed using a MultiRAE[®] multi gas monitor equipped with a photoionization detector (PID) for volatile organic compounds (VOCs), and a toxic sensor for hydrogen sulfide (H₂S) in accordance with REAC SOP #2139, Multi Gas Monitor PGM-50/Photoionization Detector)(PID) MultiRAE Plus. Mobile air monitoring for H₂S was performed using a Jerome H₂S meter in accordance with manufacturer's instructions. Mobile air monitoring for mercury (Hg) using a Lumex was performed using draft REAC SOP #1729, Operation of the Lumex RA-915 Analyzer for Measuring Mercury Vapor Concentrations in Ambient Air. These compounds were selected based on information provided by the EPA, Region VI and ERT. Real time and position data for each monitoring period were provided by the TAGA mobile laboratory's built-in global positioning system (GPS), a Trimble model ProXRS. SUMMA[®] canister samples were collected from the TAGA sample stream during events selected by the work assignment manager (WAM).

2.0 METHODOLOGY

Air was drawn into the TAGA bus at a rate of approximately 90 liters per minute by the TAGA's sample air flow (SAF) system through a port in the top of the bus. The air then passed through a glass manifold. Air in the manifold was monitored by the TAGA, a Lumex mercury monitor, a Jerome H₂S monitor, and a MultiRAE® monitor, equipped with sensors for VOCs and H₂S. SUMMA® canister samples were also taken from the same manifold. Therefore, all of the monitoring instruments and the sample collection were from the same air stream. Concurrently with monitoring and sampling, the GPS position of the mobile laboratory was being recorded and displayed in real time, allowing the personnel on board to relate the monitoring data with location in real time. Meteorological data were collected by the State of Texas, Department of Environmental Quality (DEQ) and the University of Houston Institute for Multidimensional Air Quality Studies.

2.1 TAGA Air Monitoring

2.1.1 Mass Spectrometer/Mass Spectrometer General Theory

The ECA TAGA IIe is based upon the Perkin-Elmer API 365 mass spectrometer/mass spectrometer (MS/MS) and is a direct air monitoring instrument capable of detecting, in real time, trace levels of many compounds in ambient air. The technique of triple quadrupole MS/MS is used to differentiate and quantitate compounds.

The initial step in the MS/MS process involves simultaneous chemical ionization of the compounds present in a sample of ambient air. The ionization produces both positive and negative ions by donating or removing one or more electrons. The chemical ionization is a "soft" ionization technique, which allows ions to be formed with little or no structural fragmentation. These ions are called parent ions. The parent ions with different mass-to-charge (m/z) ratios are separated by the first quadrupole (the first MS of the MS/MS system).

The quadrupole scans selected m/z ratios allowing only the parent ions with these ratios to pass through the quadrupole. Parent ions with m/z ratios different than those selected are discriminated electronically and fail to pass through the quadrupole.

The parent ions selected in the first quadrupole are accelerated through a collision cell containing uncharged nitrogen molecules in the second quadrupole. A portion of the parent ions entering the second quadrupole fragments as they collide with the nitrogen molecules. These fragment ions are called daughter ions. This process, in the second quadrupole, is called collision-induced dissociation. The daughter ions are separated according to their m/z ratios by the third quadrupole (the second MS of the MS/MS system). The quadrupole scans selected m/z ratios, allowing only the daughter ions with these ratios to pass through the quadrupole. Daughter ions with m/z ratios different than those selected are discriminated electronically and fail to pass through the quadrupole. Daughter ions with the selected m/z ratios are then counted by an electron multiplier. The resulting signals are measured in ion counts per second (icps) for each parent/daughter ion pair selected. The intensity of the icps for each parent/daughter ion pair is directly proportional to the ambient air concentration of the organic compound that produced the ion pair. All of the ions discussed in this report have a single charge. The m/z ratios of all of the ions discussed are equal to the ion masses in atomic mass units (amu). Therefore, the terms parent and daughter masses are synonymous with parent and daughter ion m/z ratios.

2.1.2 TAGA Procedure

2.1.2.1 TAGA Mass Calibration

At the beginning of the sampling day, a gas mixture containing BNZ, TOL, XYL, tetrachloroethene, trichloroethene, trans-1,2-dichloroethene and vinyl chloride was introduced by a mass flow controller into the SAF, and the tuning parameters for the first quadrupole at 30, 78, 98, 106, 130 and 164 amu, and the third quadrupole at 30, 78, 91, 105, 129 and 166 amu were optimized for sensitivity and mass assignment. The peak widths were limited between 0.55 amu and 0.85 amu. The mass assignments were set to the correct values within 0.15 amu.

2.1.2.2 TAGA Response Factor Measurements

The calibration system consisted of three regulated gas cylinders with associated mass flow controllers. The mass flow controllers were checked with a National Institute of Standards and Technology (NIST) traceable flow rate meter. The calibration system was used to generate the analytes' response factors (RFs), in units of ion counts per second per part per billion by volume (icps/ppbv), which were then used to quantify trace components in ambient air. The TAGA was calibrated for the target compounds at the beginning and end of the monitoring day. The average of the beginning and end of day RFs were used to generate the intermediate response factor (IRF) used for the final report.

Three gas cylinder standards, which contained known mixtures of target compounds, certified by the supplier, were regulated at preset flow rates and diluted with ambient air. The dilution of the gas cylinder standards gave known analyte concentrations. The calibrations consisted of a zero point and five known concentrations obtained by setting the mass flow controller to 0, 10, 20, 40, 80, and 90 milliliters per minute (mL/min) with the sample air flow at 1,500 milliliters per second (mL/sec). The approximate concentration range of standards introduced into the TAGA was between 1 ppbv and 25 ppbv, except for 1,3-BDE, which ranged from approximately 9 to 200 ppbv. The RFs were then determined

by using a least-square-fit algorithm to calculate the slopes of the curves. The coefficient of variation was checked for each ion pair's RF to ensure that it was greater than 0.90. The software utilized the analytes' cylinder concentrations, gas flow rates, air sampling flow rates, and atmospheric pressure to calculate the RFs. The RFs were obtained for the ion pairs of each compound of interest in the cylinder. The first cylinder calibration was used for BNZ, TOL, and XYL. The second cylinder calibration was used for STYR, MTBE and 1,2,3-TCPA. The third cylinder calibration was used for 1,3-BDE. The second and third cylinder calibrations were performed simultaneously. The certifications of the gas standards are in Appendix A.

2.1.2.3 TAGA Air Monitoring

The TAGA performed mobile ambient air monitoring using a three-foot length of corrugated Teflon® sampling hose connected to a glass transfer tube passing through the roof of the TAGA bus. Air was continuously drawn through the Teflon® hose at a flow-rate of approximately 1,500 mL/sec. The air then passed through a glass splitter where the pressure gradient between the mass spectrometer core and the atmosphere caused a sample flow of approximately 10 mL/min into the ionization source through a heated transfer line. The flow into the TAGA source was controlled so that the ionization source pressure was maintained at an optimum value of approximately 1.6 torr. The remaining air flow was drawn through the air pump and vented from the TAGA.

The TAGA performed air monitoring in the parent/daughter ion monitoring mode. As the air monitoring proceeded, the operator pressed the letter keys (flags) sequentially to denote events or locations during the monitoring. This information was also recorded on the operator's log sheet. The intensity of each parent ion/daughter ion monitored by the TAGA, in turn, is recorded by the computer in a file on the hard disk. One set of measurements of all of the ions is called a sequence.

2.2 MultiRAE® Monitoring

RAE Systems MultiRAE Plus Monitor PGM-50 Photoionization Detector - The MultiRAE is a portable, hand-held, microprocessor controlled instrument designed for measuring the presence of photoionizable chemicals (VOC) in air at part per million levels. In addition the MultiRAE comes equipped with interchangeable electrochemical sensors for oxygen and toxic gases and a catalytic bead sensor for combustible gases. Its response depends on the chemical type as well as the concentration. As a PID, the MultiRAE does not distinguish one type of chemical from another, but displays a number indicating the total concentration of all photoionizable VOC compounds in the sample. The reporting limits are: VOC, 0.1 parts per million by volume (ppmv); H_2S , 1 ppmv.

2.3 Jerome H₂S Meter Monitoring

Jerome 631-X Hydrogen Sulfide Analyzer - The 631-X is a portable, hand-held, microprocessor controlled instrument using gold film technology to monitor for hydrogen sulfide. The 631-X can monitor for hydrogen sulfide at parts per billion levels. The reporting limit is 0.003 ppbv.

2.4 Lumex RA-915 Mercury Meter Monitoring

The operating principle of the Lumex RA-915 is based on the effect of differential Zeeman atomic absorption spectrometry combined with high-frequency modulation of polarized light. The radiation source (mercury lamp) is positioned in a permanent magnetic field. The resonance mercury line [at

254 nanometers (nm)] is split into three polarized Zeeman components: π , σ_+ , and σ_- respectively). When radiation is observed along the magnetic field lines, only the σ_+ and σ_- components' radiation is registered. One σ component is within the mercury absorption line envelope and the other is outside it. In the absence of mercury vapor, the intensity of both σ components is equal. Mercury atoms cause a proportional, concentration-related difference in the intensity of the σ components. A polarization modulator is used to separate the σ components in time. Because the spectral shifts of the σ components are significantly smaller than the width of molecular absorption bands and scattering spectra, the background absorption caused by interfering components generally does not affect the analyzer measurement. A multi-path cell with an effective length of 10 meters (m) is used to enhance the sensitivity of analysis.

The instrument was calibrated by the manufacturer prior to arriving at the site, and the zero was checked automatically by the instrument during operation. The reporting limit is 10 nanograms per cubic meter (ng/m^3) .

2.5 Global Positioning System and Tracking

The mobile laboratory is equipped with a Trimble ProXRS GPS that is linked to a personal computer equipped with a geographic information system (GIS) mapping system that displays roads, satellite photographs and locations of industrial facilities onto a real-time display of the mobile laboratory's position. The display illustrates the path taken during each monitoring period, allowing the personnel on board to relate the real time monitoring data produced by on-board instrumentation to the physical location and potential sources. The instrument and computer clocks in the mobile laboratory are synchronized with the satellite data from the GPS, so the monitoring data can be directly associated with the position of the mobile laboratory as indicated by the GPS system at any time during any monitoring period.

2.6 Air Sample Collection

Grab samples of ambient air were collected into SUMMA® canisters from the air inlet manifold at times selected by the WAM. Grab samples are appropriate only in situations where screening samples are taken to assess for future sampling activities. These samples were generally collected when one or more of the monitoring instruments indicated the presence of an event of interest. A grab sample of ambient air was drawn through a sampling line into an evacuated SUMMA® passivated canister. Filling the canister takes about one minute. The start and end times for sample collection were entered into the TAGA log sheet and file as a pair of flags, so the sampling locations could be plotted on the GPS map. After the air sample was collected, the canister valve was closed, the inlet was capped, an identification tag was attached to the canister, and the canister was transported to a laboratory for analysis.

2.7 Meteorological Monitoring

Meteorological data were provided by the TX DEQ and the University of Houston Institute for Multidimensional Air Quality Studies for 12 December through 14 December 2006. TX DEQ data were collected at monitoring stations at an elevation of two meters and were operated in or near Harris County. University of Houston data were collected from a multi-level 43-meter tower in La Marque, about 10-miles south of Harris County. The wind speed and direction data from the TX DEQ monitoring location most closely associated by time, type of terrain, and location with each TAGA monitoring period are summarized in Table 1, along with the University of Houston data. The meteorological data for selected local reporting stations and the meteorological data for the University of Houston monitoring site are presented in Appendix B.

3.0 AIR MONITORING RESULTS

The TAGA mobile laboratory was used to conduct mobile monitoring around the Harris County, TX area.

3.1 Mobile Monitoring Paths

Figures 1a, 1b, 1c, 1d, 1e, 1f, 1g, and 1h through 24a, 24b, 24c, 24d, 24e, 24f, 24g, and 24h present the monitoring paths used by the TAGA mobile laboratory as it traveled around the Harris County area. Each monitoring path is color coded to represent the concentration range of the compound of interest at various locations along the monitoring path. The compounds presented by the color-coded monitoring paths are: benzene, Figures 1a through 24; toluene, Figures 1b through 24b; xylenes, Figures 1c through 24c; 1,2,3-trichloropropane, Figures 1d through 24d; methyl-t-butyl ether, Figures 1e through 24e; 1,3-butadiene, Figures 1f through 24 f; styrene, Figures 1g through 24g; mercury, Figures 1h through 24h. The maps representing the monitoring paths are marked with letters. These letters are the "flags" that the TAGA operator placed into the file while it was being acquired. These "flags" mark events and they are carried through the rest of the data presentation.

3.2 TAGA File Event Summaries

Figures 1i through 24i present the TAGA file event summaries. The TAGA file event summaries are the observations made during the acquisition of the file by the TAGA operator, along with the times from the TAGA file and the letter "flags" used to mark the data as they were being recorded by the TAGA computer.

3.3 Graphical Presentations

Figures 1j, 1k and 1l through 24j, 24k, and 24l are the graphical representations of the files. A graph of each target compound or element concentration is presented with ppbv or ng/m³ plotted on the vertical axis, and time into the run, in minutes, on the horizontal axis. The target compound concentration was calculated by averaging the concentrations obtained from the ion pairs that were monitored for each target compound. In some cases, there was a positive interference with one or more ion pairs for one or more of the compounds. When the interferences occurred, the remaining ion pairs were used for the graphic representation, and the detection limits (DLs) and quantitation limits (QLs) determinations were for the remaining ion pairs. There are two horizontal lines on each graph. The lower horizontal line running through each graph is set at the detection limit for the compound. The detection limit is three times the standard deviation of the target compound concentration measured in an ambient background sample. The higher horizontal line is set at the concentration equal to the quantitation limit for the target compound. The quantitation limit is ten times the standard deviation of the target compound concentration measured in an ambient background sample. When high concentrations are represented, the lower detection limit line may not be readily discerned. Transient, momentary spikes above the quantitation limit line are occasionally observed. These spikes are electronic in nature and do not affect average concentrations and may be distinguished from elevated concentrations because these transient spikes are only present for one sequence.

3.4 TAGA Target Compound Summaries

Figures 5m, 9m, 10m, 13m, 15m, 17m, 18m, and 22m present the TAGA target compound summaries. These figures contain the concentrations of the target compounds, averaged over time, at the various locations logged into the TAGA file event summaries. Target compound concentrations were averaged from the start to the end of sample collection for each SUMMA® canister sample. A comparison of the results for the TAGA with the corresponding SUMMA® canister sample is provided in Table 2.

4.0 DISCUSSION OF RESULTS

During each mobile monitoring period, the TAGA bus monitored continuously while moving along the roads in Harris County, Texas. In some cases, there was a positive interference with one or more ion pairs. When the interferences occurred, the remaining ion pairs were used for the graphic representations, and the DLs and QLs determinations. When the concentration profile for one or more compounds appear as an extended plume, with the peak concentration at or above the QL and the width of the plume extending at least one minute, the plume is identified in the discussion. Only the highest results above the QL are listed below. The highest concentrations that were within the calibrated range for the TAGA were approximately 200 ppbv for 1,3-butadiene, and approximately 20 ppbv for the other target substances. Values reported above these levels are considered estimated.

Wind roses are reported for the State DEQ monitoring station(s) closest to the monitoring path, along with data provided by the University of Houston Institute for Multidimensional Air Quality Studies from the 43-meter multi-level tower approximately 15-miles south of the study area. There was an inversion in place during most of the study that produced calm to very low wind speeds at 10-meters and below, but winds of 6-10 miles per hour (mph) at 20 meters and above. This situation can result in diffusive impact below the inversion from plumes that exist above and contact the inversion. The actual plume cannot penetrate the inversion. However, diffusion can produce elevated concentrations in the areas of calm air that are directly below the plume, and which mimic the shape of the plume that exists above the inversion, but with concentrations lower than exist within the actual plume.

Twelve grab samples were collected in SUMMA® canisters from the same manifold used by all of the monitoring instruments. The start and end of sample collection events were indicated by flags inserted into the TAGA file. The average concentration for each of the TAGA target compounds was reported in the TAGA target compound survey summaries for the time period corresponding to the collection of each of the grab samples. The analytical GC/MS results provided by EPA Region VI are presented in Appendix C.

In addition to monitoring with the TAGA, the air stream drawn past the TAGA inlet was monitored in real time using: a MultiRAE $^{\otimes}$ multi gas monitor equipped with a PID for VOCs and a toxic sensor for H₂S; a Jerome H₂S meter; and a Lumex Hg meter. The complete graphical representations for the MultiRAE $^{\otimes}$ data are presented in Appendix D. The complete graphical representations for the Jerome data are presented in Appendix E. The complete graphical representations for the Lumex data are presented with the TAGA data in Section 4, in the Figures, and in Appendix F.

The laptop used to log the data from the MultiRAE[®] suffered a major problem during the second day of monitoring, and those data were lost. The H_2S detector in the Jerome became somewhat unstable, and signal was lost during part of each monitoring day, with the problem becoming more severe each day. It was subsequently returned to the factory for evaluation, and the detector element was replaced.

Choate Road, between flags P and Q; and styrene, 42 ppbv at 39.747 minutes, on Bay Area Boulevard, between Port Road and Choate Road, between flags P and Q. 1,2,3-Trichloropropane and 1,3-butadiene were not detected above their QLs. The following ion pairs were not included because of local interference: 1,3-butadiene, 54/54; 1,2,3-trichloropropane, 112/75. The highest instantaneous concentration of H_2S registered by the Jerome monitor was 0.03 ppbv at 45.0 minutes, at the end of the monitoring period, adjacent to Huish Detergent, after flag R.

- 4.2 Mobile Monitoring in Harris County, HSC005 - Mobile monitoring was performed on 12 December 2006 at 03:35:46 UTC and is represented in Figures 2a through 2l, starting at location A and ending at location O along the path depicted in Figures 2a through 2h. The wind speed at the CAMS station C243 (La Porte) averaged 2.6 mph from 129 degrees, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 4.1 mph from 166 degrees, and 7.2 mph from 160 degrees at the 43-meter level. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The MultiRAE® monitor did not indicate the presence of VOC or H₂S above their reporting limits. The following instantaneous maxima were highest: xylenes, 48 ppbv, at 34.075 minutes, on Tenth Street, between State Highway 146 and Barbours Cut Boulevard, between flags K and L; and styrene, 5.6 ppbv at 2.978 minutes, on Bay Area Boulevard, between Huish Detergent and Fairmont Parkway, between flags A and B, 12 ppbv at 14.149 minutes, on Highway 146, between Fairmont Parkway and State Highway 225, between flags C and D, and 10 ppbv at 34.075 minutes, on Tenth Street, between State Highway 146 and Barbours Cut Boulevard, between flags K and L. Benzene, Toluene, 1,2,3-trichloropropane, methyl-t-butyl ether, and 1,3-butadiene were not detected above their QLs. Apparent excursions above their QL's were momentary in nature, and could be attributed to electronic interference. The highest instantaneous concentrations of mercury were: 120 ng/m³ at 11.730 minutes, on State Highway 146, just past Fairmont Parkway, near flag C, and 36 ng/m³ at 38.900 minutes, on State Highway 146, between Adams Street and Fairmont Parkway, between flags M and N. The highest instantaneous concentration of H₂S registered by the Jerome monitor was 0.037 ppbv at 6.967 minutes, while turning onto Fairmont Parkway at Bay Area Boulevard, at flag B.
- 4.3 Mobile Monitoring in Harris County, HSC006 - Mobile monitoring was performed on 12 December 2006 at 04:27:27 UTC and is represented in Figures 3a through 3l, starting at location A and ending at location L along the path depicted in Figures 3a through 3h. The wind speed at the CAMS station C243 (La Porte) averaged 3.6 mph from 130 degrees, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 4.4 mph from 156 degrees, and 7.7 mph from 154 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The MultiRAE® monitor did not indicate the presence of VOC or H₂S above their reporting limits. The following instantaneous maxima were highest: benzene, 23 ppbv at 3.922 minutes, on Fairmont Parkway, between Bay Area Boulevard and Driftwood Drive, between flags A and B, 9.7 ppbv at 20.101 minutes, on Fairmont Parkway, between Driftwood Drive and Bay Area Boulevard, between flags F and G; toluene, 190 ppbv at 7.739 minutes, on Bay Park Road, between Fairmont Parkway and the railroad tracks, between flags C and D, 130 ppbv at 17.089 minutes, on Bay Park Road, between the railroad tracks and Fairmont Parkway, between flags D and E; xylenes, 26 ppbv at 7.739 minutes, on Bay Park Road, between Fairmont Parkway and the railroad tracks, between flags C and D, 20 ppby at 16.809 minutes, on Bay Park Road, between the railroad tracks and Fairmont Parkway, between flags D and E, 63 ppbv at 30.011 minutes, on State Highway 146, between Fairmont Parkway and State Highway 225, between flags H and I; and styrene, 3.7 ppbv at 30.046 minutes, on State Highway 146, between Fairmont Parkway and State Highway 225, between flags H and I. 1,2,3-Trichloropropane, methyl-t-butyl ether, and 1,3-butadiene were not detected above their QLs. The following ion pair was not included because of local interference: 1,3-butadiene, 54/54. The highest instantaneous concentration of mercury was: 51 ng/m3 at 26.000 minutes, on State Highway 146, just past Fairmont Parkway, near flag H. The highest instantaneous concentration of H₂S registered by the Jerome monitor was 0.020 ppbv at 2.033

- minutes, while preparing to start mobile monitoring on Fairmont Parkway at Bay Area Boulevard, before flag A.
- Mobile Monitoring in Harris County, HSC007 Mobile monitoring was performed on 12 4.4 December 2006 at 05:15:22 UTC and is represented in Figures 4a through 4l, starting at location A and ending at location G along the path depicted in Figures 4a through 4h. The wind speed at the CAMS station C35 (Deer Park) averaged 1.7 mph from 244 degrees, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 4.9 mph from 157 degrees, and 8.4 mph from 149 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The MultiRAE® and Lumex monitors did not indicate the presence of VOC, H₂S or Hg above their reporting limits. The following instantaneous maxima were highest: benzene, 77 ppby at 16.181 minutes, on Tidal Road near Battleground Road, between flags B and C, and 87 ppbv at 18.597 minutes, on Battleground Road between Tidal Road and Miller Cut Off Road, between flags C and D; toluene, 530 ppbv at 16.181 minutes, on Tidal Road near Battleground Road, between flags B and C, and 180 ppby at 18.597 minutes, on Battleground Road between Tidal Road and Miller Cut Off Road, between flags C and D; xylenes, 130 ppbv, at 16.181 minutes, on Tidal Road near Battleground Road, between flags B and C, 1,3-butadiene, 79 ppbv at 15.936 minutes, on Tidal Road near Battleground Road, between flags B and C; and styrene, 2.0 ppbv at 16.356 minutes and 2.4 ppbv at 17.126 minutes, both on Tidal Road near Battleground Road, between flags B and C, and 3.5 ppbv at 18.632 minutes, on Battleground Road between Tidal Road and Miller Cut Off Road, between flags C and D. 1,2,3-trichloropropane and methyl-t-butyl ether were not detected above their QLs. Apparent excursions for methyl-t-butyl ether above the QL were due to a single ion pair, and could be attributed to electronic interference. The highest instantaneous concentration of H₂S registered by the Jerome monitor was 0.011 ppbv at 26.133 and 27.483 minutes, just before the instrument ceased recording data at 27.817 minutes, while stopped at a railroad crossing, after flag E.
- Mobile Monitoring in Harris County, HSC008 Mobile monitoring was performed on 12 4.5 December 2006 at 06:46:37 UTC and is represented in Figures 5a through 5m, starting at location A and ending at location P along the path depicted in Figures 5a through 5h. The wind speed at the CAMS station C1029 (Manchester) averaged 2.2 mph from 261 degrees, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 3.7 mph from 251 degrees, and 5.6 mph from 239 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The MultiRAE® and Lumex monitors did not indicate the presence of H₂S or Hg above their reporting limits. The Jerome monitor did not record data during this monitoring period. SUMMA® canister sample number G1567 was collected between flags K and L, and SUMMA® canister sample number K0175 was collected between flags M and N. The average target compound concentrations measured by the TAGA while collecting sample number G1567 were: benzene, 0.50J ppbv; toluene, 1.4J ppby; xylenes, 2.4 ppby; methyl-t-butyl ether, 9.6 ppby; and styrene, 0.19J ppby, while 1,2,3-trichloropropane and 1,3-butadiene were not detected above their DLs. The average target compound concentrations measured by the TAGA while collecting sample number K1075 were: benzene, 0.80J ppby; toluene, 2.4J ppby; xylenes, 5.0 ppby; methyl-t-butyl ether, 27 ppby; and styrene, 0.21J ppby, while 1,2,3-trichloropropane and benzene were not detected above their DLs (Figure 5m and Table 2). The following instantaneous maxima were highest: benzene, 84 ppbv at 12.853 minutes; toluene, 17 ppbv, at 12.888 minutes, both on State Highway 225 West, near Allen Genoa Road, near flag E; xylenes, 18 ppbv, at 24.969 minutes, on Clinton Drive East, between Fidelity Street and the U-turn location, between flags I and J; and 20 ppbv at 41.848 minutes, on Clinton Drive East, shortly after resuming mobile monitoring at flag O; methyl-t-butyl ether, 35 ppbv at 27.911 minutes, on Clinton Drive East, between Fidelity Street and the U-turn location, between flags I and J; 20 ppbv at 31.378 and 31.518 minutes, both near flag K, at the start of collection of sample number G1567, 62 ppbv at 33.654 minutes, while stationary after collecting sample number G1567, 49 ppbv at 41.568 minutes, just after resuming mobile

monitoring on Clinton Drive East at flag O; and styrene, 1.7 ppbv at 9.491, on State Highway 225 West, between Red Bluff Road and Richey Street, between flags C and D. 1,2,3-Trichloropropane and 1,3-butadiene were not detected above their QLs. Apparent excursions above the 1,2,3-trichloropropane QL were due to a single ion pair, and could be attributed to electronic interference. The following ion pairs were not included because of local interference: 1,3-butadiene, 54/54; methyl-t-butyl ether, 89/41, 1,2,3-trichloropropane, 112/75 and 112/77. The highest concentration of VOC indicated by the MultiRae was 0.5 ppmv at 41.783 minutes, on Clinton Drive East, between flags O and P.

- 4.6 Mobile Monitoring in Harris County, HSC009 - Mobile monitoring was performed on 12 December 2006 at 07:41:53 UTC and is represented in Figures 6a through 6l, starting at location A and ending at location K along the path depicted in Figures 6a through 6h. The wind speed at the CAMS station C403 (Clinton) averaged 4.0 mph from 280 degrees, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 3.9 mph from 256 degrees, and 6.3 mph at 248 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The MultiRAE® and Lumex monitors did not indicate the presence of VOC, H₂S, or Hg above their reporting limits. The following instantaneous maxima were highest: benzene, 2.2 ppbv at 40.413 minutes, on Market Street, between Holland Avenue and Miles Street, between flags J and K; xylenes, 11 ppby, at 13.904 minutes, on Main Street, between Avenue K and the U-turn, between flags C and D; and styrene, 0.53 ppbv at 26.896 minutes, on State Highway 610, between Clinton Drive and Market Street, between flags G and H. Toluene, 1,2,3-trichloropropane, methyl-t-butyl ether, and 1,3-butadiene were not detected above their QLs. Apparent excursions for toluene and MTBE above their QL's were momentary in nature, and could be attributed to electronic interference. The highest instantaneous concentration of H₂S registered by the Jerome monitor was 0.012 ppbv at 40.383 minutes, on Market Street, between Holland Avenue and Miles Street, between flags J and K.
- Mobile Monitoring in Harris County, HSC010 Mobile monitoring was performed on 12 4.7 December 2006 at 08:31:32 UTC and is represented in Figures 7a through 7l, starting at location A and ending at location J along the path depicted in Figures 7a through 7h. The wind speed at the CAMS station C403 (Clinton) averaged 2.3 mph from 246 degrees, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 5.8 mph from 292 degrees, and 8.5 mph from 287 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The MultiRAE® and Lumex monitors did not indicate the presence of VOC, H₂S or Hg above their reporting limits. The following instantaneous maxima were highest: benzene, 2.4 ppbv at 38.487 minutes, on Sheldon Road, between Market Street and North Wood Drive, between flags H and I; xylenes, 6.8 ppbv at 21.048 minutes, on Haden Road, between the U-turn and the Interstate 10 service road, between flags E and F; and styrene, 1.2 ppbv at 7.040 minutes, on Haden Road, between flags C and D, 1.3 ppbv at 21.538 minutes, on Haden Road between flags E and F, 1.5 ppbv at 40.203 minutes, on Sheldon Road, near North Wood Drive, between flags H and I. Toluene, 1,2,3trichloropropane, methyl-t-butyl ether, and 1,3-butadiene were not detected above their QLs. Apparent excursions for toluene and MTBE above their QL's were momentary in nature, and could be attributed to electronic interference. The highest instantaneous concentration of H₂S registered by the Jerome monitor was 0.016 ppby at 1.333 minutes, while preparing to start mobile monitoring on Market Street, before flag A.
- 4.8 Mobile Monitoring in Harris County, HSC011 Mobile monitoring was performed on 12 December 2006 at 09:19:44 UTC and is represented in Figures 8a through 8l, starting at location A and ending at location F along the path depicted in Figures 8a through 8h. The wind speed at the CAMS station C15 (Channelview) averaged 1.2 mph from 270 degrees, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 3.9 mph from 294 degrees, and 6.0 mph from 287 degrees at 43-meters. There was no precipitation during the

monitoring period at the University of Houston meteorological tower. The MultiRAE® and Lumex monitors did not indicate the presence of VOC, H_2S or H_2 above their reporting limits. The following instantaneous maxima were highest: benzene, 2.1 ppbv at 21.082 minutes, on Sheldon Road, between Miller Road Number One and the Crosby Freeway, between flags E and F; xylenes, 3.1 ppbv at 20.276 minutes, on Sheldon Road, between Miller Road Number One and the Crosby Freeway, between flags E and F; and styrene, 1.7 ppbv at 7.739 minutes, on Wallisville Road, between Sheldon Road and the U-turn, between flags B and C, 3.2 ppbv at 13.132 minutes, on Wallisville Road, between the U-turn and Sheldon Road, between flags E and F. Toluene, 1,2,3-trichloropropane, methyl-t-butyl ether, and 1,3-butadiene were not detected above their QLs. The highest instantaneous concentration of H_2S registered by the Jerome monitor was 0.009 ppbv at 24.117 minutes, on Sheldon Road, just before ending the monitoring period at the Crosby Freeway, just before flag F.

- 4.9 Mobile Monitoring in Harris County, HSC017 - Mobile monitoring was performed on 13 December 2006 at 02:39:08 UTC and is represented in Figures 9a through 9m, starting at location A and ending at location Y along the path depicted in Figures 9a through 9h. The wind speed at the CAMS station C1029 (Manchester) was calm, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 4.5 mph from 312 degrees, and 10.1 mph from 323 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The laptop used to log the MultiRAE® data suffered a major problem and those data were lost. The Lumex monitor did not indicate the presence of Hg above its reporting limit. Xylenes were present in the range of approximately 10 ppbv to 20 ppbv throughout much of the housing area, except for the eastern end of the development, where the levels dropped below 10 ppbv. SUMMA® canister sample number F1582 was collected between flags W and X. The average target compound concentrations measured by the TAGA while collecting sample number F1582 were: toluene, 5.6J ppbv; xylenes, 5.2 ppbv; and styrene, 3.5 ppby, while benzene, 1,2,3-trichloropropane, methyl-t-butyl ether, and 1,3-butadiene were not detected above their DLs (Figure 9m and Table 2). The following instantaneous maxima were highest: benzene, 16 ppby, toluene, 24 ppby, xylenes, 30 ppby, all at 34.531 minutes, on Central Street while crossing the railroad tracks, between East Avenue I and Lawndale Street, between flags T and U. Styrene was present on Lawndale Street east of Central Street, with an instantaneous maximum of 4.8 ppbv at 42.025 minutes, while performing stationary monitoring at the sample number F1582 location. 1,2,3-Trichloropropane, methyl-t-butyl ether, and 1,3butadiene were not detected above their QLs. The highest instantaneous concentration of H₂S registered by the Jerome monitor was 0.024 ppbv at 36.867 minutes, on Lawndale Street, between Central Street and stopping for SUMMA® sampling, between flags U and V.
- 4.10 Mobile Monitoring in Harris County, HSC018 - Mobile monitoring was performed on 13 December 2006 at 03:26:36 UTC and is represented in Figures 10a through 10m, starting at location A and ending at location R along the path depicted in Figures 10a through 10h. The wind speed at the CAMS station C1029 (Manchester) was calm, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 3.1 mph from 328 degrees, and 9.3 mph from 333 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The laptop used to log the MultiRAE® data suffered a major problem and those data were lost. SUMMA® canister sample number A1498 was collected between flags D and E, and SUMMA® canister sample number F1496 was collected between flags I and J. The average target compound concentrations measured by the TAGA while collecting sample number A1498 were: toluene, 8.4J ppby; xylenes, 10 ppby; 1,3-butadiene, 3.9J; and styrene, 180 ppbv. Benzene, 1,2,3-trichloropropane, and methyl-t-butyl ether were not detected above their DLs. The average target compound concentrations measured by the TAGA while collecting sample number F1496 were: benzene, 30 ppby; toluene, 12J ppby; xylenes, 7.9 ppby; 1,2,3-trichloropropane, 0.11J ppby, methyl-t-butyl ether, 4.3 ppby; 1,3-butadiene, 6.1J, and styrene, 5.0 ppbv (Figure 10f and Table 2). The following instantaneous maxima were highest: benzene, 60 ppbv at 16.739 minutes, on Allen Genoa Road, between Lawndale Street and Gober

Avenue, between flag H and prior to stopping to collect sample number F1496 at flag I; toluene, 19 ppbv at 27.000 minutes, on Allendale Road, between Allen Genoa Road and Flagstone Terrace , between flags M and N; xylenes, 22 ppbv at 27.000 minutes, on Allendale Road, between Allen Genoa Road and Flagstone Terrace, between flags M and N, and 24 ppbv at 43.599 minutes on Galveston Road, between Central Street and State Highway 610, between flags Q and R; methyl-tbutyl ether, 5.2 ppbv at 15.969 minutes on Allen Genoa Road, between collecting sample number F1496 and Grober Avenue, between flags J and K, and 5.5 ppbv at 28.751 minutes, on Allendale Road, while passing Flagstone Terrace, at flag N; 1,3-butadiene, 21 ppbv at 9.385 minutes, on Goodyear Drive, between the U-turn and Lawndale Street, between flags F and G; and styrene, 310 ppbv at 5.463 minutes, at flag C, on Goodyear Drive while passing State Highway 275. 1,2,3-Trichloropropane, was not detected above its QLs. The following ion pair was not included because of local interference: methyl-t-butyl ether, 89/29. The highest instantaneous concentration of mercury was: 53 ng/m³ at 23.100 minutes, on Allen Genoa Road, near Southmore Avenue, near flag L. The highest instantaneous concentration of H₂S registered by the Jerome monitor was 0.035 ppbv at 3.067 minutes, on Lawndale Street, between starting mobile monitoring and Goodyear Drive, between flags A and B, before the instrument ceased recording data at 7.15 minutes, while collecting SUMMA® sample A1498.

- 4.11 Mobile Monitoring in Harris County, HSC019 - Mobile monitoring was performed on 13 December 2006 at 04:17:16 UTC and is represented in Figures 11a through 11l, starting at location A and ending at location M along the path depicted in Figures 11a through 11h. The wind speed at the CAMS station C1029 (Manchester) was calm, and the wind speed at the 20meter level of the University of Houston meteorological tower averaged 2.8 mph from 343 degrees, and 7.6 mph from 347 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The laptop used to log the MultiRAE® data suffered a major problem and those data were lost. The Jerome monitor did not record data during this monitoring period. The following instantaneous maxima were highest: benzene, 32 ppbv at 31.027 minutes, on Lawndale Street, between Goodyear Drive and the railroad crossing, between flags H and I; toluene, 85 ppbv at 41.673 minutes, on Light Company Road, between Lawndale Street and the U-turn, between flags K and L, and 100 ppbv at 44.965 minutes, on Light Company Road at the end of the monitoring period, after flag M; xylenes, 51 ppbv at 33.829 minutes, on Lawndale Street, between Goodyear Drive and the railroad crossing, between flags H and I, 56 ppbv at 41.218 minutes, on Light Company Road, between Lawndale Street and the U-turn, between flags K and L, and 59 ppbv at 44.965 minutes, on Light Company Road at the end of the monitoring period, after flag M; methyl-t-butyl ether, 16 ppby at 44,684 minutes on Light Company Road at the end of the monitoring period, after flag M; 1,3-butadiene, 40 ppbv at 44.86 minutes, on Light Company Road at the end of the monitoring period, after flag M; and styrene, 5.5 ppby at 31.062 minutes, on Lawndale Street, between Goodyear Drive and the railroad crossing, between flags H and I. 1,2,3-Trichloropropane was not detected above its QLs. The highest instantaneous concentration of mercury was: 47 ng/m³ at 38.600 minutes, on Lawndale Street, between the railroad crossing and Light Company Road, between flags J and K.
- 4.12 Mobile Monitoring in Harris County, HSC020 Mobile monitoring was performed on 13 December 2006 at 05:05:55 UTC and is represented in Figures 12a through 12l, starting at location A and ending at location L along the path depicted in Figures 12a through 12h. The wind speed at the CAMS station C1015 (Lynchburg) averaged 1.9 mph from 352 degrees, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 3.2 mph from 43 degrees, and 6.8 mph from 27 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The Lumex monitor did not indicate the presence of Hg above its reporting limit. The laptop used to log the MultiRAE® data suffered a major problem and those data were lost. The Jerome monitor did not record data during the first 15-minutes of the monitoring period. The following instantaneous maxima were highest: benzene, 64 ppbv at 2.487 minutes, southward on Light Company Road, just after initiating mobile monitoring, between flags A and B, 130 ppbv at 23.008 minutes on State

Highway 225 while passing Center Street, between flags F and G, 720 ppbv at 42.023 minutes, and 180 ppbv at 44.754 minutes, both on Tidal Road while stopped for a train, after flag L; toluene, 120 ppbv at 0.000 minutes and at 0.350 minutes, on Light Company Road while stationary at the start of the monitoring period before flag A, 160 ppbv at 2.487 minutes, on Light Company Road between the start of mobile monitoring and West Shaw Avenue, between flags A and B, 89 ppbv at 18.490 minutes, on State Highway 225, between Red Bluff Road and Center Street, between flags E and F, and 110 ppbv at 25.879 minutes, on State Highway 225, between Tidal Road and Battleground Road, between flags G and H; xylenes, 99 ppbv at 0.000 minutes and 88 ppbv at 0.280 minutes, on Light Company Road while stationary at the start of the monitoring period before flag A, 87 ppbv at 2.487 minutes, on Light Company Road between the start of mobile monitoring and West Shaw Avenue, between flags A and B, 41 ppby at 10.611 minutes, on Red Bluff Road, between Richey Street and State Highway 225, between flags D and E, 47 ppbv at 18.630 minutes, on State Highway 225, between Red Bluff Road and Center Street, between flags E and F, and 32 ppbv at 25.879 minutes, on State Highway 225, between Tidal Road and Battleground Road, between flags G and H; 1,2,3-Trichloropropane, 0.55 ppbv at 23.603 minutes, on State Highway 225, between Central Street and Tidal Road, between flags F and G; methyl-tbutyl ether, 11 ppbv at 0.280 minutes, on Light Company Road while stationary at the start of the monitoring period, between, before flag A, 23 ppbv at 2.522 minutes, on Light Company Road between the start of mobile monitoring and West Shaw Avenue, between flags A and B, 17 ppbv at 17.615 minutes, on State Highway 225, between Red Bluff Road and Center Street, between flags E and F, 34 ppbv at 24.478 minutes, on State Highway 225, between Tidal Road and Battleground Road, 42 ppbv at 42.093 minutes, on Tidal Road while stopped for a train, after flag L; 1,3-butadiene, 70 ppbv at 2.487 minutes, on Light Company Road between the start of mobile monitoring and West Shaw Avenue, between flags A and B; and styrene, 4.6 ppbv at 2.522 minutes, on Light Company Road between the start of mobile monitoring and West Shaw Avenue, between flags A and B, and 3.0 ppbv at 25.144 minutes, on State Highway 225, between Tidal Road and Battleground Road. The highest instantaneous concentration of H₂S registered by the Jerome monitor was 0.12 ppbv at 22.967 minutes, on State Highway 225, while passing Center Street, at flag F.

4.13 Mobile Monitoring in Harris County, HSC021 - Mobile monitoring was performed on 13 December 2006 at 05:53:57 UTC and is represented in Figures 13a through 13m, starting at location A and ending at location I along the path depicted in Figures 13a through 13h. The wind speed at the CAMS station C1015 (Lynchburg) averaged 2.7 mph from 347 degrees, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 3.2 mph from 59 degrees, and 4.7 mph from 44 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The laptop used to log the MultiRAE® data suffered a major problem and those data were lost. SUMMA® canister sample number B0125 was collected between flags B and C. The average target compound concentrations measured by the TAGA while collecting SUMMA® canister sample number B0125 were: benzene, 61 ppbv; toluene, 5.7J ppbv; xylenes, 8.8 ppbv; methyl-t-butyl ether, 50 ppbv; and styrene, 0.71J ppbv, while 1,2,3-trichloropropane and 1,3-butadiene were not above their detection limits (Figure 13m and Table 2). The following instantaneous maxima were highest: benzene, 160 ppbv at 4.203 minutes, while stopped on Tidal Road collecting sample number B0125, between flags B and C, 180 ppbv at 6.515 minutes, on Tidal Road, after resuming mobile monitoring subsequent to collecting sample number B0125, between flags D and E; toluene, 57 ppbv at 24.899 minutes, on Tidal Road, near State Highway 225 Service Road, between flags F and G; xylenes, 110 ppbv at 24.794 minutes on Tidal Road, near State Highway 225 Service Road, between flags F and G; methyl-t-butyl ether, 66 ppbv at 3.153 and 3.363 minutes on Tidal Road, while stopped just prior to collecting sample number B0125, between flags A and B; 1,3butadiene, 21 ppbv at 31.343 minutes, during the last monitoring sequence of the run, while stopped on Center Street, near State Highway 225, after flag I; and styrene, 34 ppbv at 6.550 minutes, on Tidal Road after resuming mobile monitoring subsequent to collecting sample number B0125, just after flag D. 1,2,3-Trichloropropane was not detected above its QLs. The highest instantaneous concentration of mercury was: 28 ng/m^3 at 14.200 minutes, on Tidal Road, between flags D and E. The highest instantaneous concentration of H_2S registered by the Jerome monitor was 0.39 ppbv at 10.433 and 11.117 minutes, on Tidal Road, between flags D and E. The following ion pairs were not included due to local interference:1,3-butadiene, 54/54, and MTBE, 89/29.

- 4.14 Mobile Monitoring in Harris County, HSC022 - Mobile monitoring was performed on 13 December 2006 at 07:13:11 UTC and is represented in Figures 14a through 14l, starting at location A and ending at location N along the path depicted in Figures 14a through 14h. The wind speed at the CAMS station C243 (La Porte) averaged 2.7 mph from 279 degrees, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 4.0 mph from 53 degrees, and 7.8 mph from 56 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The Lumex monitor did not indicate the presence of Hg above its reporting limit. The laptop used to log the MultiRAE® data suffered a major problem and those data were lost. The following instantaneous maxima were highest: benzene, 36 ppbv at 2.522 minutes, on State Highway 225 East Service Road, after starting mobile monitoring, between flags A and B; toluene, 98 ppbv at 2.312 minutes, on State Highway 225 East Service Road, after starting mobile monitoring, between flags A and B; xylenes, 38 ppbv at 2.137 minutes on State Highway 225 East Service Road, after starting mobile monitoring, between flags A and B; and styrene, 14 ppbv at 11.802 minutes, on State Highway 225 East Service Road, between Miller Cut Off Road and Sens Road, between flags D and E, and 12 ppbv at 27.281 minutes, on State Highway 225, between Miller Cut Off Road and State Highway 146, between flags I and J. Methyl-t-butyl ether, 1,2,3-trichloropropane, and 1,3butadiene were not detected above their QLs. The Jerome did not find H₂S above 0.008 ppbv during the monitoring period.
- 4.15 Mobile Monitoring in Harris County, HSC023 - Mobile monitoring was performed on 13 December 2006 at 08:01:41 UTC and is represented in Figures 15a through 15m, starting at location A and ending at location P along the path depicted in Figure 15a through 15h. The wind speed at the CAMS station C148 (Baytown) was calm, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 4.5 mph from 52 degrees, and 8.6 mph from 56 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The Lumex monitor did not indicate the presence of Hg above its reporting limit. The laptop used to log the MultiRAE® data suffered a major problem and those data were lost. The Jerome monitor did not record data during this monitoring period. SUMMA® canister sample number H1499 was collected between flags C and D, and SUMMA® canister sample number J0165 was collected between flags O and P. The average target compound concentrations measured by the TAGA while collecting sample number H1499 were: benzene, 4.5J ppbv, toluene, 32 ppbv; xylenes, 66 ppbv, 1,2,3-trichloropropane, 0.15J, methyl-tbutyl ether, 33 ppbv, and styrene, 1.1 ppbv; 1,3-butadiene was not detected above its DL. The average target compound concentrations measured by the TAGA while collecting sample number J0165 were: xylenes, 2.0J ppbv; 1,3-butadiene, 17 ppbv, and styrene, 15 ppbv. Benzene, toluene, 1,2,3-trichloropropane and methyl-t-butyl ether were not detected above their DLs (Figure 15m and Table 2). The following instantaneous maxima were highest: benzene, 35 ppbv at 14.323 minutes, on Bayway Drive, between Market Street and Bayvilla Street, between flags H and I; toluene, 48 ppbv at 4.308 minutes, on Baytown Avenue, between Bayway Drive and stopping to collect sample number H1499, between flags B and C, 44 ppbv, at 4.938 minutes, during collection of sample number H1499, between flags C and D, 49 ppbv at 6.164 minutes, on Baytown Avenue, between resuming mobile monitoring and Finley Street, between flags E and F, and 67 ppbv at 14.148 minutes, on Bayway Drive, between Market Street and Bayvilla Street, between flags H and I; xylenes, 100 ppbv at 4.308 minutes, on Baytown Avenue, between Bayway Drive and stopping to collect sample number H1499, between flags B and C, and 210 ppby at 14.778 minutes, on Bayway Drive, between Market Street and Bayvilla Street, between flags H and I; methyl-t-butyl ether, 56 ppbv at 4.343 minutes, on Baytown Avenue, between Bayway

Drive and stopping to collect sample number H1499, between flags B and C, and 39 ppbv at 13.483 minutes, on Bayway Drive, between Market Street and Bayvilla Street, between flags H and I; 1,3-butadiene, 45 ppbv at 42.793 minutes, while stationary on Baker Road after collecting sample number J0165; and styrene, 39 ppbv at 42.548 minutes, while stationary on Baker Road after collecting sample number J0165. 1,2,3-Trichloropropane was not detected above its QL. The following ion pairs were not included because of local interference: 1,3-butadiene, 54/54.

- 4.16 Mobile Monitoring in Harris County, HSC024 Mobile monitoring was performed on 13 December 2006 at 08:49:34 UTC and is represented in Figures 16a through 16l, starting at location A and ending at location H along the path depicted in Figures 16a through 16h. The wind speed at the CAMS station C148 (Baytown) was calm, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 5.1 mph from 19 degrees, and 6.3 mph from 44 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The Lumex monitor did not indicate the presence of Hg above its reporting limit. The laptop used to log the MultiRAE® data suffered a major problem and those data were lost. The Jerome monitor did not record data during this monitoring period. The following instantaneous maxima were highest: styrene, 9.0 ppbv at 1.507 minutes, while stationary on West Baker Road, between the start of monitoring and flag A. Benzene, toluene, xylenes, 1,2,3-trichloropropane, methyl-t-butyl ether and 1,3-butadiene were not detected above their QLs.
- 4.17 Mobile Monitoring in Harris County, HSC030 - Mobile monitoring was performed on 14 December 2006 at 02:50:26 UTC and is represented in Figures 17a through 17m, starting at location A and ending at location W along the path depicted in Figures 17a through 17h. The wind speed at the CAMS station C1029 (Manchester) averaged 1.3 mph from 194 degrees, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 5.0 mph from 156 degrees, and 11.6 mph from 149 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The MultiRAE® and Lumex monitors did not indicate the presence of H₂S or Hg above their reporting limits. SUMMA® canister sample number C1161 was collected between flags E and F, and SUMMA® canister sample number B1578 was collected between flags L and M. The average target compound concentrations measured by the TAGA while collecting sample number C1161 were: benzene, 1.3J ppbv, toluene, 4.0J ppbv; xylenes, 3.9 ppbv, methyl-t-butyl ether, 1.7J ppbv, 1,3butadiene, 4.4J ppbv, and styrene, 30 ppbv. 1,2,3-Trichloropropane was not detected above its DL. The average target compound concentrations measured by the TAGA while collecting sample number B1578 were: benzene, 140 ppbv, toluene, 31 ppbv, xylenes, 2.8 ppbv; 1,2,3trichloropropane, 0.047J ppbv, methyl-t-butyl ether, 9.4 ppbv, 1,3-butadiene, 12 ppbv, and styrene, 0.28J ppby. (Figure 17m and Table 2). The following instantaneous maxima were highest: benzene, 160 ppbv at 19.121 minutes, on Lawndale Street, between State Highway 225 and Allen Genoa Road, between flags H and I, 230 ppbv at 24.198 minutes, on Lawndale Street, while stationary, just before collecting sample number B1578, between flags K and L, 240 ppbv at 27.945 minutes, while backing up on Lawndale Street, after collecting sample number B1578, between flags N and O, 200 ppbv at 33.233 minutes, after executing a U-turn on Lawndale Street, just before turning right onto Allen Genoa Road, between flags P and Q, 77 ppbv at 44.649 minutes, on Lawndale Street, between Goodyear Drive and Allen Genoa Road, between flags V and W; toluene, 29 ppby at 19.121 minutes, on Lawndale Street, between State Highway 225 and Allen Genoa Road, between flags H and I, 47 ppbv at 24.934 minutes, on Lawndale Street, while collecting sample number B1578, between flags L and M, 51 ppbv at 27.945 minutes, on Lawndale Street, between backing up and stopping, between flags N and O, and 39 ppby at 33.233 minutes, after executing a U-turn on Lawndale Street, just before turning right onto Allen Genoa Road between flags P and Q; xylenes, 9.7 ppbv at 14.113 minutes, while stationary on Goodyear Drive, after collecting sample number C1161, between flags F and G, 9.5 ppbv at 41.007 minutes, on Goodyear Drive, between State Highway 225 Service Road and Lawndale Street, between flags U and V; methyl-t-butyl ether, 23 ppbv at 37.155 minutes and 24 ppbv at 37.821 minutes, on State

Highway 225 Service Road, between Allen Genoa Road and Goodyear Drive, between flags R and S; 1,3-butadiene, 18 ppbv at 24.864 minutes, on Lawndale Street, while collecting sample number B1578, between flags L and M; and styrene, 47 ppbv at 6.339 minutes, while executing a U-turn on Goodyear Drive, at flag D. 1,2,3-Trichloropropane, was not detected above its QLs. The apparent instantaneous maximum for 1,2,3-trichloropropane at about 3.5 minutes was due to one sequence of one ion pair, and is attributed to electronic noise. The following ion pairs were not included because of local interference: 1,2,3-trichloropropane, 112/75 and 112/77. The highest instantaneous concentration of H₂S registered by the Jerome monitor was 0.051 ppbv at 1.900 minutes, at the start of monitoring on Lawndale Street near Goodyear Drive, at flag A. The Jerome ceased recording data at 9.067 minutes, after collecting sample number C1161 and while performing stationary monitoring, between flags E and F. The highest concentration of VOC indicated by the MultiRAE® was 0.3 ppmv centered on 25.300 minutes, just before flag M; centered on 27.783 minutes, at flag N; and centered on 28.283 minutes, on Lawndale Street, between flags N and O.

4.18 Mobile Monitoring In Harris County, HSC031 - Mobile monitoring was performed on 14 December 2006 at 04:05:25 UTC and is represented in Figures 18a through 18m, starting at location A and ending at location J along the path depicted in Figures 18a through 18h. The wind speed at the CAMS station C35 (Deer Park) averaged 1.3 mph from 223 degrees, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 5.0 mph from 147 degrees, and 11.1 mph from 145 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The MultiRAE® and Lumex monitors did not indicate the presence of H₂S or Hg above their reporting limits. The Jerome monitor did not record data during this monitoring period. SUMMA® canister sample number F1500 was collected between flags G and H. The average target compound concentrations measured by the TAGA while collecting sample number F1500 were: benzene, 43 ppby; toluene, 620 ppby; xylenes, 63 ppby; methyl-t-butyl ether, 11 ppby; 1,3-butadiene, 8.9 ppby; and styrene, 4.9 ppbv. 1,2,3-Trichloropropane was not detected above its DL (Figure 18m and Table 2). The following instantaneous maxima were highest: benzene, 85 ppbv at 12.327 minutes, on Battleground Road, between Miller Cut Off Road and executing a U-turn, between flags D and E, 91 ppbv at 18.805 minutes, on Tidal Road, between Battleground Road and collecting sample F1500, between flags F and G, and 150 ppbv at 22.657 minutes while stationary after collecting sample number F1500, between flags H and I; toluene, 92 ppbv at 12.397 minutes, on Battleground Road, between Miller Cut Off Road and executing a U-turn, between flags D and E. 880 ppby, at 19.856 minutes, on Tidal Road, during collection of sample number F1500. between flags G and H, and 1,600 ppbv at 22.167 minutes while stationary after collecting sample number F1500, between flags H and I; xylenes, 20 ppbv at 12.397 minutes, on Battleground Road, between Miller Cut Off Road and executing a U-turn, between flags D and E, 89 ppby at 18.840 minutes, on Tidal Road, between Battleground Road and before collecting sample number F1500, between flags F and G, and 180 ppbv at 22.342 minutes, while stationary after collecting Summa sample F1500, between flags H and I; methyl-t-butyl ether, 51 ppbv at 24.198 minutes, on Tidal Road after resuming mobile monitoring subsequent to collecting sample number F1500, between flags I and J; 1,3-butadiene, 52 ppbv at 9.070 minutes, on Battleground Road, between Celanese Road and Miller Cut Off Road, between flags C and D; styrene, 22 ppbv at 22.062 minutes, while stationary after collecting sample number F1500, between flags H and I. 1,2,3-Trichloropropane was not detected above its OL, and apparent excursions above its OL were momentary in nature, and could be attributed to electronic interference. The following ion pairs were not included because of local interference: 1,3-butadiene, 54/54; methyl-t-butyl ether, 89/39; 1,2,3trichloropropane, 112/75 and 112/77. The highest concentration of VOC indicated by the MultiRAE[®] was 0.4 ppmv at 24.433 minutes, on Tidal Road, between flags I and J.

- 4.19 Mobile Monitoring in Harris County, HSC032 - Mobile monitoring was performed on 14 December 2006 at 04:53:11 UTC and is represented in Figures 19a through 19l, starting at location A and ending at location K along the path depicted in Figures 19a through 19h. The wind speed at the CAMS station C35 (Deer Park) averaged 2.0 mph from 179 degrees, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 4.0 mph from 158 degrees, and 9.2 mph from 153 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The MultiRAE® and Lumex monitors did not indicate the presence of VOC, H₂S or Hg above their reporting limits. The Jerome monitor did not record data during this monitoring period. instantaneous maxima were highest: benzene, 7.7 ppbv at 26.790 minutes, on State Highway 225 Access Road, between East Boulevard and Tidal Road, between flags H and I; toluene, 14 ppbv at 26.650 minutes, on State Highway 225 Access Road, between East Boulevard and Tidal Road, between flags H and I; xylenes, 15 ppby at 5.919 minutes, on Miller Cut Off Road, between Strang Road and Old Clark Road, between flags B and C, 7.2 ppbv at 24.829 minutes, on State Highway 225 Access Road, between Battleground Road and East Boulevard, between flags G and H; 1,3-butadiene, 10 ppbv at 22.203 minutes, on Battleground Road, between Miller Cut Off Road and Celanese Road, between flags D and E; styrene, 3.7 ppbv at 2.242 minutes, on Miller Cut Off Road, between the start of mobile monitoring and Strang Road, between flags A and B. 1,2,3-Trichloropropane and methyl-t-butyl ether were not detected above their QLs. The following ion pair was not included because of local interference: 1,3-butadiene, 54/54.
- 4.20 Mobile Monitoring in Harris County, HSC033 - Mobile monitoring was performed on 14 December 2006 at 06:00:26 UTC and is represented in Figures 20a through 20l, starting at location A and ending at location O along the path depicted in Figures 20a through 20h. The wind speed at the CAMS station C403 (Clinton) averaged 1.6 mph from 266 degrees, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 4.1 mph from 176 degrees, and 9.9 mph from 167 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The MultiRAE® and Lumex monitors did not indicate the presence of VOC, H₂S or Hg above their reporting limits. The Jerome monitor did not record data during this monitoring period. The following instantaneous maxima were highest: benzene, 23 ppbv at 8.756 minutes, on Clinton Drive, between Center Drive and Gulf Road, between flags D and E, 29 ppbv at 10.227 minutes, on Clinton Drive, between Gulf Road and Crown Street, between flags E and F, and 39 ppbv at 12.888 minutes, on Clinton Drive, between Crown Street and Federal Road, between flags F and G: toluene, 79 ppby at 13.098 minutes, on Clinton Drive, between Crown Street and Federal Road, between flags F and G; xylenes, 290 ppbv at 12.888 minutes, on Clinton Drive, between Crown Street and Federal Road, between flags F and G; methyl-t-butyl ether, 99 ppbv at 11.242 minutes, and 21 ppby at 13.449 minutes, both on Clinton Drive, between Crown Street and Federal Road, between flags F and G; 1,3-butadiene, 9.6 ppbv at 9.912 on Clinton Drive, between Gulf Road and Crown Street, between flags E and F; styrene, 4.6 ppbv at 6.445 minutes, on Clinton Drive, between Galena Manor and Center Drive, between flags C and D, and 22 ppbv at 12.923 minutes, on Clinton Drive, between Crown Street and Federal Road, between flags F and G. 1,2,3-Trichloropropane was not detected above its QL, and apparent excursions above its QL were momentary in nature, and could be attributed to electronic interference. The following ion pairs were not included because of local interference: 1,3-butadiene, 54/54; and 1,2,3-trichloropropane, 112/75 and 112/77.
- 4.21 Mobile Monitoring in Harris County, HSC034 Mobile monitoring was performed on 14 December 2006 at 06:48:16 UTC and is represented in Figures 21 through 21l, starting at location A and ending at location J along the path depicted in Figures 21a through 21h. The wind speed at the CAMS station C603 (Haden Road) averaged 2.1 mph from 17 degrees, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 1.6 mph from 24 degrees, and 5.2 mph from 161 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The MultiRAE® monitor

did not indicate the presence of VOC, or H₂S above their reporting limits. The Jerome monitor did not record data during this monitoring period. The following instantaneous maxima were highest: benzene, 24 ppbv at 44.299 minutes, on Jacintoport Boulevard, between Beltway 8 South and the end of the run, after flag J; toluene, 37 ppbv at 7.459 minutes, while turning right onto Market Street Road from Sheffield Boulevard, at flag C, 23 ppbv at 35.965 minutes, on I-10 Service Road, between Haden Road and Beltway 8 South, between flags H and I, 45 ppbv at 44.334 minutes, on Jacintoport Boulevard, between Beltway 8 South and the end of the run, after flag J; xylenes, 28 ppbv at 18.210 minutes, on Haden Road, between I-10 Service Road and executing a U-turn at the end of Haden Road, between flags F and G, 23 ppbv at 31.097 minutes, on Haden Road, between executing a U-turn at the end of Haden Road and I-10 Service Road, between flags G and H, 28 ppbv at 35.860 minutes, on I-10 Service Road, between Haden Road and Beltway 8 South, between flags H and I, and 28 ppbv at 44.229 minutes, on Jacintoport Boulevard, between Beltway 8 South and the end of the run, after flag J; styrene, 24 ppby at 18.245 minutes, on Haden Road, between I-10 Service Road and executing a U-turn at the end of Haden Road, between flags F and G, 12 ppbv at 31.132 minutes, on Haden Road, between executing a U-turn at the end of Haden Road and I-10 Service Road, between flags G and H, and 2.8 ppbv at 35.895 minutes, on I-10 Service Road, between Haden Road and Beltway 8 South, between flags H and I. The highest concentrations of Hg registered by the Lumex were; 18 ng/m³ at 11.03 minutes, on Market Street Road, between Miles street and I-10 Service Road, between flags D and E, and 24 ng/m³ at 37.70 minutes, on I-10 Service Road, between Haden Road and Beltway 8 South, between flags H and I. 1,2,3-Trichloropropane, methyl-t-butyl ether and 1,3butadiene were not detected above their QLs. The following ion pairs were not included because of local interference: 1,3-butadiene, 54/54.

4.22 Mobile Monitoring in Harris County, HSC035 - Mobile monitoring was performed on 14 December 2006 at 07:35:47 UTC and is represented in Figures 22 through 22m, starting at location A and ending at location H along the path depicted in Figures 22a through 22h. The wind speed at the CAMS station C1036 (Jacinto Port) was calm, and the wind speed at the 20-meter level of the University of Houston meteorological tower was calm, and 6.2 mph from 172 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The MultiRAE® and Lumex monitors did not indicate the presence of VOC, H₂S, or Hg above their reporting limits. The Jerome monitor did not record data during this monitoring period. SUMMA® canister sample number J0182 was collected between flags G and H. The average target compound concentrations measured by the TAGA while collecting canister sample number J0182 were; benzene, 13 ppby, toluene, 31 ppby; xylenes, 17 ppbv, methyl-t-butyl ether, 33 ppbv, 1,3-butadiene, 2.9J ppbv, and styrene, 0.40J ppbv; 1,2,3trichloropropane was not detected above its DL (Figure 22m and Table 2). The following instantaneous maxima were highest: benzene, 23 ppbv at 2.557 minutes, on Jacintoport Boulevard, just after starting the run, near flag A, and 18 ppbv at 8.440 minutes, on Jacintoport Boulevard, between Sheldon Road and reversing at the end of Jacintoport Boulevard; toluene, 45 ppbv at 2.522 minutes, on Jacintoport Boulevard, just after starting the run, near flag A, 43 ppbv, at 24.514 minutes and at 24.794 minutes, while turning onto Jacintoport Boulevard Extension, at flag E, 39 ppbv at 43.809 minutes, on Jacintoport Boulevard Extension, between executing a U-turn and stopping to collect sample number J0182, between flags G and H; xylenes, 29 ppbv at 2.522 minutes, on Jacintoport Boulevard, between starting the run and Sheldon Road, between flags A and B, 34 ppbv at 9.806 minutes, on Jacintoport Boulevard, between Sheldon Road and reversing at the end of Jacintoport Boulevard, between flags B and C, 31 ppbv at 24.724 minutes, while turning onto Jacintoport Boulevard Extension, at flag E, and 31 ppbv at 42.863 minutes, on Jacintoport Boulevard Extension, after making a U-turn and before stopping to collect sample number J0182, between flags F and G; methyl-t-butyl ether, 30 ppbv at 8.475 minutes, on Jacintoport Boulevard, between Sheldon Road and reversing at the end of Jacintoport Boulevard, between flags B and C, 31 ppbv at 24.303 minutes, on Jacintoport Boulevard, between executing a U-turn and Jacintoport Boulevard Extension, between flags D and E, 44 ppbv at 43.704 minutes, on Jacintoport Boulevard Extension, between executing a U-turn and stopping to collect sample

number J0182, between flags F and G; styrene, 7.5 ppbv at 37.611 minutes, on Jacintoport Boulevard Extension, between executing a U-turn and stopping to collect sample J0182, between flags F and G. 1,2,3-Trichloropropane and 1,3-butadiene were not detected above their QLs. Apparent excursions for 1,2,3-trichloropropane above its QL were momentary in nature, and could be attributed to electronic interference. The following ion pairs were not included because of local interference: 1,3-butadiene, 54/54, and 1,2,3-trichloropropane, 112/75 and 112/77.

- 4.23 Mobile Monitoring in Harris County, HSC036 - Mobile monitoring was performed on 14 December 2006 at 08:54:28 UTC and is represented in Figures 23a through 23l, starting at location A and ending at location M along the path depicted in Figures 23a through 23h. The wind speed at the CAMS station C243 (La Porte) averaged 4.6 mph from 112 degrees, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 4.4 mph from 154 degrees, and 9.6 mph from 168 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The MultiRAE® and Lumex monitors did not indicate the presence of VOC, H₂S or Hg above their reporting limits. The Jerome monitor did not record data during this monitoring period. The following instantaneous maxima were highest: benzene, 57 ppbv at 20.383 minutes, on Bayport Boulevard, between Red Bluff Road and New Port Road, between flags F and G, 24 ppbv at 41.079 minutes, on Old State Highway 146, between Red Bluff Road and New Port Road, between flags L and M; toluene, 130 ppbv at 20.383 minutes, on Bayport Boulevard, between Red Bluff Road and New Port Road, between flags F and G, 34 ppbv at 41.079 minutes, on Old State Highway 146, between Red Bluff Road and New Port Road, between flags L and M; xylenes, 79 ppbv at 20.383 minutes, on Bayport Boulevard, between Red Bluff Road and New Port Road, between flags F and G, 13 ppbv at 41.079 minutes, on Old State Highway 146, between Red Bluff Road and New Port Road, between flags L and M; styrene, 0.51 ppbv at 22.344 minutes, on New Port Road, between Bayport Boulevard and Old State Highway 146, between flags G and H, 0.78 ppbv at 42.129 minutes, on Old State Highway 146, between Red Bluff Road and New Port Road, between flags L and M. 1,2,3-Trichloropropane, methyl-t-butyl ether and 1,3-butadiene were not detected above their QLs. Apparent excursions for 1,2,3-trichloropropane above its QL were momentary in nature, and could be attributed to electronic interference. The following ion pairs were not included because of local interference: 1,3-butadiene, 54/54; and 1,2,3-trichloropropane, 112/75 and 112/77.
- 4.24 Mobile Monitoring in Harris County, HSC037 - Mobile monitoring was performed on 14 December 2006 at 09:42:01 UTC and is represented in Figures 24a through 24l, starting at location A and ending at location L along the path depicted in Figures 24a through 24h. The wind speed at the CAMS station C243 (La Porte) averaged 6.1 mph from 114 degrees, and the wind speed at the 20-meter level of the University of Houston meteorological tower averaged 3.8 mph from 107 degrees, and 8.0 mph from 145 degrees at 43-meters. There was no precipitation during the monitoring period at the University of Houston meteorological tower. The MultiRAE® and Lumex monitors did not indicate the presence of VOC, H₂S or Hg above their reporting limits. The Jerome monitor did not record data during this monitoring period. The following instantaneous maxima were highest: benzene, 13 ppbv at 6.934 minutes, on New Port Road, between State Highway 146 and Bay Area Boulevard, between flags B and C; toluene, 12 ppbv at 7.915 minutes, on New Port Road, between State Highway 146 and Bay Area Boulevard, between flags B and C; xylenes, 8.5 ppby at 8.160 minutes, on New Port Road, between State Highway 146 and Bay Area Boulevard, between flags B and C, 5.9 ppbv at 13.798 minutes, on Bay Area Boulevard, between State Highway 146 and Huish Detergent, between flags C and D; styrene, 1.3 ppbv at 7.459 minutes, on New Port Road, between State Highway 146 and Bay Area Boulevard, between flags B and C, 0.99 ppbv at 16.319 minutes, on Bay Area Boulevard, between Huish Detergent and Fairmont Parkway, between flags D and E. 1,2,3-Trichloropropane, methyl-t-butyl ether and 1,3-butadiene were not detected above their QLs. Apparent excursions above their QL were momentary in nature, and could be attributed to electronic interference. The following ion pairs were not included because of local interference: 1,3-butadiene, 54/54; and methyl-t-butyl

5.0 QUALITY ASSURANCE/QUALITY CONTROL

The compound parent/daughter ion pairs used are listed below.

Compound	Parent Ion Mass	Daughter Ion Mass
Benzene	78	39
Benzene	78	52
Toluene	92	39
Toluene	92	51
Xylenes	106	65
Xylenes	106	91
1,2,3-Trichloropropane	110	75
1,2,3-Trichloropropane	110	49
1,2,3-Trichloropropane	112	75
1,2,3-Trichloropropane	112	77
Methyl-t-butyl ether	89	41
Methyl-t-butyl ether	89	39
Methyl-t-butyl ether	89	29
1,3-Butadiene	54	54
1,3-Butadiene	54	39
1,3-Butadiene	54	38
Styrene	104	103
Styrene	104	95
Styrene	104	78
Styrene	104	77

The Response Factors and Error Bars, (Sections 5.1 and 5.2, and Table 3), document the response factors, intermediate response factors and error bars generated during the calibration procedure for the individual ion pairs used to quantitate the ion pair concentrations. A calibration was performed at the beginning and end of each monitoring cycle. Each monitoring cycle began in the evening and continued through the morning of the following day. Dates and times are provided in UTC.

The summaries of the target compound detection and quantitation limits measured during the monitoring cycles (Section 5.3 and Table 4) document the concentration, in ppbv, required for each compound to be considered detectable and quantifiable. The detection and quantitation limits for a compound result from averaging the detection and quantitation limits of the compound's ion pairs.

5.1 Calculations for the Intermediate Response Factors

Response factors were generated from the initial and final calibration events for the mobile monitoring events, as described in the procedure (Section 2.1.2). Table 3 contains the RFs in units of icps/ppbv for the initial and final calibrations used for these events. The actual RFs were used to calculate the intermediate response factors, which were used to calculate the concentrations reported in the results.

The following equation was used to calculate the IRFs found in Table 3:

$$IRF = \frac{2(RF_1 \times RF_2)}{(RF_1 + RF_2)}$$

where:

IRF = Intermediate response factor (icps/ppbv)

 RF_1 = The RF for an ion pair measured during the first calibration event (icps/ppbv)

 RF_2 = The RF for the same ion pair measured during the second calibration event (icps/ppbv)

For example, the entry for the 104/78 ion pair of styrene from Table 3 for files HSC001, HSC002, HSC012, and HSC013; 12 December 2006 is:

 $RF_1 = 184.45 \text{ icps/ppbv}$ $RF_2 = 226.41 \text{ icps/ppbv}$

therefore,

IRF =
$$\frac{2(184.45 \times 226.41)}{(184.45 + 226.41)} = \frac{83,522.65}{410.86} = 203.29 \text{ icps/ppbv}$$

The result 203.29 icps/ppbv is the intermediate response factor reported in Table 3 and used in Table 4.

5.2 Error Bars

The potential maximum concentration percent deviations for each target compound are presented in Table 3 and are called "error bars" for simplicity. They represent the potential bias in the concentration due to changes in the sensitivity of the TAGA instrument. Errors bars were calculated using the following equation:

error bar =
$$\frac{\left| RF_1 - RF_2 \right|}{(RF_1 + RF_2)} \times 100$$

where:

error bar = Maximum concentration percent deviation

 RF_1 = The RF for an ion pair measured during the first calibration event (icps/ppbv)

RF₂ = The RF for the same ion pair measured during the second calibration event (icps/ppbv)

For example, the entry for the 104/78 ion pair of styrene from Table 3 for files HSC001, HSC002, HSC012, and HSC013; 12 December 2006 is:

 $RF_1 = 184.45 \text{ icps/ppbv}$ $RF_2 = 226.41 \text{ icps/ppbv}$

error bar =
$$\frac{|184.45 - 226.41|}{(184.45 + 226.41)} \times 100 = 10.2\%$$

The % error bar calculated for the 104/78 ion pair of styrene is 10.2% for files HSC001, HSC002, HSC012, and HSC013; 12 December 2006.

The above calculation was repeated for each ion pair. The error bars for each compound's ions were averaged to give a single value for the compound. This averaged error bar can be applied to the samples analyzed between the two calibrations of the monitoring period.

5.3 Ion Pair Detection and Quantitation Limits

The DLs and QLs were calculated using the standard deviation (SD) of the compound's ion pair intensity measured in an ambient air sample and its IRF. The SD reflects the variability of the instrument's response to the ambient air sample.

The following equation was used to calculate the DLs found in Table 4:

$$DL = \frac{3 \times SD}{IRF}$$

where:

DL = Detection limit for an ion pair (ppbv)

SD = Standard deviation of the ion intensity measured in an ambient air sample (icps)

IRF = Intermediate response factor for an ion pair (icps/ppbv)

For example, the entry for the 104/78 ion pair of styrene from Table 4, for files HSC001, HSC002, HSC012, and HSC013; 12 December 2006 is:

SD = 6.6230 icps IRF = 203.29 icps/ppbv

$$DL = \frac{3 \times 6.6230}{203.29} = 0.0977 \text{ ppbv}$$

The following equation was used to calculate the quantitation limits found in Table 4:

$$QL = \frac{10 \times SD}{IRF}$$

where:

QL = Quantitation limit concentration for an ion pair (ppbv)

SD = Standard deviation of the ion intensity measured in an ambient air sample (icps)

IRF = Intermediate response factor for an ion pair (icps/ppbv)

For example, the entry for the 104/78 ion pair of styrene from Table 4, for files HSC001, HSC002, HSC012, and HSC013; 12 December 2006 is:

SD = 6.6230 icps IRF = 203.29 icps/ppbv

$$QL = \frac{10 \times 6.6230}{203.29} = 0.326 \text{ ppbv}$$

5.4 Compound Detection and Quantitation Limits

Averaging the respective DLs and QLs of the target compound's ion pairs found in Table 4 generated the DLs and QLs.

The following equation was used to calculate the compound's DL:

$$DL_c = \frac{DL_1 + DL_2 + \dots + DL_n}{n}$$

where:

 $\begin{array}{lll} DL_c &=& Detection \ limit \ for \ a \ compound \ (ppbv) \\ DL_1 &=& Detection \ limit \ for \ the \ first \ ion \ pair \ (ppbv) \\ DL_2 &=& Detection \ limit \ for \ the \ second \ ion \ pair \ (ppbv) \\ DL_n &=& Detection \ limit \ for \ the \ n^{th} \ ion \ pair \ (ppbv) \\ n &=& Number \ of \ ion \ pairs \ to \ be \ averaged \end{array}$

For example, using the entries for the 104/77, 104/78, 104/95, and 104/103 ion pairs of styrene from Table 4 for files HSC001, HSC002, HSC012, and HSC013; 12 December 2006 is:

$$DL_{C} = \frac{0.220 + 0.0977 + 0.183 + 0.0841}{4} = \frac{0.5848}{4} = 0.146 \text{ ppbv}$$

This result, 0.146 ppbv, rounded to 0.15 ppbv is the DL for styrene found for File HSC004 on 12 December 2006 and presented in Table 4.

The following equation was used to calculate the compound's QL:

$$QL_c = \frac{QL_1 + QL_2 + \dots QL_n}{n}$$

where:

 $\begin{array}{lll} QL_c & = & Quantitation \ limit \ for \ a \ compound \ (ppbv) \\ QL_1 & = & Quantitation \ limit \ for \ the \ first \ ion \ pair \ (ppbv) \\ QL_2 & = & Quantitation \ limit \ for \ the \ second \ ion \ pair \ (ppbv) \\ QL_n & = & Quantitation \ limit \ for \ the \ n^{th} \ ion \ pair \ (ppbv) \\ n & = & Number \ of \ ion \ pairs \ to \ be \ averaged \end{array}$

For example, using the entries for the 104/77, 104/78, 104/95 and 104/103 ion pairs of styrene from Table 4 for files HSC001, HSC002, HSC012, and HSC013; 12 December 2006 is:

$$QL_c = \frac{0.733 + 0.326 + 0.611 + 0.280}{4} = \frac{1.950}{4} = 0.488 \text{ ppbv}$$

This result, 0.488 ppbv, rounded to 0.49 ppbv is the QL for styrene found for File HSC004 on 12 December 2006 and presented in Table 4.

TABLES

TABLE 1
Summary of Meteorological Conditions During Monitoring for 12 December through 14 December 2006
Urban Air Toxics Study
Harris County, Texas
March 2007

			Cont	TCEQ Continuous Air Monitoring Station ⁽³⁾ (CAMS)		University of Houston Meteorological Tower						
						10-Meter	Elevation	20-Meter Elevation		43-Meter Elevation		Precipitation (inches) (2)
TAGA File	Date	Start Time (UTC)	Station	Wind Speed (mph)	Direction ⁽¹⁾ (degrees)	Wind Speed (mph)	Direction ⁽¹⁾ (degrees)	Wind Speed (mph)	Direction ⁽¹⁾ (degrees)	Wind Speed (mph)	Direction ⁽¹⁾ (degrees)	
HSC004	12/12/2006	2:45	C243	3.2	144	2.3	172	3.6	165	7.3	160	0
HSC005	12/12/2006	3:35	C243	2.6	129	2.8	168	4.1	166	7.2	160	0
HSC006	12/12/2006	4:27	C243	3.6	130	3.2	153	4.4	156	7.7	154	0
HSC007	12/12/2006	5:15	C35	1.7	244	3.7	157	4.9	157	8.4	149	0
HSC008	12/12/2006	6:46	C1029	2.2	261	3.1	252	3.7	251	5.6	239	0
HSC009	12/12/2006	7:41	C403	4.0	280	3.3	256	3.9	256	6.3	248	0
HSC010	12/12/2006	8:31	C403	2.3	246	4.9	292	5.8	292	8.5	287	0
HSC011	12/12/2006	9:19	C15	1.2	270	3.3	292	3.9	294	6.0	287	0
HSC017	12/13/2006	2:39	C1029	Calm	Calm	Calm	Calm	4.5	312	10.1	323	0
HSC018	12/13/2006	3:26	C1029	Calm	Calm	Calm	Calm	3.1	328	9.3	333	0
HSC019	12/13/2006	4:17	C1029	Calm	Calm	Calm	Calm	2.8	343	7.6	347	0
HSC020	12/13/2006	5:05	C1015	1.9	352	Calm	Calm	3.2	43	6.8	27	0

⁽¹⁾ Wind direction is the direction from which the wind is blowing

mph = miles per hour

UTC = coordinated universal time

TCEQ = Texas Commission of Environmental Quality

⁽²⁾ Precipitation data collected at University of Houston meteorological tower

⁽³⁾ State of Texas continuous air monitoring station most representative of the TAGA path 0234-DFA-032907/TAGA

TABLE 1 (continued) Summary of Meteorological Conditions During Monitoring for 12 December through 14 December 2006 Urban Air Toxics Study Harris County, Texas March 2007

			Cont	TCEQ Continuous Air Monitoring Station ⁽³⁾ (CAMS)		University of Houston Meteorological Tower onitoring						
						10-Meter	Elevation	20-Meter	Elevation	43-Meter Elevation		Precipitation ⁽²⁾ (inches)
TAGA File	Date	Start Time (UTC)	Station	Wind Speed (mph)	Direction ⁽¹⁾ (degrees)	Wind Speed (mph)	Direction ⁽¹⁾ (degrees)	Wind Speed (mph)	Direction ⁽¹⁾ (degrees)	Wind Speed (mph)	Direction ⁽¹⁾ (degrees)	
HSC021	12/13/2006	5:53	C1015	2.7	347	Calm	Calm	3.2	59	4.7	44	0
HSC022	12/13/2006	7:13	C243	2.7	279	Calm	Calm	4.0	53	7.8	56	0
HSC023	12/13/2006	8:01	C148	Calm	Calm	1.2	352	4.5	52	8.6	56	0
HSC024	12/13/2006	8:49	C148	Calm	Calm	2.9	339	5.1	19	6.3	44	0
HSC030	12/14/2006	2:50	C1029	1.3	194	1.9	169	5.0	156	11.6	149	0
HSC031	12/14/2006	4:05	C35	1.3	223	1.7	159	5.0	147	11.1	145	0
HSC032	12/14/2006	4:53	C35	2.0	179	1.1	176	4.0	158	9.2	153	0
HSC033	12/14/2006	6:00	C403	1.6	266	1.1	187	4.1	176	9.9	167	0
HSC034	12/14/2006	6:48	C603	2.1	17	1.1	355	1.6	24	5.2	161	0
HSC035	12/14/2006	7:35	C1036	Calm	Calm	Calm	Calm	Calm	Calm	6.2	172	0
HSC036	12/14/2006	8:54	C243	4.6	112	Calm	Calm	4.4	154	9.6	168	0
HSC037	12/14/2006	9:42	C243	6.1	114	Calm	Calm	3.8	107	8.0	145	0

- (1) Wind direction is the direction from which the wind is blowing
- (2) Precipitation data collected at University of Houston meteorological tower
- (3) State of Texas continuous air monitoring station most representative of the TAGA path 0234-DFA-032907/TAGA

mph = miles per hour

UTC = coordinated universal time

TCEQ = Texas Commission of Environmental Quality

TABLE 2 Comparison of Canister Samples with TAGA Monitoring for Target Compounds

12 December through 14 December 2006

Urban Air Toxics Study Harris County, Texas March 2007

Sample ID/Flags	Method	Benzene	Toluene	Xylenes	1,2,3- Trichloropropane	MTBE	1,3-Butadiene	Styrene
HSC008 (K - L)	TAGA	0.50J	1.4J	2.4	DL=0.079	9.6	DL=3.1	0.19J
G1567	GC/MS	0.2	0.6	0.8 (1.0)	NA	U	0.2J	U
HSC008 (M - N)	TAGA	0.80J	2.4J	5.0	DL=0.079	27.	DL=3.1	0.21J
K0175	GC/MS	0.4	1.7	2.8 (3.4)	NA	0.2	U	U
HSC017 (W - X)	TAGA	DL=2.0	5.6J	5.2	DL=0.074	DL=2.6	DL=3.0	3.5
F1582	GC/MS	1.7	5.2	3.8 (4.8)	NA	U	U	2.2
HSC018 (D - E)	TAGA	DL=2.0	8.4J	10.	DL=0.074	DL=1.1	3.9J	180
A1498	GC/MS	1.8	6.7	5.5 (11.6)	NA	0.2	0.2	113
HSC018 (I - J)	TAGA	30.	12.J	7.9	0.11J	4.3	6.1J	5.0
F1496	GC/MS	8.5	6.2	4.4 (6.0)	NA	U	U	16.4
HSC021 (A - B)	TAGA	61.	5.7J	8.8	DL=0.074	50.	DL=2.9	0.71J
B1025 B0125	GC/MS	114	5.5	1.6 (1.9)	NA	22.7	U	0.7

All concentrations are in parts per billion by volume.

DL=X.X Compound not found above the specified detection limit

U = Not detected

J = Above the detection limit, but below the quantitation limit (TAGA data)

J = The identification of the analyte is acceptable; the reported value is an estimate (GC/MS data)

NA = Not analyzed

(xx) =Sum of xylenes plus ethyl benzene is given in parentheses

TABLE 2 (continued)

Comparison of Canister Samples with TAGA Monitoring for Target Compounds 12 December through 14 December 2006

Urban Air Toxics Study Harris County, Texas March 2007

Sample ID/Flags	Method	Benzene	Toluene	Xylenes	1,2,3- Trichloropropane	MTBE	1,3-Butadiene	Styrene
HSC023 (C - D)	TAGA	4.5J	32.	66.	0.15J	33.	DL=2.9	1.1
H1499	GC/MS	3.1	12.5	30.2 (33.8)	NA	18.4	U	U
HSC023 (O - P)	TAGA	DL=2.0	DL=4.2	2.0J	DL=0.074	DL=2.6	17.	15.
J0165	GC/MS	1.2	2.2	1.6 (1.9)	NA	U	21.9	13.6
HSC030 (E - F)	TAGA	1.3J	4.0J	3.9	DL=0.033	1.7J	4.4J	30.
C1161	GC/MS	1.0	3.0	1.7 (3.2)	NA	0.7	3.3	16.5
HSC030 (L - M)	TAGA	140	31.	2.8	0.047J	9.4	12.	0.28J
B1578	GC/MS	88.6	15.9	1.2 (1.6)	NA	U	U	U
HSC031 (G - H)	TAGA	43.	620	63.	DL=0.033	11.	8.9	4.9
F1500	GC/MS	25.6	408	32. (40.7)	NA	5.8	2.1	2.6
HSC035 (G - H)	TAGA	13.	31.	17.	DL=0.033	33.	2.9J	0.40J
J0182	GC/MS	13.8	23.4	13.3 (16.5)	NA	32.4	U	U

All concentrations are in parts per billion by volume.

DL=X.X Compound not found above the specified detection limit

U = Not detected

- J = Above the detection limit, but below the quantitation limit (TAGA data)
- J = The identification of the analyte is acceptable; the reported value is an estimate (GC/MS data)

(xx) =Sum of xylenes plus ethyl benzene is given in parentheses

Calibration File			012, and HSC013 ey File: HSC004	3 on 12 December 20	006
Compound	PM/DM	Initial Response Factor	Final Response Factor	Intermediate Response Factor	Error Bar (%)
1,3-Butadiene	54/38	6.1950	7.0421	6.5914	6.40
1,3-Butadiene	54/39	19.983	22.983	21.378	6.98
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A
				Average:	6.7
Benzene	78/39	26.738	26.257	26.495	0.908
Benzene	78/52	156.85	155.45	156.14	0.447
				Average:	0.68
MTBE	89/29	5.2689	4.4118	4.8024	8.85
MTBE	89/39	32.382	22.746	26.722	17.5
MTBE	89/41	104.11	68.981	82.981	20.3
				Average:	16.
Toluene	92/39	11.857	12.124	11.989	1.11
Toluene	92/51	21.870	22.373	22.118	1.14
				Average:	1.1
Styrene	104/77	78.660	95.021	86.070	9.42
Styrene	104/78	184.45	226.41	203.29	10.2
Styrene	104/95	75.696	94.018	83.868	10.8
Styrene	104/103	180.44	223.52	199.68	10.7
				Average:	10.
Xylenes	106/65	143.84	178.27	159.21	10.7
Xylenes	106/91	539.09	660.79	593.77	10.1
				Average:	10.
1,2,3-Trichloropropane	110/49	70.883	95.105	81.227	14.6
1,2,3-Trichloropropane	110/75	439.21	536.14	482.86	9.94
1,2,3-Trichloropropane	112/75	N/A	N/A	N/A	N/A
1,2,3-Trichloropropane	112/77	145.70	180.88	161.40	10.8
				Average:	12.

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass

icps = ion counts per second ppbv = part per billion by volume % = Percent

			012, and HSC013 07, HSC009, HSC		
Compound	PM/DM	Initial Response Factor	Final Response Factor	Intermediate Response Factor	Error Bar
1,3-Butadiene	54/38	6.1950	7.0421	6.5914	6.40
1,3-Butadiene	54/39	19.983	22.983	21.378	6.98
1,3-Butadiene	54/54	8.6964	10.678	9.5858	10.2
				Average:	7.9
Benzene	78/39	26.738	26.257	26.495	0.908
Benzene	78/52	156.85	155.45	156.14	0.447
				Average:	0.68
MTBE	89/29	5.2689	4.4118	4.8024	8.85
MTBE	89/39	32.382	22.746	26.722	17.5
MTBE	89/41	104.11	68.981	82.981	20.3
				Average:	16.
Toluene	92/39	11.857	12.124	11.989	1.11
Toluene	92/51	21.870	22.373	22.118	1.14
				Average:	1.1
Styrene	104/77	78.660	95.021	86.070	9.42
Styrene	104/78	184.45	226.41	203.29	10.2
Styrene	104/95	75.696	94.018	83.868	10.8
Styrene	104/103	180.44	223.52	199.68	10.7
				Average:	10.
Xylenes	106/65	143.84	178.27	159.21	10.7
Xylenes	106/91	539.09	660.79	593.77	10.1
				Average:	10.
1,2,3-Trichloropropane	110/49	70.883	95.105	81.227	14.6
1,2,3-Trichloropropane	110/75	439.21	536.14	482.86	9.94
1,2,3-Trichloropropane	112/75	141.91	180.25	158.80	11.9
1,2,3-Trichloropropane	112/77	145.70	180.88	161.40	10.8
				Average:	12.

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass

icps = ion counts per second ppbv = part per billion by volume % = Percent

Calibration Files: HSC001, HSC002, HSC012, and HSC013 on 12 December 2006								
		ed for Survey Fi						
Compound	PM/DM	Initial Response Factor	Final Response Factor	Intermediate Response Factor	Error Bar (%)			
1,3-Butadiene	54/38	6.1950	7.0421	6.5914	6.40			
1,3-Butadiene	54/39	19.983	22.983	21.378	6.98			
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A			
				Average:	6.7			
Benzene	78/39	26.738	26.257	26.495	0.908			
Benzene	78/52	156.85	155.45	156.14	0.447			
				Average:	0.68			
MTBE	89/29	5.2689	4.4118	4.8024	8.85			
MTBE	89/39	32.382	22.746	26.722	17.5			
MTBE	89/41	104.11	68.981	82.981	20.3			
				Average:	16.			
Toluene	92/39	11.857	12.124	11.989	1.11			
Toluene	92/51	21.870	22.373	22.118	1.14			
				Average:	1.1			
Styrene	104/77	78.660	95.021	86.070	9.42			
Styrene	104/78	184.45	226.41	203.29	10.2			
Styrene	104/95	75.696	94.018	83.868	10.8			
Styrene	104/103	180.44	223.52	199.68	10.7			
				Average:	10.			
Xylenes	106/65	143.84	178.27	159.21	10.7			
Xylenes	106/91	539.09	660.79	593.77	10.1			
				Average:	10.			
1,2,3-Trichloropropane	110/49	70.883	95.105	81.227	14.6			
1,2,3-Trichloropropane	110/75	439.21	536.14	482.86	9.94			
1,2,3-Trichloropropane	112/75	141.91	180.25	158.80	11.9			
1,2,3-Trichloropropane	112/77	145.70	180.88	161.40	10.8			
				Average:	12.			

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass

icps = ion counts per second ppbv = part per billion by volume

% = Percent N/A = Not available

Calibration File	Calibration Files: HSC001, HSC002, HSC012, and HSC013 on 12 December 2006 Used for Unit Survey Files: HSC008									
Compound	PM/DM	Initial Response Factor	Final Response Factor	Intermediate Response Factor	Error Bar					
1,3-Butadiene	54/38	6.1950	7.0421	6.5914	6.40					
1,3-Butadiene	54/39	19.983	22.983	21.378	6.98					
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A					
				Average:	6.7					
Benzene	78/39	26.738	26.257	26.495	0.908					
Benzene	78/52	156.85	155.45	156.14	0.447					
				Average:	0.68					
MTBE	89/29	5.2689	4.4118	4.8024	8.85					
MTBE	89/39	32.382	22.746	26.722	17.5					
MTBE	89/41	N/A	N/A	N/A	N/A					
				Average:	13.					
Toluene	92/39	11.857	12.124	11.989	1.11					
Toluene	92/51	21.870	22.373	22.118	1.14					
				Average:	1.1					
Styrene	104/77	78.660	95.021	86.070	9.42					
Styrene	104/78	184.45	226.41	203.29	10.2					
Styrene	104/95	75.696	94.018	83.868	10.8					
Styrene	104/103	180.44	223.52	199.68	10.7					
				Average:	10.					
Xylenes	106/65	143.84	178.27	159.21	10.7					
Xylenes	106/91	539.09	660.79	593.77	10.1					
				Average:	10.					
1,2,3-Trichloropropane	110/49	70.883	95.105	81.227	14.6					
1,2,3-Trichloropropane	110/75	439.21	536.14	482.86	9.94					
1,2,3-Trichloropropane	112/75	N/A	N/A	N/A	N/A					
1,2,3-Trichloropropane	112/77	N/A	N/A	N/A	N/A					
				Average:	12.					

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass

icps = ion counts per second ppbv = part per billion by volume % = Percent

		1/141 611 20			
			5, and HSC026 on HSC020, HSC02	13 December 2006 22, and HSC024	
Compound	PM/DM	Initial Response Factor	Final Response Factor	Intermediate Response Factor	Error Bar (%)
1,3-Butadiene	54/38	12.464	14.591	13.444	7.86
1,3-Butadiene	54/39	37.193	43.448	40.078	7.76
1,3-Butadiene	54/54	17.197	20.044	18.511	7.65
				Average:	7.8
Benzene	78/39	46.353	50.856	48.500	4.63
Benzene	78/52	269.83	295.23	281.96	4.50
				Average:	4.6
MTBE	89/29	8.1744	9.1008	8.6128	5.36
MTBE	89/39	45.378	49.147	47.188	3.99
MTBE	89/41	137.96	153.83	145.47	5.44
				Average:	4.9
Toluene	92/39	24.888	26.981	25.893	4.04
Toluene	92/51	49.913	53.677	51.727	3.63
				Average:	3.8
Styrene	104/77	321.60	360.23	339.82	5.67
Styrene	104/78	640.60	695.26	666.81	4.09
Styrene	104/95	210.69	210.61	210.65	0.0183
Styrene	104/103	614.69	662.62	637.76	3.75
				Average:	3.4
Xylenes	106/65	488.70	536.79	511.62	4.69
Xylenes	106/91	1909.9	2142.0	2019.3	5.73
				Average:	5.2
1,2,3-Trichloropropane	110/49	234.03	267.88	249.81	6.74
1,2,3-Trichloropropane	110/75	1172.1	1389.1	1271.4	8.47
1,2,3-Trichloropropane	112/75	449.86	525.73	484.85	7.78
1,2,3-Trichloropropane	112/77	440.34	514.33	474.47	7.75
				Average:	7.7

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass

icps = ion counts per second ppbv = part per billion by volume

% = Percent

Calibration Files: HSC014, HSC015, HSC025, and HSC026 on 13 December 2006 Used for Survey Files: HSC018									
	Used 1			<u> </u>					
Compound	PM/DM	Initial Response Factor	Final Response Factor	Intermediate Response Factor	Error Bar (%)				
1,3-Butadiene	54/38	12.464	14.591	13.444	7.86				
1,3-Butadiene	54/39	37.193	43.448	40.078	7.76				
1,3-Butadiene	54/54	17.197	20.044	18.511	7.65				
				Average:	7.8				
Benzene	78/39	46.353	50.856	48.500	4.63				
Benzene	78/52	269.83	295.23	281.96	4.50				
				Average:	4.6				
MTBE	89/29	N/A	N/A	N/A	N/A				
MTBE	89/39	45.378	49.147	47.188	3.99				
MTBE	89/41	137.96	153.83	145.47	5.44				
				Average:	4.7				
Toluene	92/39	24.888	26.981	25.893	4.04				
Toluene	92/51	49.913	53.677	51.727	3.63				
				Average:	3.8				
Styrene	104/77	321.60	360.23	339.82	5.67				
Styrene	104/78	640.60	695.26	666.81	4.09				
Styrene	104/95	210.69	210.61	210.65	0.0183				
Styrene	104/103	614.69	662.62	637.76	3.75				
				Average:	3.4				
Xylenes	106/65	488.70	536.79	511.62	4.69				
Xylenes	106/91	1909.9	2142.0	2019.3	5.73				
				Average:	5.2				
1,2,3-Trichloropropane	110/49	234.03	267.88	249.81	6.74				
1,2,3-Trichloropropane	110/75	1172.1	1389.1	1271.4	8.47				
1,2,3-Trichloropropane	112/75	449.86	525.73	484.85	7.78				
1,2,3-Trichloropropane	112/77	440.34	514.33	474.47	7.75				
				Average:	7.7				

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass

icps = ion counts per second ppbv = part per billion by volume % = Percent

Calibration Files: HSC014, HSC015, HSC025, and HSC026 on 13 December 2006									
Candration Files: F		for Survey File:		1 13 December 2006					
Compound	PM/DM	Initial Response Factor	Final Response Factor	Intermediate Response Factor	Error Bar (%)				
1,3-Butadiene	54/38	12.464	14.591	13.444	7.86				
1,3-Butadiene	54/39	37.193	43.448	40.078	7.76				
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A				
				Average:	7.8				
Benzene	78/39	46.353	50.856	48.500	4.63				
Benzene	78/52	269.83	295.23	281.96	4.50				
				Average:	4.6				
MTBE	89/29	N/A	N/A	N/A	N/A				
MTBE	89/39	45.378	49.147	47.188	3.99				
MTBE	89/41	137.96	153.83	145.47	5.44				
				Average:	4.7				
Toluene	92/39	24.888	26.981	25.893	4.04				
Toluene	92/51	49.913	53.677	51.727	3.63				
				Average:	3.8				
Styrene	104/77	321.60	360.23	339.82	5.67				
Styrene	104/78	640.60	695.26	666.81	4.09				
Styrene	104/95	210.69	210.61	210.65	0.0183				
Styrene	104/103	614.69	662.62	637.76	3.75				
				Average:	3.4				
Xylenes	106/65	488.70	536.79	511.62	4.69				
Xylenes	106/91	1909.9	2142.0	2019.3	5.73				
				Average:	5.2				
1,2,3-Trichloropropane	110/49	234.03	267.88	249.81	6.74				
1,2,3-Trichloropropane	110/75	1172.1	1389.1	1271.4	8.47				
1,2,3-Trichloropropane	112/75	449.86	525.73	484.85	7.78				
1,2,3-Trichloropropane	112/77	440.34	514.33	474.47	7.75				
				Average:	7.7				

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass

icps = ion counts per second ppbv = part per billion by volume % = Percent

Calibration Files: HSC014, HSC015, HSC025, and HSC026 on 13 December 2006 Used for Survey Files: HSC023								
Compound	PM/DM	Initial Response Factor	Final Response Factor	Intermediate Response Factor	Error Bar (%)			
1,3-Butadiene	54/38	12.464	14.591	13.444	7.86			
1,3-Butadiene	54/39	37.193	43.448	40.078	7.76			
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A			
				Average:	7.8			
Benzene	78/39	46.353	50.856	48.500	4.63			
Benzene	78/52	269.83	295.23	281.96	4.50			
				Average:	4.6			
MTBE	89/29	8.1744	9.1008	8.6128	5.36			
MTBE	89/39	45.378	49.147	47.188	3.99			
MTBE	89/41	137.96	153.83	145.47	5.44			
				Average:	4.9			
Toluene	92/39	24.888	26.981	25.893	4.04			
Toluene	92/51	49.913	53.677	51.727	3.63			
				Average:	3.8			
Styrene	104/77	321.60	360.23	339.82	5.67			
Styrene	104/78	640.60	695.26	666.81	4.09			
Styrene	104/95	210.69	210.61	210.65	0.0183			
Styrene	104/103	614.69	662.62	637.76	3.75			
				Average:	3.4			
Xylenes	106/65	488.70	536.79	511.62	4.69			
Xylenes	106/91	1909.9	2142.0	2019.3	5.73			
				Average:	5.2			
1,2,3-Trichloropropane	110/49	234.03	267.88	249.81	6.74			
1,2,3-Trichloropropane	110/75	1172.1	1389.1	1271.4	8.47			
1,2,3-Trichloropropane	112/75	449.86	525.73	484.85	7.78			
1,2,3-Trichloropropane	112/77	440.34	514.33	474.47	7.75			
				Average:	7.7			

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass

icps = ion counts per second ppbv = part per billion by volume % = Percent

Calibration Files: HSC027, HSC028, HSC109, and HSC110 on 14 December 2006							
Used for Survey File: HSC030							
Compound	PM/DM	Initial Response Factor	Final Response Factor	Intermediate Response Factor	Error Bar (%)		
1,3-Butadiene	54/38	16.033	11.072	13.099	18.3		
1,3-Butadiene	54/39	49.385	35.184	41.092	16.8		
1,3-Butadiene	54/54	24.400	16.664	19.803	18.8		
				Average:	18.		
Benzene	78/39	56.102	39.345	46.253	17.6		
Benzene	78/52	306.46	212.44	250.93	18.1		
				Average:	18.		
MTBE	89/29	9.3151	7.0400	0.99842	0.135		
MTBE	89/39	64.349	65.559	64.948	0.932		
MTBE	89/41	155.46	166.10	160.60	3.31		
				Average:	1.5		
Toluene	92/39	35.317	24.385	28.850	18.3		
Toluene	92/51	71.882	49.478	58.612	18.5		
				Average:	18.		
Styrene	104/77	570.09	383.84	458.78	19.5		
Styrene	104/78	1080.0	683.63	837.29	22.5		
Styrene	104/95	380.50	220.08	278.86	26.7		
Styrene	104/103	1060.4	656.60	811.02	23.5		
				Average:	23.		
Xylenes	106/65	817.77	542.32	652.15	20.3		
Xylenes	106/91	2662.0	1819.3	2161.5	18.8		
				Average:	20.		
1,2,3-Trichloropropane	110/49	341.83	159.35	217.37	36.4		
1,2,3-Trichloropropane	110/75	1336.2	685.79	906.40	32.2		
1,2,3-Trichloropropane	112/75	N/A	N/A	N/A	N/A		
1,2,3-Trichloropropane	112/77	N/A	N/A	N/A	N/A		
				Average:	34.		

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass

icps = ion counts per second ppbv = part per billion by volume % = Percent

March 2007								
Calibration Files: HSC027, HSC028, HSC109, and HSC110 on 14 December 2006 Used for Survey File: HSC031								
Compound	PM/DM	Initial Response Factor	Final Response Factor	Intermediate Response Factor	Error Bar (%)			
1,3-Butadiene	54/38	16.033	11.072	13.099	18.3			
1,3-Butadiene	54/39	49.385	35.184	41.092	16.8			
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A			
				Average:	18.			
Benzene	78/39	56.102	39.345	46.253	17.6			
Benzene	78/52	306.46	212.44	250.93	18.1			
				Average:	18.			
MTBE	89/29	9.3151	9.2899	9.3025	0.135			
MTBE	89/39	N/A	N/A	N/A	N/A			
MTBE	89/41	155.46	166.10	160.60	3.31			
				Average:	1.7			
Toluene	92/39	35.317	24.385	28.850	18.3			
Toluene	92/51	71.882	49.478	58.612	18.5			
				Average:	18.			
Styrene	104/77	570.09	383.84	458.78	19.5			
Styrene	104/78	1080.0	683.63	837.29	22.5			
Styrene	104/95	380.50	220.08	278.86	26.7			
Styrene	104/103	1060.4	656.60	811.02	23.5			
				Average:	23.			
Xylenes	106/65	817.77	542.32	652.15	20.3			
Xylenes	106/91	2662.0	1819.3	2161.5	18.8			
				Average:	20.			
1,2,3-Trichloropropane	110/49	341.83	159.35	217.37	36.4			
1,2,3-Trichloropropane	110/75	1336.2	685.79	906.40	32.2			
1,2,3-Trichloropropane	112/75	N/A	N/A	N/A	N/A			
1,2,3-Trichloropropane	112/77	N/A	N/A	N/A	N/A			
				Average:	34.			

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass

icps = ion counts per second ppbv = part per billion by volume

% = Percent N/A = Not available

Calibration Files: HSC027, HSC028, HSC109, and HSC110 on 14 December 2006								
			HSC032 and		1 2000			
Compound		Initial Response Factor	Final Response Factor	Intermediate Response Factor	Error Bar (%)			
1,3-Butadiene	54/38	16.033	11.072	13.099	18.3			
1,3-Butadiene	54/39	49.385	35.184	41.092	16.8			
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A			
				Average:	18.			
Benzene	78/39	56.102	39.345	46.253	17.6			
Benzene	78/52	306.46	212.44	250.93	18.1			
				Average:	18.			
MTBE	89/29	9.3151	9.2899	9.3025	0.135			
MTBE	89/39	64.349	65.559	64.948	0.932			
MTBE	89/41	155.46	166.10	160.60	3.31			
				Average:	1.5			
Toluene	92/39	35.317	24.385	28.850	18.3			
Toluene	92/51	71.882	49.478	58.612	18.5			
				Average:	18.			
Styrene	104/77	570.09	383.84	458.78	19.5			
Styrene	104/78	1080.0	683.63	837.29	22.5			
Styrene	104/95	380.50	220.08	278.86	26.7			
Styrene	104/103	1060.4	656.60	811.02	23.5			
				Average:	23.			
Xylenes	106/65	817.77	542.32	652.15	20.3			
Xylenes	106/91	2662.0	1819.3	2161.5	18.8			
				Average:	20.			
1,2,3-Trichloropropane	110/49	341.83	159.35	217.37	36.4			
1,2,3-Trichloropropane	110/75	1336.2	685.79	906.40	32.2			
1,2,3-Trichloropropane	112/75	497.25	251.03	333.63	32.9			
1,2,3-Trichloropropane	112/77	497.97	250.96	333.73	33.0			
				Average:	34.			

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass

icps = ion counts per second ppbv = part per billion by volume

% = Percent N/A = Not available

Calibration Files: HSC027, HSC028, HSC109, and HSC110 on 14 December 2006								
Used for Survey Files: HSC033, HSC035, and HSC036								
Compound	PM/DM	Initial Response Factor	Final Response Factor	Intermediate Response Factor	Error Bar (%)			
1,3-Butadiene	54/38	16.033	11.072	13.099	18.3			
1,3-Butadiene	54/39	49.385	35.184	41.092	16.8			
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A			
				Average:	18.			
Benzene	78/39	56.102	39.345	46.253	17.6			
Benzene	78/52	306.46	212.44	250.93	18.1			
				Average:	18.			
MTBE	89/29	9.3151	9.2899	9.3025	0.135			
MTBE	89/39	64.349	65.559	64.948	0.932			
MTBE	89/41	155.46	166.10	160.60	3.31			
				Average:	1.5			
Toluene	92/39	35.317	24.385	28.850	18.3			
Toluene	92/51	71.882	49.478	58.612	18.5			
				Average:	18.			
Styrene	104/77	570.09	383.84	458.78	19.5			
Styrene	104/78	1080.0	683.63	837.29	22.5			
Styrene	104/95	380.50	220.08	278.86	26.7			
Styrene	104/103	1060.4	656.60	811.02	23.5			
				Average:	23.			
Xylenes	106/65	817.77	542.32	652.15	20.3			
Xylenes	106/91	2662.0	1819.3	2161.5	18.8			
				Average:	20.			
1,2,3-Trichloropropane	110/49	341.83	159.35	217.37	36.4			
1,2,3-Trichloropropane	110/75	1336.2	685.79	906.40	32.2			
1,2,3-Trichloropropane	112/75	N/A	N/A	N/A	N/A			
1,2,3-Trichloropropane	112/77	N/A	N/A	N/A	N/A			
				Average:	34.			

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass

icps = ion counts per second ppbv = part per billion by volume % = Percent

Calibration Files: HSC027, HSC028, HSC109 and HSC110 on 14 December 2006 Used for Unit Survey Files: HSC037								
Compound	PM/DM	Initial Response Factor	Final Response Factor	Intermediate Response Factor	Error Bar			
1,3-Butadiene	54/38	16.033	11.072	13.099	18.3			
1,3-Butadiene	54/39	49.385	35.184	41.092	16.8			
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A			
				Average:	18.			
Benzene	78/39	56.102	39.345	46.253	17.6			
Benzene	78/52	306.46	212.44	250.93	18.1			
				Average:	18.			
MTBE	89/29	N/A	N/A	N/A	N/A			
MTBE	89/39	64.349	65.559	64.948	0.932			
MTBE	89/41	155.46	166.10	160.60	3.31			
				Average:	2.1			
Toluene	92/39	35.317	24.385	28.850	18.3			
Toluene	92/51	71.882	49.478	58.612	18.5			
				Average:	18.			
Styrene	104/77	570.09	383.84	458.78	19.5			
Styrene	104/78	1080.0	683.63	837.29	22.5			
Styrene	104/95	380.50	220.08	278.86	26.7			
Styrene	104/103	1060.4	656.60	811.02	23.5			
				Average:	23.			
Xylenes	106/65	817.77	542.32	652.15	20.3			
Xylenes	106/91	2662.0	1819.3	2161.5	18.8			
				Average:	20.			
1,2,3-Trichloropropane	110/49	341.83	159.35	217.37	36.4			
1,2,3-Trichloropropane	110/75	1336.2	685.79	906.40	32.2			
1,2,3-Trichloropropane	112/75	497.25	251.03	333.63	32.9			
1,2,3-Trichloropropane	112/77	497.97	250.96	333.73	33.0			
				Average:	34.			

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass

icps = ion counts per second ppbv = part per billion by volume

% = Percent N/A = Not available

Calibration Files HCC001 HCC002 HCC012 and HCC012 and December 2006								
Calibration Files: HS	Calibration Files: HSC001, HSC002, HSC012, and HSC013 on 12 December 2006 Used for Survey Files: HSC004							
Compound	PM/DM	Intermediate Response Factor	Standard Deviation (icps)	Detection Limit (ppbv)	Quantitation Limit (ppbv)			
1,3-Butadiene	54/38	6.5914	9.8491	4.48	14.9			
1,3-Butadiene	54/39	21.378	9.4409	1.32	4.42			
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A			
			Average:	2.9	9.7			
Benzene	78/39	26.495	5.7189	0.648	2.16			
Benzene	78/52	156.14	15.630	0.300	1.00			
			Average:	0.47	1.6			
MTBE	89/29	4.8024	7.8789	4.92	16.4			
MTBE	89/39	26.722	5.8359	0.655	2.18			
MTBE	89/41	82.981	16.413	0.593	1.98			
			Average:	2.1	6.9			
Toluene	92/39	11.989	6.8101	1.70	5.68			
Toluene	92/51	22.118	5.7189	0.776	2.59			
			Average:	1.2	4.1			
Styrene	104/77	86.070	6.3131	0.220	0.733			
Styrene	104/78	203.29	6.6230	0.0977	0.326			
Styrene	104/95	83.868	5.1264	0.183	0.611			
Styrene	104/103	199.68	5.5993	0.0841	0.280			
			Average:	0.15	0.49			
Xylenes	106/65	159.21	15.017	0.283	0.943			
Xylenes	106/91	593.77	34.949	0.177	0.589			
			Average:	0.23	0.77			
1,2,3-Trichloropropane	110/49	81.227	2.4964	0.0922	0.307			
1,2,3-Trichloropropane	110/75	482.86	7.5245	0.0468	0.156			
1,2,3-Trichloropropane	112/75	N/A	N/A	N/A	N/A			
1,2,3-Trichloropropane	112/77	161.40	11.490	0.214	0.712			
			Average:	0.12	0.39			

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass

icps = ion counts per second ppbv = part per billion by volume % = Percent

% = Percent N/A = Not available

Calibration Files: HSC001, HSC002, HSC012, and HSC013 on 12 December 2006 Used for Survey Files: HSC005, HSC007, HSC009, HSC010, and HSC011								
Compound	PM/DM	Intermediate Response Factor	Standard Deviation (icps)	Detection Limit (ppbv)	Quantitation Limit (ppbv)			
1,3-Butadiene	54/38	6.5914	9.8491	4.48	14.9			
1,3-Butadiene	54/39	21.378	9.4409	1.32	4.42			
1,3-Butadiene	54/54	9.5858	6.5681	2.06	6.85			
			Average:	2.6	8.7			
Benzene	78/39	26.495	5.7189	0.648	2.16			
Benzene	78/52	156.14	15.630	0.300	1.00			
			Average:	0.47	1.6			
MTBE	89/29	4.8024	7.8789	4.92	16.4			
MTBE	89/39	26.722	5.8359	0.655	2.18			
MTBE	89/41	82.981	16.413	0.593	1.98			
			Average:	2.1	6.9			
Toluene	92/39	11.989	6.8101	1.70	5.68			
Toluene	92/51	22.118	5.7189	0.776	2.59			
			Average:	1.2	4.1			
Styrene	104/77	86.070	6.3131	0.220	0.733			
Styrene	104/78	203.29	6.6230	0.0977	0.326			
Styrene	104/95	83.868	5.1264	0.183	0.611			
Styrene	104/103	199.68	5.5993	0.0841	0.280			
			Average:	0.15	0.49			
Xylenes	106/65	159.21	15.017	0.283	0.943			
Xylenes	106/91	593.77	34.949	0.177	0.589			
			Average:	0.23	0.77			
1,2,3-Trichloropropane	110/49	81.227	2.4964	0.0922	0.307			
1,2,3-Trichloropropane	110/75	482.86	7.5245	0.0468	0.156			
1,2,3-Trichloropropane	112/75	158.80	9.7728	0.185	0.615			
1,2,3-Trichloropropane	112/77	161.40	11.490	0.214	0.712			
			Average:	0.13	0.45			

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass

icps = ion counts per second ppbv = part per billion by volume

Calibration Files: HSC001, HSC002, HSC012, and HSC013 on 12 December 2006 Used for Survey Files: HSC006							
Compound	PM/DM	Intermediate Response Factor	Standard Deviation (icps)	Detection Limit (ppbv)	Quantitation Limit (ppbv)		
1,3-Butadiene	54/38	6.5914	9.8491	4.48	14.9		
1,3-Butadiene	54/39	21.378	9.4409	1.32	4.42		
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A		
			Average:	2.9	9.7		
Benzene	78/39	26.495	5.7189	0.648	2.16		
Benzene	78/52	156.14	15.630	0.300	1.00		
			Average:	0.47	1.6		
MTBE	89/29	4.8024	7.8789	4.92	16.4		
MTBE	89/39	26.722	5.8359	0.655	2.18		
MTBE	89/41	82.981	16.413	0.593	1.98		
			Average:	2.1	6.9		
Toluene	92/39	11.989	6.8101	1.70	5.68		
Toluene	92/51	22.118	5.7189	0.776	2.59		
			Average:	1.2	4.1		
Styrene	104/77	86.070	6.3131	0.220	0.733		
Styrene	104/78	203.29	6.6230	0.0977	0.326		
Styrene	104/95	83.868	5.1264	0.183	0.611		
Styrene	104/103	199.68	5.5993	0.0841	0.280		
			Average:	0.15	0.49		
Xylenes	106/65	159.21	15.017	0.283	0.943		
Xylenes	106/91	593.77	34.949	0.177	0.589		
			Average:	0.23	0.77		
1,2,3-Trichloropropane	110/49	81.227	2.4964	0.0922	0.307		
1,2,3-Trichloropropane	110/75	482.86	7.5245	0.0468	0.156		
1,2,3-Trichloropropane	112/75	158.80	9.7728	0.185	0.615		
1,2,3-Trichloropropane	112/77	161.40	11.490	0.214	0.712		
			Average:	0.13	0.45		

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass icps = ion counts per second ppbv = part per billion by volume

Calibration Files: HSC001, HSC002, HSC012, and HSC013 on 12 December 2006 Used for Survey Files: HSC008							
Compound	PM/DM	Intermediate Response Factor	Standard Deviation (icps)	Detection Limit (ppbv)	Quantitation Limit (ppbv)		
1,3-Butadiene	54/38	6.5914	10.479	4.77	15.9		
1,3-Butadiene	54/39	21.378	10.100	1.42	4.72		
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A		
			Average:	3.1	10.		
Benzene	78/39	26.495	5.6669	0.642	2.14		
Benzene	78/52	156.14	15.560	0.299	0.997		
			Average:	0.47	1.6		
MTBE	89/29	4.8024	7.1807	4.49	15.0		
MTBE	89/39	26.722	4.8158	0.541	1.80		
MTBE	89/41	N/A	N/A	N/A	N/A		
			Average:	2.5	8.4		
Toluene	92/39	11.989	6.8858	1.72	5.74		
Toluene	92/51	22.118	5.7838	0.784	2.61		
			Average:	1.3	4.2		
Styrene	104/77	86.070	6.9078	0.241	0.803		
Styrene	104/78	203.29	7.2995	0.108	0.359		
Styrene	104/95	83.868	5.6798	0.203	0.677		
Styrene	104/103	199.68	6.1964	0.0931	0.310		
			Average:	0.16	0.54		
Xylenes	106/65	159.21	16.622	0.313	1.04		
Xylenes	106/91	593.77	38.494	0.194	0.648		
			Average:	0.25	0.84		
1,2,3-Trichloropropane	110/49	81.227	2.8607	0.106	0.352		
1,2,3-Trichloropropane	110/75	482.86	8.2723	0.0514	0.171		
1,2,3-Trichloropropane	112/75	N/A	N/A	N/A	N/A		
1,2,3-Trichloropropane	112/77	N/A	N/A	N/A	N/A		
			Average:	0.079	0.26		

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass icps = ion counts per second ppbv = part per billion by volume

Calibration Files: HSC014, HSC015, HSC025, and HSC026 on 13 December 2006 Used for Survey Files: HSC017, HSC019, HSC020, HSC022, and HSC024							
Compound	PM/DM	Intermediate Response Factor	Standard Deviation (icps)	Detection Limit (ppbv)	Quantitation Limit (ppbv)		
1,3-Butadiene	54/38	13.444	17.318	3.86	12.9		
1,3-Butadiene	54/39	40.078	26.303	1.97	6.56		
1,3-Butadiene	54/54	18.511	20.278	3.29	11.0		
			Average:	3.0	10.		
Benzene	78/39	48.500	39.818	2.46	8.21		
Benzene	78/52	281.96	140.41	1.49	4.98		
			Average:	2.0	6.6		
MTBE	89/29	8.6128	16.412	5.72	19.1		
MTBE	89/39	47.188	21.988	1.40	4.66		
MTBE	89/41	145.47	35.915	0.741	2.47		
			Average:	2.6	8.7		
Toluene	92/39	25.893	44.149	5.12	17.1		
Toluene	92/51	51.727	55.167	3.20	10.7		
			Average:	4.2	14.		
Styrene	104/77	339.82	39.329	0.347	1.16		
Styrene	104/78	666.81	54.328	0.244	0.815		
Styrene	104/95	210.65	30.314	0.432	1.44		
Styrene	104/103	637.76	53.280	0.251	0.835		
			Average:	0.32	1.1		
Xylenes	106/65	511.62	258.34	1.51	5.05		
Xylenes	106/91	2019.3	900.24	1.34	4.46		
			Average:	1.4	4.8		
1,2,3-Trichloropropane	110/49	249.81	1.7678	0.0212	0.0708		
1,2,3-Trichloropropane	110/75	1271.4	12.889	0.0304	0.101		
1,2,3-Trichloropropane	112/75	484.85	29.674	0.184	0.612		
1,2,3-Trichloropropane	112/77	474.47	9.7551	0.0617	0.206		
			Average:	0.074	0.25		

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass icps = ion counts per second ppbv = part per billion by volume

Calibration Files: HSC014, HSC015, HSC025, and HSC026 on 13 December 2006 Used for Survey File: HSC018							
Compound	PM/DM	Intermediate Response Factor	Standard Deviation (icps)	Detection Limit (ppbv)	Quantitation Limit (ppbv)		
1,3-Butadiene	54/38	13.444	17.318	3.86	12.9		
1,3-Butadiene	54/39	40.078	26.303	1.97	6.56		
1,3-Butadiene	54/54	18.511	20.278	3.29	11.0		
			Average:	3.0	10.		
Benzene	78/39	48.500	39.818	2.46	8.21		
Benzene	78/52	281.96	140.41	1.49	4.98		
			Average:	2.0	6.6		
MTBE	89/29	N/A	N/A	N/A	N/A		
MTBE	89/39	47.188	21.988	1.40	4.66		
MTBE	89/41	145.47	35.915	0.741	2.47		
			Average:	1.1	3.6		
Toluene	92/39	25.893	44.149	5.12	17.1		
Toluene	92/51	51.727	55.167	3.20	10.7		
			Average:	4.2	14.		
Styrene	104/77	339.82	39.329	0.347	1.16		
Styrene	104/78	666.81	54.328	0.244	0.815		
Styrene	104/95	210.65	30.314	0.432	1.44		
Styrene	104/103	637.76	53.280	0.251	0.835		
			Average:	0.32	1.1		
Xylenes	106/65	511.62	258.34	1.51	5.05		
Xylenes	106/91	2019.3	900.24	1.34	4.46		
			Average:	1.4	4.8		
1,2,3-Trichloropropane	110/49	249.81	1.7678	0.0212	0.0708		
1,2,3-Trichloropropane	110/75	1271.4	12.889	0.0304	0.101		
1,2,3-Trichloropropane	112/75	484.85	29.674	0.184	0.612		
1,2,3-Trichloropropane	112/77	474.47	9.7551	0.0617	0.206		
			Average:	0.074	0.25		

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass icps = ion counts per second ppbv = part per billion by volume

Calibration Files: HS	C014, HSC	015, HSC025, a	and HSC026	on 13 Decer	nber 2006	
Used for Survey Files: HSC021						
Compound	PM/DM	Intermediate Response Factor	Standard Deviation (icps)	Detection Limit (ppbv)	Quantitation Limit (ppbv)	
1,3-Butadiene	54/38	13.444	17.318	3.86	12.9	
1,3-Butadiene	54/39	40.078	26.303	1.97	6.56	
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A	
			Average:	2.9	9.7	
Benzene	78/39	48.500	39.818	2.46	8.21	
Benzene	78/52	281.96	140.41	1.49	4.98	
			Average:	2.0	6.6	
MTBE	89/29	N/A	N/A	N/A	N/A	
MTBE	89/39	47.188	21.988	1.40	4.66	
MTBE	89/41	145.47	35.915	0.741	2.47	
			Average:	1.1	3.6	
Toluene	92/39	25.893	44.149	5.12	17.1	
Toluene	92/51	51.727	55.167	3.20	10.7	
			Average:	4.2	14.	
Styrene	104/77	339.82	39.329	0.347	1.16	
Styrene	104/78	666.81	54.328	0.244	0.815	
Styrene	104/95	210.65	30.314	0.432	1.44	
Styrene	104/103	637.76	53.280	0.251	0.835	
			Average:	0.32	1.1	
Xylenes	106/65	511.62	258.34	1.51	5.05	
Xylenes	106/91	2019.3	900.24	1.34	4.46	
			Average:	1.4	4.8	
1,2,3-Trichloropropane	110/49	249.81	1.7678	0.0212	0.0708	
1,2,3-Trichloropropane	110/75	1271.4	12.889	0.0304	0.101	
1,2,3-Trichloropropane	112/75	484.85	29.674	0.184	0.612	
1,2,3-Trichloropropane	112/77	474.47	9.7551	0.0617	0.206	
			Average:	0.074	0.25	

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass icps = ion counts per second ppbv = part per billion by volume N/A = Not available

Calibration Files: HSC014, HSC015, HSC025, and HSC026 on 13 December 2006 Used for Survey Files: HSC023					
Compound	PM/DM	Intermediate Response Factor	Standard Deviation (icps)	Detection Limit (ppbv)	Quantitation Limit (ppbv)
1,3-Butadiene	54/38	13.444	17.318	3.86	12.9
1,3-Butadiene	54/39	40.078	26.303	1.97	6.56
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A
			Average:	2.9	9.7
Benzene	78/39	48.500	39.818	2.46	8.21
Benzene	78/52	281.96	140.41	1.49	4.98
			Average:	2.0	6.6
MTBE	89/29	8.6128	16.412	5.72	19.1
MTBE	89/39	47.188	21.988	1.40	4.66
MTBE	89/41	145.47	35.915	0.741	2.47
			Average:	2.6	8.7
Toluene	92/39	25.893	44.149	5.12	17.1
Toluene	92/51	51.727	55.167	3.20	10.7
			Average:	4.2	14.
Styrene	104/77	339.82	39.329	0.347	1.16
Styrene	104/78	666.81	54.328	0.244	0.815
Styrene	104/95	210.65	30.314	0.432	1.44
Styrene	104/103	637.76	53.280	0.251	0.835
			Average:	0.32	1.1
Xylenes	106/65	511.62	258.34	1.51	5.05
Xylenes	106/91	2019.3	900.24	1.34	4.46
			Average:	1.4	4.8
1,2,3-Trichloropropane	110/49	249.81	1.7678	0.0212	0.0708
1,2,3-Trichloropropane	110/75	1271.4	12.889	0.0304	0.101
1,2,3-Trichloropropane	112/75	484.85	29.674	0.184	0.612
1,2,3-Trichloropropane	112/77	474.47	9.7551	0.0617	0.206
			Average:	0.074	0.25

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass icps = ion counts per second ppbv = part per billion by volume

C III di EII MG	C027 11CC	1020 HGG100	11100110	1.4.D	1 2006
Calibration Files: HS		028, HSC109, <i>ຄ</i> or Survey Files:		on 14 Decen	nber 2006
Compound	PM/DM	Intermediate Response Factor	Standard Deviation (icps)	Detection Limit (ppbv)	Quantitation Limit (ppbv)
1,3-Butadiene	54/38	13.099	15.862	3.63	12.1
1,3-Butadiene	54/39	41.092	16.046	1.17	3.90
1,3-Butadiene	54/54	19.803	11.769	1.78	5.94
			Average:	2.2	7.3
Benzene	78/39	46.253	15.013	0.974	3.25
Benzene	78/52	250.93	43.052	0.515	1.72
			Average:	0.74	2.5
MTBE	89/29	9.3025	11.725	3.78	12.6
MTBE	89/39	64.948	9.9655	0.460	1.53
MTBE	89/41	160.60	21.645	0.404	1.35
			Average:	1.5	5.2
Toluene	92/39	28.850	20.186	2.10	7.00
Toluene	92/51	58.612	37.147	1.90	6.34
			Average:	2.0	6.7
Styrene	104/77	458.78	21.324	0.139	0.465
Styrene	104/78	837.29	23.577	0.0845	0.282
Styrene	104/95	278.86	17.499	0.188	0.628
Styrene	104/103	811.02	31.479	0.116	0.388
			Average:	0.13	0.44
Xylenes	106/65	652.15	104.89	0.482	1.61
Xylenes	106/91	2161.5	198.99	0.276	0.921
			Average:	0.38	1.3
1,2,3-Trichloropropane	110/49	217.37	2.5371	0.0350	0.117
1,2,3-Trichloropropane	110/75	906.40	9.3526	0.0310	0.103
1,2,3-Trichloropropane	112/75	N/A	N/A	N/A	N/A
1,2,3-Trichloropropane	112/77	N/A	N/A	N/A	N/A
			Average:	0.033	0.11

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass icps = ion counts per second ppbv = part per billion by volume

Calibration Files: HSC027, HSC028, HSC109, and HSC110 on 14 December 2006 Used for Survey File: HSC031					
Compound	PM/DM	Intermediate Response Factor	Standard Deviation (icps)	Detection Limit (ppbv)	Quantitation Limit (ppbv)
1,3-Butadiene	54/38	13.099	15.862	3.63	12.1
1,3-Butadiene	54/39	41.092	16.046	1.17	3.90
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A
			Average:	2.4	8.0
Benzene	78/39	46.253	15.013	0.974	3.25
Benzene	78/52	250.93	43.052	0.515	1.72
			Average:	0.74	2.5
MTBE	89/29	9.3025	11.725	3.78	12.6
MTBE	89/39	N/A	N/A	N/A	N/A
MTBE	89/41	160.60	21.645	0.404	1.35
			Average:	2.1	7.0
Toluene	92/39	28.850	20.186	2.10	7.00
Toluene	92/51	58.612	37.147	1.90	6.34
			Average:	2.0	6.7
Styrene	104/77	458.78	21.324	0.139	0.465
Styrene	104/78	837.29	23.577	0.0845	0.282
Styrene	104/95	278.86	17.499	0.188	0.628
Styrene	104/103	811.02	31.479	0.116	0.388
			Average:	0.13	0.44
Xylenes	106/65	652.15	104.89	0.482	1.61
Xylenes	106/91	2161.5	198.99	0.276	0.921
			Average:	0.38	1.3
1,2,3-Trichloropropane	110/49	217.37	2.5371	0.0350	0.117
1,2,3-Trichloropropane	110/75	906.40	9.3526	0.0310	0.103
1,2,3-Trichloropropane	112/75	N/A	N/A	N/A	N/A
1,2,3-Trichloropropane	112/77	N/A	N/A	N/A	N/A
			Average:	0.033	0.11

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass icps = ion counts per second ppbv = part per billion by volume

March 2007					
Calibration Files: HSC027, HSC028, HSC109 and HSC110 on 14 December 2006 Used for Survey Files: HSC032 and HSC034					
Used for Survey Files: HSC032 and HSC034					
Compound	PM/DM	Intermediate Response Factor	Standard Deviation (icps)	Detection Limit (ppbv)	Quantitation Limit (ppbv)
1,3-Butadiene	54/38	13.099	15.862	3.63	12.1
1,3-Butadiene	54/39	41.092	16.046	1.17	3.90
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A
			Average:	2.4	8.0
Benzene	78/39	46.253	15.013	0.974	3.25
Benzene	78/52	250.93	43.052	0.515	1.72
			Average:	0.74	2.5
MTBE	89/29	9.3025	11.725	3.78	12.6
MTBE	89/39	64.948	9.9655	0.460	1.53
MTBE	89/41	160.60	21.645	0.404	1.35
			Average:	1.5	5.2
Toluene	92/39	28.850	20.186	2.10	7.00
Toluene	92/51	58.612	37.147	1.90	6.34
			Average:	2.0	6.7
Styrene	104/77	458.78	21.324	0.139	0.465
Styrene	104/78	837.29	23.577	0.0845	0.282
Styrene	104/95	278.86	17.499	0.188	0.628
Styrene	104/103	811.02	31.479	0.116	0.388
			Average:	0.13	0.44
Xylenes	106/65	652.15	104.89	0.482	1.61
Xylenes	106/91	2161.5	198.99	0.276	0.921
			Average:	0.38	1.3
1,2,3-Trichloropropane	110/49	217.37	2.5371	0.0350	0.117
1,2,3-Trichloropropane	110/75	906.40	9.3526	0.0310	0.103
1,2,3-Trichloropropane	112/75	333.63	15.916	0.143	0.477
1,2,3-Trichloropropane	112/77	333.73	7.8492	0.0706	0.235
			Average:	0.070	0.23

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass icps = ion counts per second ppbv = part per billion by volume N/A = Not available

TABLE 4 (continued) Summary of Detection and Quantitation Limit Data for 12 December through 14 December 2006 Urban Air Toxics Study Harris County, Texas March 2007

Calibration Files: HSC027, HSC028, HSC109 and HSC110 on 14 December 2006 Used for Survey Files: HSC033, HSC035, and HSC036					
Compound	PM/DM	Intermediate Response Factor	Standard Deviation (icps)	Detection Limit (ppbv)	Quantitation Limit (ppbv)
1,3-Butadiene	54/38	13.099	15.862	3.63	12.1
1,3-Butadiene	54/39	41.092	16.046	1.17	3.90
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A
			Average:	2.4	8.0
Benzene	78/39	46.253	15.013	0.974	3.25
Benzene	78/52	250.93	43.052	0.515	1.72
			Average:	0.74	2.5
MTBE	89/29	9.3025	11.725	3.78	12.6
MTBE	89/39	64.948	9.9655	0.460	1.53
MTBE	89/41	160.60	21.645	0.404	1.35
			Average:	1.5	5.2
Toluene	92/39	28.850	20.186	2.10	7.00
Toluene	92/51	58.612	37.147	1.90	6.34
			Average:	2.0	6.7
Styrene	104/77	458.78	21.324	0.139	0.465
Styrene	104/78	837.29	23.577	0.0845	0.282
Styrene	104/95	278.86	17.499	0.188	0.628
Styrene	104/103	811.02	31.479	0.116	0.388
			Average:	0.13	0.44
Xylenes	106/65	652.15	104.89	0.482	1.61
Xylenes	106/91	2161.5	198.99	0.276	0.921
			Average:	0.38	1.3
1,2,3-Trichloropropane	110/49	217.37	2.5371	0.0350	0.117
1,2,3-Trichloropropane	110/75	906.40	9.3526	0.0310	0.103
1,2,3-Trichloropropane	112/75	N/A	N/A	N/A	N/A
1,2,3-Trichloropropane	112/77	N/A	N/A	N/A	N/A
			Average:	0.033	0.11

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass icps = ion counts per second ppbv = part per billion by volume

N/A = Not available

TABLE 4 (continued) Summary of Detection and Quantitation Limit Data for 12 December through 14 December 2006 Urban Air Toxics Study Harris County, Texas March 2007

Calibration Files: HSC027, HSC028, HSC109, and HSC110 on 14 December 2006 Used for Survey File: HSC037					
Compound	PM/DM	Intermediate Response Factor	Standard Deviation (icps)	Detection Limit (ppbv)	Quantitation Limit (ppbv)
1,3-Butadiene	54/38	13.099	15.862	3.63	12.1
1,3-Butadiene	54/39	41.092	16.046	1.17	3.90
1,3-Butadiene	54/54	N/A	N/A	N/A	N/A
			Average:	2.4	8.0
Benzene	78/39	46.253	15.013	0.974	3.25
Benzene	78/52	250.93	43.052	0.515	1.72
			Average:	0.74	2.5
MTBE	89/29	N/A	N/A	N/A	N/A
MTBE	89/39	64.948	9.9655	0.460	1.53
MTBE	89/41	160.60	21.645	0.404	1.35
			Average:	0.43	1.4
Toluene	92/39	28.850	20.186	2.10	7.00
Toluene	92/51	58.612	37.147	1.90	6.34
			Average:	2.0	6.7
Styrene	104/77	458.78	21.324	0.139	0.465
Styrene	104/78	837.29	23.577	0.0845	0.282
Styrene	104/95	278.86	17.499	0.188	0.628
Styrene	104/103	811.02	31.479	0.116	0.388
			Average:	0.13	0.44
Xylenes	106/65	652.15	104.89	0.482	1.61
Xylenes	106/91	2161.5	198.99	0.276	0.921
			Average:	0.38	1.3
1,2,3-Trichloropropane	110/49	217.37	2.5371	0.0350	0.117
1,2,3-Trichloropropane	110/75	906.40	9.3526	0.0310	0.103
1,2,3-Trichloropropane	112/75	333.63	15.916	0.143	0.477
1,2,3-Trichloropropane	112/77	333.73	7.8492	0.0706	0.235
			Average:	0.070	0.23

Response factors are in units of icps/ppbv.

PM/DM = Parent mass/Daughter mass icps = ion counts per second ppbv = part per billion by volume

N/A = Not available

FIGURES

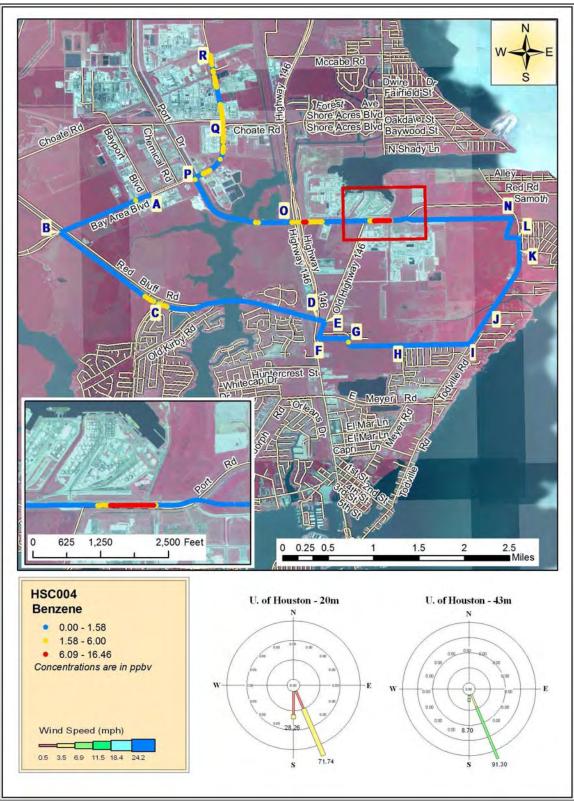


Figure 1a Mobile Monitoring Path for Benzene in Harris County

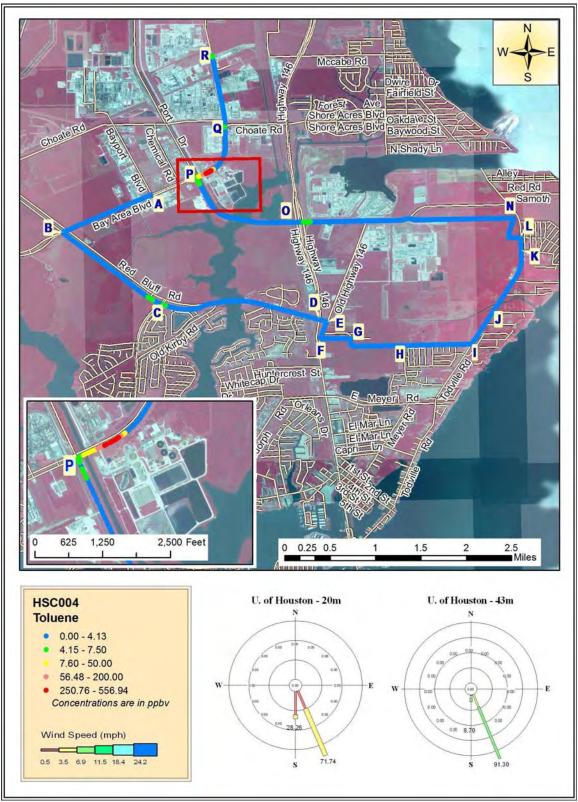


Figure 1b Mobile Monitoring Path for Toluene in Harris County

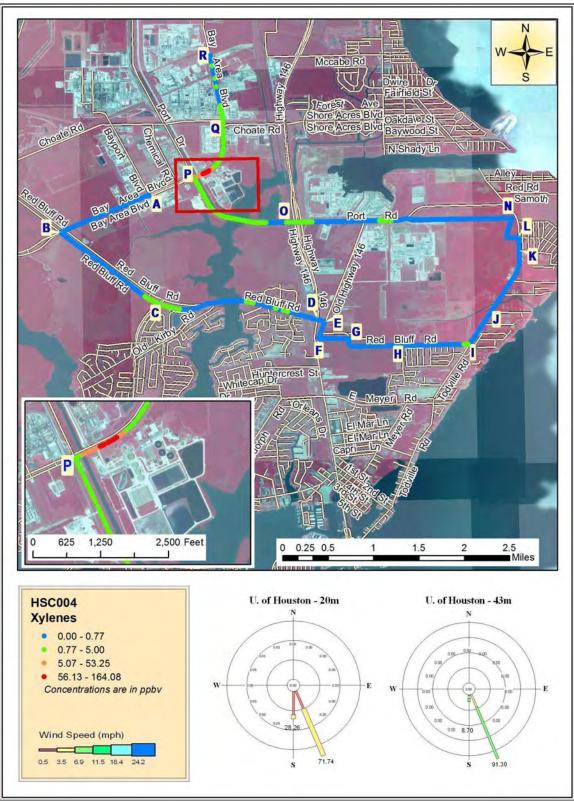


Figure 1c Mobile Monitoring Path for Xylenes in Harris County

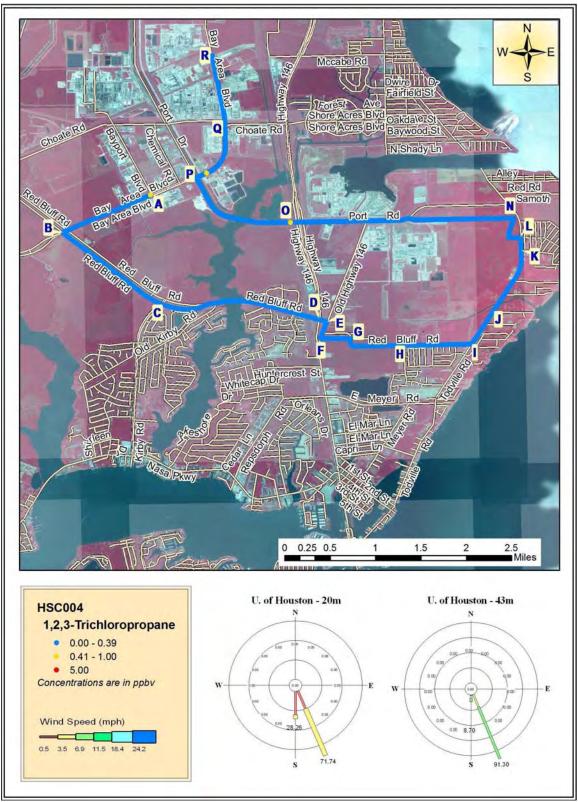


Figure 1d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

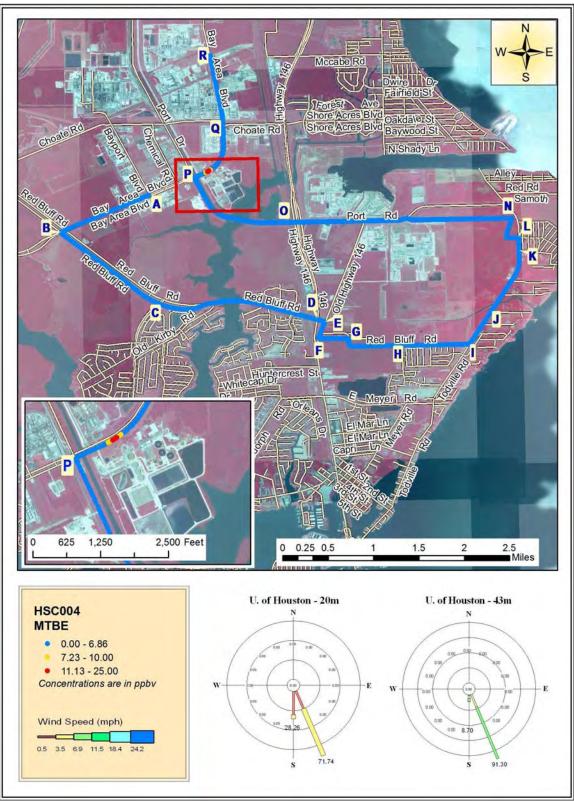


Figure 1e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

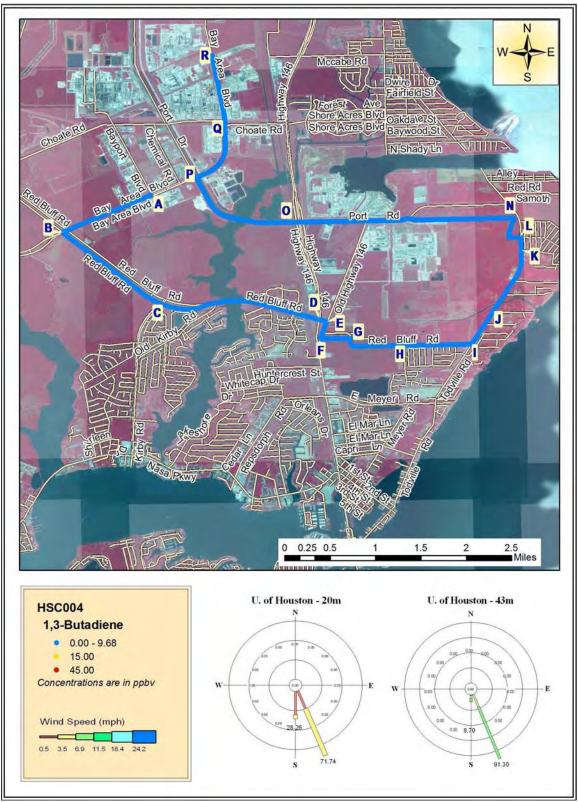


Figure 1f Mobile Monitoring Path for 1,3-Butadiene in Harris County

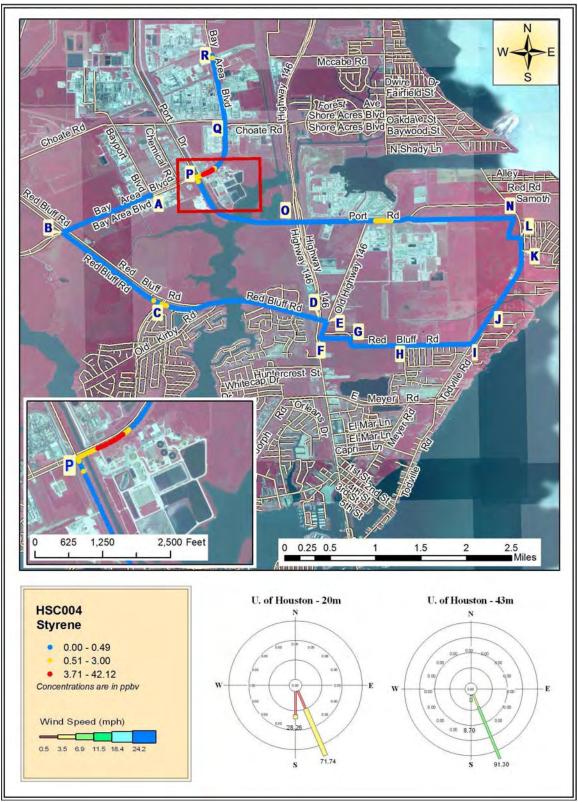


Figure 1g Mobile Monitoring Path for Styrene in Harris County

Figure 1h Mobile Monitoring Path for Mercury in Harris County

Figure 1i

TAGA File Event Summary File: HSC004 Acquired on 12 December 2006 at 02:45:46 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description
Α	2.5	71	Start monitoring westward on Bay Area Boulevard at Bayport Boulevard
В	5.5	158	Turning left onto Red Bluff Road
C	9.0	257	Passing Kirby Boulevard
D	13.4	385	Passing State Highway 146
Е	13.9	398	Turning right onto Old State Highway 146
F	14.8	424	Turning left onto Bayview Drive
G	16.5	471	Turning right onto Red Bluff Road
Н	18.4	527	Passing Park Drive
I	20.6	589	Turning left onto Todville Road
J	22.2	634	Passing Surf Oak Drive
K	24.4	697	Passing Youpon Drive
L	25.0	714	Turning left onto El Jardon Drive
N	25.5	730	Turning left onto New Port Road
О	26.4	755	Passing Highway 146
P	38.6	1103	Turning right Bay Area Boulevard
Q	41.8	1195	Passing Choate Road
R	44.8	1279	Stopping at Huish Detergent

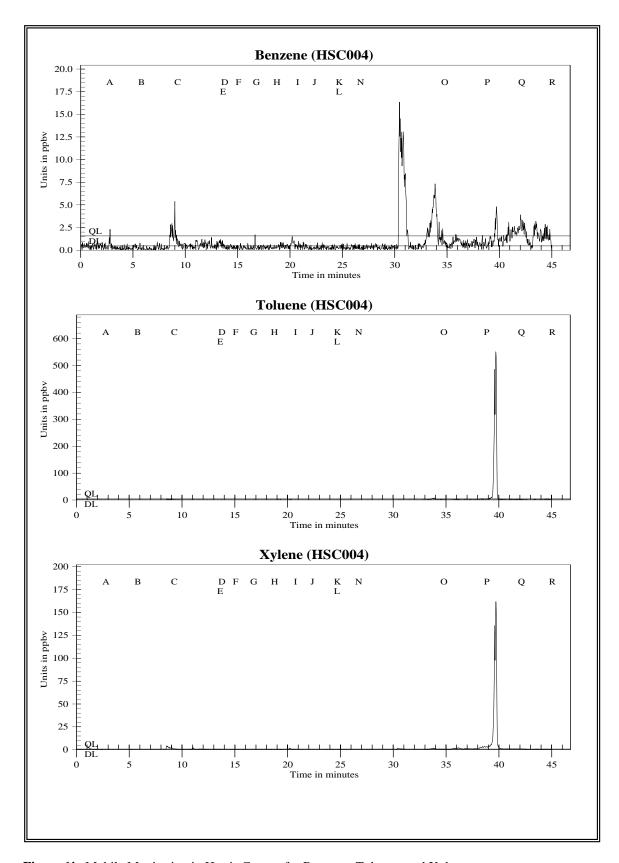


Figure 1j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

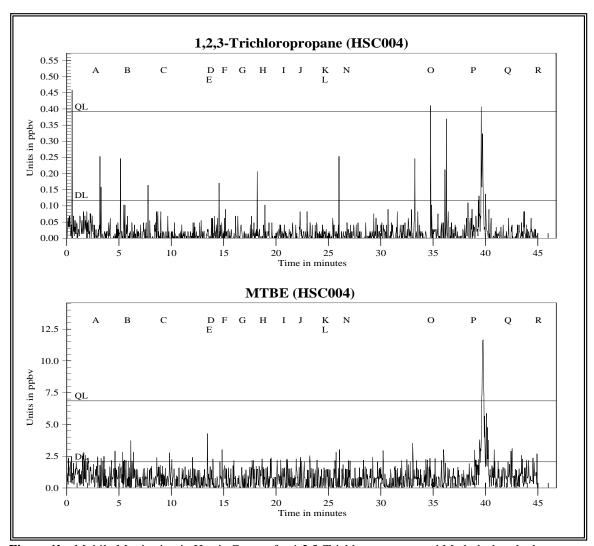


Figure 1k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl t-butyl ether

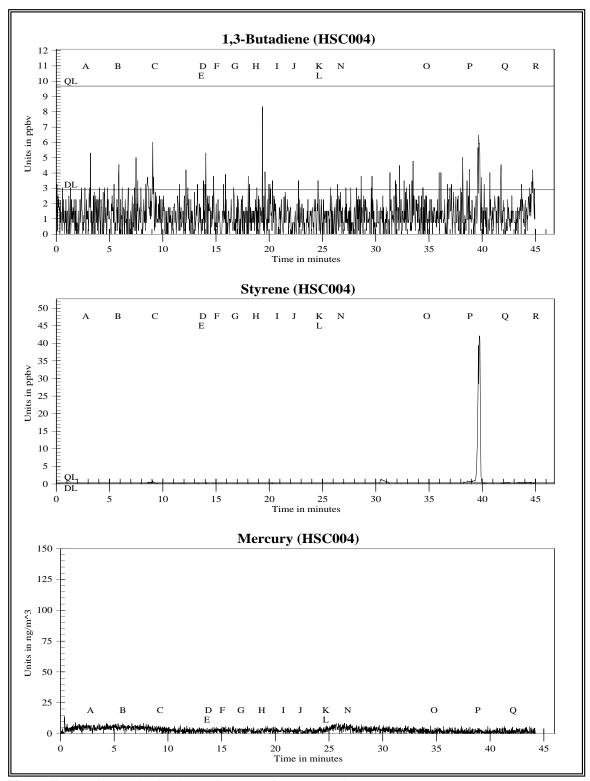


Figure 11 Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

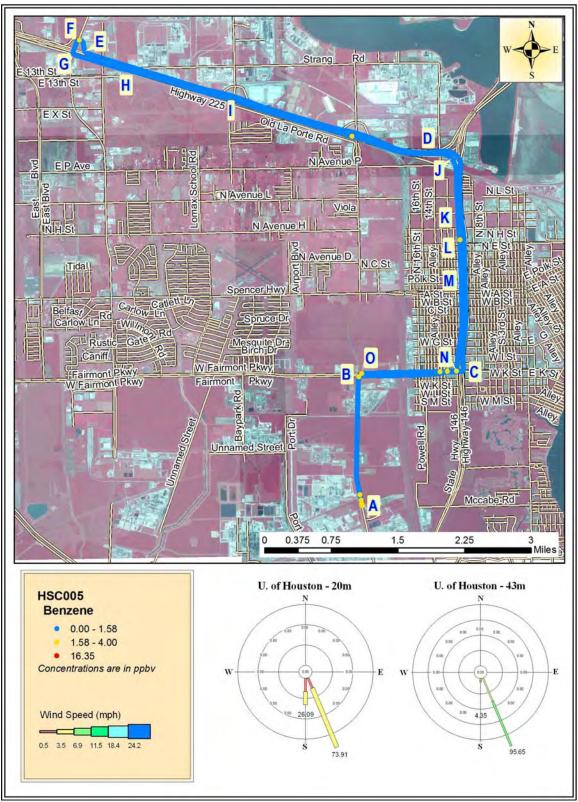


Figure 2a Mobile Monitoring Path for Benzene in Harris County

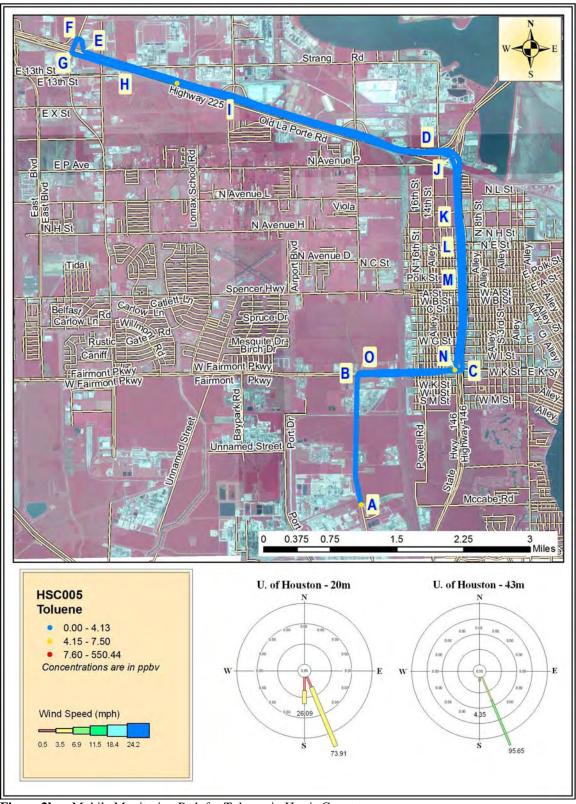


Figure 2b Mobile Monitoring Path for Toluene in Harris County

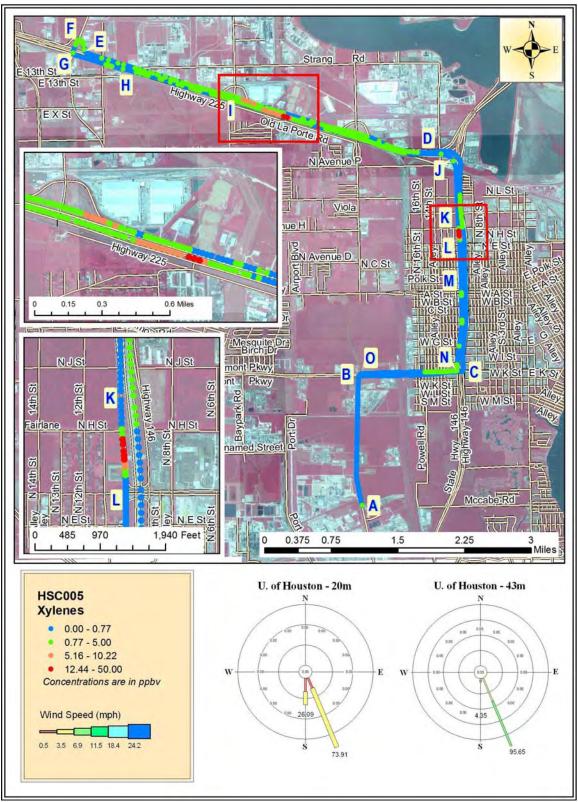


Figure 2c Mobile Monitoring Path for Xylenes in Harris County

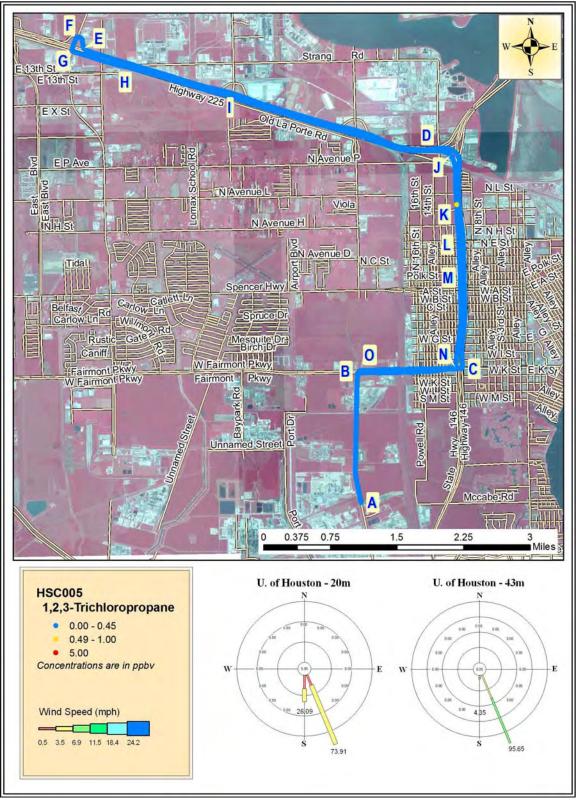


Figure 2d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

Figure 2e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

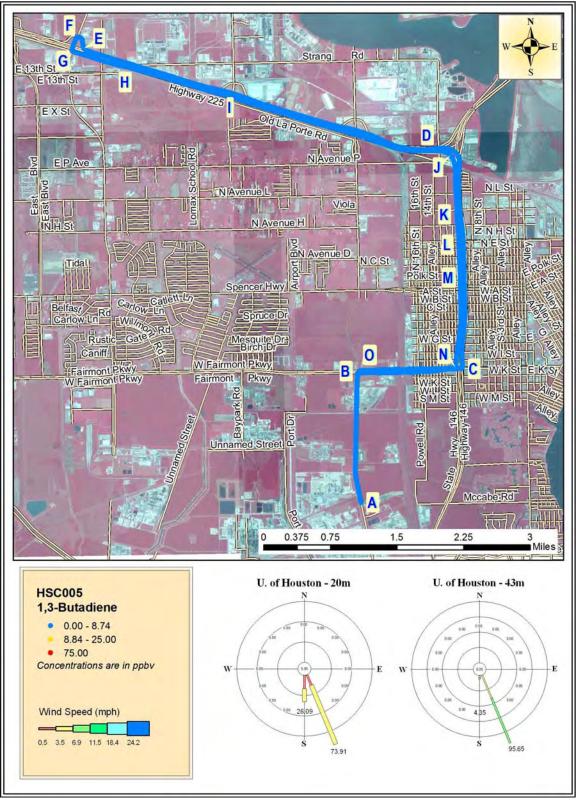


Figure 2f Mobile Monitoring Path for 1,3-Butadiene in Harris County

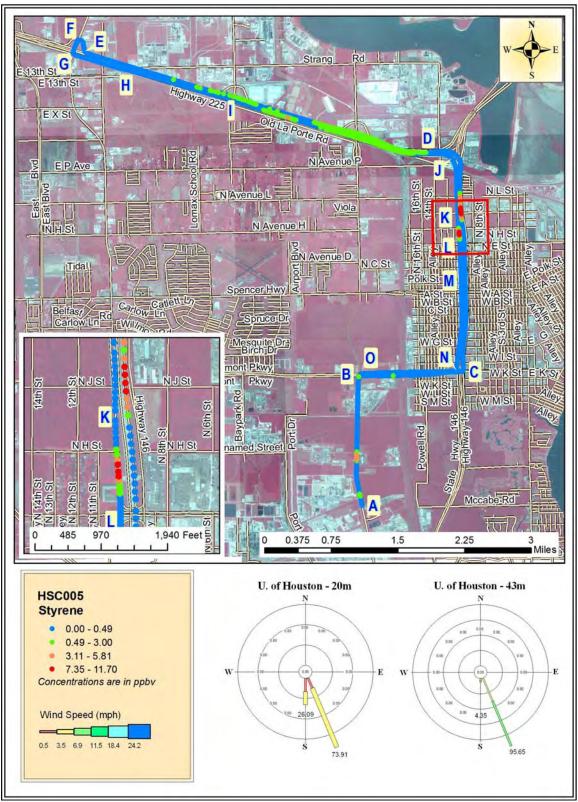


Figure 2g Mobile Monitoring Path for Styrene in Harris County

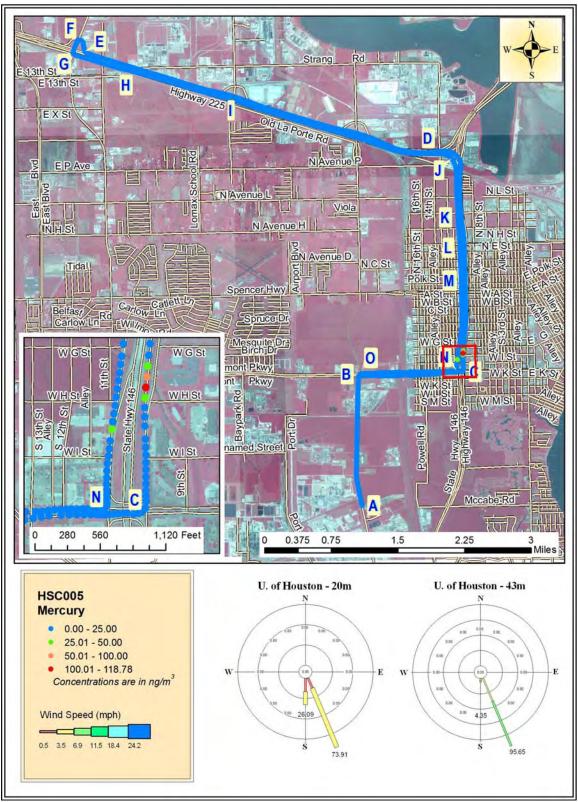


Figure 2h Mobile Monitoring Path for Mercury in Harris County

Figure 2i

TAGA File Event Summary File: HSC005 Acquired on 12 December 2006 at 03:35:46 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description
A	0.5	16	Start monitoring northward onto Bay Area Boulevard at Huish Detergent
В	7.4	211	Turning right onto Fairmont Parkway
C	11.2	320	Turning left onto State Highway 146
D	15.9	454	Turning onto State Highway 225 West
Е	22.7	649	Exiting onto Battleground Road
F	24.2	693	Turning left onto State Highway 134
G	26.1	746	Turning left onto State Highway 225 Service Road
Н	27.1	776	Entering onto State Highway 225 East
I	28.8	823	Passing Miller Cut Off Road
J	32.5	928	Turning right onto State Highway 146 South
K	33.7	964	Exiting onto Tenth Street
L	34.6	988	Passing Barbours Cut Boulevard
M	36.1	1031	Passing Adams Street
N	39.5	1129	Turning right onto Fairmont Parkway
О	42.5	1216	Stopping on Bay Area Boulevard

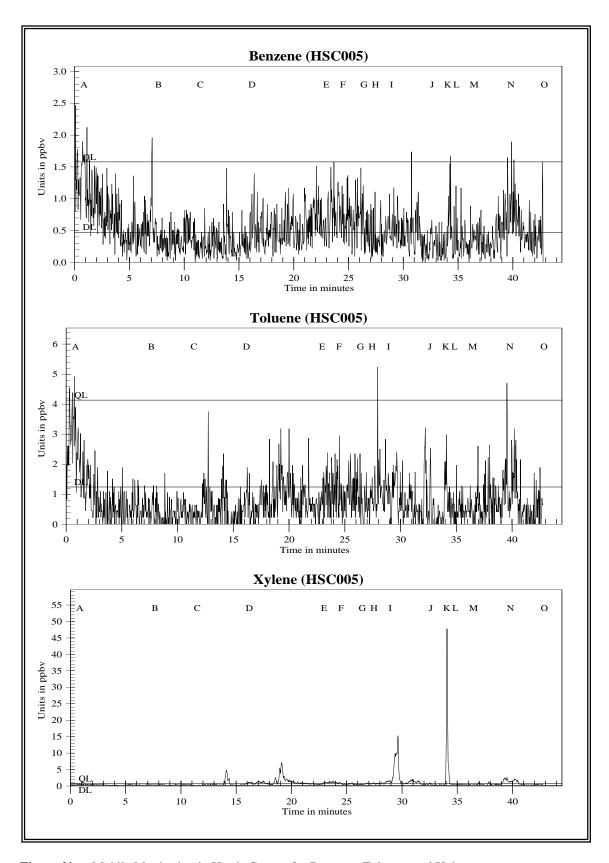


Figure 2j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

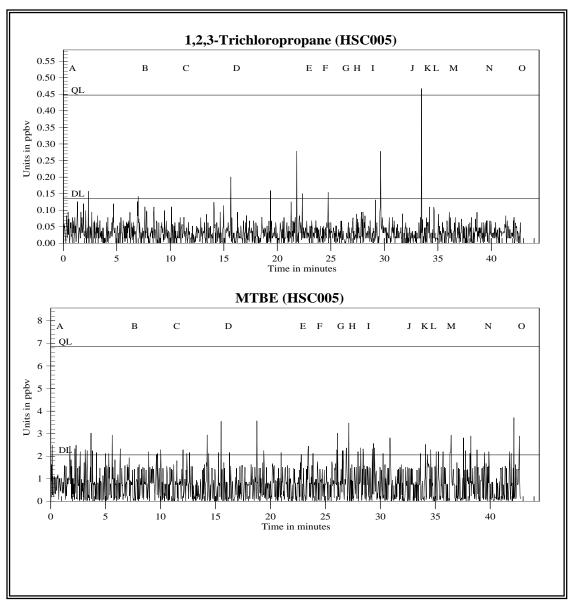


Figure 2k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

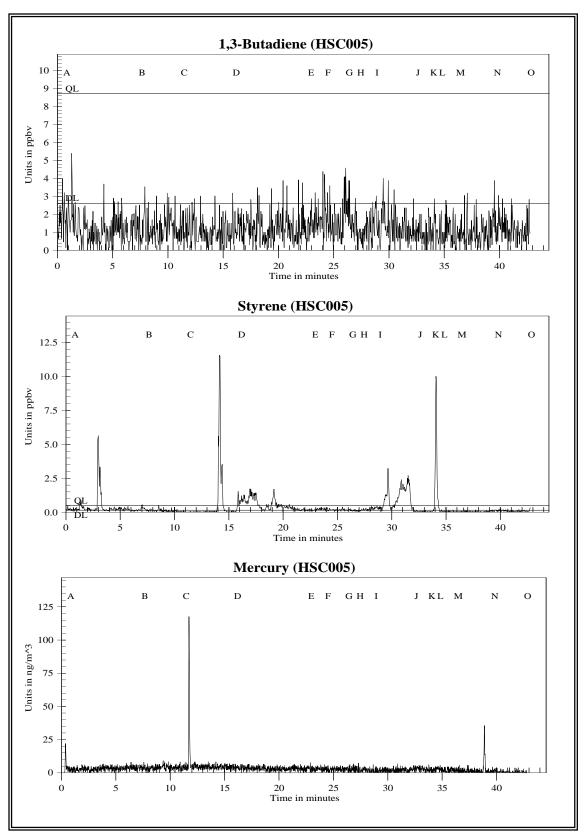


Figure 21 Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

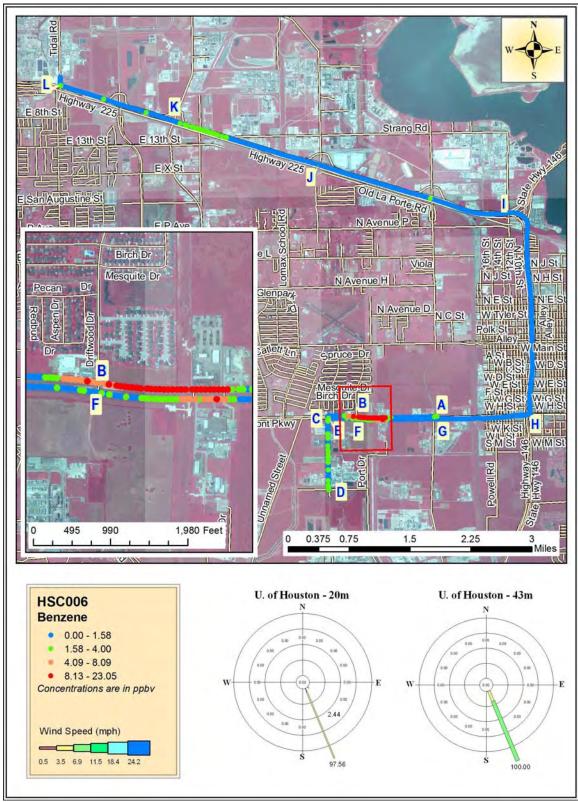


Figure 3a Mobile Monitoring Path for Benzene in Harris County

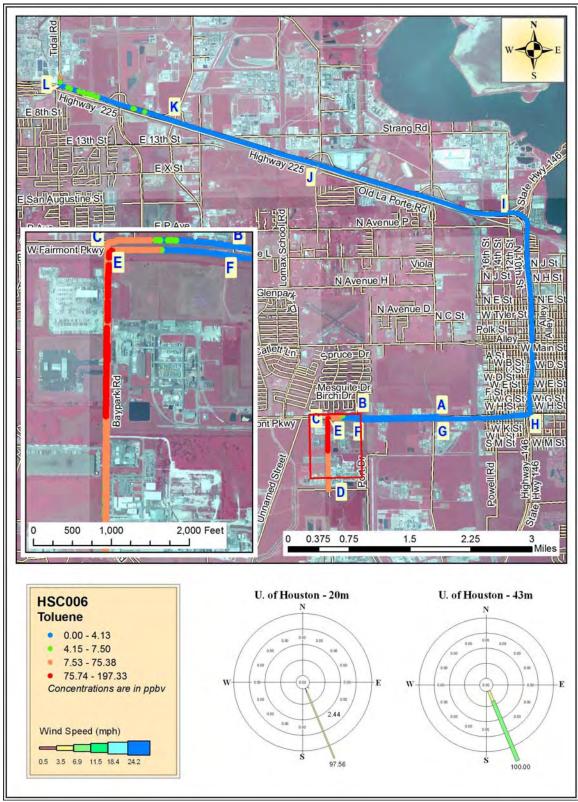


Figure 3b Mobile Monitoring Path for Toluene in Harris County

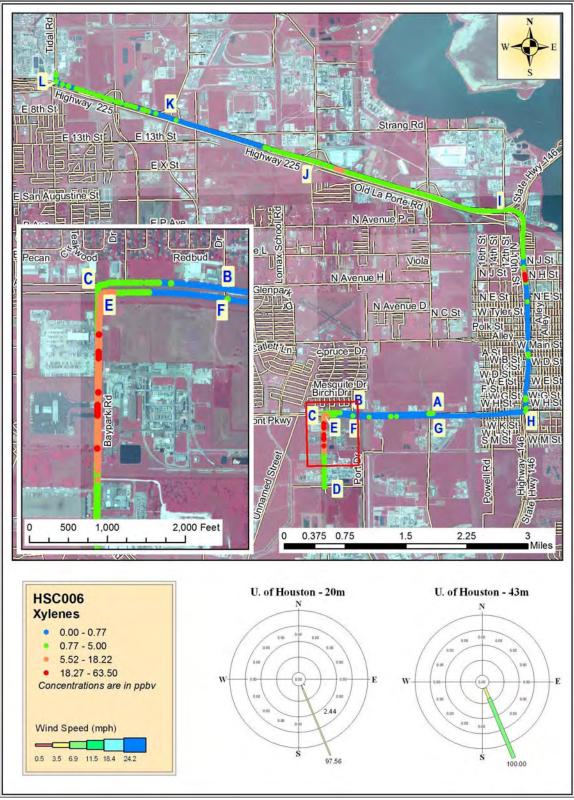


Figure 3c Mobile Monitoring Path for Xylenes in Harris County

Figure 3d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

Figure 3e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

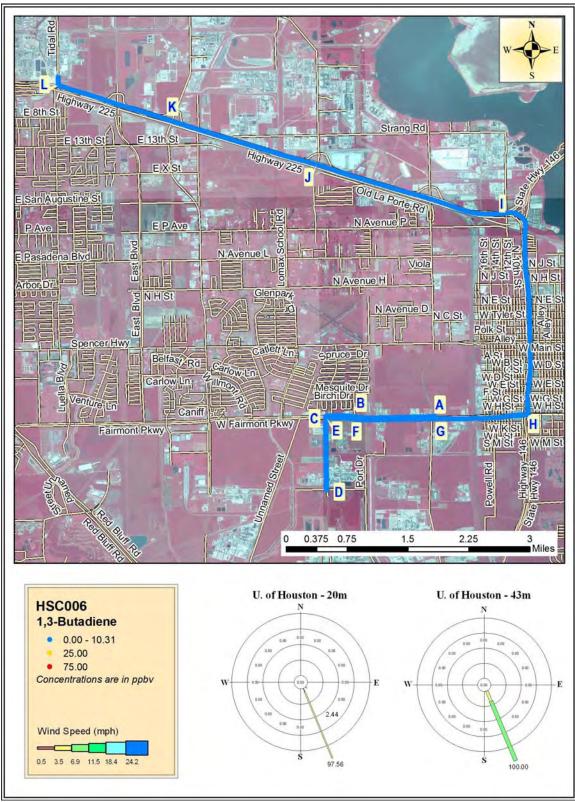


Figure 3f Mobile Monitoring Path for 1,3-Butadiene in Harris County

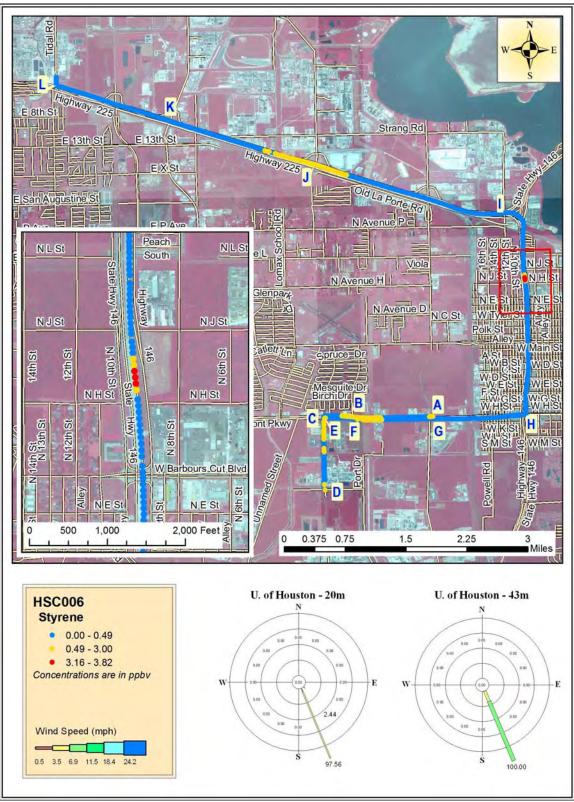


Figure 3g Mobile Monitoring Path for Styrene in Harris County

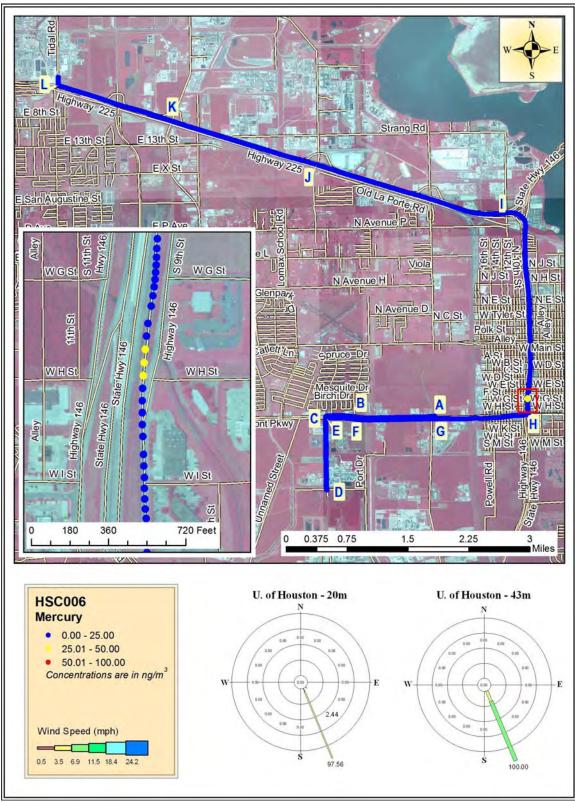


Figure 3h Mobile Monitoring Path for Mercury in Harris County

Figure 3i

TAGA File Event Summary File: HSC006 Acquired on 12 December 2006 at 04:27:27 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description			
A	2.2	63	Start monitoring westward on Fairmont Parkway at Bay Area Boulevard			
В	4.7	136	Passing Driftwood Drive			
C	6.1	174	Turning left onto Bay Park Road			
D	12.0	343	Executing U-turn at the railroad tracks			
Е	17.8	510	Furning right onto Fairmont Parkway			
F	19.1	546	Passing Driftwood Drive			
G	21.9	626	Passing Bay Area Boulevard			
Н	25.2	722	Turning left onto State Highway 146 North			
I	32.4	925	Turning onto State Highway 225 West			
J	36.1	1032	Passing Miller Cut Off Road			
K	39.5	1129	Passing Battleground Road			
L	42.8	1224	Turning right onto Tidal Road			

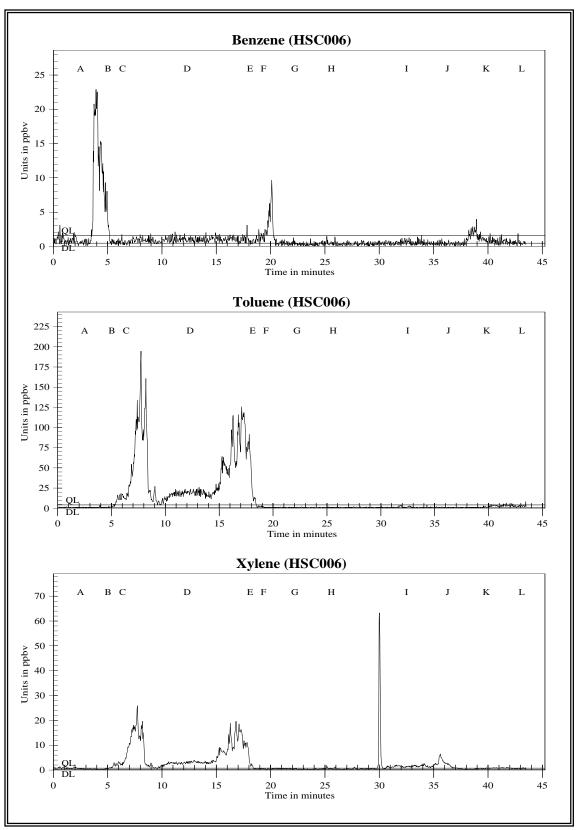


Figure 3j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

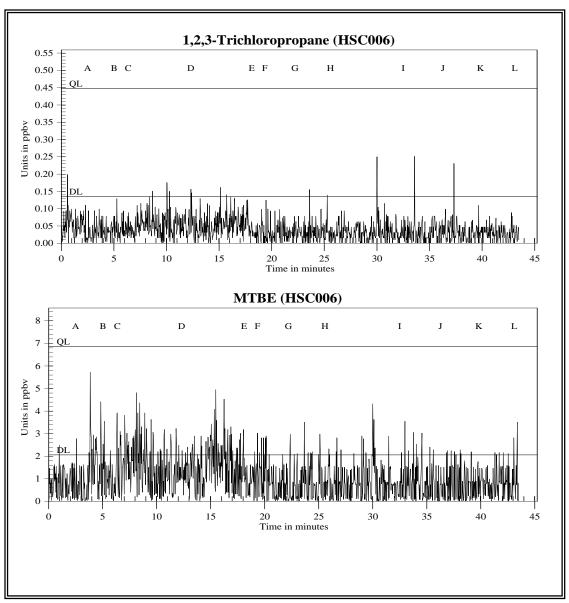


Figure 3k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

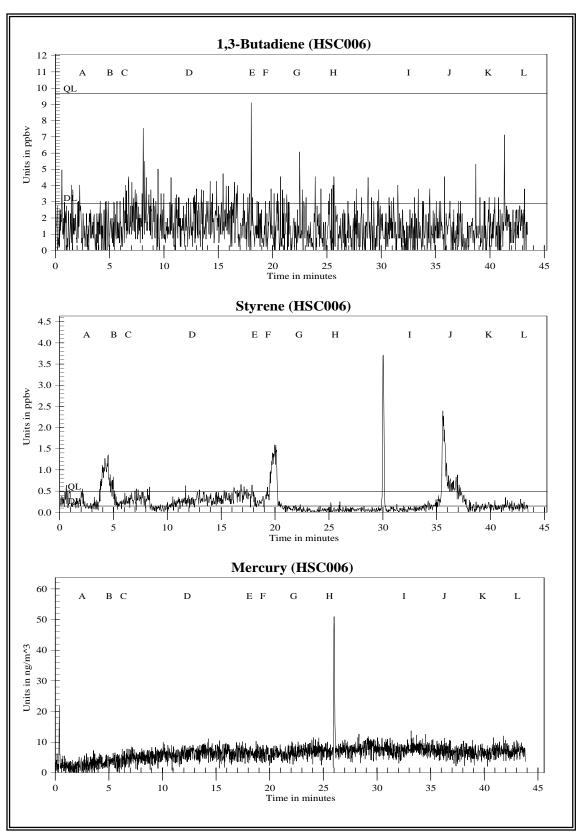


Figure 31 Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

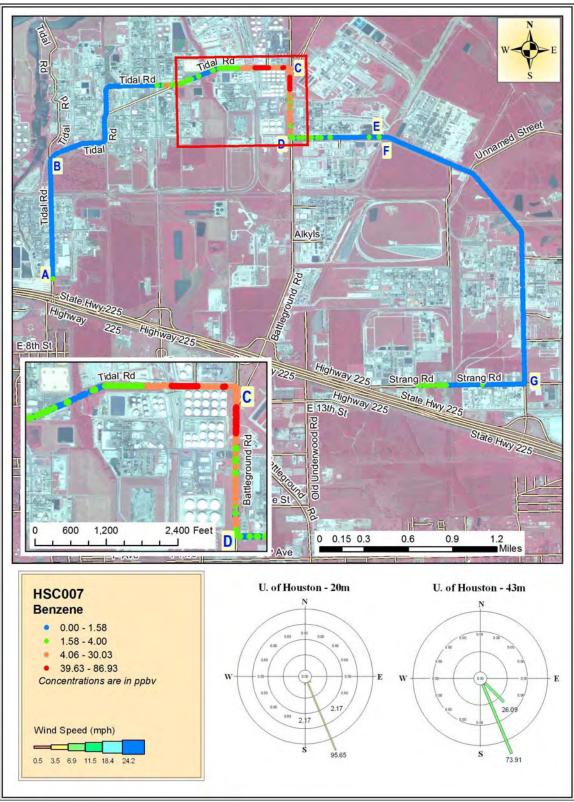


Figure 4a Mobile Monitoring Path for Benzene in Harris County

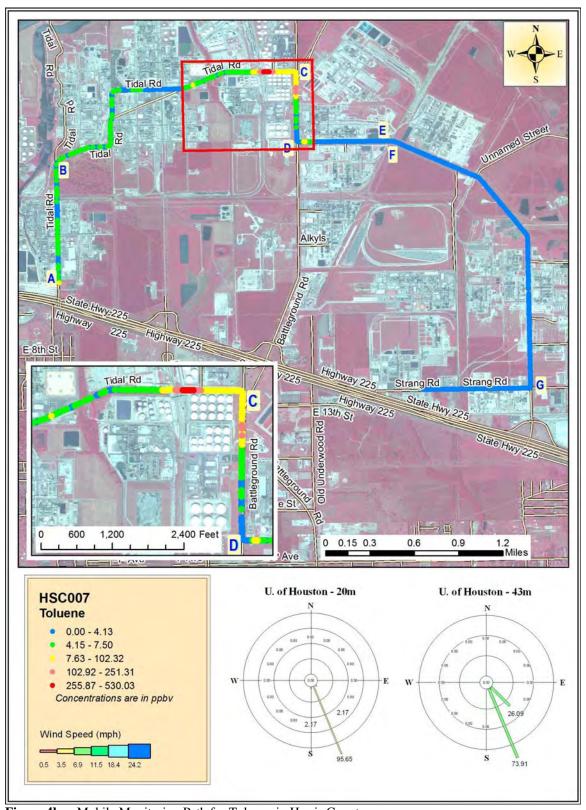


Figure 4b Mobile Monitoring Path for Toluene in Harris County

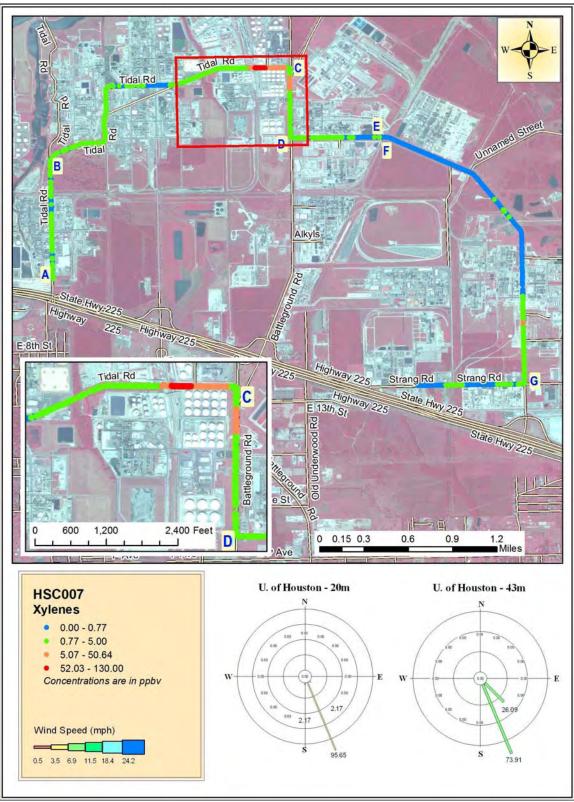


Figure 4c Mobile Monitoring Path for Xylenes in Harris County

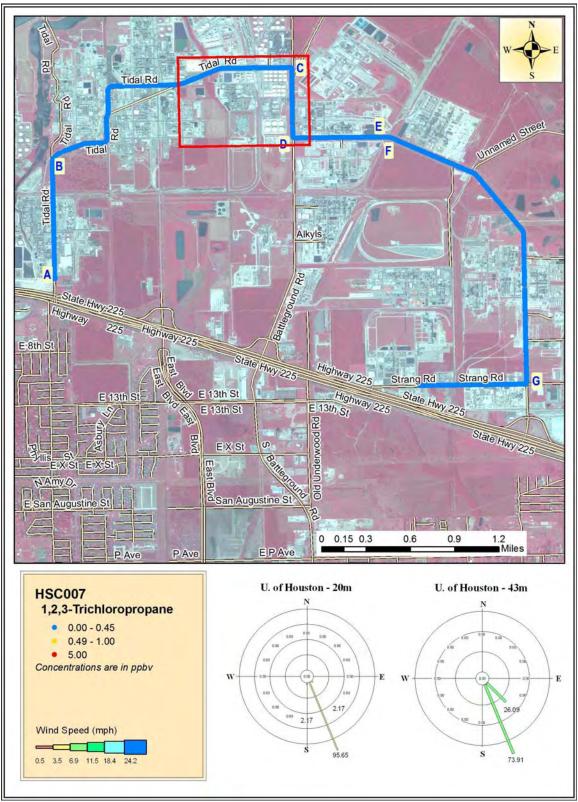


Figure 4d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

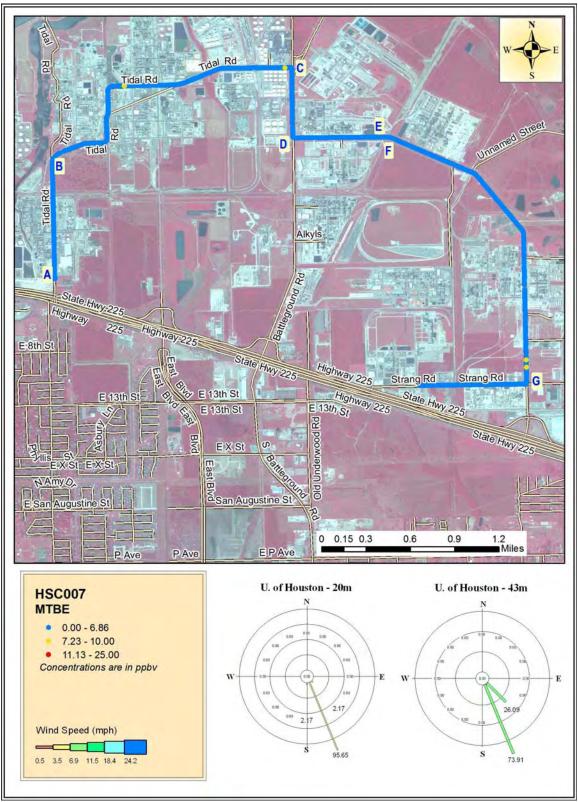


Figure 4e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

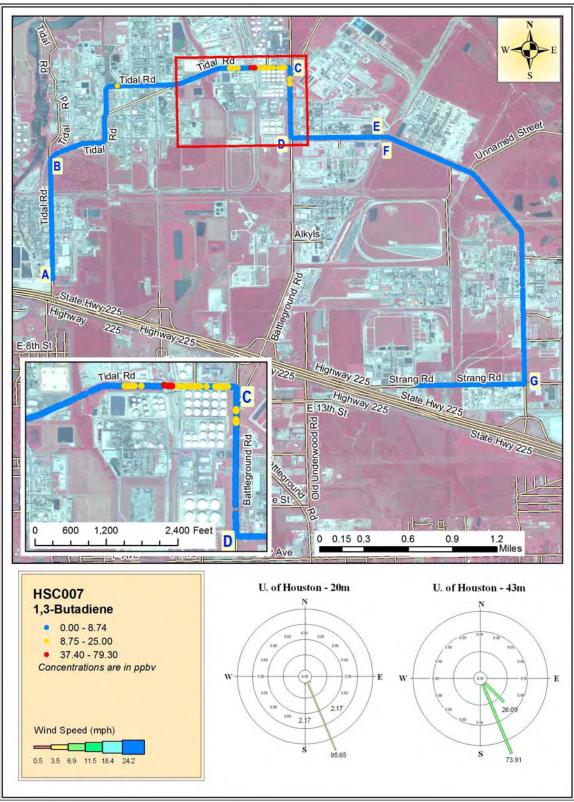


Figure 4f Mobile Monitoring Path for 1,3-Butadiene in Harris County

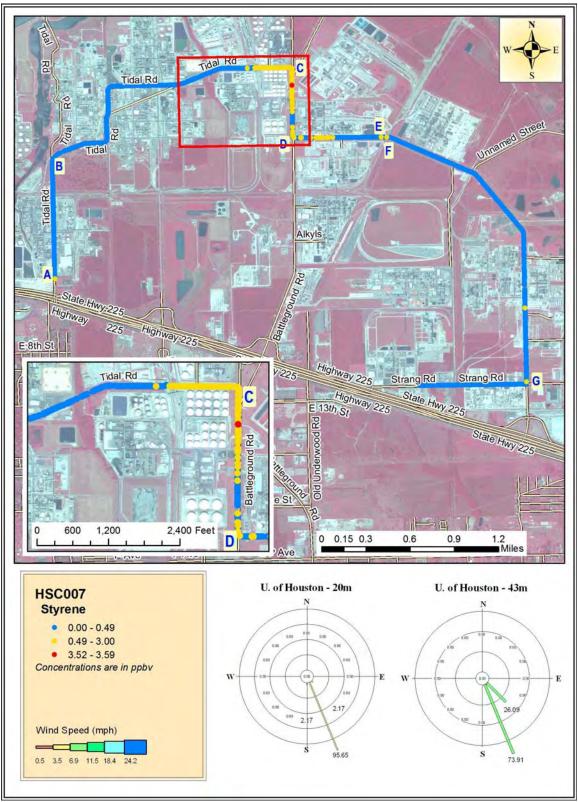


Figure 4g Mobile Monitoring Path for Styrene in Harris County

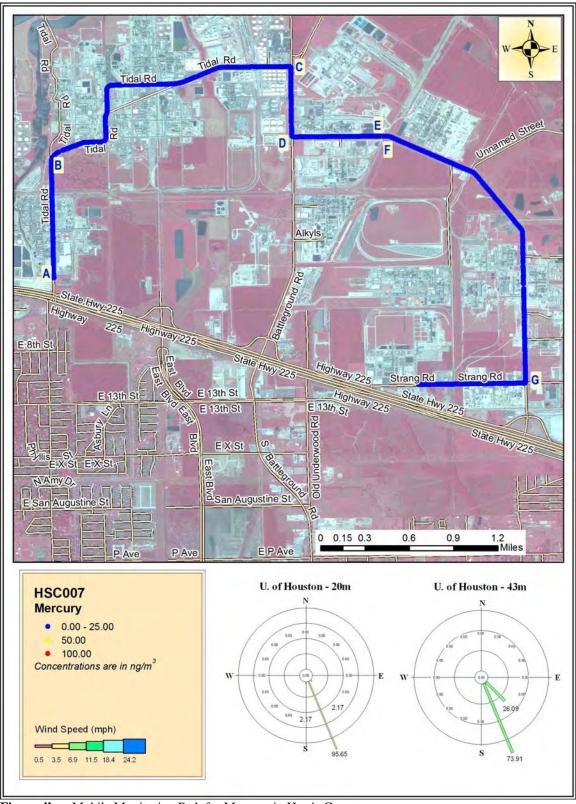


Figure 4h Mobile Monitoring Path for Mercury in Harris County

Figure 4i

Figure 41								
TAGA File Event Summary File: HSC007 Acquired on 12 December 2006 at 05:15:22 UTC Title: Mobile Monitoring in Harris County								
Flag	Flag Time Sequence Description		Description					
A	1.7	50	Start monitoring northward on Tidal Road					
В	6.7	192	192 Turning right on Tidal Road					
C	17.9	512	Turning right onto Battleground Road					
D	20.7	593 Turning left onto Miller Cut Off Road						
Е	24.7	705	Stopping at a railroad crossing					
F	30.5 871 Resuming mobile monitoring							
G	41.3	1180	Turning right onto Strang Road					

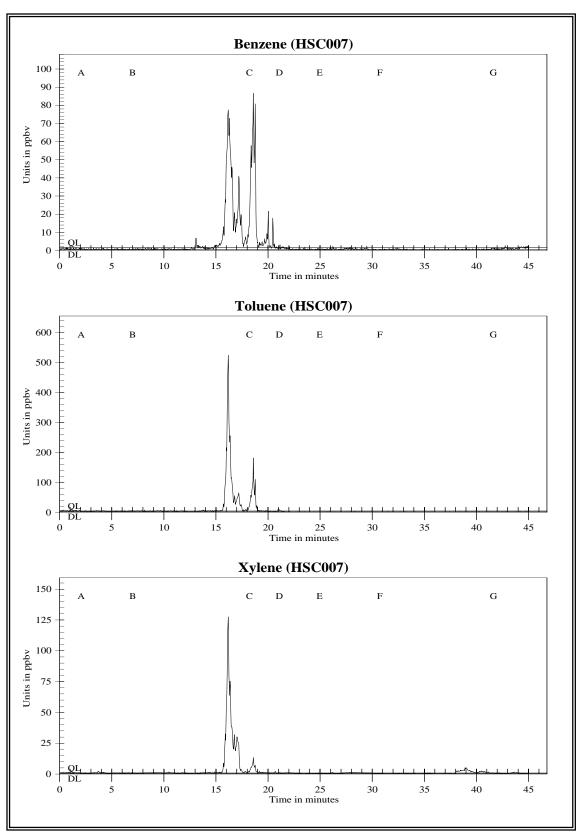


Figure 4j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

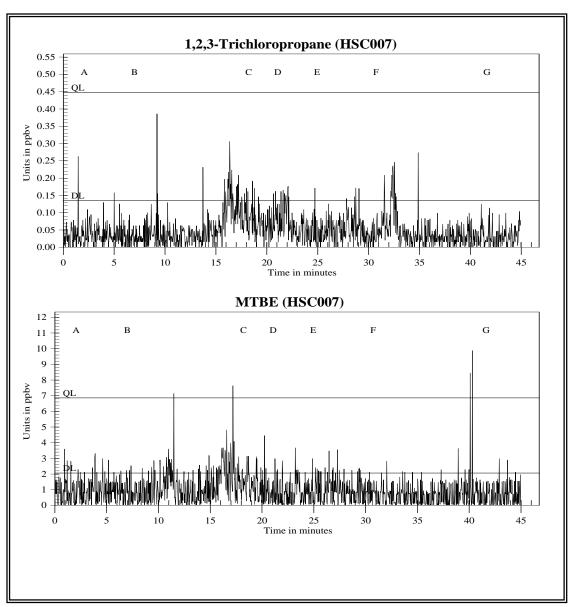


Figure 4k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

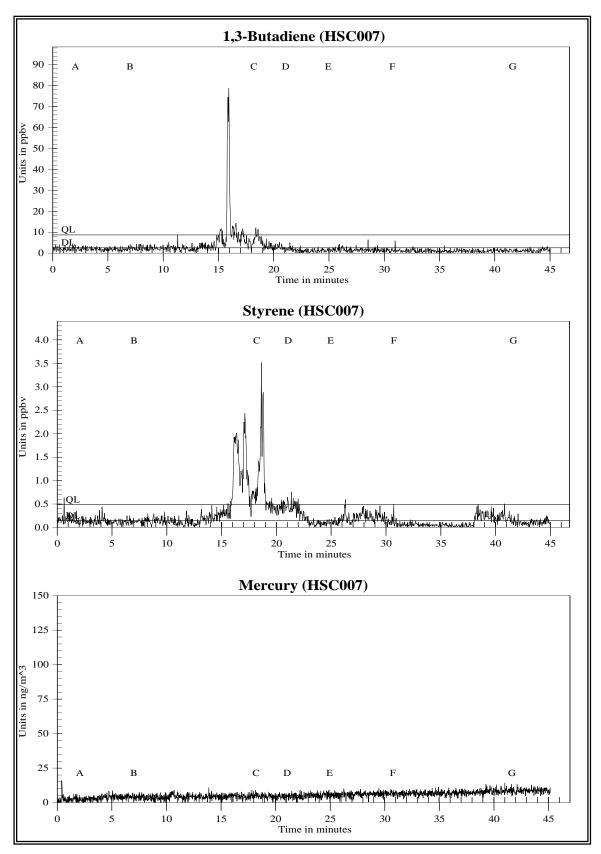


Figure 41 Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

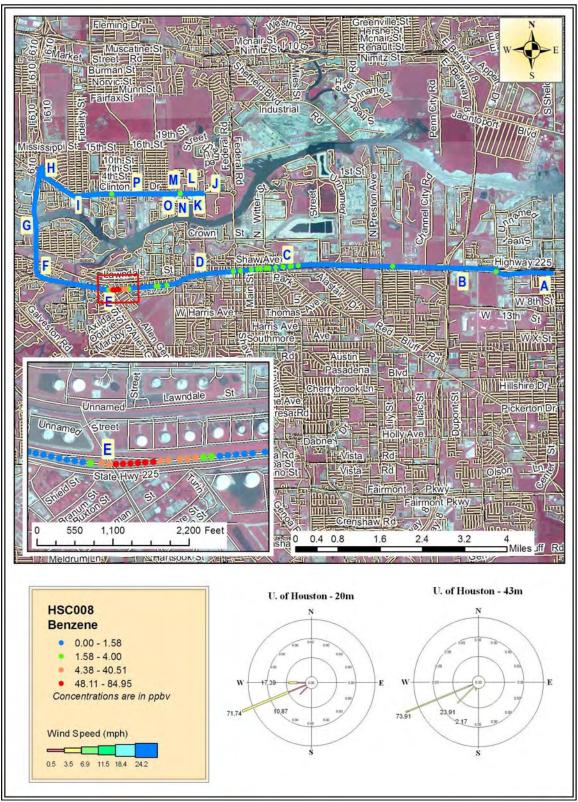


Figure 5a Mobile Monitoring Path for Benzene in Harris County

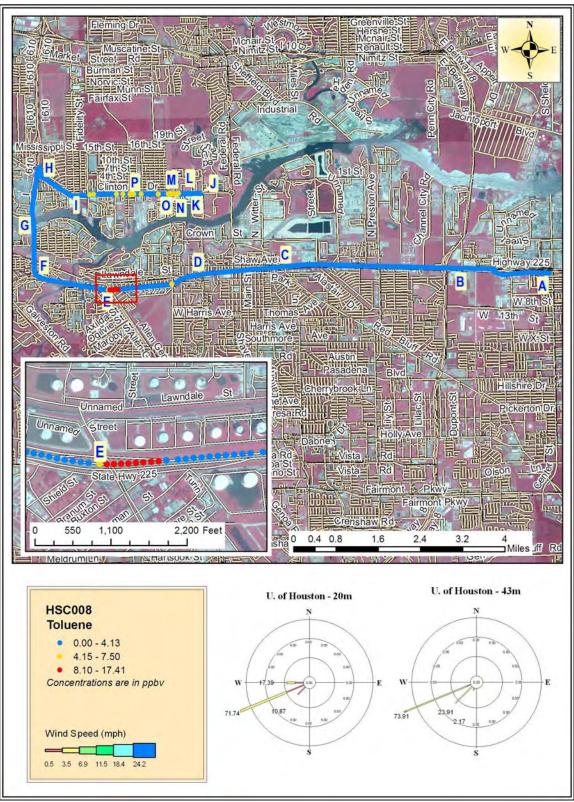


Figure 5b Mobile Monitoring Path for Toluene in Harris County

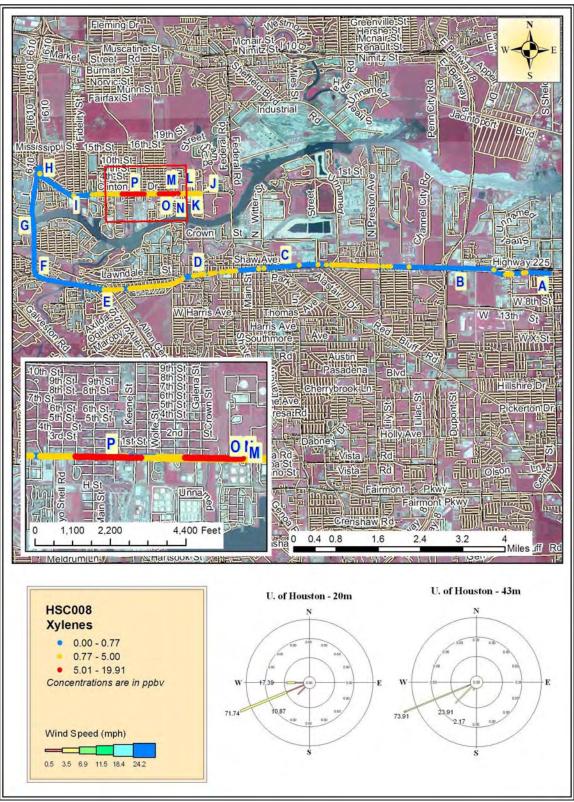


Figure 5c Mobile Monitoring Path for Xylenes in Harris County

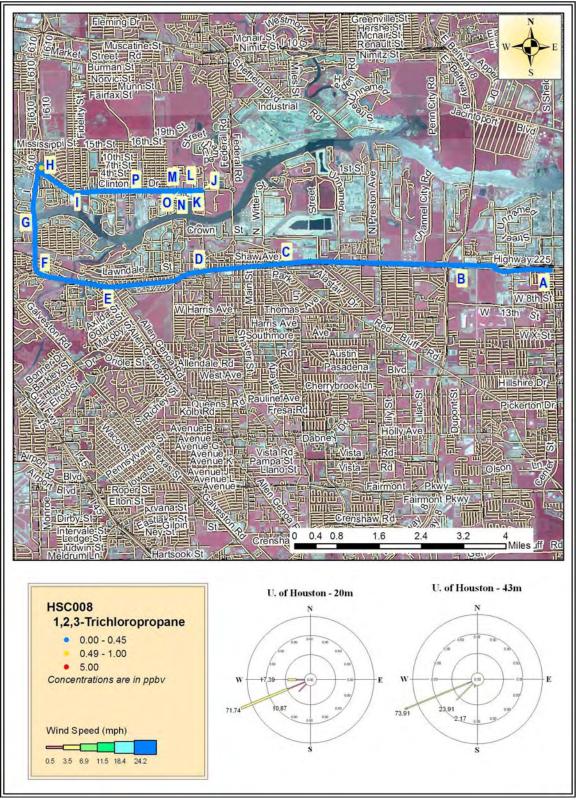


Figure 5d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

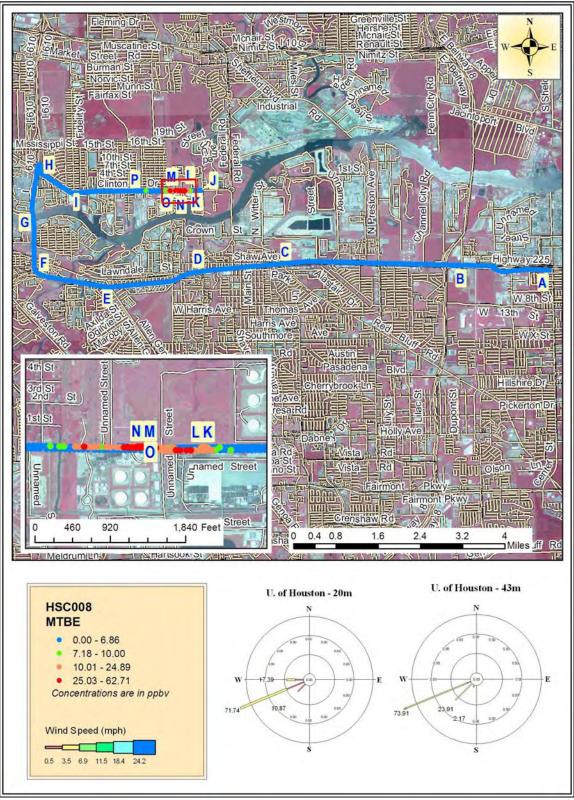


Figure 5e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

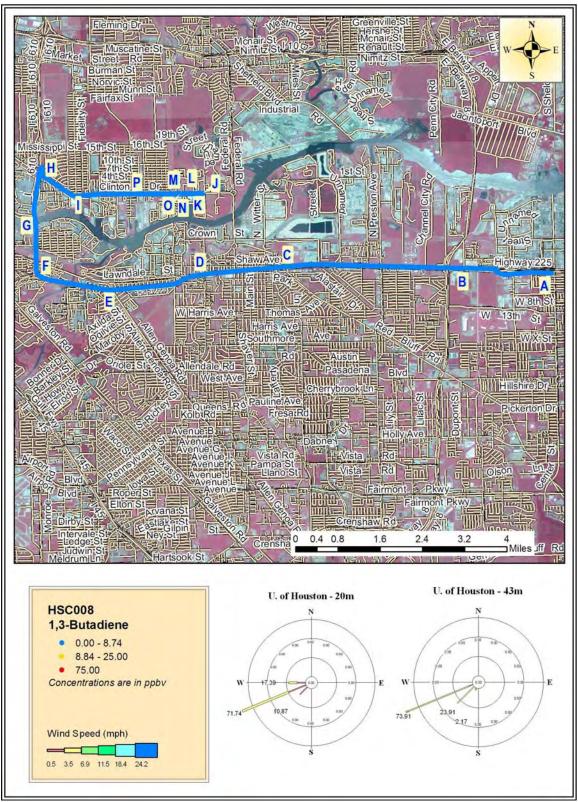


Figure 5f Mobile Monitoring Path for 1,3-Butadiene in Harris County

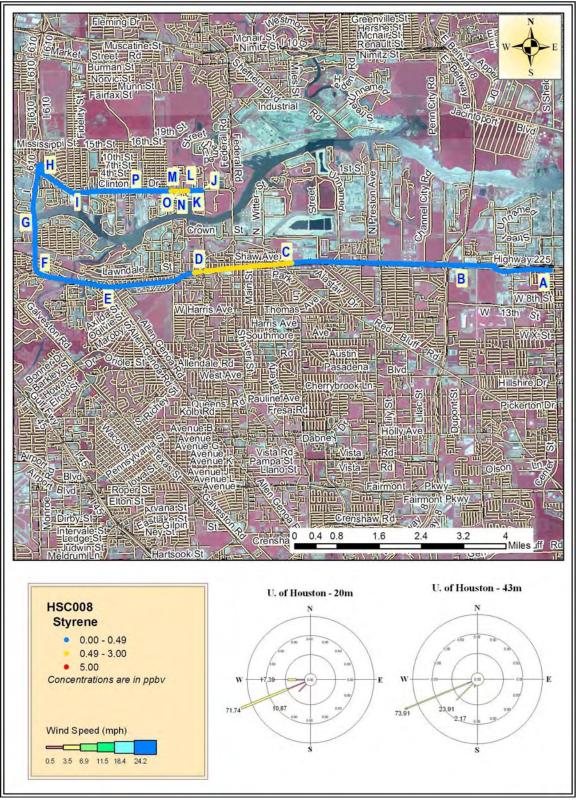


Figure 5g Mobile Monitoring Path for Styrene in Harris County

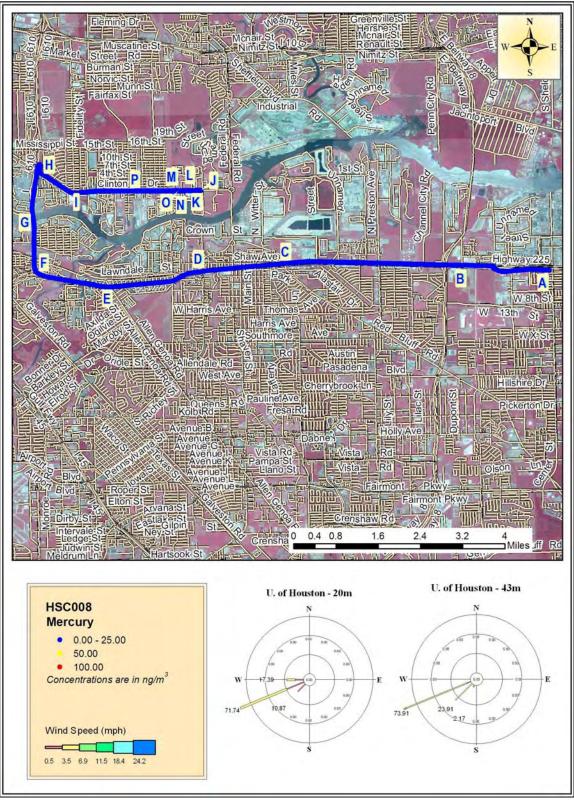


Figure 5h Mobile Monitoring Path for Mercury in Harris County

Figure 5i

TAGA File Event Summary File: HSC008 Acquired on 12 December 2006 at 06:46:37 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description		
A	0.3	10	Start monitoring westward on Railroad Street		
В	4.4	127	Entering State Highway 225 West		
C	8.5	245	Passing Red Bluff Road		
D	10.5	302	Passing Richey Street		
Е	13.0	371	Passing Allen Genoa Road		
F	14.9	426	Turning onto Highway 610 North		
G	16.5	471	Passing Houston Ship Channel		
Н	19.1	547	Turning onto Clinton Drive East		
I	21.9	625	Passing Fidelity Street		
J	29.1	833	Executing a U-turn		
K	31.4	898	Start of SUMMA® G1567		
L	32.5	930	End of SUMMA [®] G1567		
M	37.9	1084	Start of SUMMA® K0175		
N	39.2	1119	End of SUMMA® K0175		
О	41.4	1182	Resuming mobile monitoring		
P	44.5	1272	Ending at Stewart Street		

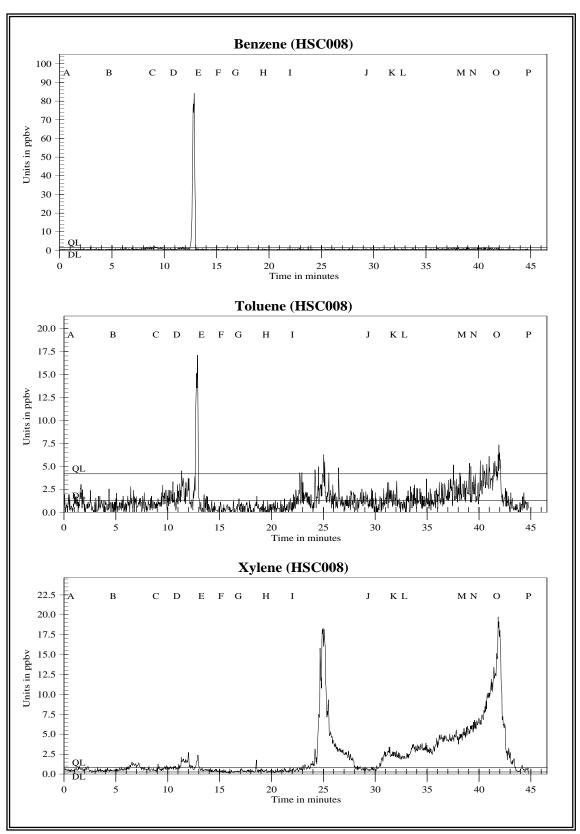


Figure 5j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

Figure 5k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

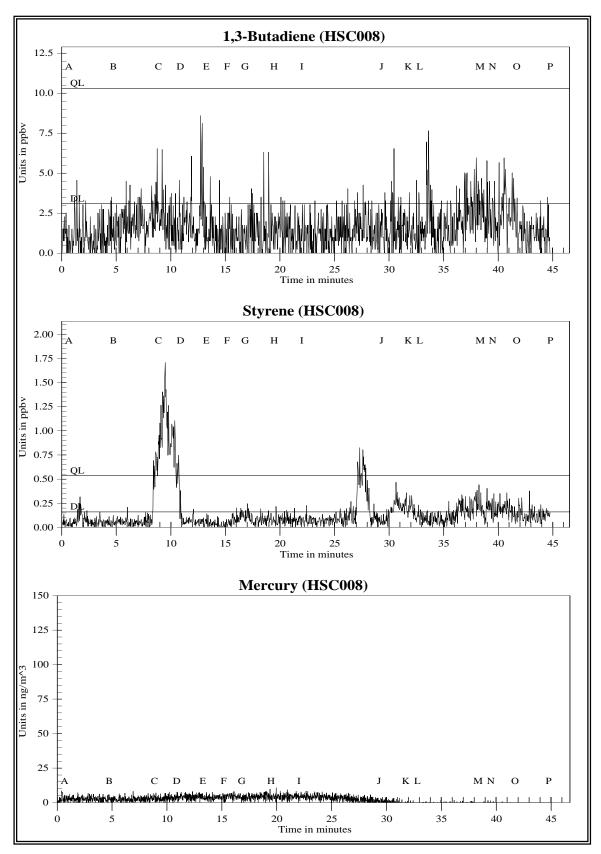


Figure 51 Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

Figure 5m

Figure 5m											
	TAGA Target Compound Averages during Sample Collection										
File: HSC008 Acquired on 12 December 2006 at 06:46:37 UTC											
		Benzene	Toluene	Xylenes	1,2,3-Trichloro- propane						
	Detection Limits										
	(DL):	0.47	1.3	0.25	0.079						
	Quantitation Limits (QL):	1.6	4.2	0.85	0.26						
	(QL).	1.0	4.2	0.63							
Flags	Description	Benzene	Toluene	Xylenes	1,2,3-Trichloro- propane						
K - L	SUMMA [®] G1567	0.50J	1.4J	2.4	DL=0.079						
M - N	SUMMA [®] K0175	0.80J	2.4J	5.0	DL=0.079						
		Methyl-t-butyl ether	1,3-Butadiene	Styrene							
	Detection Limits (DL):	2.5	3.1	0.16							
	Quantitation Limits										
	(QL):	8.4	10.	0.54							
		Methyl-t-butyl									
Flags	Description	ether	1,3-Butadiene	Styrene							
K - L	SUMMA [®] G1567	9.6	DL=3.1	0.19J							
M - N	SUMMA [®] K0175	27.	DL=3.1	0.21J							

Concentrations are in parts per billion by volume (ppbv) J = Below quantitation limit

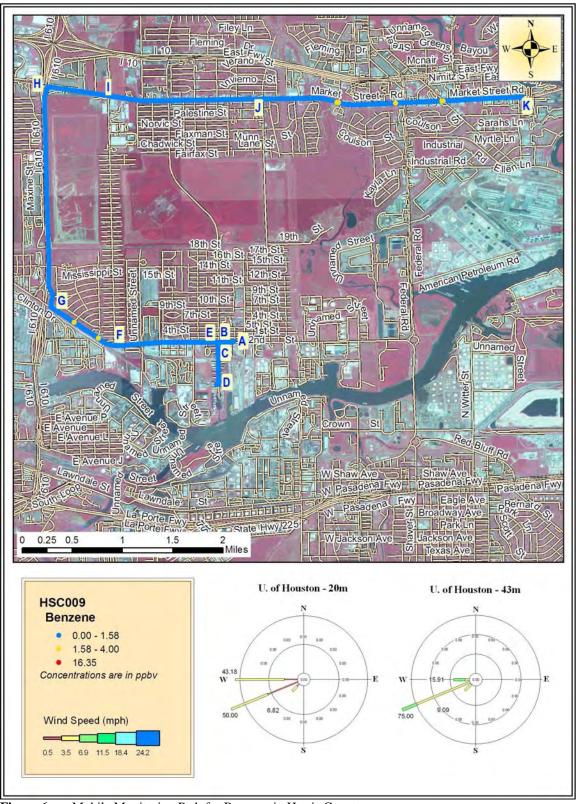


Figure 6a Mobile Monitoring Path for Benzene in Harris County

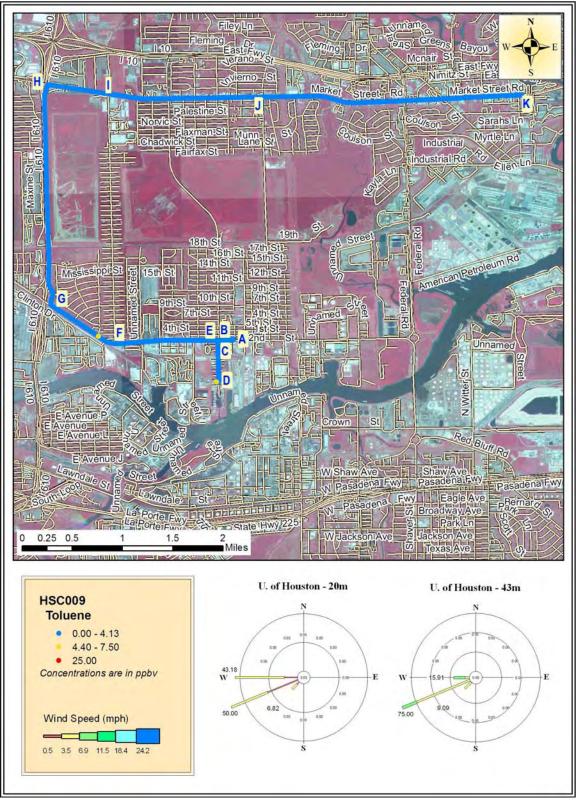


Figure 6b Mobile Monitoring Path for Toluene in Harris County

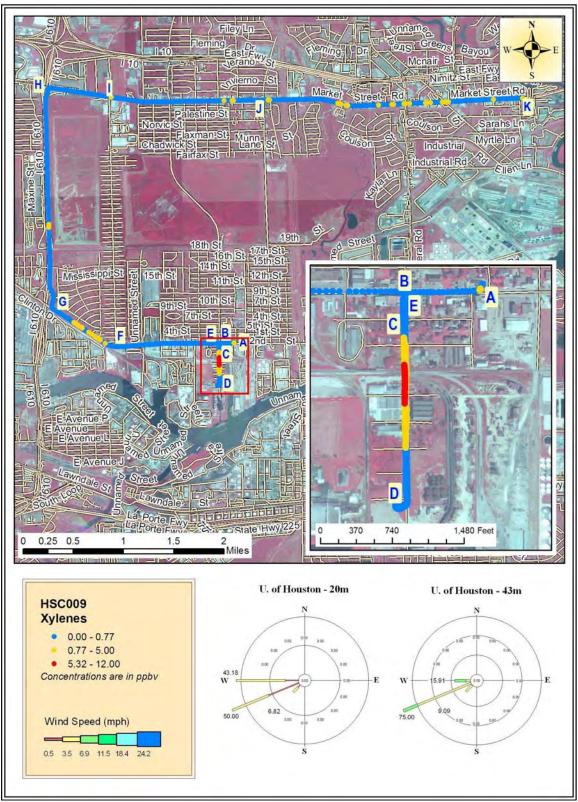


Figure 6c Mobile Monitoring Path for Xylenes in Harris County

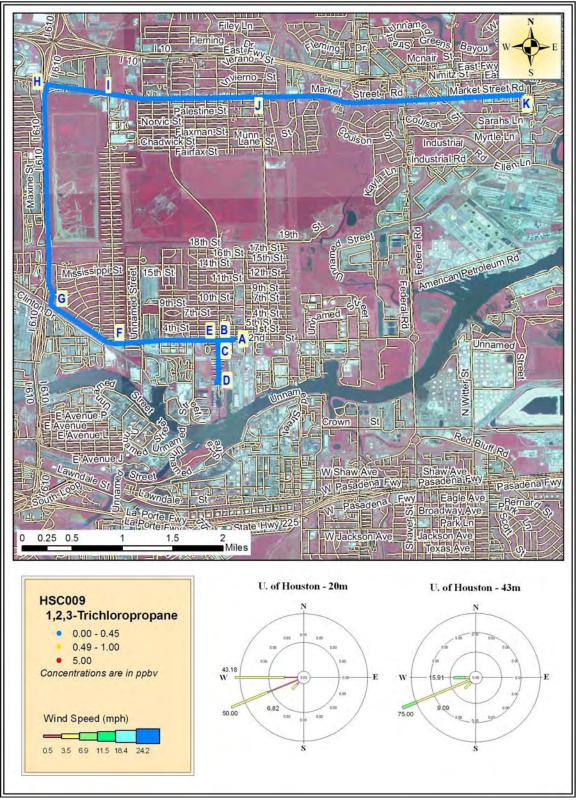


Figure 6d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

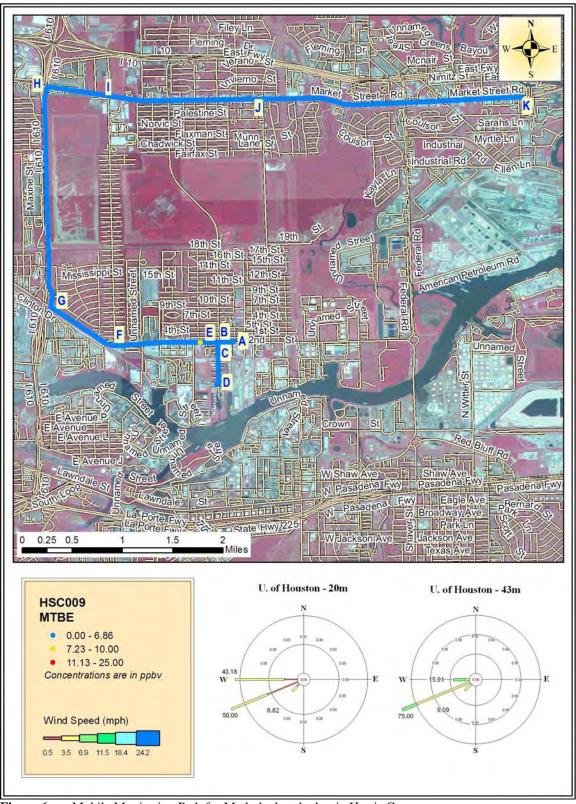


Figure 6e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

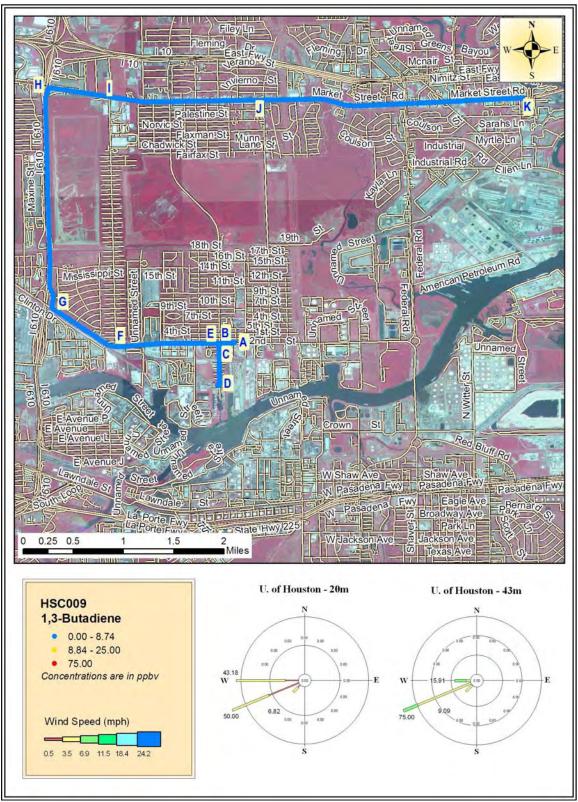


Figure 6f Mobile Monitoring Path for 1,3-Butadiene in Harris County

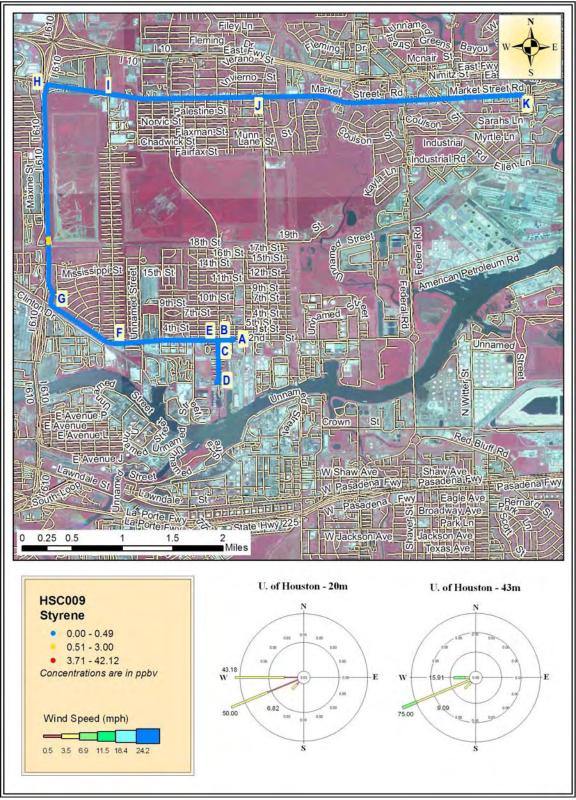


Figure 6g Mobile Monitoring Path for Styrene in Harris County

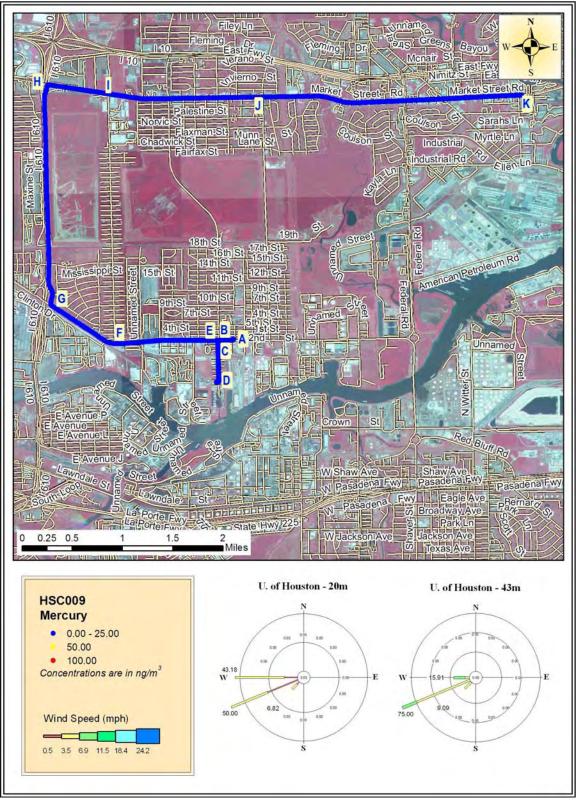


Figure 6h Mobile Monitoring Path for Mercury in Harris County

Figure 6i

TAGA File Event Summary File: HSC009 Acquired on 12 December 2006 at 07:41:53 UTC Title: Mobile Monitoring in Harris County Sequence Description

Flag	Time	Sequence	Description
A	11.5	329	Start monitoring westward on Clinton Drive
В	12.2	350	Turning left onto Main Street
С	12.6	362	Passing Avenue K
D	16.3	467	Executing a U-turn
Е	20.9	597	Turning left onto Clinton Drive
F	23.6	675	Passing Fidelity Street
G	25.6	732	Turning north onto State Highway 610
Н	30.0	858	Exiting east onto Market Street
I	32.1	919	Passing Fidelity Street
J	36.6	1046	Passing Holland Avenue
K	42.5	1215	Ending at Miles Street

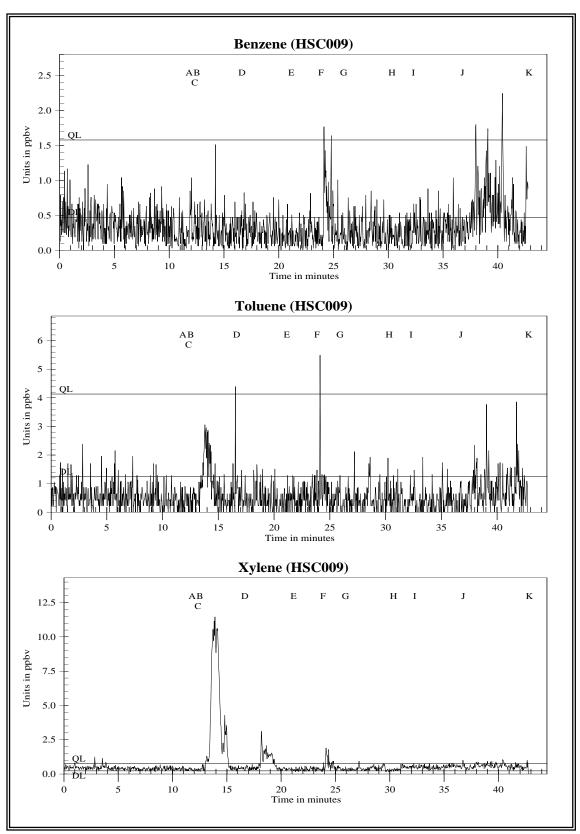


Figure 6j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

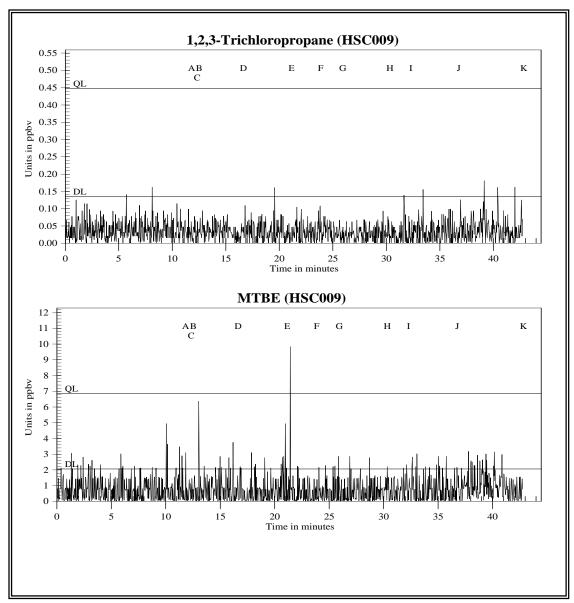


Figure 6k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

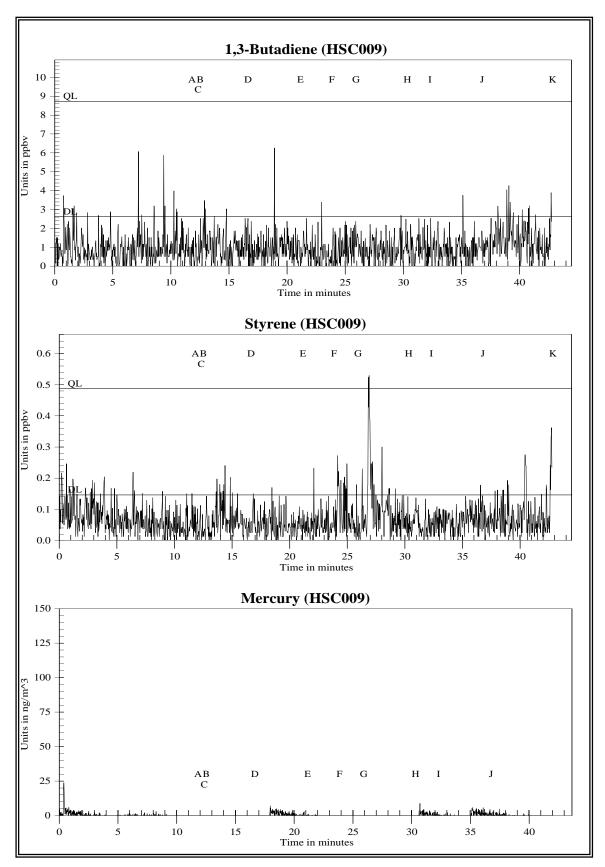


Figure 61 Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

Figure 7a Mobile Monitoring Path for Benzene in Harris County

Figure 7b Mobile Monitoring Path for Toluene in Harris County

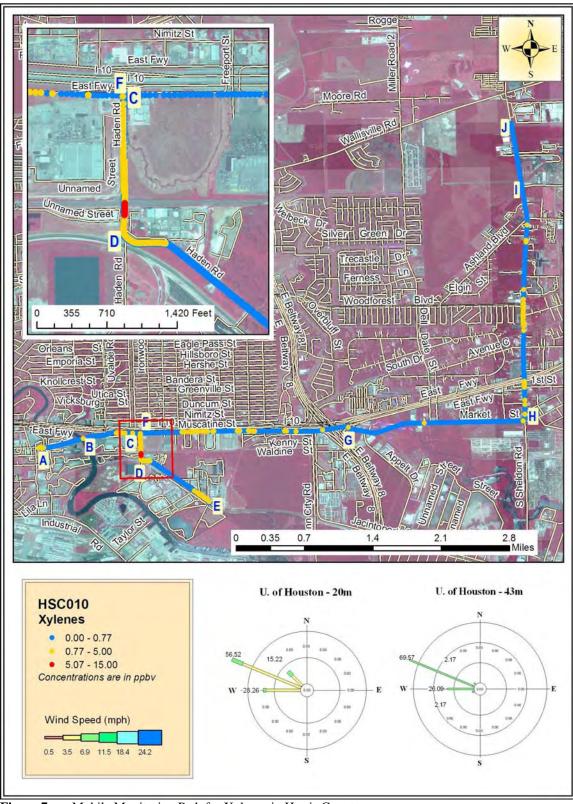



Figure 7c Mobile Monitoring Path for Xylenes in Harris County

Figure 7d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

Figure 7e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

Figure 7f Mobile Monitoring Path for 1,3-Butadiene in Harris County

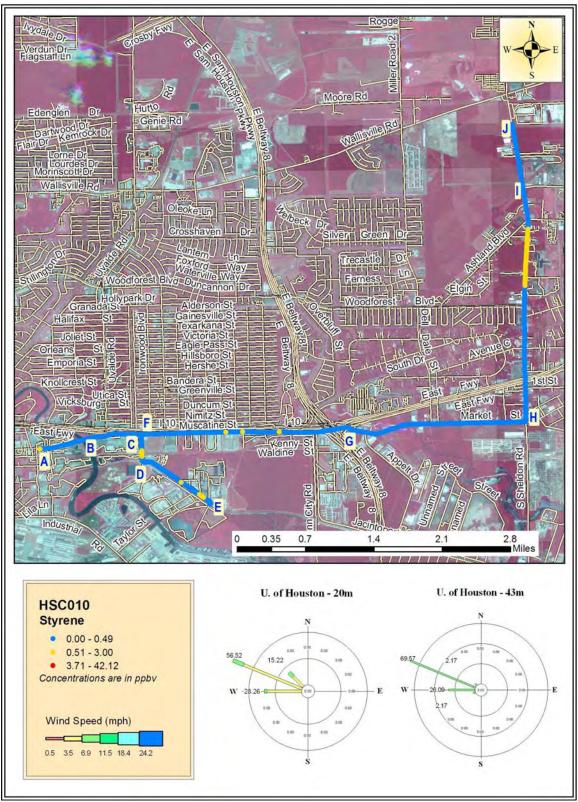


Figure 7g Mobile Monitoring Path for Styrene in Harris County

Figure 7h Mobile Monitoring Path for Mercury in Harris County

Figure 7i

TAGA File Event Summary File: HSC010 Acquired on 12 December 2006 at 08:31:32 UTC Title: Mobile Monitoring in Harris County Time Sequence Description Flag 59 2.0 Start monitoring eastward on Market Street A 108 Passing Greens Bayou В 3.7 C 5.5 158 Turning right onto Haden Road D 8.4 241 Bearing left on Haden Road 408 Executing a U-turn E 14.3 22.7 649 Turning right onto Interstate 10 Service Road F G Turning right onto Market Street 28.3 810 Η 34.6 989 Turning left onto Sheldon Road I 41.5 1185 Passing North Wood Drive 44.4 1268 Stopping at Wallisville Road

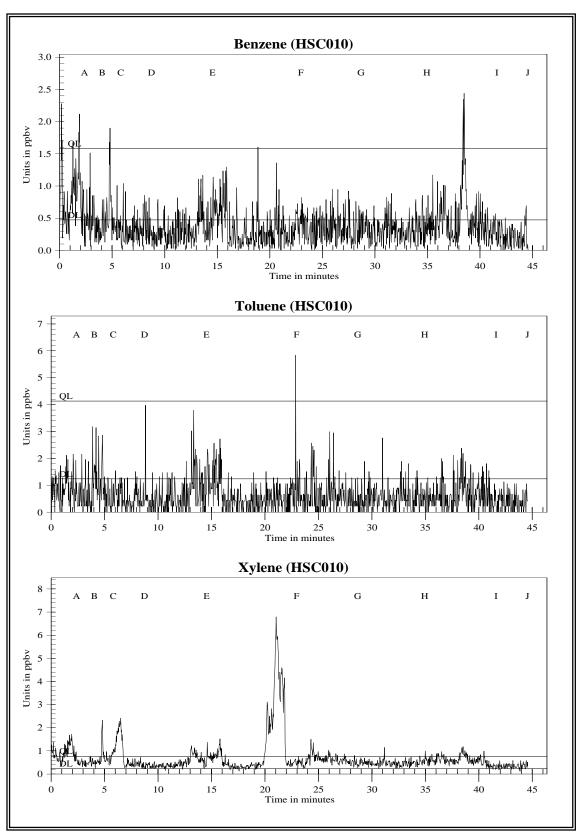


Figure 7j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

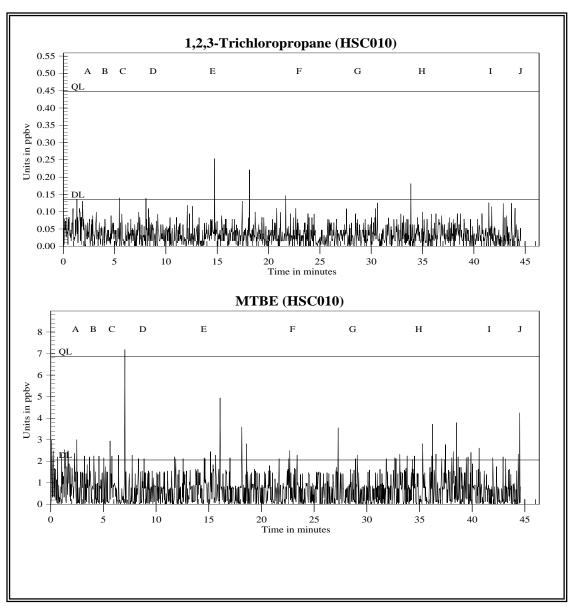


Figure 7k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

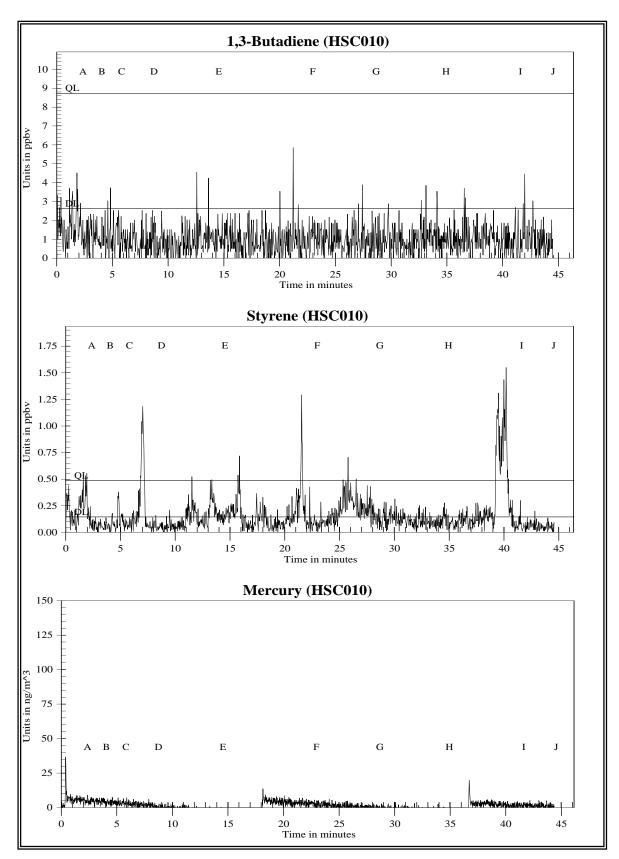


Figure 71 Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

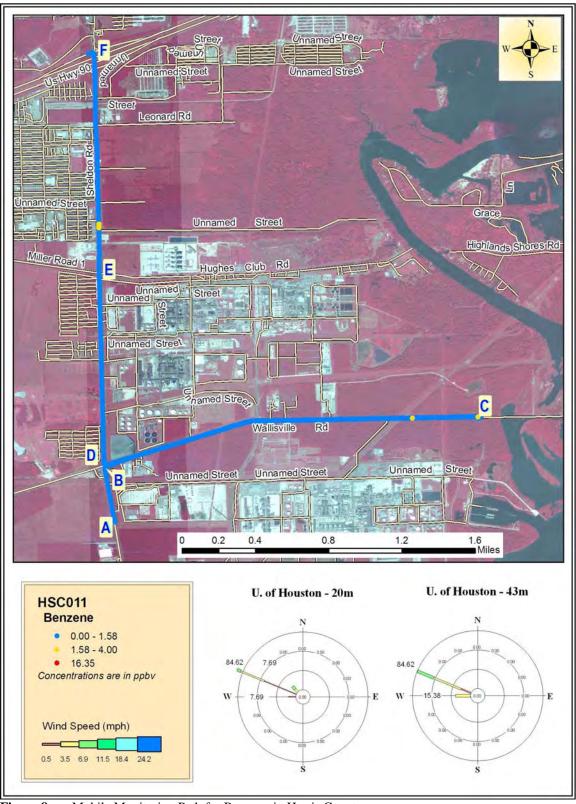


Figure 8a Mobile Monitoring Path for Benzene in Harris County

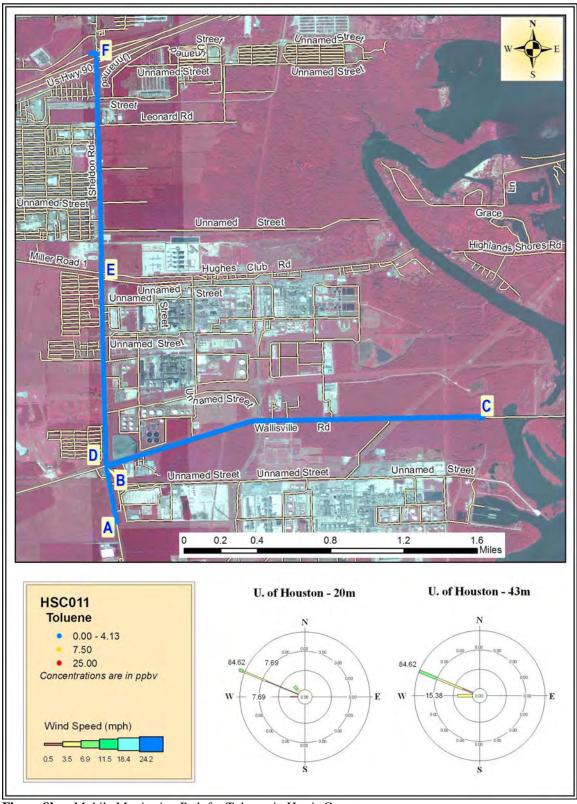


Figure 8b Mobile Monitoring Path for Toluene in Harris County

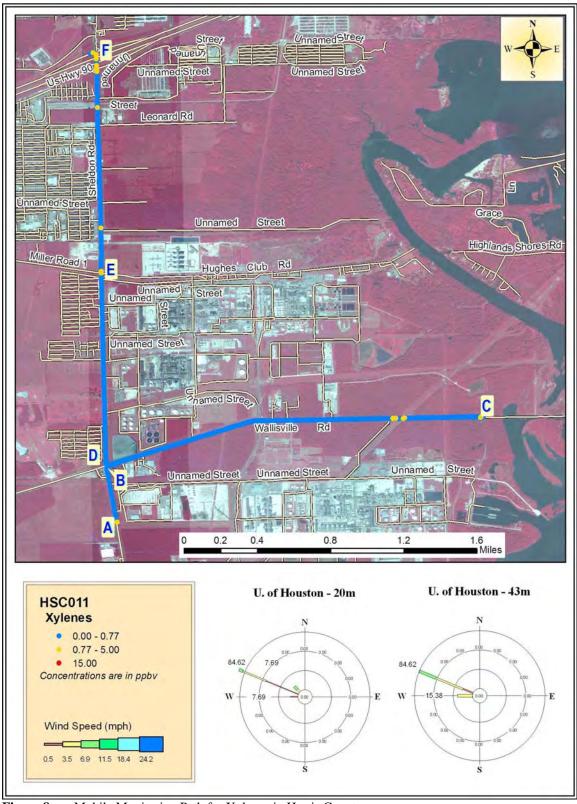


Figure 8c Mobile Monitoring Path for Xylenes in Harris County

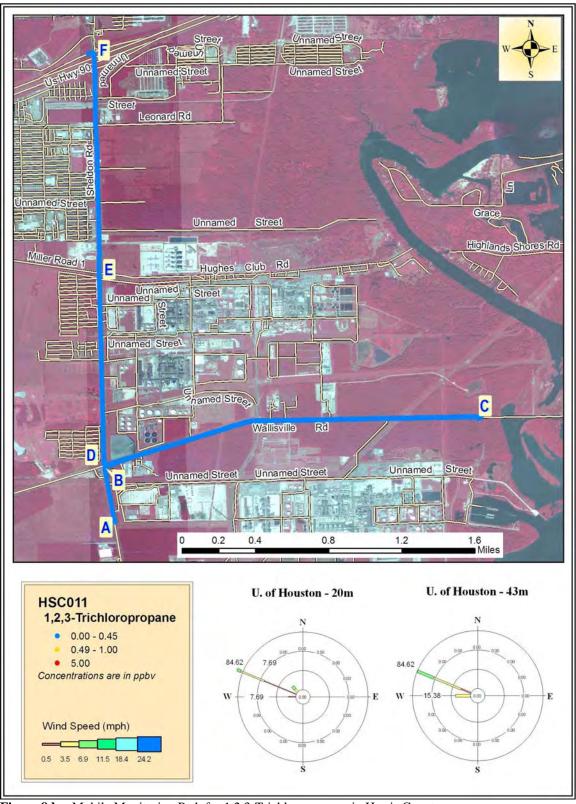


Figure 8d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

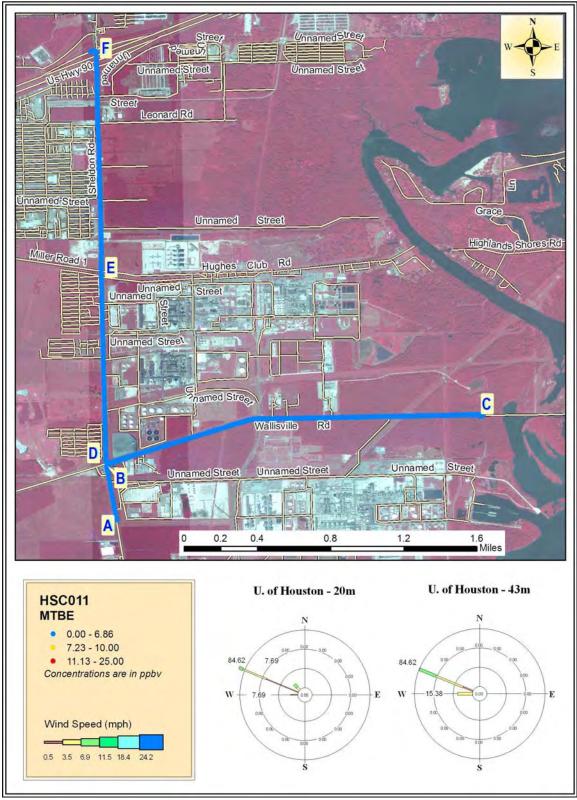


Figure 8e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

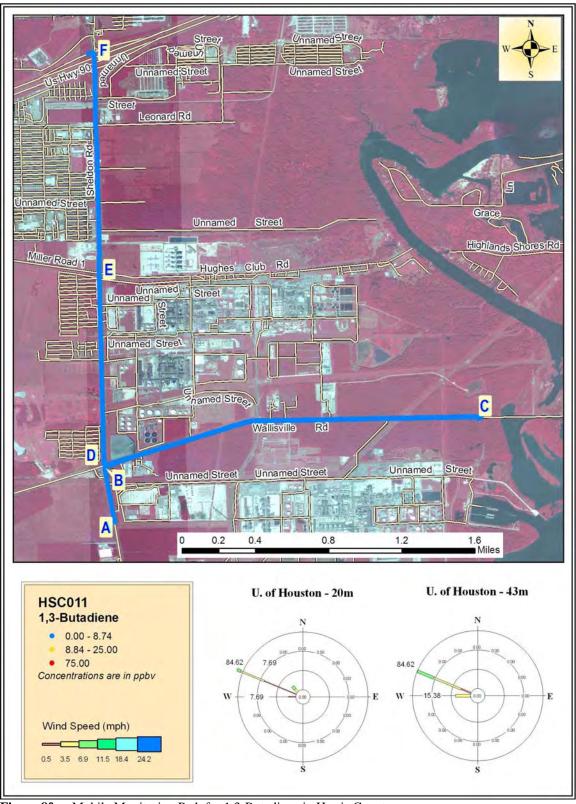


Figure 8f Mobile Monitoring Path for 1,3-Butadiene in Harris County

Figure 8g Mobile Monitoring Path for Styrene in Harris County

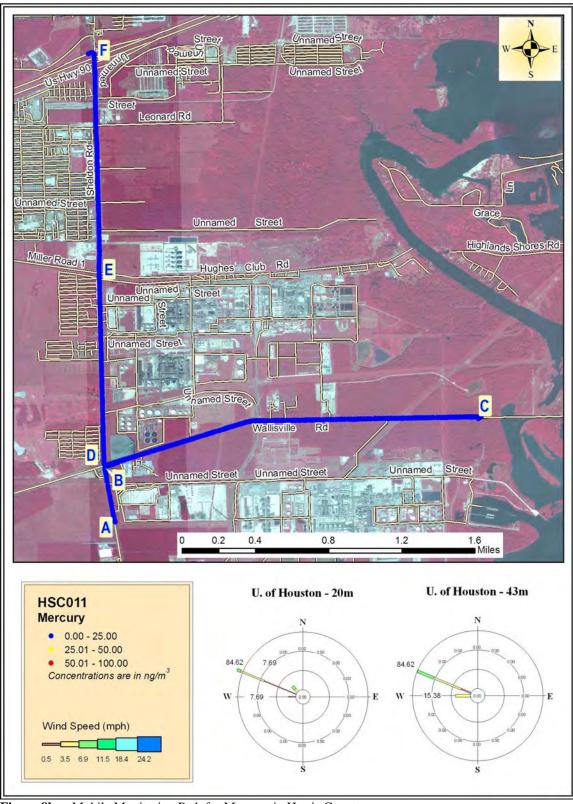


Figure 8h Mobile Monitoring Path for Mercury in Harris County

Figure 8i

TAGA File Event Summary File: HSC011 Acquired on 12 December 2006 at 09:19:44 UTC Title: Mobile Monitoring in Harris County

Flag Time Sequence Description 1.9 Start monitoring northward on Sheldon Road at Wallisville Road A 55 2.9 84 Turning right onto Wallisville Road В C 11.8 337 Executing a U-turn 472 D 16.5 Turning right onto Sheldon Road 577 Е 20.2 Passing Miller Road Number One F 24.5 701 Ending at Crosby Freeway (Interstate 90)

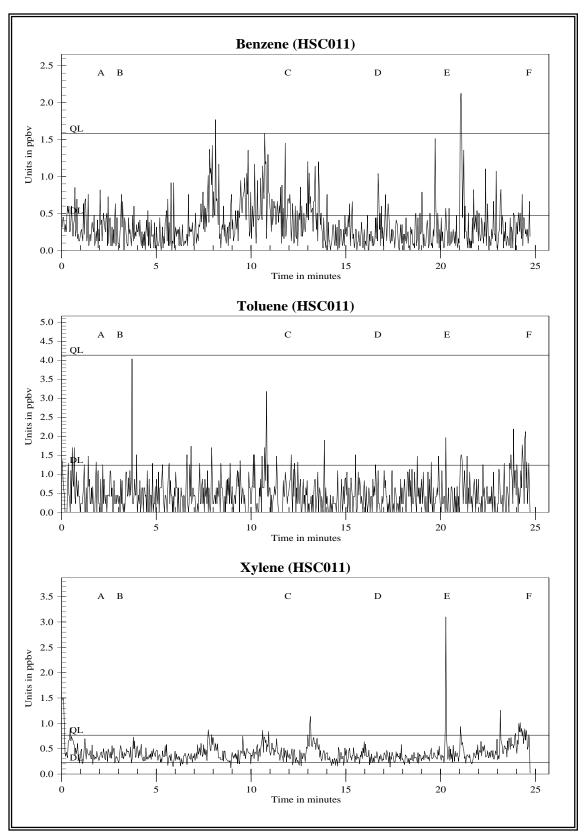


Figure 8j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

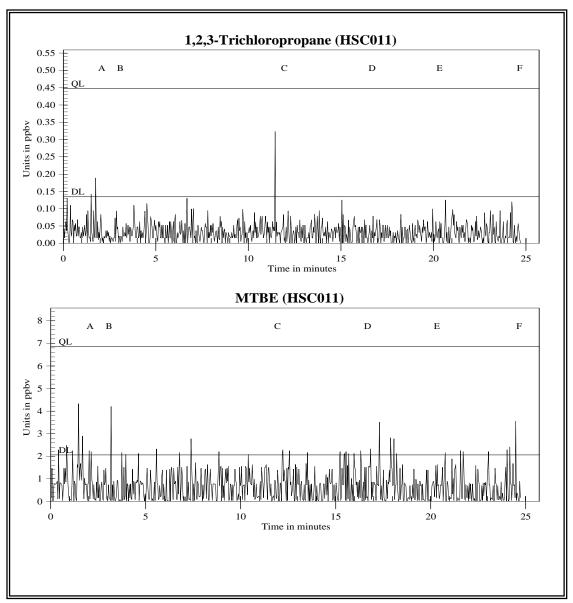


Figure 8k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

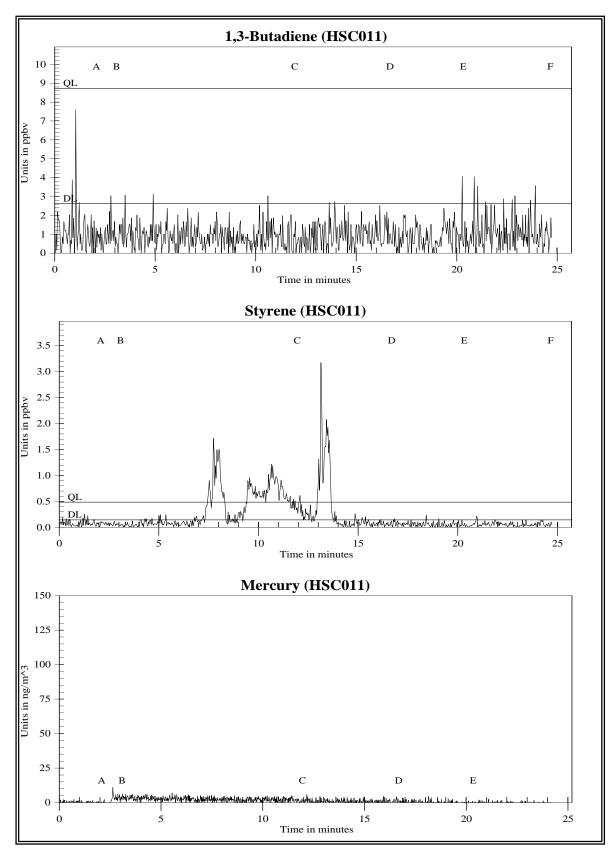


Figure 81 Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

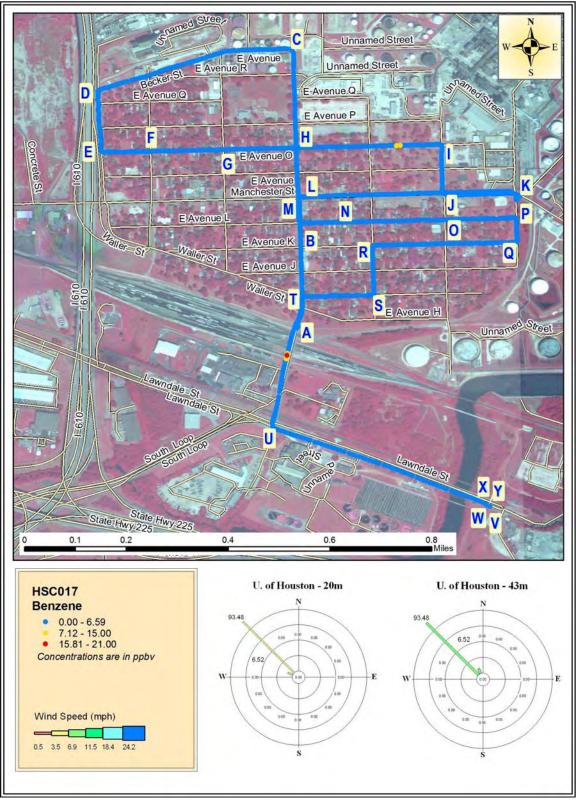


Figure 9a Mobile Monitoring Path for Benzene in Harris County

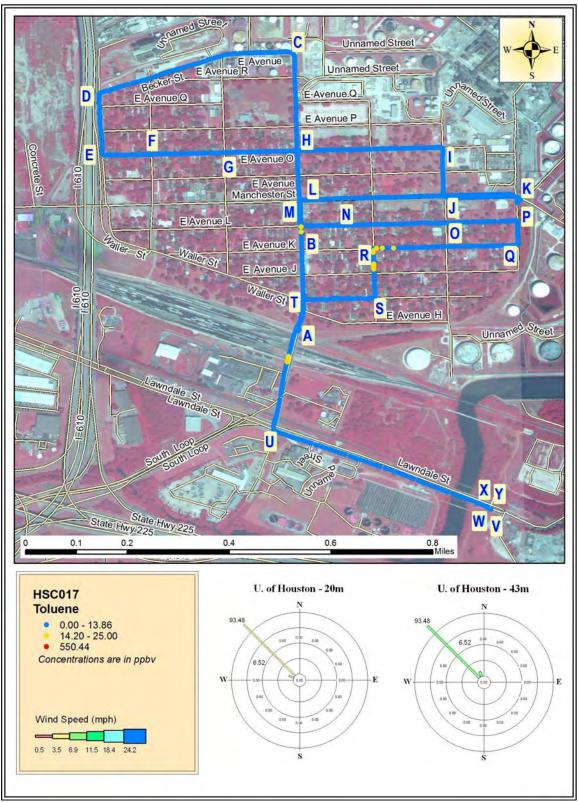


Figure 9b Mobile Monitoring Path for Toluene in Harris County

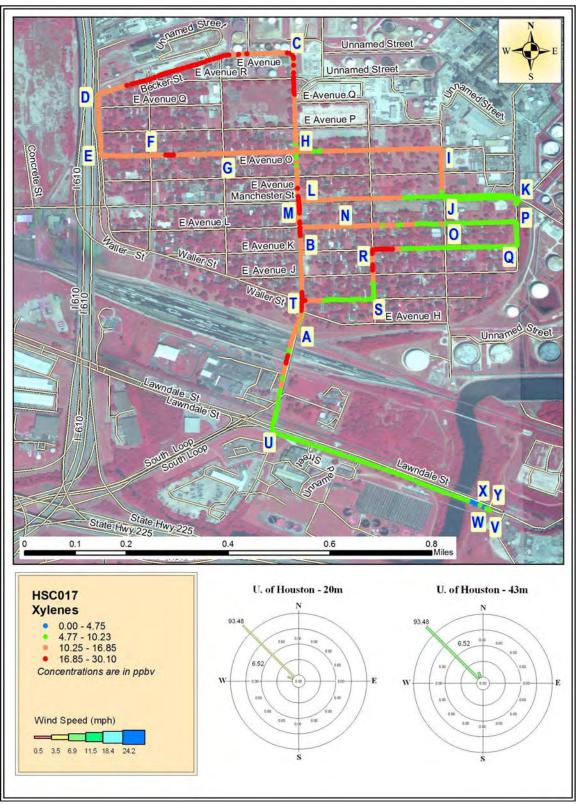


Figure 9c Mobile Monitoring Path for Xylenes in Harris County

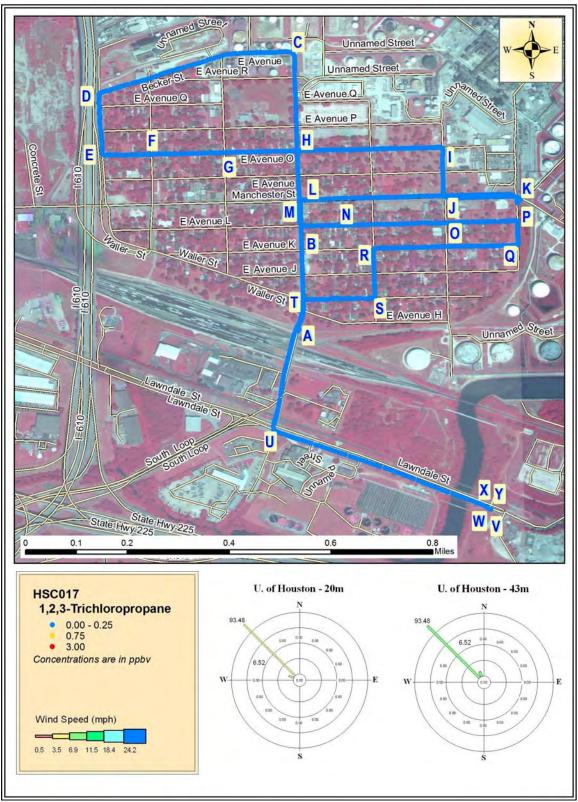


Figure 9d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

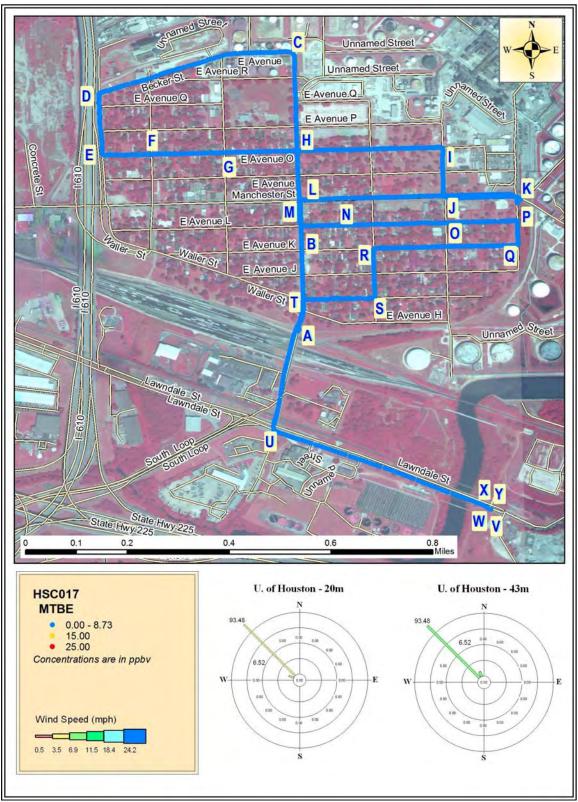


Figure 9e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

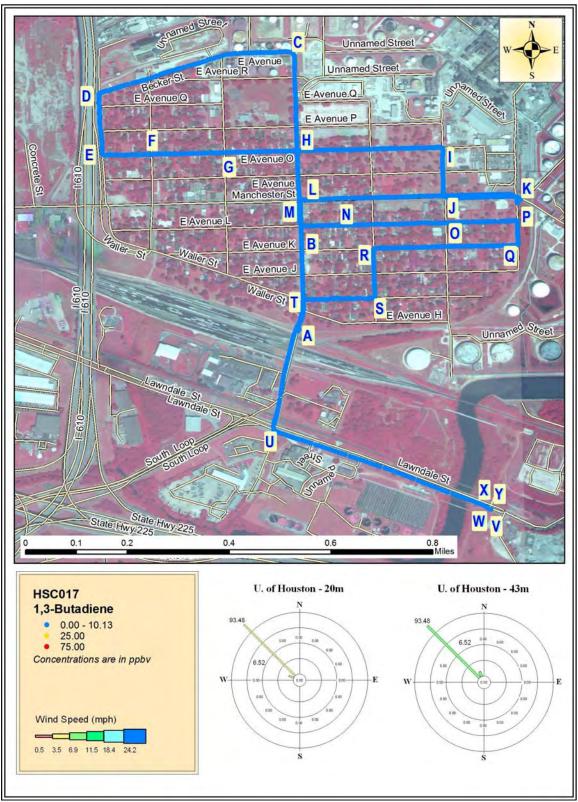


Figure 9f Mobile Monitoring Path for 1,3-Butadiene in Harris County

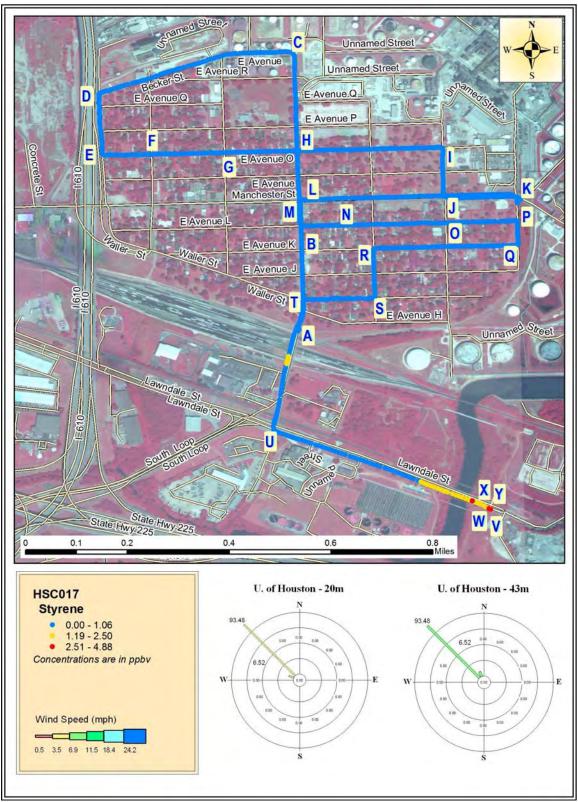


Figure 9g Mobile Monitoring Path for Styrene in Harris County

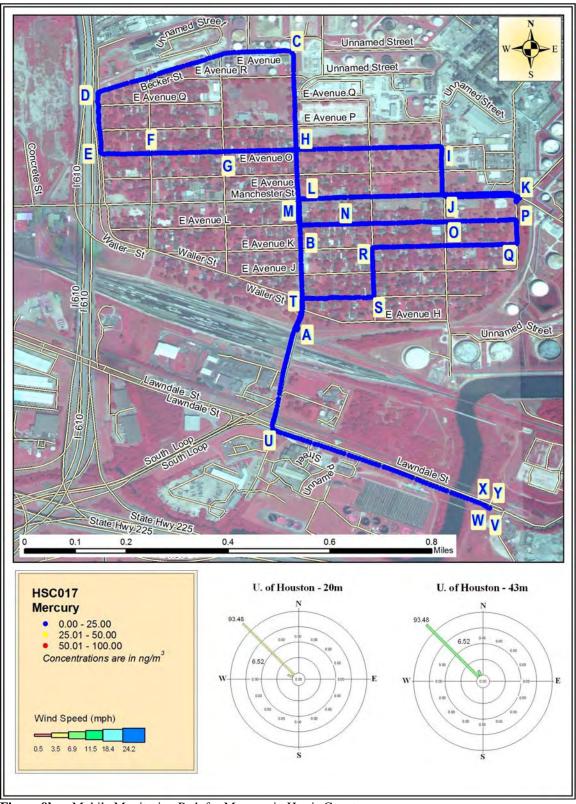


Figure 9h Mobile Monitoring Path for Mercury in Harris County

Figure 9i

TAGA File Event Summary File: HSC017 Acquired on 13 December 2006 at 02:39:08 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description
A	2.5	72	Start monitoring northward on Central Street near Avenue H
В	3.8	109	Passing Avenue K
С	6.7	192	Turning left onto East Avenue S (Becker Street)
D	9.3	267	Turning left onto East Loop South
Е	10.4	297	Turning left onto Avenue O
F	11.2	321	Passing 92 nd Street
G	12.3	353	Passing 93 rd Street
Н	13.4	384	Passing Central Street
I	15.6	446	Turning right onto 96 th Street
J	16.5	472	Turning left onto Manchester Street
K	17.6	504	Executing a U-turn at 97 th Street
L	21.4	612	Passing Cams Station 1029
M	21.7	622	Turning left onto Central Street
N	23.0	658	Turning left onto East Avenue L
О	24.4	698	Passing 96 th Street
P	25.7	734	Turning right onto 97 th Street
Q	26.9	769	Turning right onto Avenue K
R	29.7	849	Turning left onto 95 th Street
S	30.9	883	Turning right onto East Avenue I
T	33.5	957	Turning left onto Central Street
U	36.4	1039	Turning left onto Lawndale Street
V	38.9	1111	Reversing; Stopping for SUMMA® sampling
W	39.6	1133	Start of SUMMA® sample F1582
X	40.9	1169	End of SUMMA® sample F1582
Y	44.2	1264	Stopping at the collection station

Figure 9j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

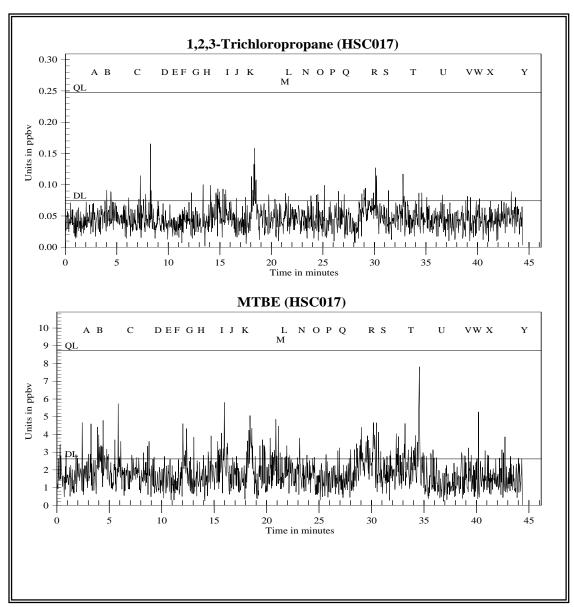


Figure 9k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

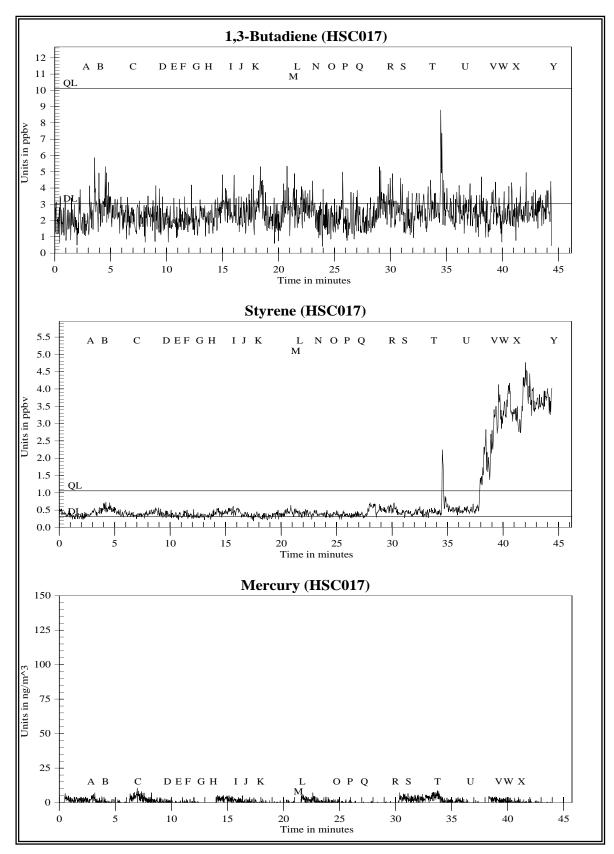


Figure 91 Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

Figure 9m

TAGA Target Compound Averages during Sample Collection File: HSC017 Acquired on 13 December 2006 at 02:39:08 UTC						
		Benzene	Toluene	Xylenes	1,2,3-Trichloropropane	
	Detection Limits (DL):	2.0	4.2	1.4	0.074	
	Quantitation Limits (QL):	6.6	14.	4.8	0.25	
Flags	Description	Benzene	Toluene	Xylenes	1,2,3-Trichloropropane	
W - X	SUMMA® F1582	DL=2.0	5.6J	5.2	DL=0.074	
		Methyl-t- butyl ether	1,3-Butadiene	Styrene		
	Detection Limits (DL):	2.6	3.0	0.32		
	Quantitation Limits (QL):	8.7	10.	1.1		
Flags	Description	Methyl-t- butyl ether	1,3-Butadiene	Styrene		
W - X	SUMMA® F1582	DL=2.6	DL=3.0	3.5		

Concentrations are in parts per billion by volume (ppbv) J = Below quantitation limit

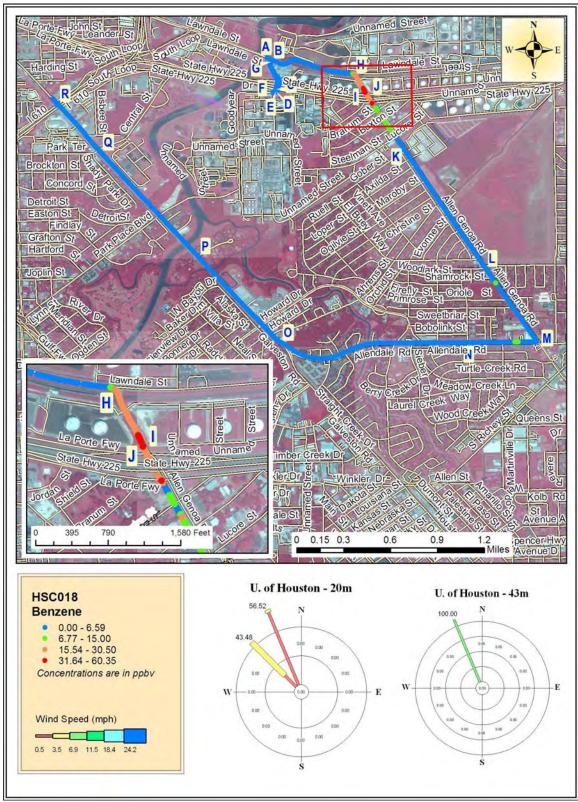


Figure 10a Mobile Monitoring Path for Benzene in Harris County

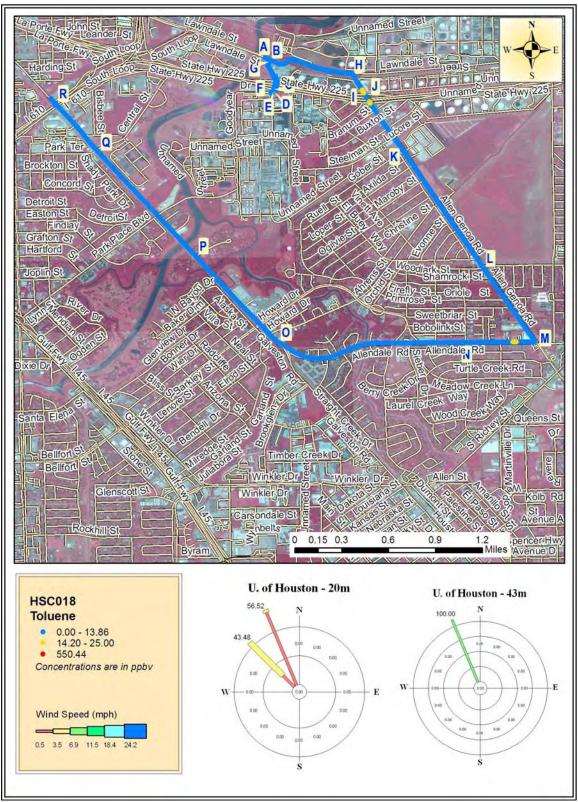


Figure 10b Mobile Monitoring Path for Toluene in Harris County

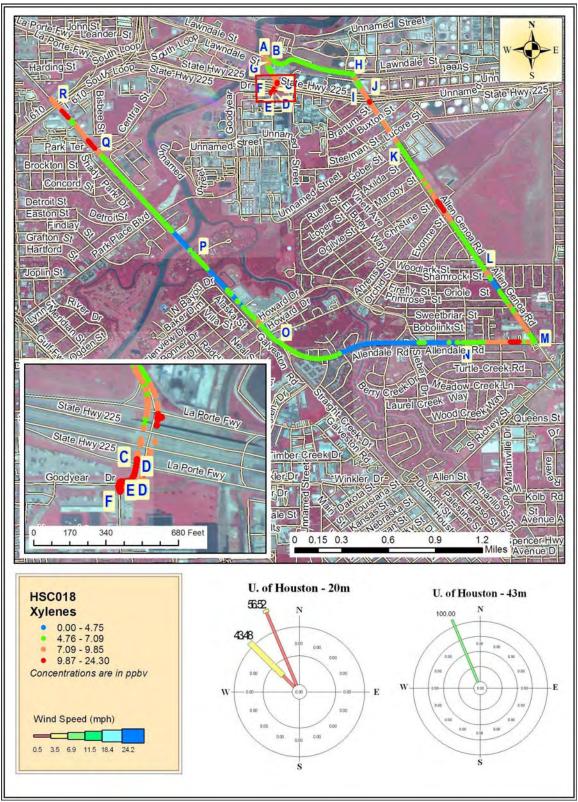


Figure 10c Mobile Monitoring Path for Xylenes in Harris County

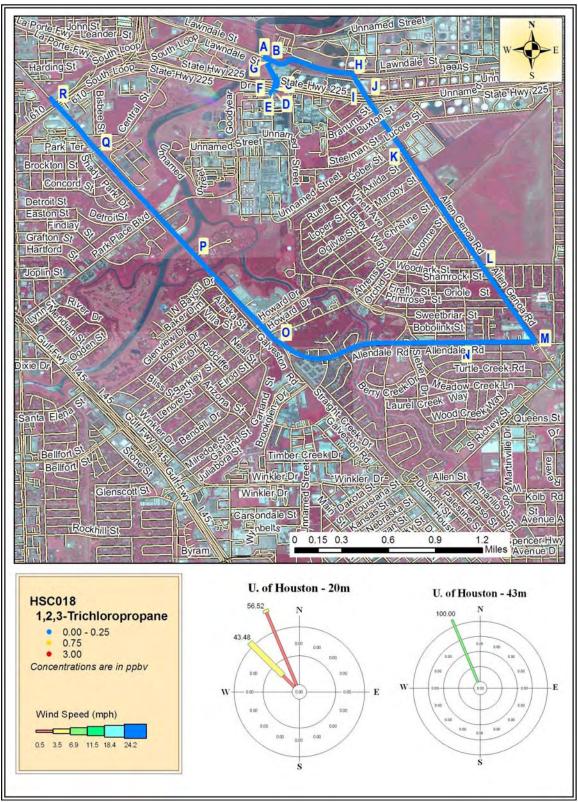


Figure 10d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

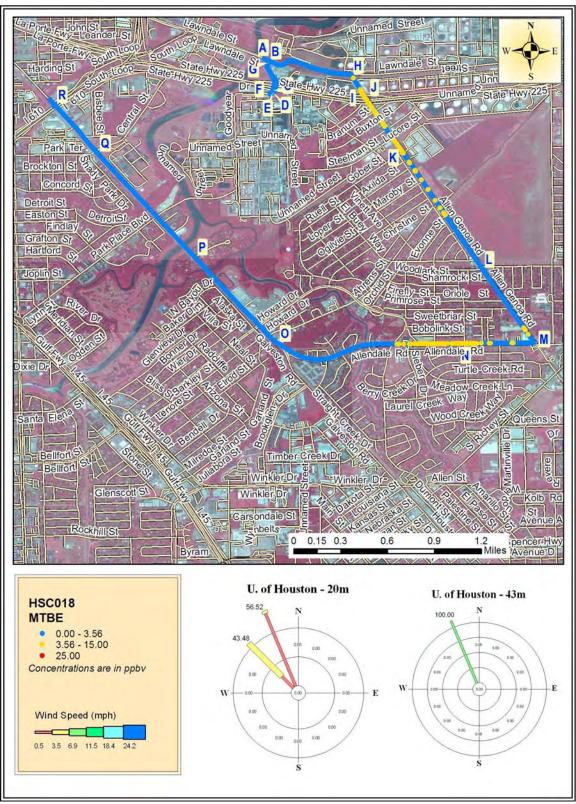


Figure 10e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

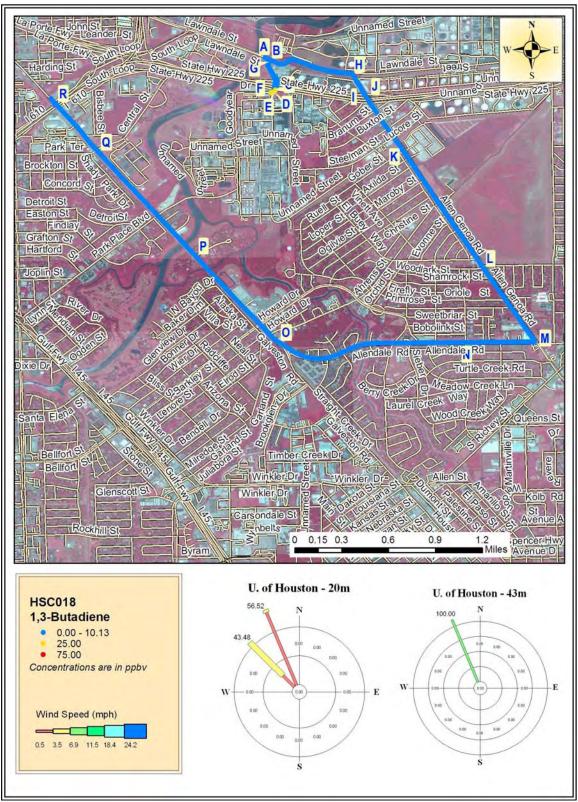


Figure 10f Mobile Monitoring Path for 1,3-Butadiene in Harris County

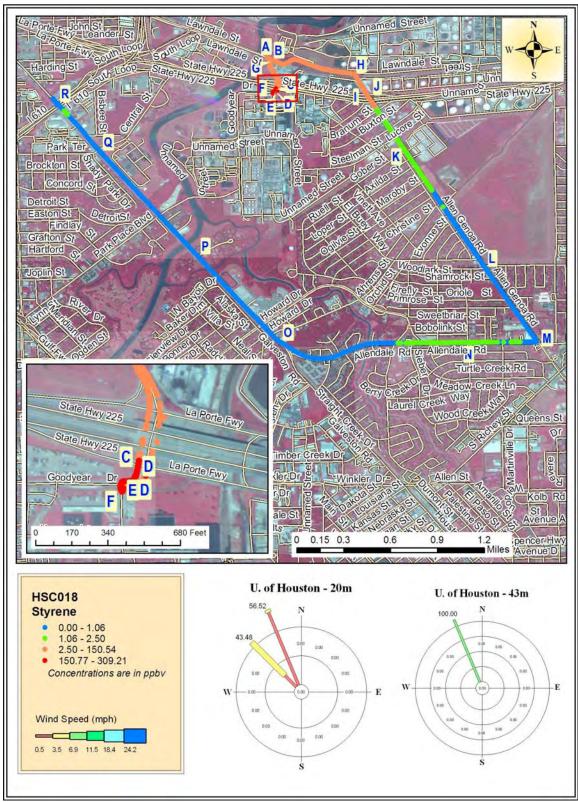


Figure 10g Mobile Monitoring Path for Styrene in Harris County

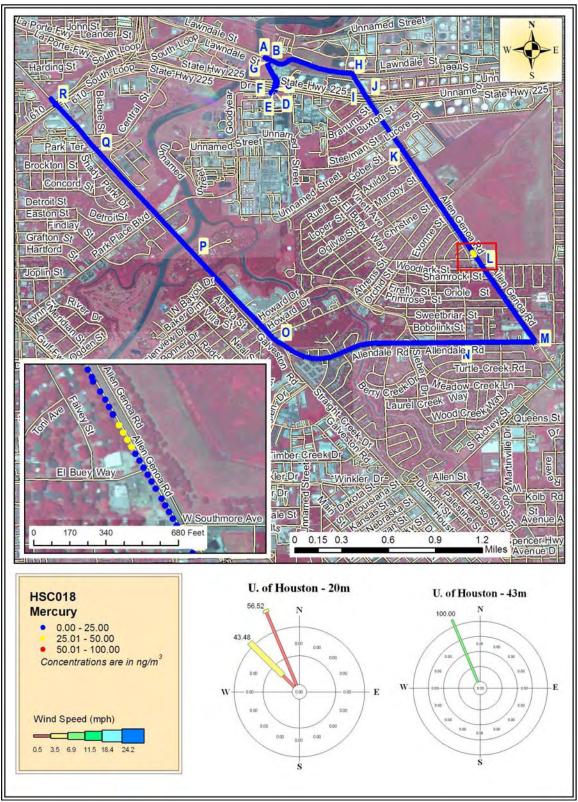


Figure 10h Mobile Monitoring Path for Mercury in Harris County

Figure 10i

TAGA File Event Summary File: HSC018 Acquired on 13 December 2006 at 03:26:36 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description
A	2.4	69	Start of monitoring heading east on Lawndale Street
В	3.4	98	Turning right onto Goodyear Drive
С	5.5	157	Passing State Highway 275
D	6.0	171	Starting collecting SUMMA® sample A1498
Е	7.3	210	Ending collecting SUMMA® sample A1498
F	9.1	260	Executing a U-turn
G	11.2	322	Turning right onto Lawndale Street
Н	13.7	391	Turning right onto Allen Genoa Road
I	15.4	441	Starting collecting SUMMA® sample F1496
J	15.9	455	Ending collecting SUMMA® sample F1496
K	19.3	552	Passing Gober Avenue
L	23.6	676	Passing Southmore Avenue
M	26.4	754	Turning right onto Allendale Road
N	28.7	821	Passing Flagstone Terrace
0	34.3	981	Merging into Galveston Road
P	37.9	1084	Passing Rockleigh Place
Q	42.3	1210	Passing Central Street
R	44.1	1259	Passing State Highway 610; End of monitoring

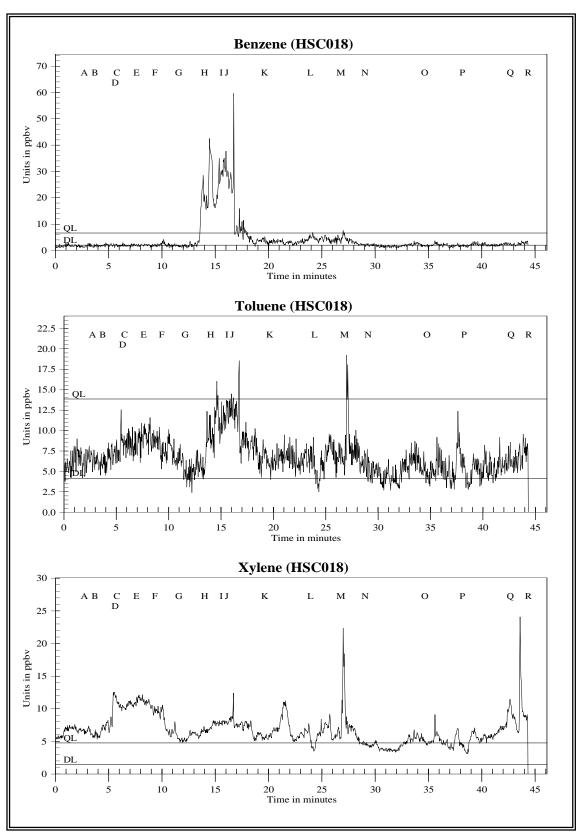


Figure 10j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

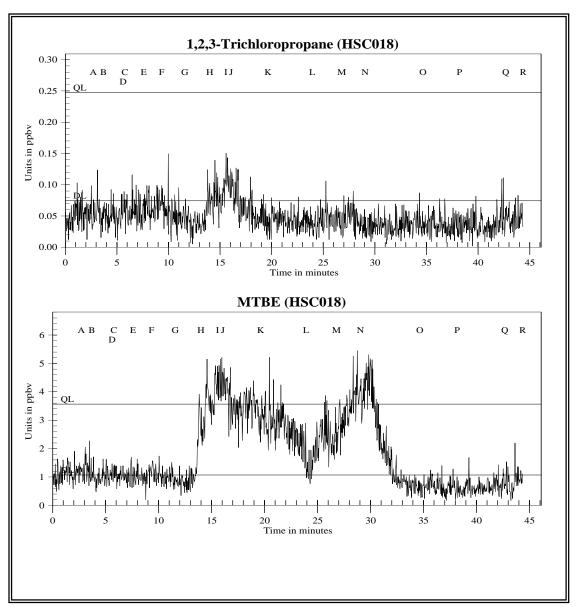


Figure 10k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

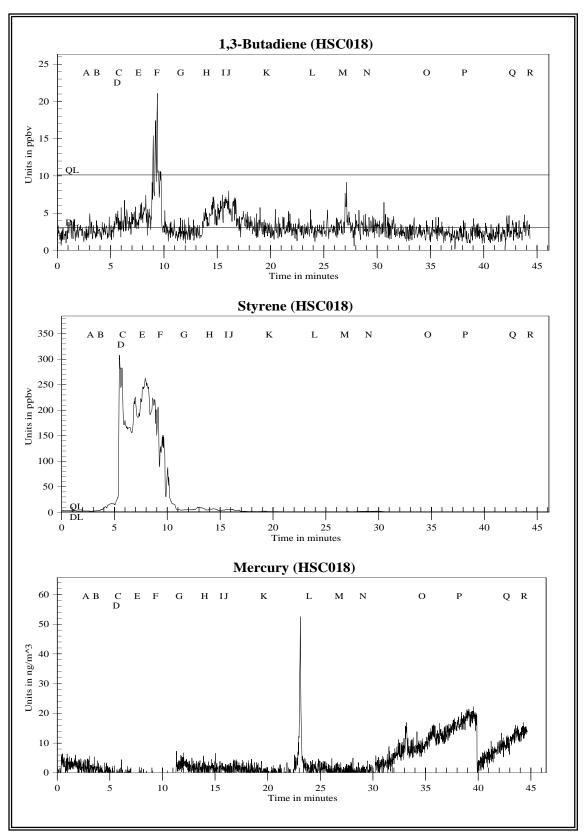


Figure 101 Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

Figure 10m

rigure rom					
	TAGA Target Compound Averages during Sample Collection File: HSC018 Acquired on 13 December 2006 at 03:26:36 UTC				
		Benzene	Toluene	Xylenes	1,2,3-Trichloropropane
	Detection Limits (DL):	2.0	4.2	1.4	0.074
	Quantitation Limits (QL):	6.6	14.	4.8	0.25
Flags	Description	Benzene	Toluene	Xylenes	1,2,3-Trichloropropane
D - E	SUMMA® A1498	DL=2.0	8.4J	10.	DL=0.074
I - J	SUMMA [®] F1496	30.	12.J	7.9	0.11J
		Methyl-t-butyl ether	1,3-Butadiene	Styrene	
	Detection Limits (DL):	1.1	3.0	0.32	
	Quantitation Limits (QL):	3.6	10.	1.1	
Flags	Description	Methyl-t-butyl ether	1,3-Butadiene	Styrene	
D - E	SUMMA® A1498	DL=1.1	3.9J	180	
I - J	SUMMA® F1496	4.3	6.1J	5.0	
		·			

Concentrations are in parts per billion by volume (ppbv) J = Below quantitation limit

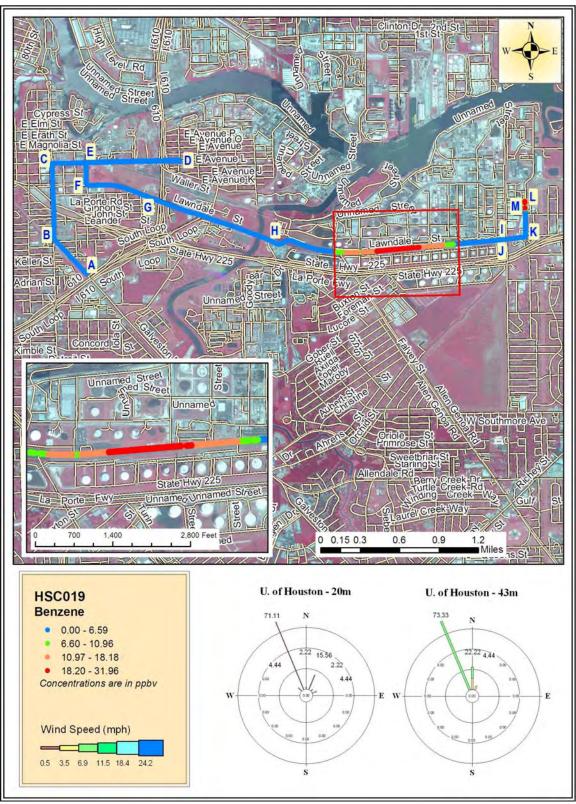


Figure 11a Mobile Monitoring Path for Benzene in Harris County

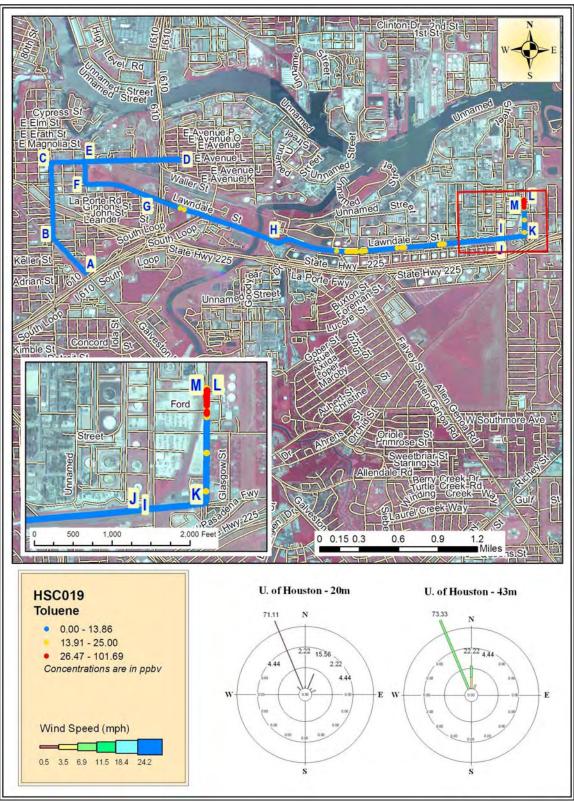


Figure 11b Mobile Monitoring Path for Toluene in Harris County

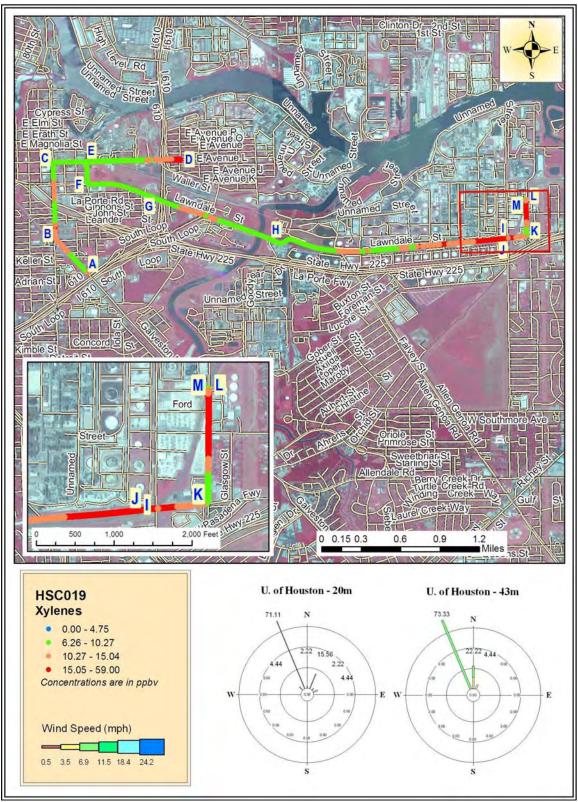


Figure 11c Mobile Monitoring Path for Xylenes in Harris County

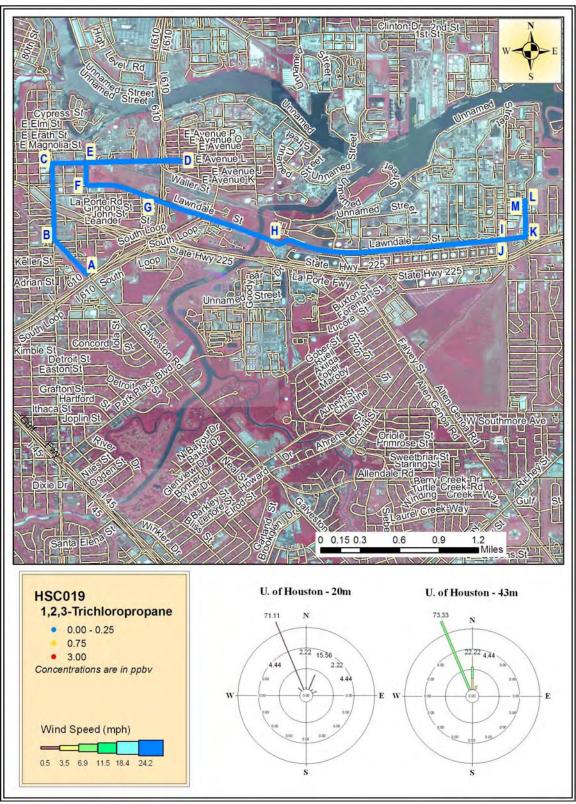


Figure 11d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

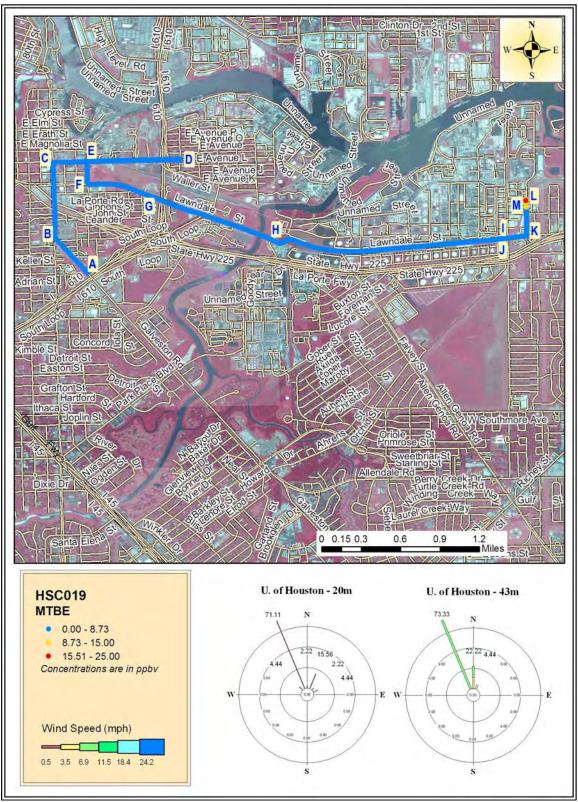


Figure 11e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

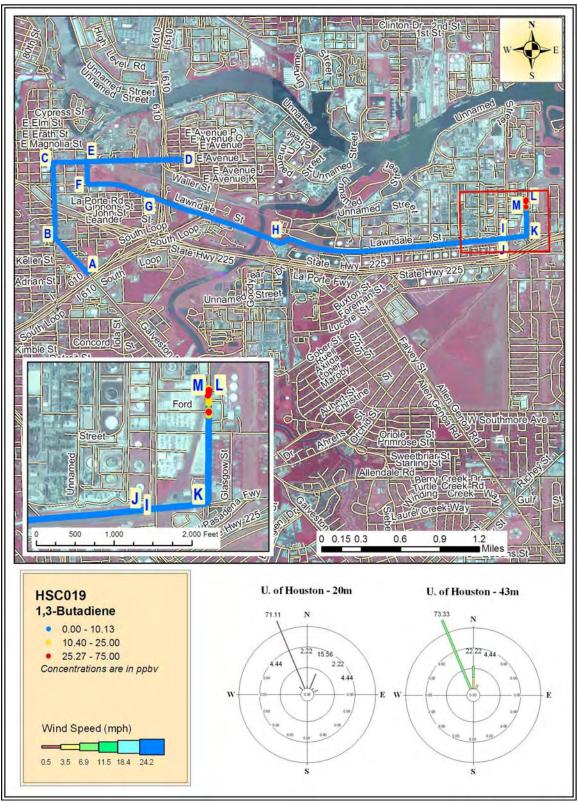


Figure 11f Mobile Monitoring Path for 1,3-Butadiene in Harris County

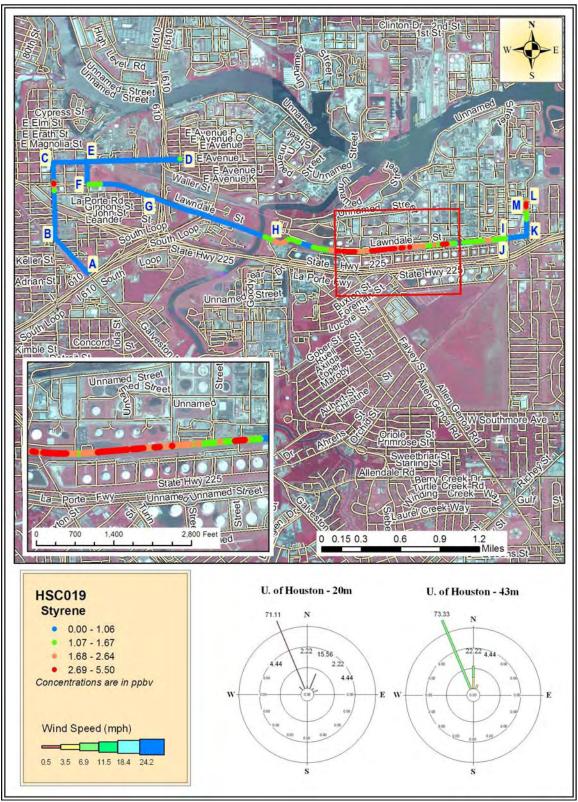


Figure 11g Mobile Monitoring Path for Styrene in Harris County

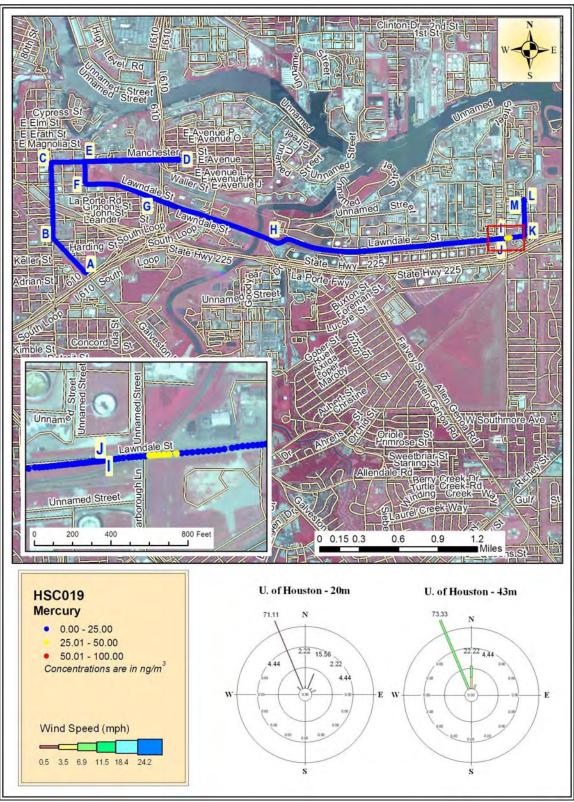


Figure 11h Mobile Monitoring Path for Mercury in Harris County

Figure 11i

TAGA File Event Summary File: HSC019 Acquired on 13 December 2006 at 04:17:16 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description
A	2.6	75	Start monitoring northwestward on Galveston Road at State Highway 610
В	4.6	132	Turning right onto Broadway Street
C	7.3	210	Turning right onto Manchester Street
D	13.1	375	Executing a U-turn at 92nd Street
Е	17.5	500	Turning left onto San Saba Street
F	18.7	536	Turning left onto Lawndale Street
G	21.5	616	Passing under State Highway 610
Н	26.7	762	Passing Goodyear Drive
I	37.1	1059	Stopping for a train
J	38.1	1088	Resuming mobile monitoring
K	39.3	1124	Turning left onto Light Company Road
L	42.0	1199	Stopping
M	44.4	1269	Executing a U-turn

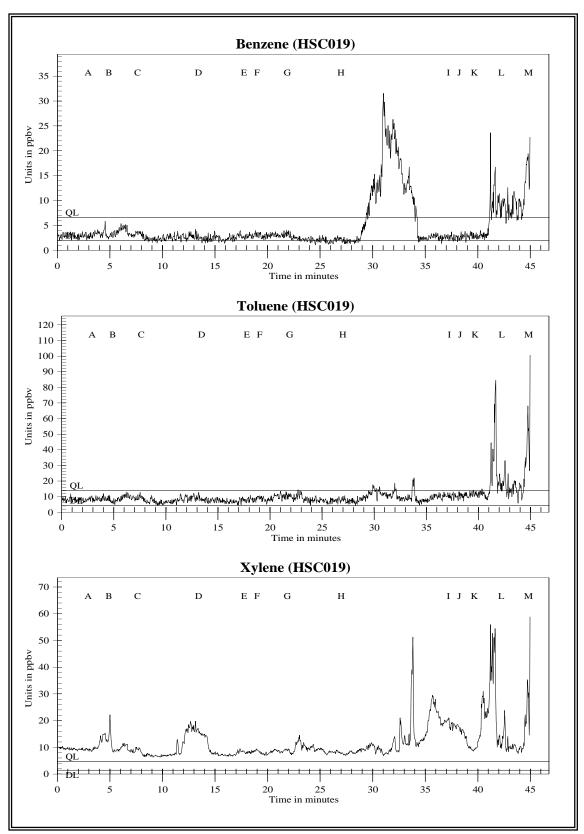


Figure 11j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

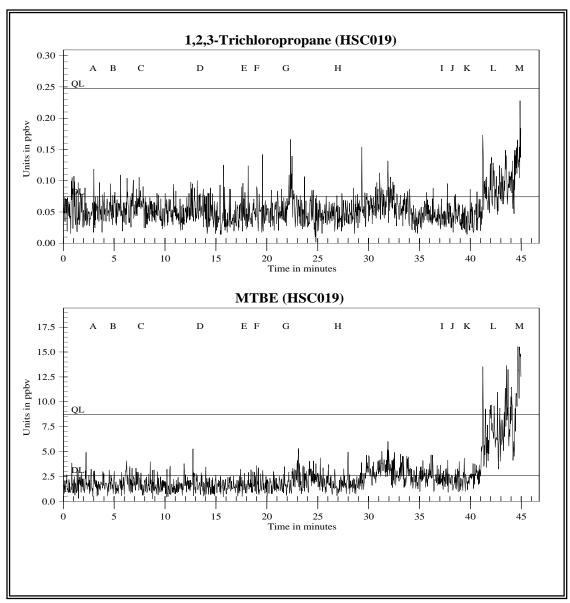


Figure 11k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

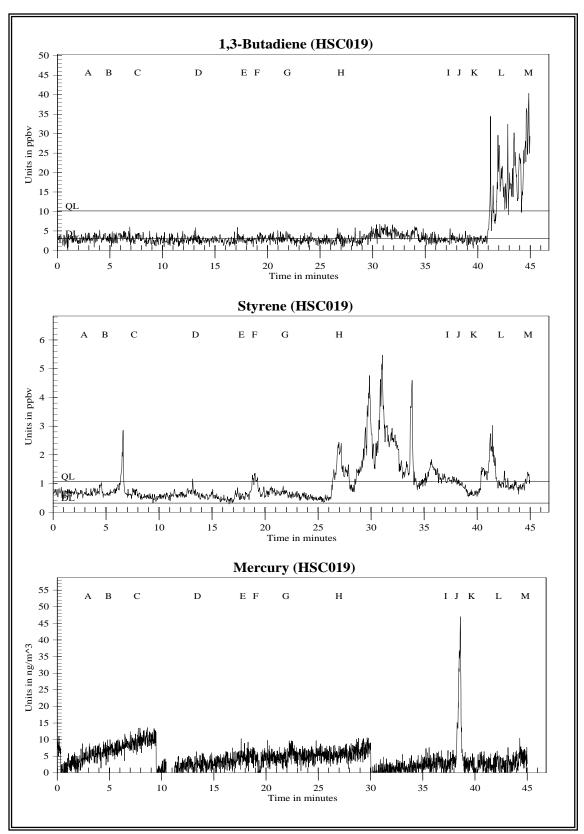


Figure 111 Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

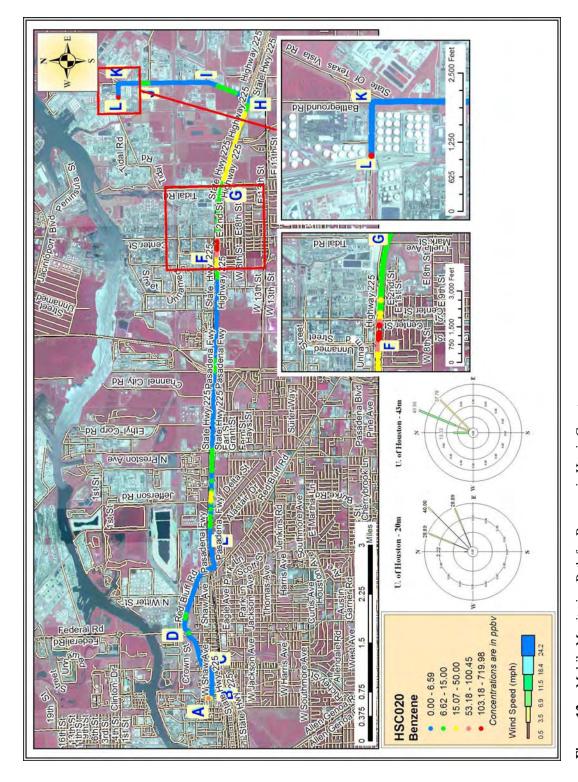


Figure 12a Mobile Monitoring Path for Benzene in Harris County

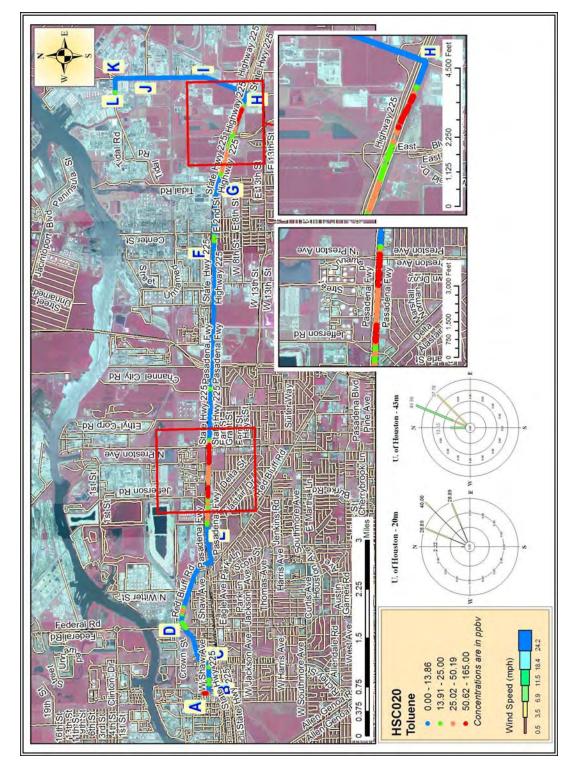


Figure 12b Mobile Monitoring Path for Toluene in Harris County

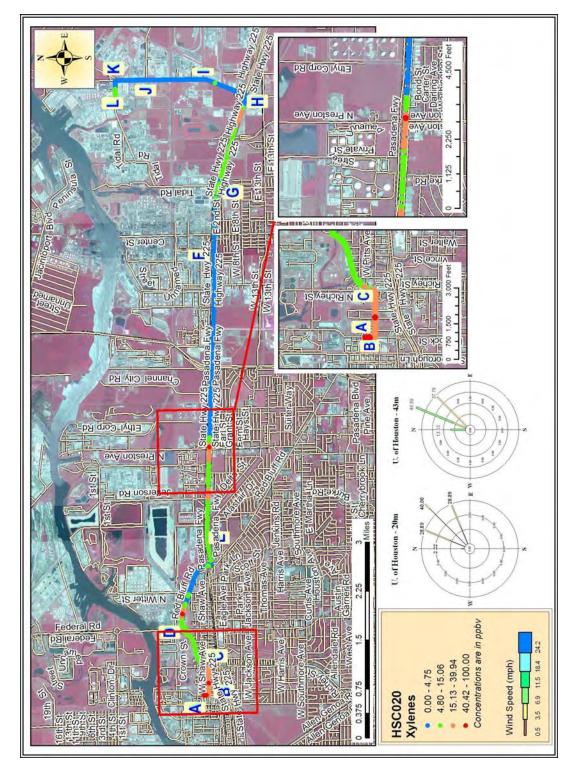


Figure 12c Mobile Monitoring Path for Xylenes in Harris County

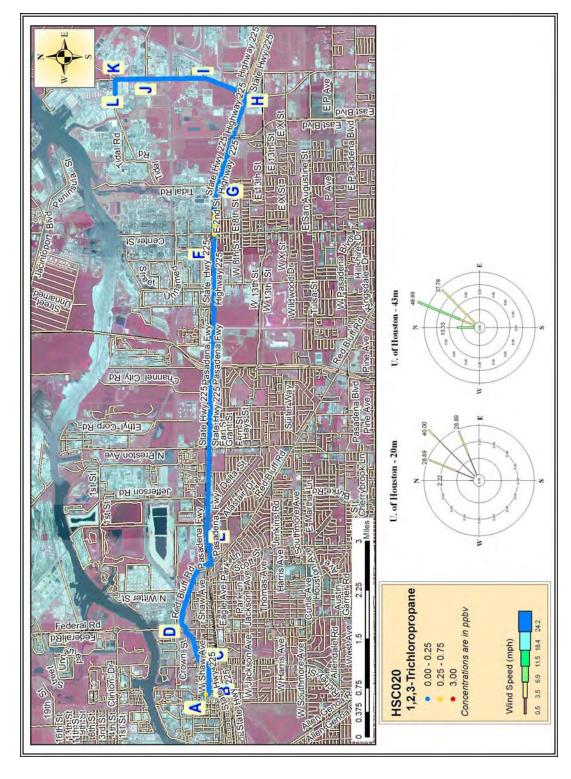


Figure 12d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

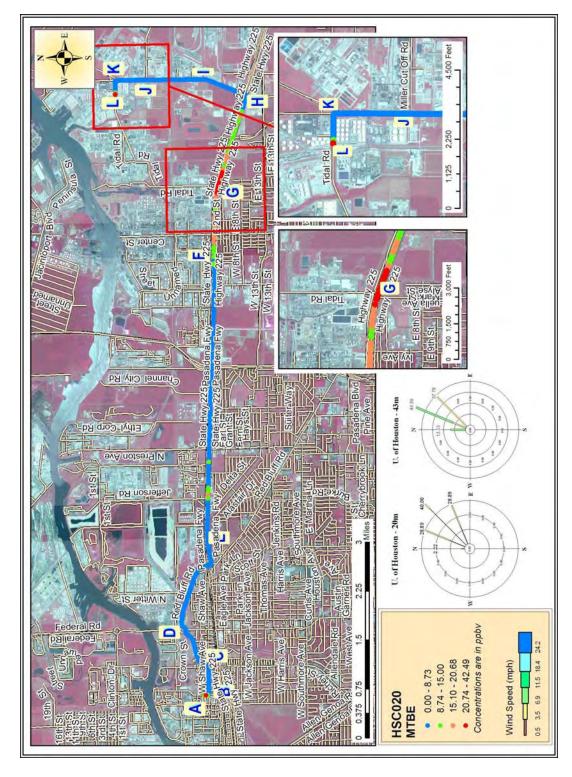


Figure 12e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

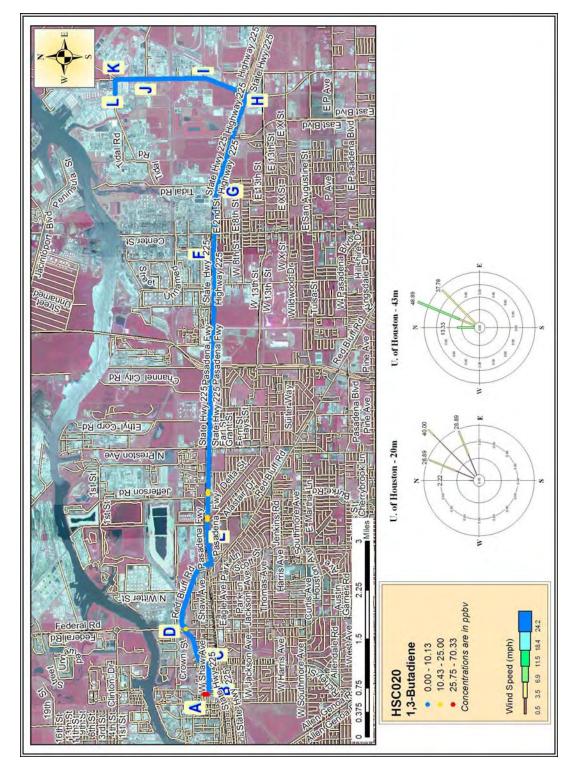


Figure 12f Mobile Monitoring Path for 1,3-Butadiene in Harris County

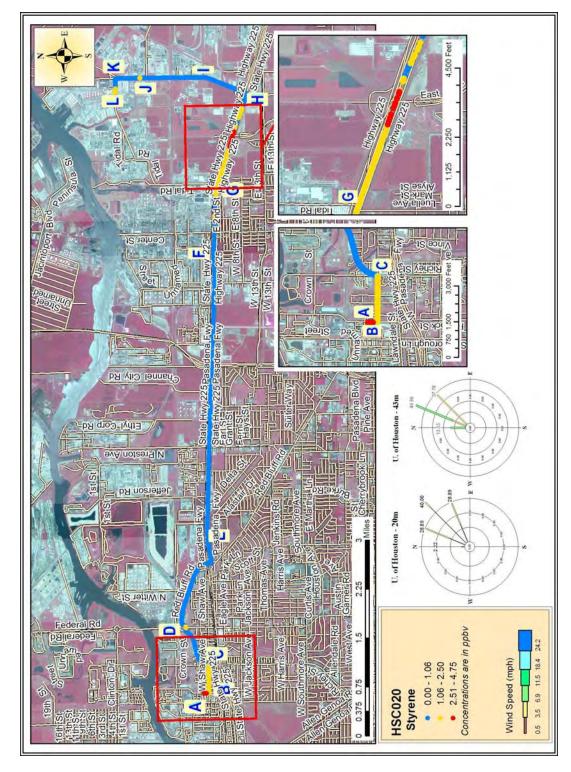


Figure 12g Mobile Monitoring Path for Styrene in Harris County

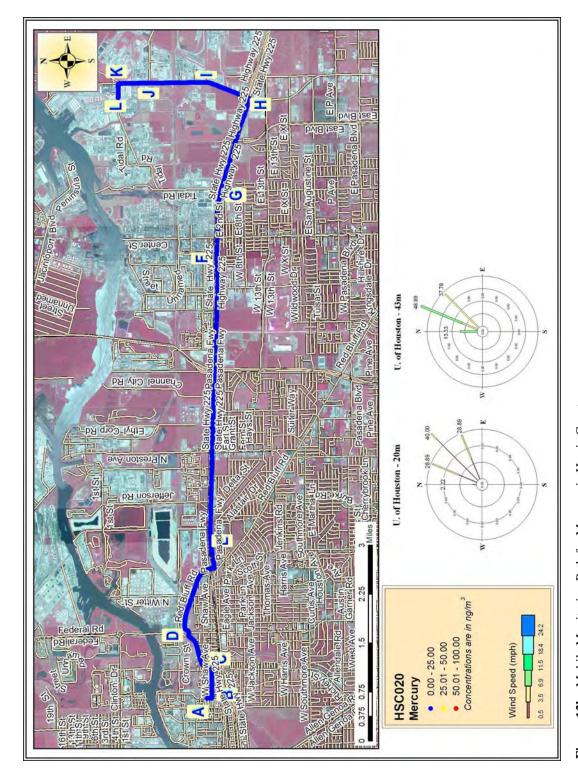


Figure 12h Mobile Monitoring Path for Mercury in Harris County

Figure 12i

TAGA File Event Summary File: HSC020 Acquired on 13 December 2006 at 05:05:55 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description	
A	2.3	66	Start monitoring southward on Light Company Road	
В	3.0	86	Turning left onto West Shaw Avenue	
C	6.1	176	Turning left onto Richey Street	
D	9.5	273	Turning right onto Red Bluff Road	
Е	16.4	469	Continuing east onto State Highway 225	
F	22.9	655	Passing Center Street	
G	24.3	696	Passing Tidal Road	
Н	27.2	778	Exiting onto Battleground Road	
I	31.3	896	Passing Alkyls	
J	36.5	1044	Passing Miller Cut Off Road	
K	39.0	1116	Turning left onto Tidal Road	
L	40.4	1155	Stopping for a train	

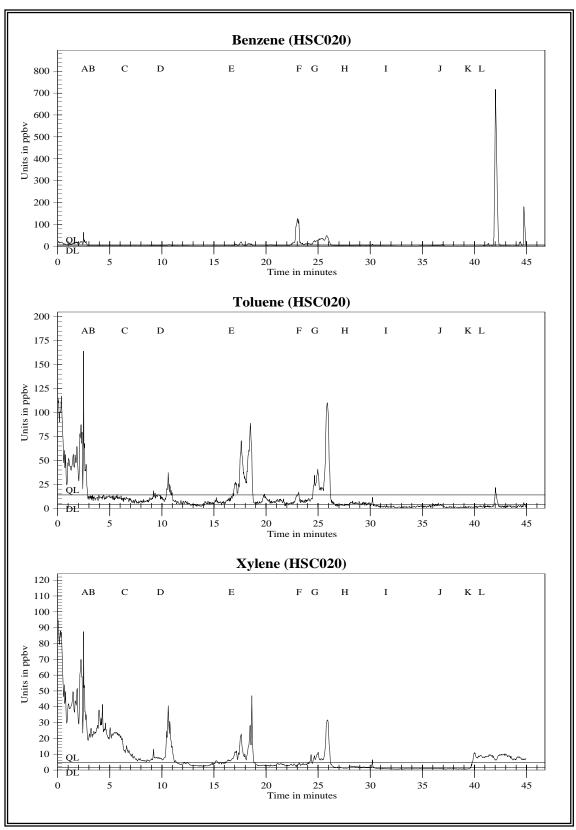


Figure 12j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

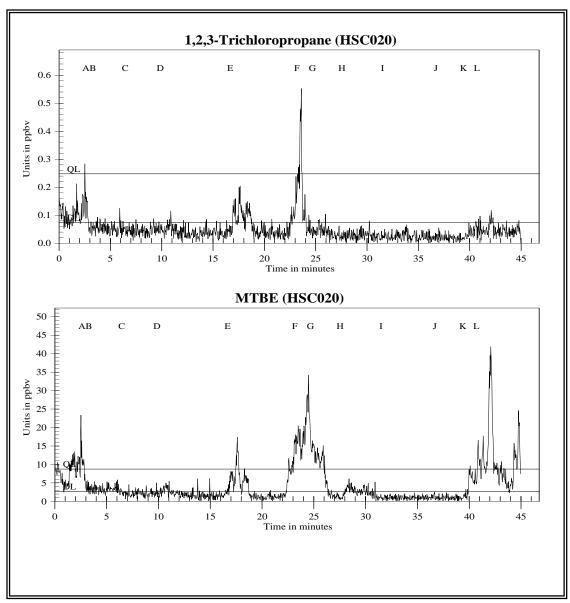


Figure 12k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

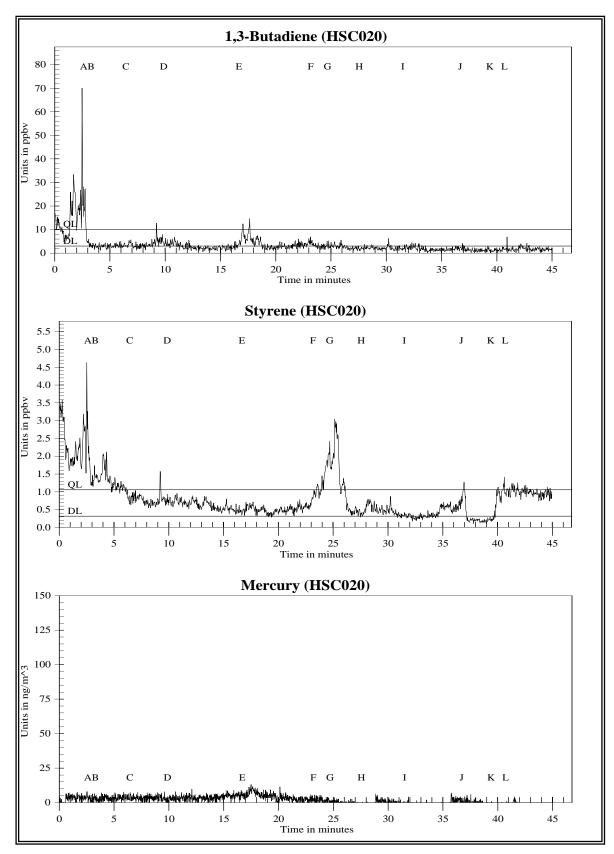


Figure 12l Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

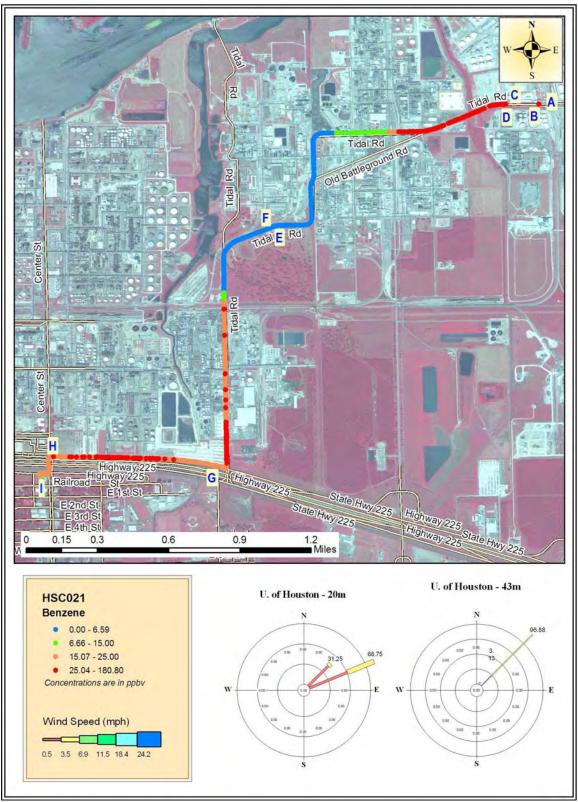


Figure 13a Mobile Monitoring Path for Benzene in Harris County

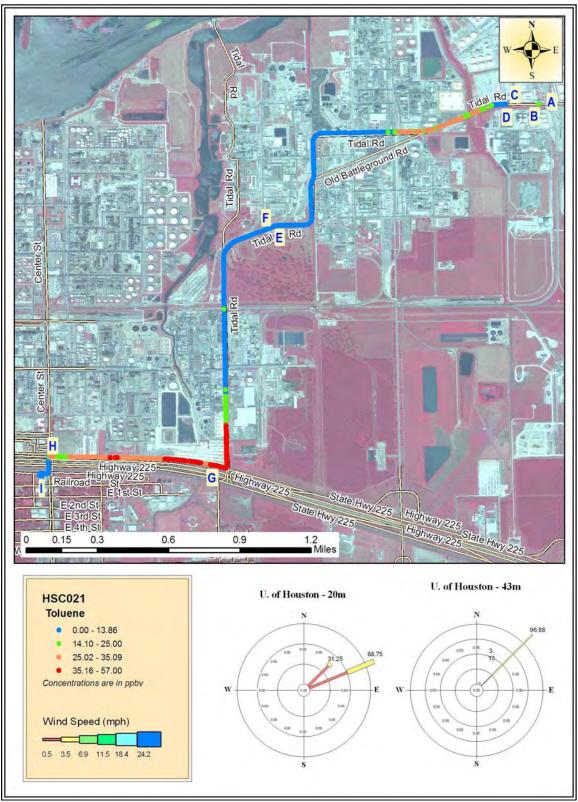


Figure 13b Mobile Monitoring Path for Toluene in Harris County

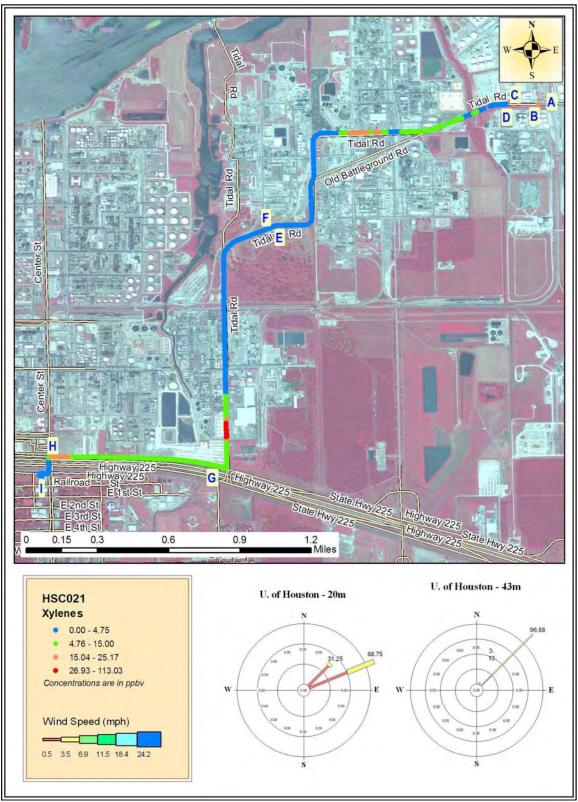


Figure 13c Mobile Monitoring Path for Xylenes in Harris County

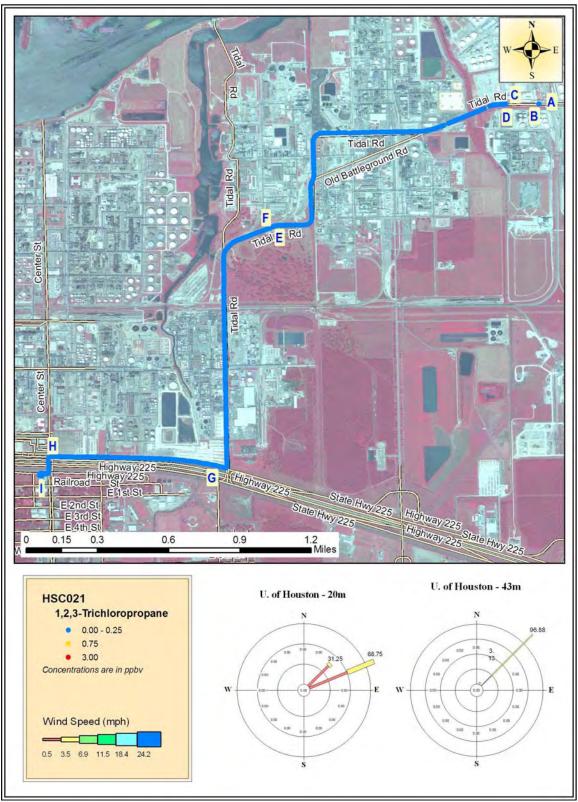


Figure 13d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

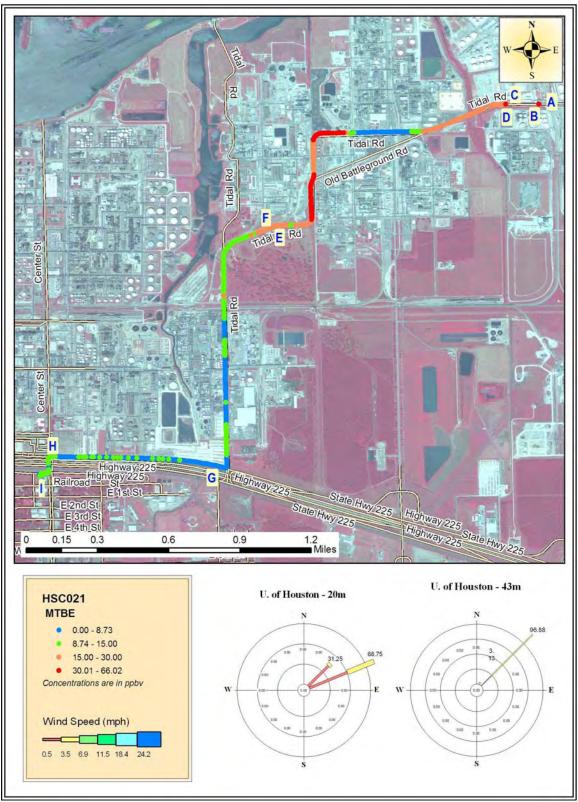


Figure 13e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

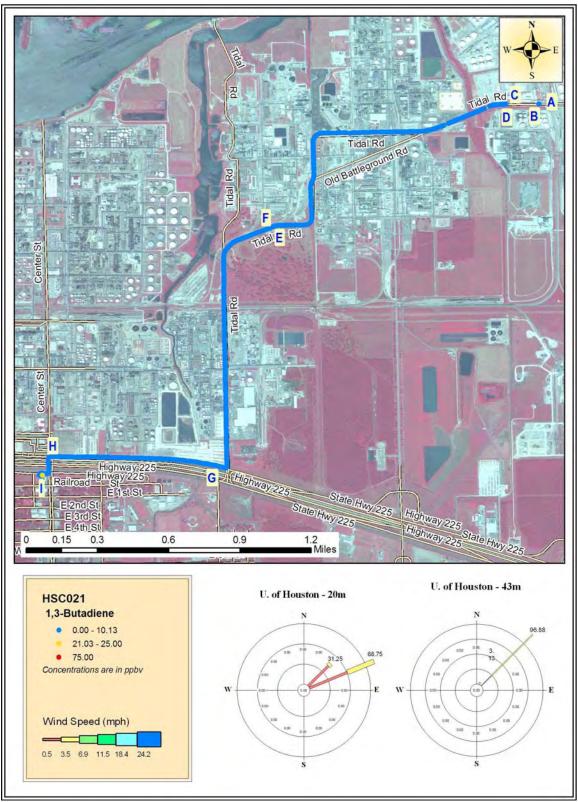


Figure 13f Mobile Monitoring Path for 1,3-Butadiene in Harris County

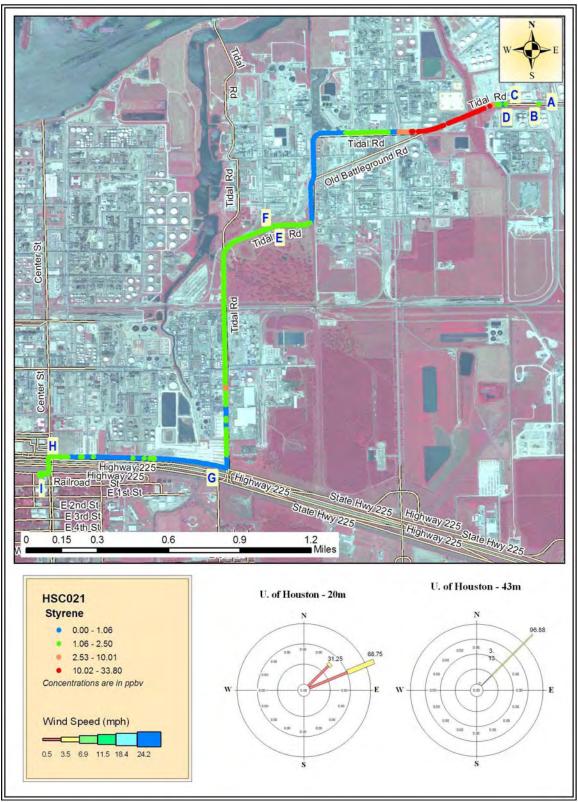


Figure 13g Mobile Monitoring Path for Styrene in Harris County

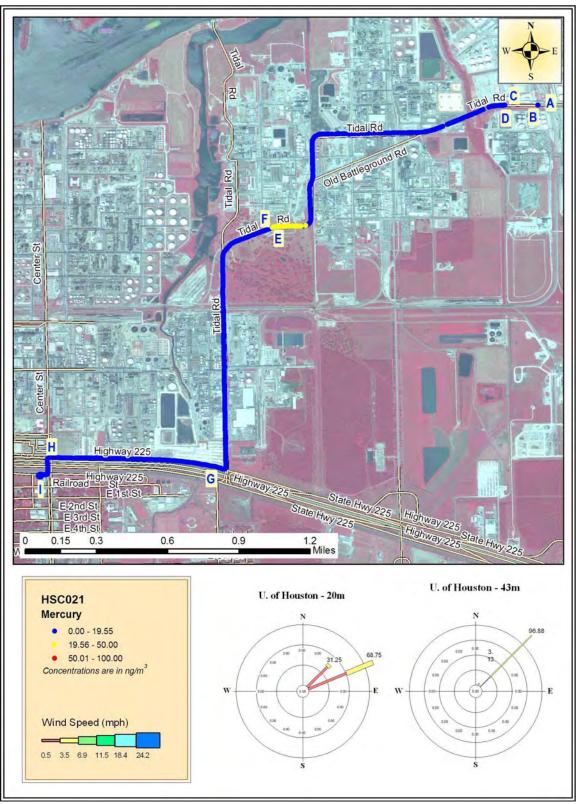


Figure 13h Mobile Monitoring Path for Mercury in Harris County

Figure 13i

TAGA File Event Summary File: HSC021 Acquired on 13 December 2006 at 05:53:57 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description
A	2.7	79	Start monitoring westward on Tidal Road
В	3.9	112	Stopping to start collecting SUMMA® sample B0125
С	5.1	148	End of collecting SUMMA® sample B0125
D	5.7	163	Resume mobile monitoring
Е	15.1	433	Stopping
F	17.4	499	Resume mobile monitoring
G	26.7	763	Turning right onto State Highway 225 Service Road
Н	30.0	859	Turning left onto Center Street
I	31.1	889	Stopping

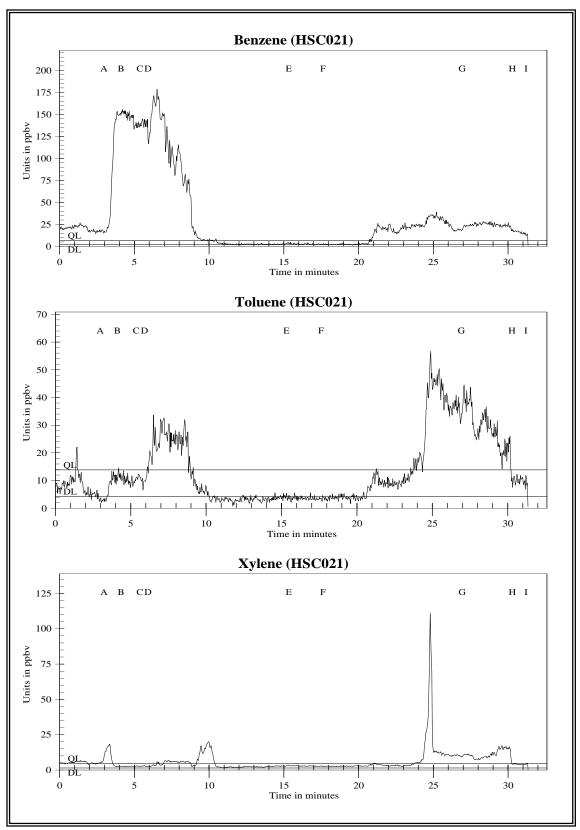


Figure 13j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

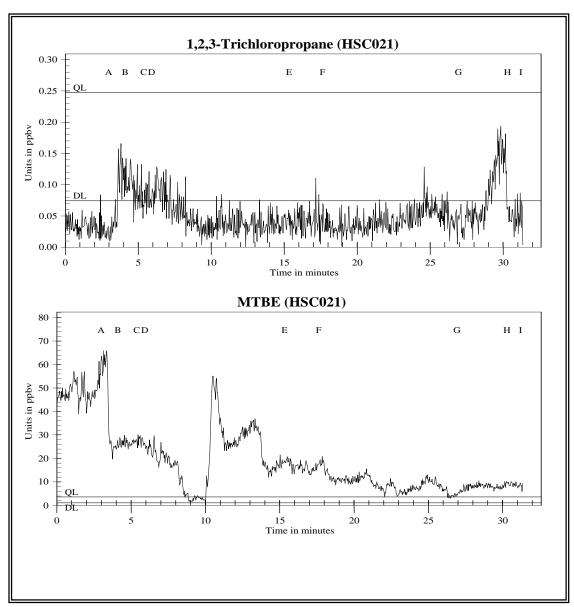


Figure 13k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

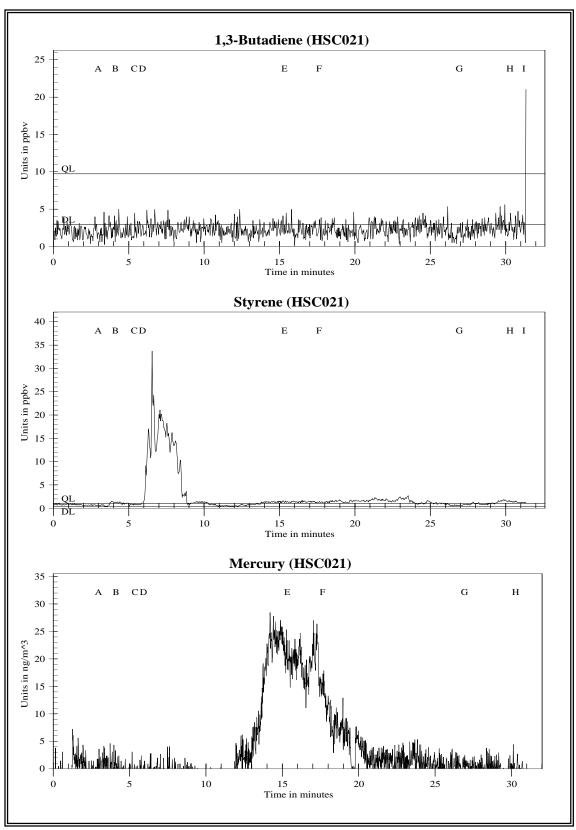


Figure 13l Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

Figure 13m

rigure 13m								
	TAGA Target Compound Averages during Sample Collection File: HSC021 Acquired on 13 December 2006 at 05:53:57 UTC							
		Benzene	Toluene	Xylenes	1,2,3-Trichloropropane			
	Detection Limits (DL):	2.0	4.2	1.4	0.074			
	Quantitation Limits (QL):	6.6	14.	4.8	0.25			
Flags	Description	Benzene	Toluene	Xylenes	1,2,3-Trichloropropane			
B - C	SUMMA® B1025	61.	5.7J	8.8	DL=0.074			
		Methyl-t-butyl ether	1,3-Butadiene	Styrene				
	Detection Limits (DL):	2.6	2.9	0.32				
	Quantitation Limits (QL):	8.7	9.7	1.1				
Flags	Description	Methyl-t-butyl ether	1,3-Butadiene	Styrene				
B - C	SUMMA® B1025	50.	DL=2.9	0.71J				

Concentrations are in parts per billion by volume (ppbv)

J = Below quantitation limit

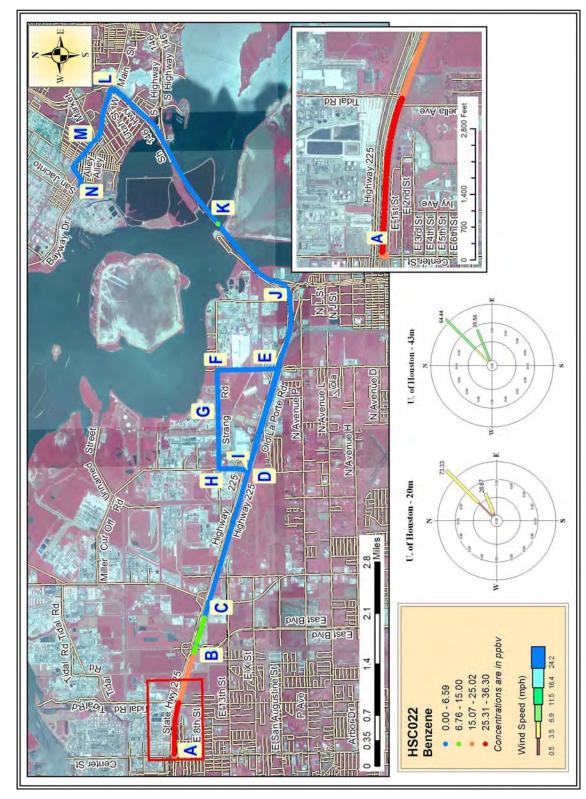


Figure 14a Mobile Monitoring Path for Benzene in Harris County

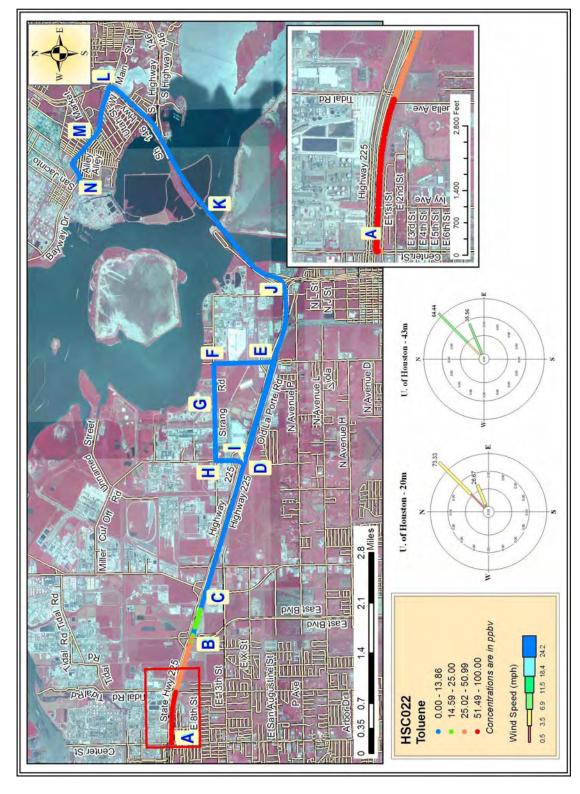


Figure 14b Mobile Monitoring Path for Toluene in Harris County

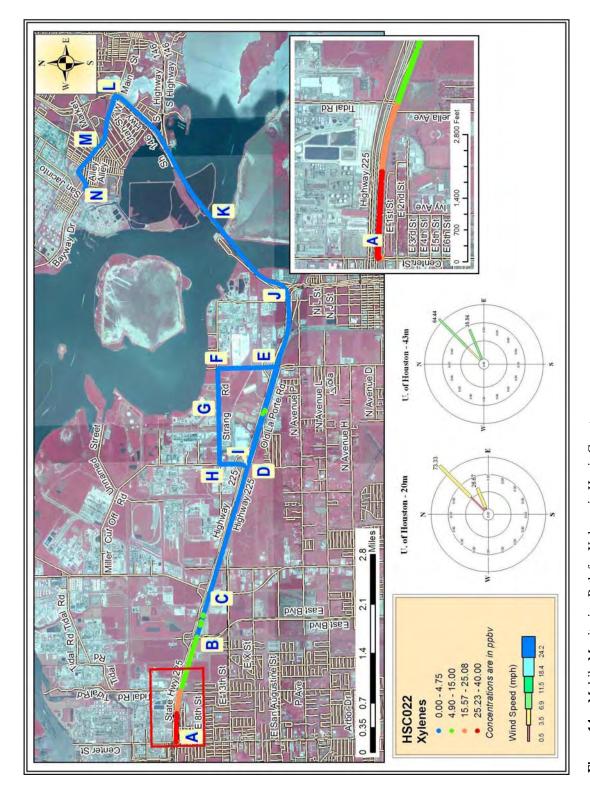


Figure 14c Mobile Monitoring Path for Xylenes in Harris County

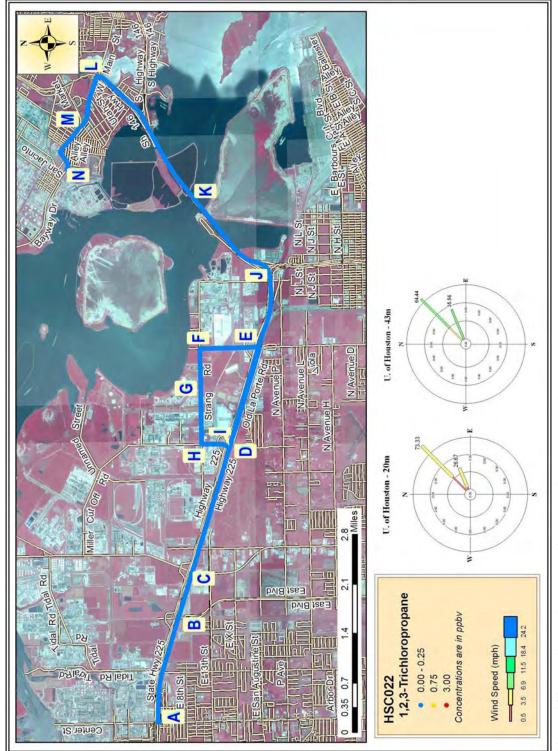


Figure 14d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

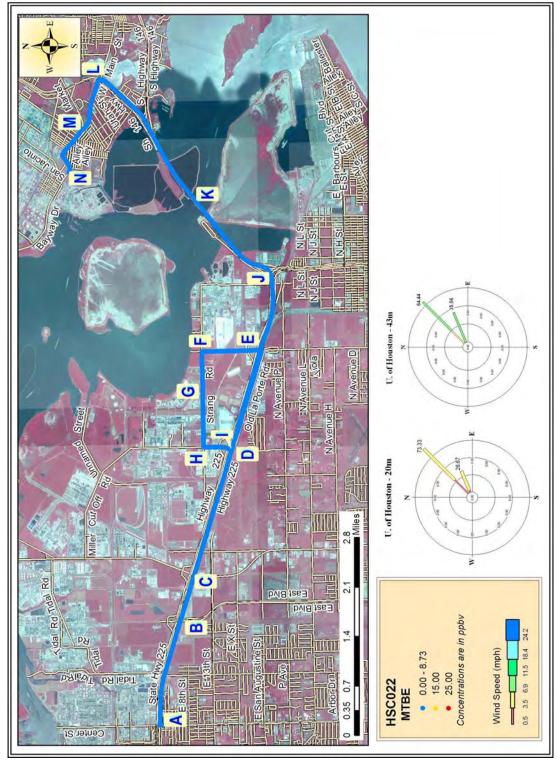


Figure 14e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

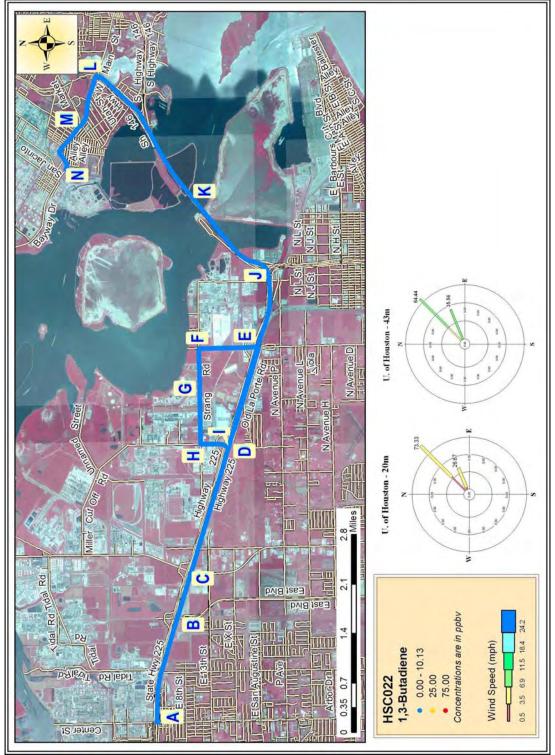


Figure 14f Mobile Monitoring Path for 1,3-Butadiene in Harris County

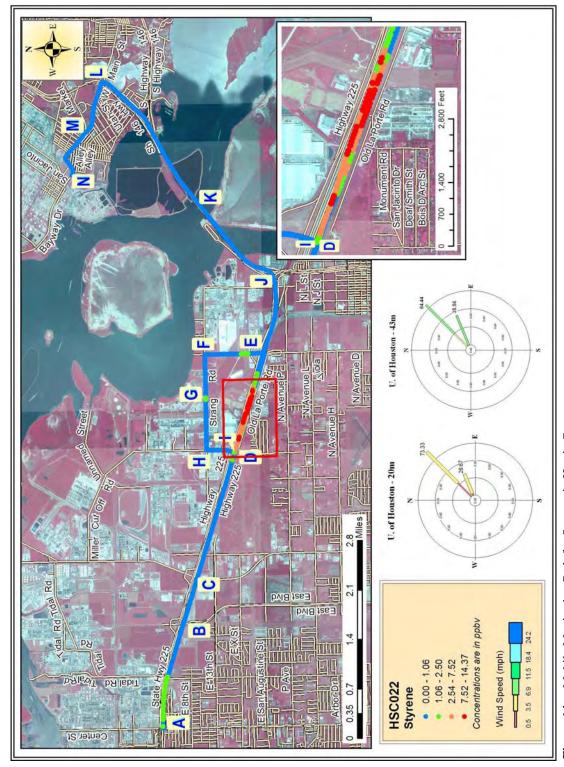


Figure 14g Mobile Monitoring Path for Styrene in Harris County

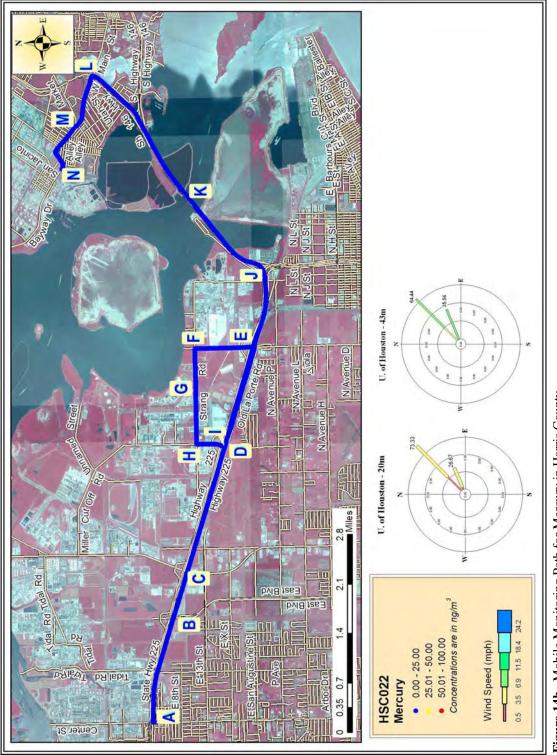


Figure 14h Mobile Monitoring Path for Mercury in Harris County

Figure 14i

TAGA File Event Summary File: HSC022 Acquired on 13 December 2006 at 07:13:11 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description
Α	1.8	51	Start monitoring eastward on State Highway 225 East Service Road
В	5.5	157	Passing East Boulevard
С	7.3	208	Passing Battleground Road
D	10.6	304	Passing Miller Cut Off Road
Е	14.0	401	Turning left onto Sens Road
F	17.8	509	Turning left onto Strang Road
G	20.0	571	Passing Linde
Н	23.3	665	Turning left onto Miller Cut Off Road
I	25.4	727	Continuing east onto State Highway 225
J	29.9	855	Merging onto State Highway 146 North
K	32.2	920	Passing Houston Ship Channel
L	37.3	1065	Exiting onto Main Street West
M	40.5	1157	Turning left onto Market Street
N	44.3	1266	Stopping at Bayway Drive

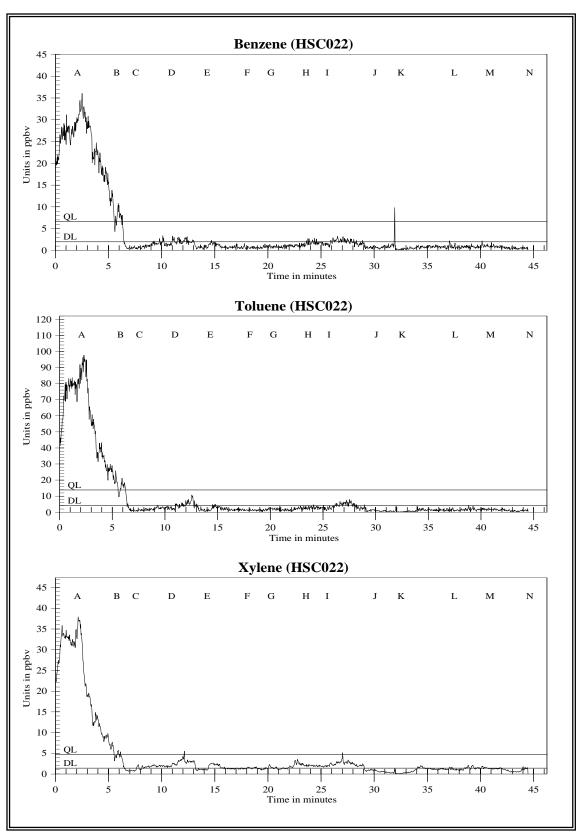


Figure 14j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

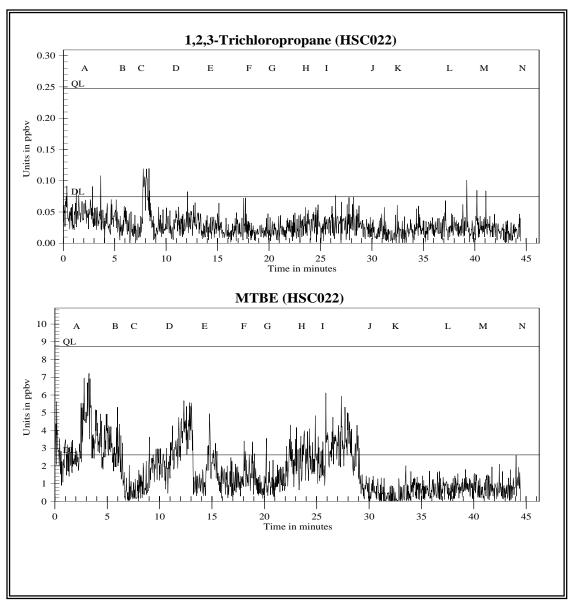


Figure 14k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

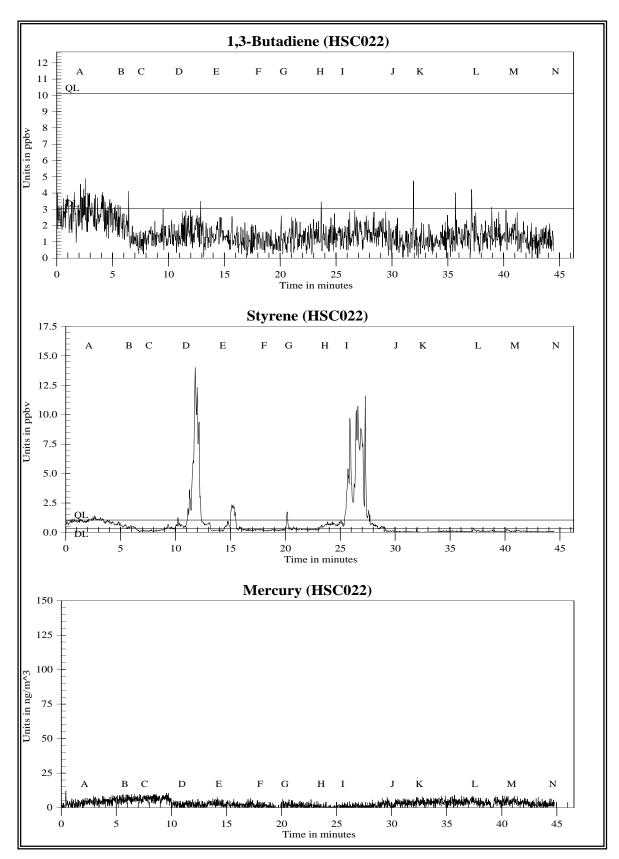


Figure 14l Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury



Figure 15a Mobile Monitoring Path for Benzene in Harris County

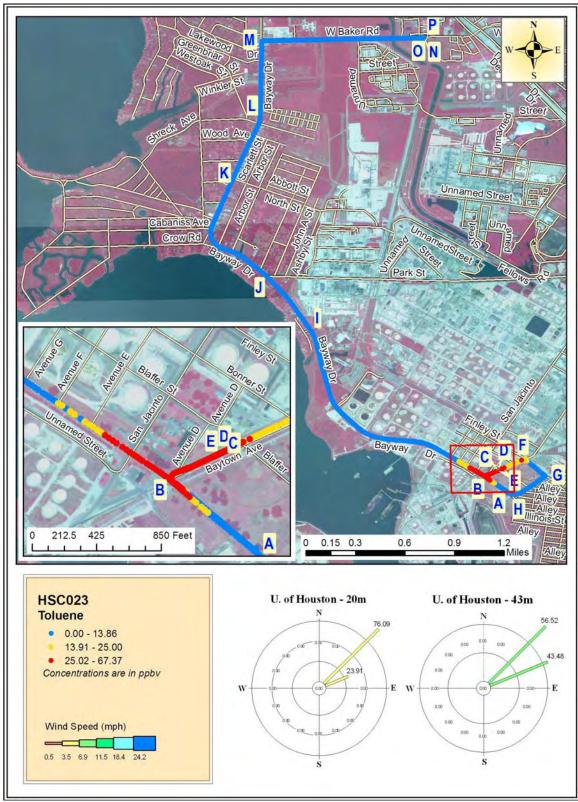


Figure 15b Mobile Monitoring Path for Toluene in Harris County

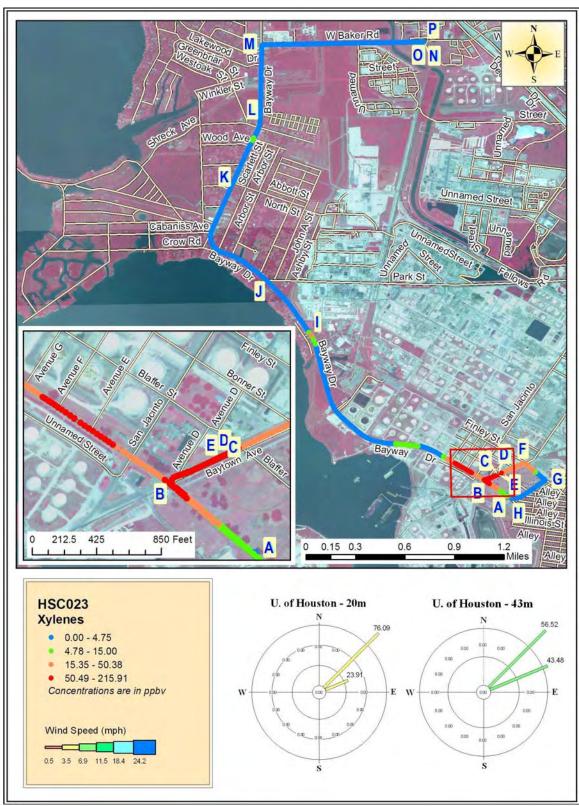


Figure 15c Mobile Monitoring Path for Xylenes in Harris County

Figure 15d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

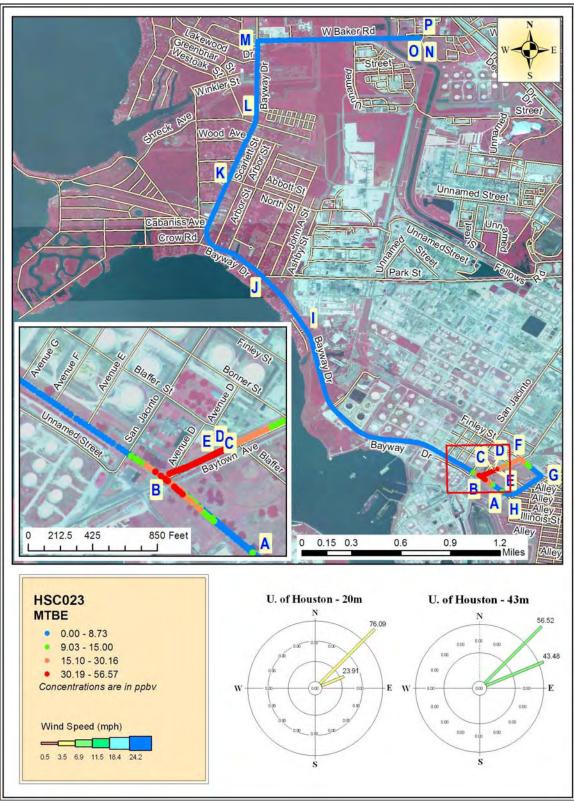


Figure 15e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

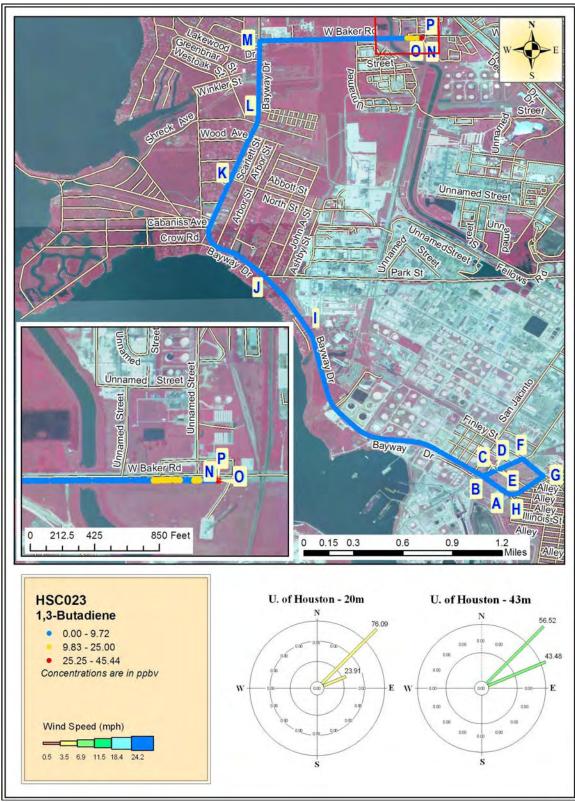


Figure 15f Mobile Monitoring Path for 1,3-Butadiene in Harris County

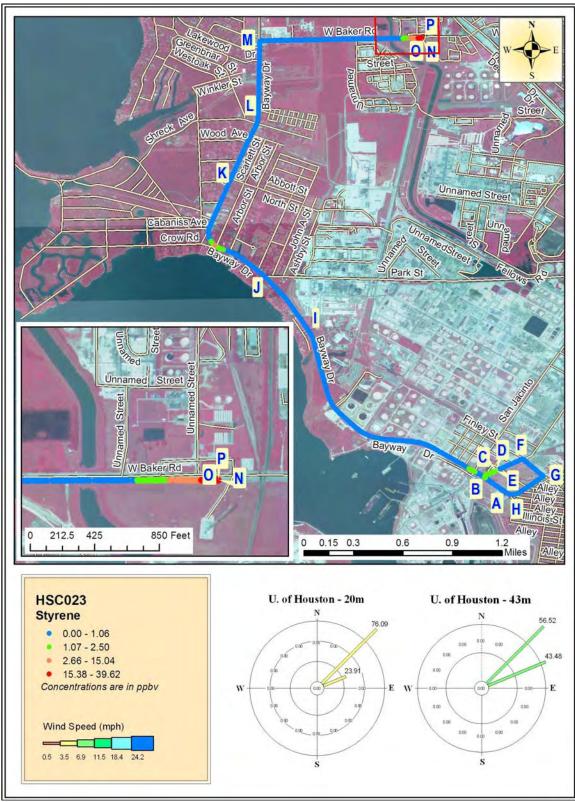


Figure 15g Mobile Monitoring Path for Styrene in Harris County

Figure 15h Mobile Monitoring Path for Mercury in Harris County

Figure 15i

TAGA File Event Summary File: HSC023 Acquired on 13 December 2006 at 08:01:41 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description
A	2.2	63	Start monitoring heading northwestward on Bayway Drive
В	3.6	105	Turning right on Baytown Avenue
C	4.8	137	Stopping to start collecting SUMMA® sample H1499
D	5.0	145	End collecting SUMMA® sample H1499
Е	5.9	169	Resuming mobile monitoring
F	10.1	288	Turning right onto Finley Street
G	11.2	321	Turning right onto Market Street
Н	12.4	355	Turning right onto Bayway Drive
I	21.8	623	Passing Bayvilla Street
J	24.1	689	Passing Park Street
K	29.1	832	Passing North Street
L	31.7	906	Passing Court Yard Lane
M	34.2	977	Turning right onto Baker Road
N	40.6	1161	Stopping
О	41.2	1178	Start collecting SUMMA® sample J0165
P	42.1	1202	End collecting SUMMA® sample J0165

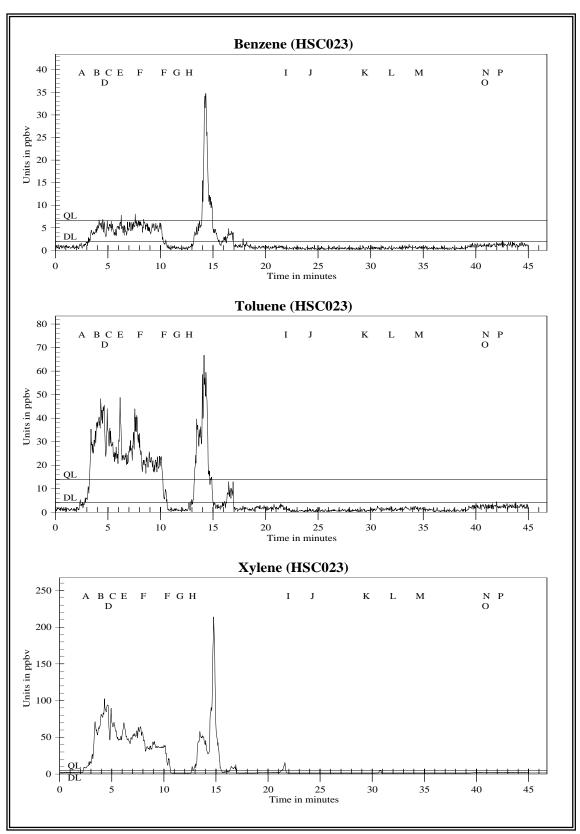


Figure 15j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

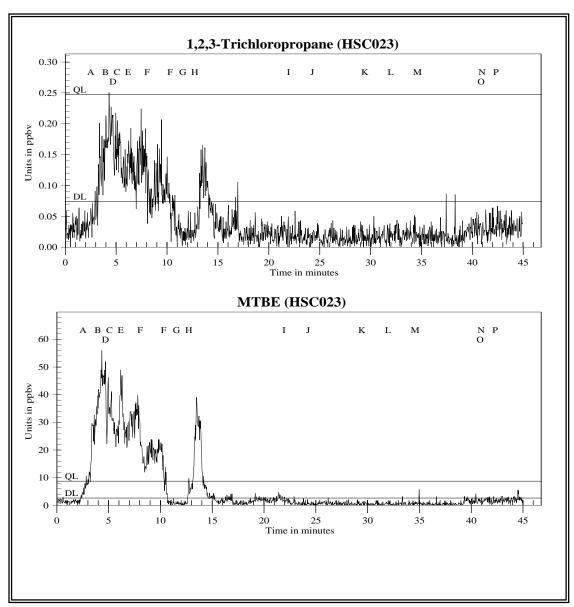


Figure 15k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

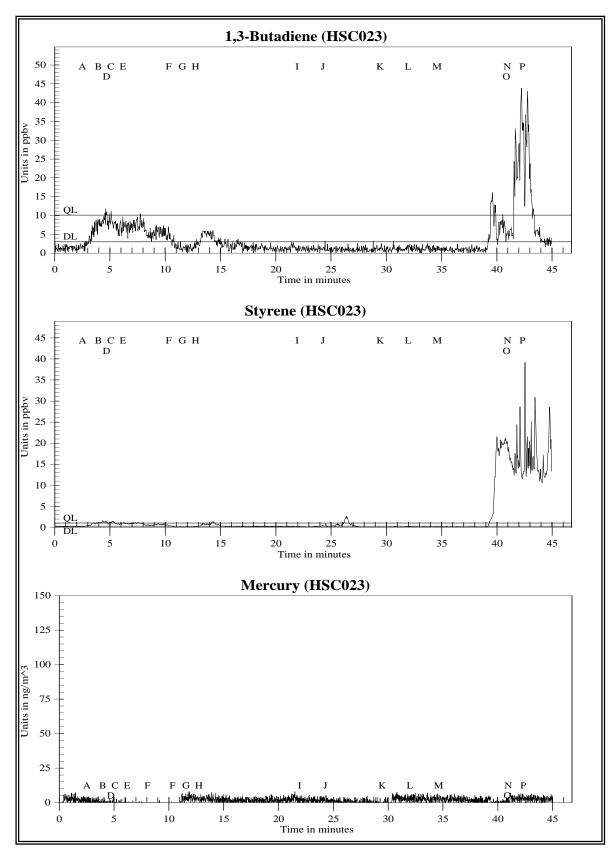


Figure 15l Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

Figure 15m

1.5017.1211								
TAGA Target Compound Averages during Sample Collection File: HSC023 Acquired on 13 December 2006 at 08:01:41 UTC								
		Benzene	Toluene	Xylenes	1,2,3-Trichloropropane			
	Detection Limits (DL):	2.0	4.2	1.4	0.074			
	Quantitation Limits (QL):	6.6	14.	4.8	0.25			
Flags	Description	Benzene	Toluene	Xylenes	1,2,3-Trichloropropane			
C - D	SUMMA [®] H1499	4.5J	32.	66.	0.15J			
O - P	SUMMA® J0165	DL=2.0	DL=4.2	2.0J	DL=0.074			
		Methyl-t-butyl ether	1,3-Butadiene	Styrene				
	Detection Limits (DL):	2.6	2.9	0.32				
	Quantitation Limits (QL):	8.7	9.7	1.1				
Flags	Description	Methyl-t-butyl ether	1,3-Butadiene	Styrene				
C - D	SUMMA [®] H1499	33.	DL=2.9	1.1				
O - P	SUMMA® J0165	DL=2.6	17.	15.				

Concentrations are in parts per billion by volume (ppbv)

J = Below quantitation limit

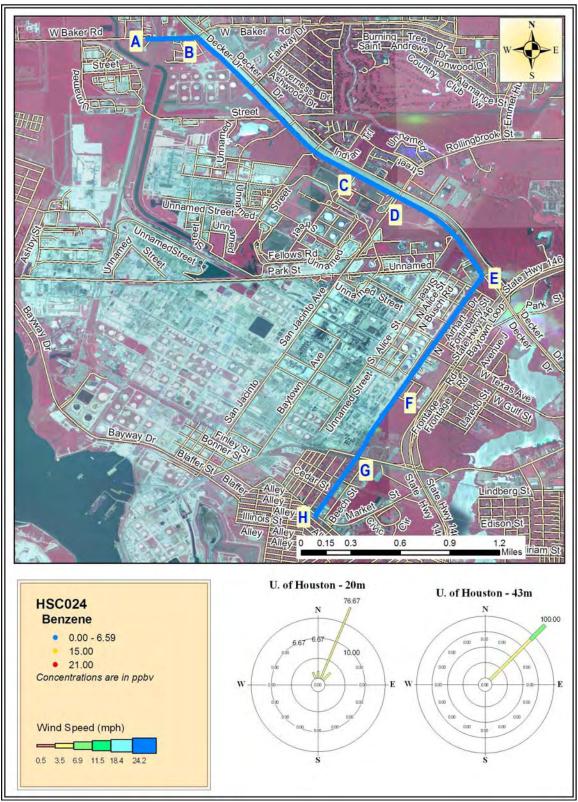


Figure 16a Mobile Monitoring Path for Benzene in Harris County

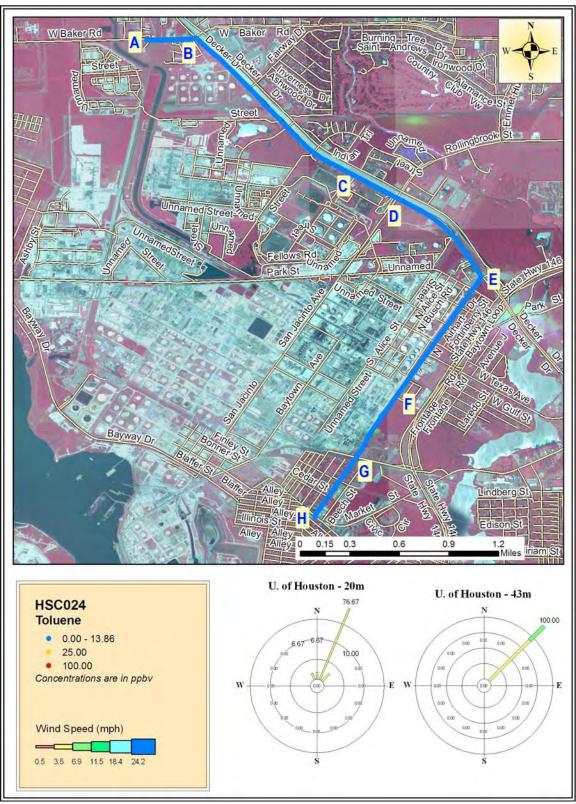


Figure 16b Mobile Monitoring Path for Toluene in Harris County

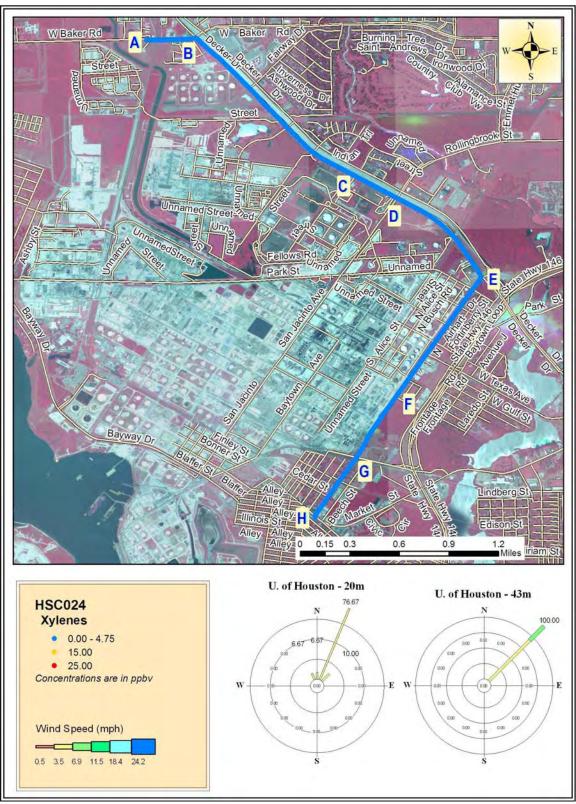


Figure 16c Mobile Monitoring Path for Xylenes in Harris County

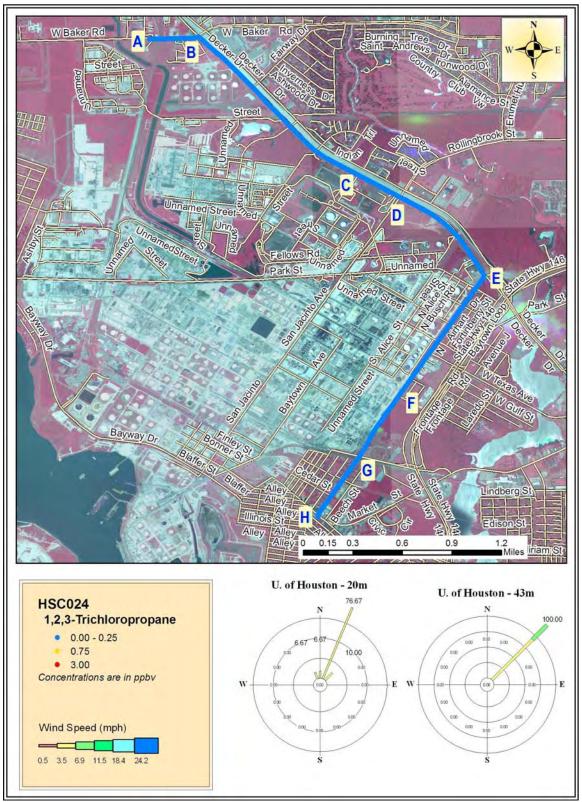


Figure 16d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

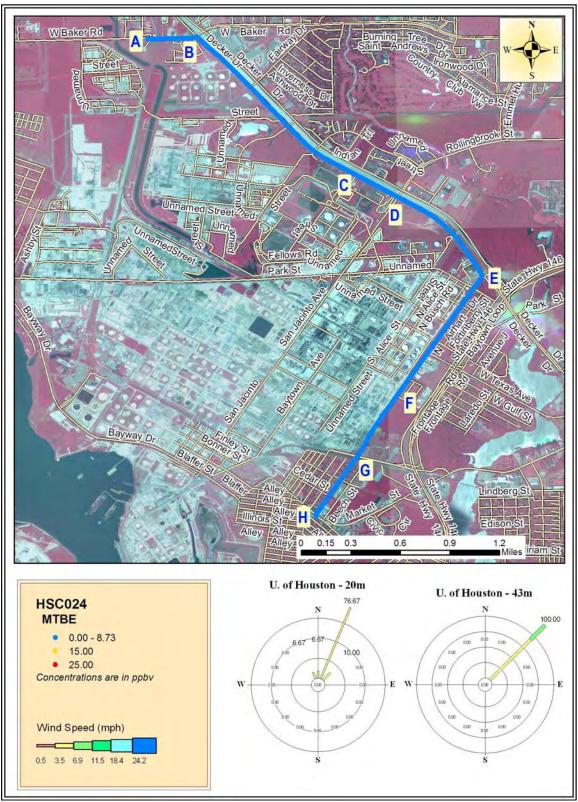


Figure 16e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

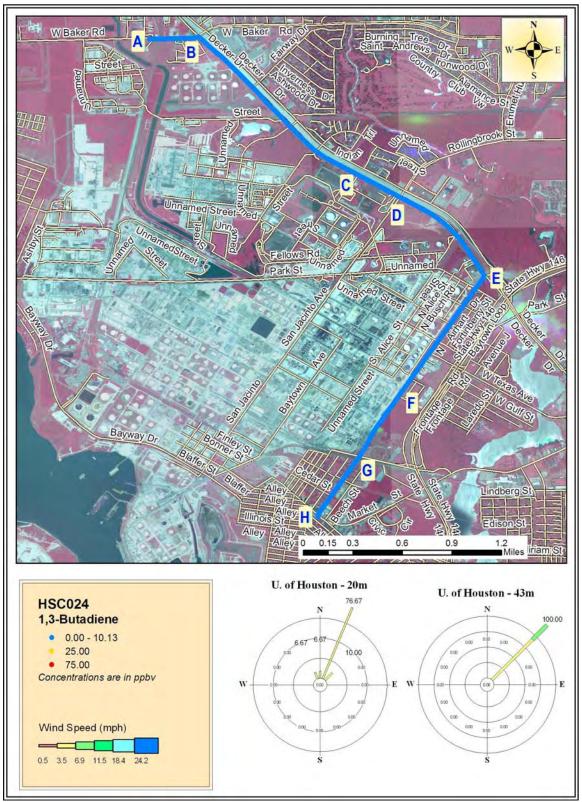


Figure 16f Mobile Monitoring Path for 1,3-Butadiene in Harris County

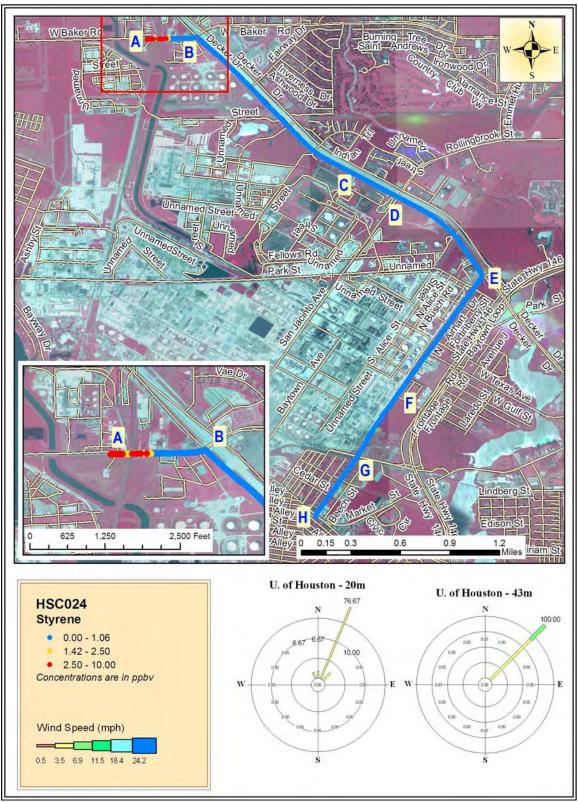


Figure 16g Mobile Monitoring Path for Styrene in Harris County

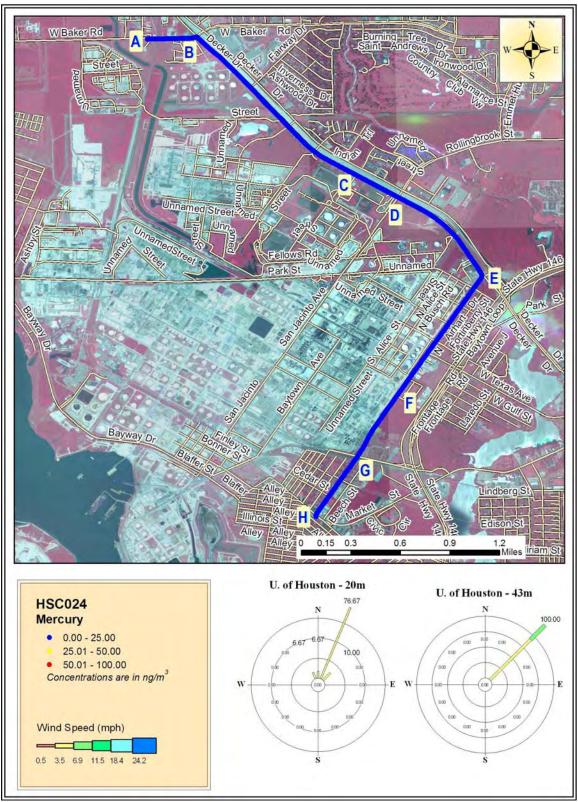


Figure 16h Mobile Monitoring Path for Mercury in Harris County

Figure 16i

TAGA File Event Summary File: HSC024 Acquired on 13 December 2006 at 08:49:34 UTC Title: Mobile Monitoring in Harris County Flag Time Sequence Description 2.3 68 Start monitoring eastward on West Baker Road A 4.4 Turning right onto Decker Drive В 126 \mathbf{C} 11.1 318 Passing Bramblecreek Drive D 13.1 374 Passing Rollingbrook Drive 474 E 16.6 Turning right on Airhart Drive F 22.1 632 Passing Clyde Drive G 25.4 727 Passing JB Lefevre Road Η 28.9 825 Stopping at Market Street

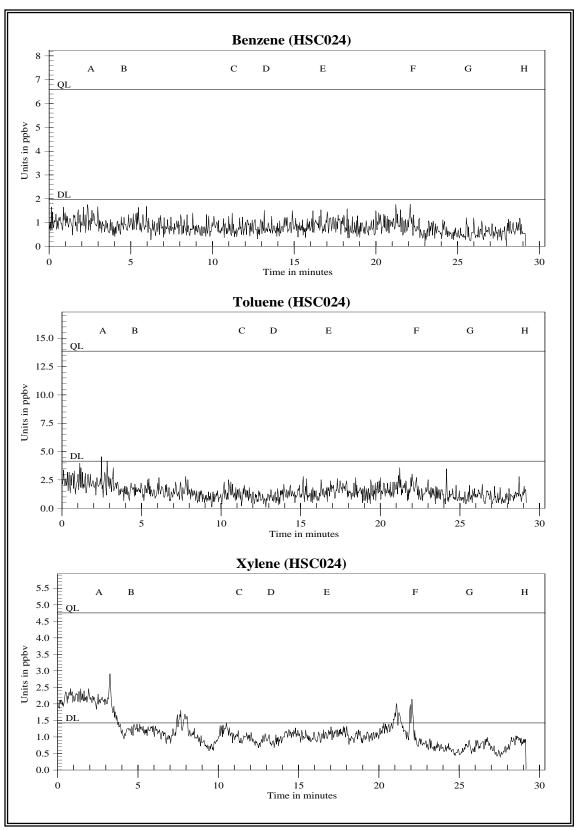


Figure 16j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

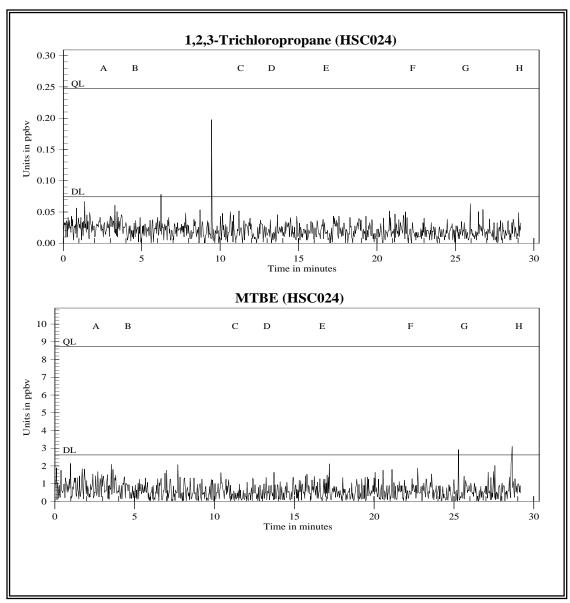


Figure 16k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

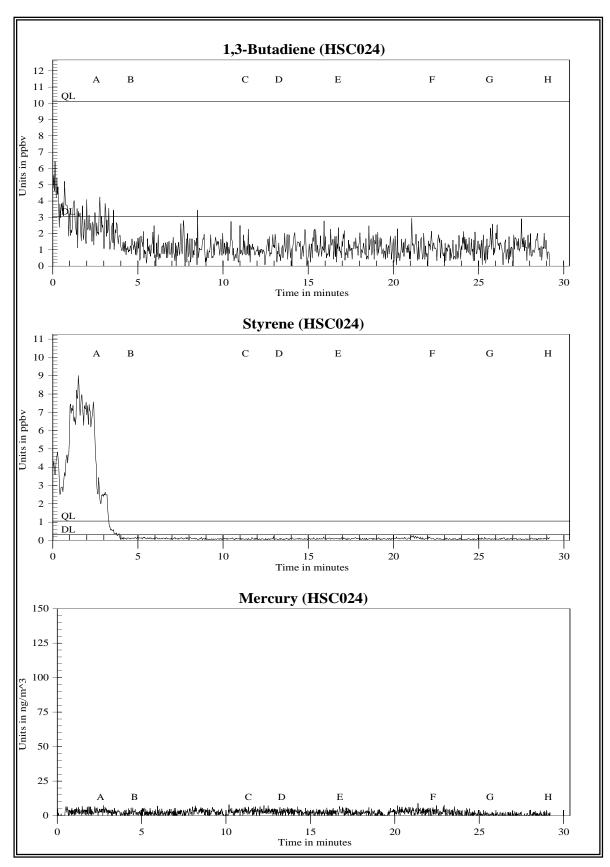


Figure 161 Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

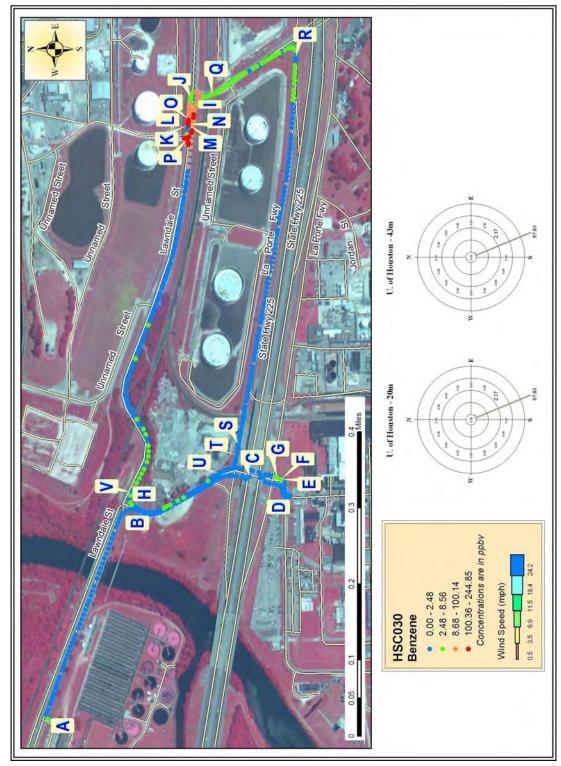


Figure 17a Mobile Monitoring Path for Benzene in Harris County

Figure 17b Mobile Monitoring Path for Toluene in Harris County

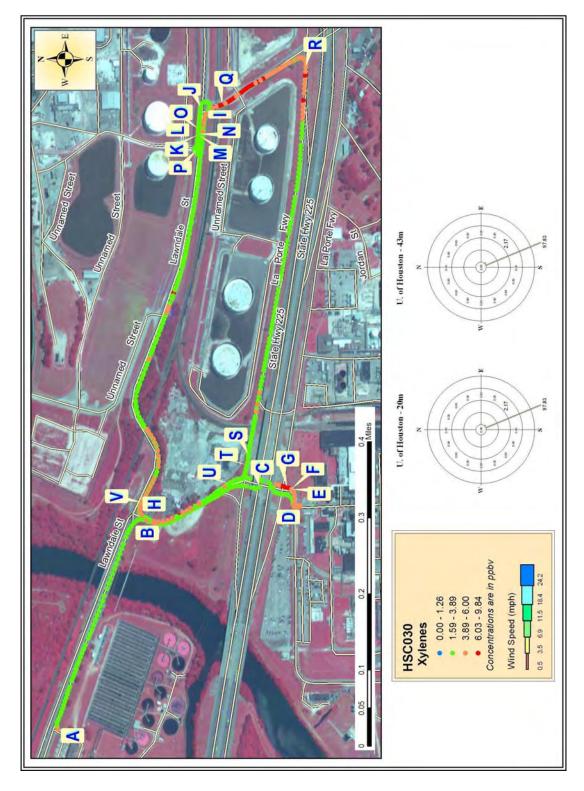


Figure 17c Mobile Monitoring Path for Xylenes in Harris County

Figure 17d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

Figure 17e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

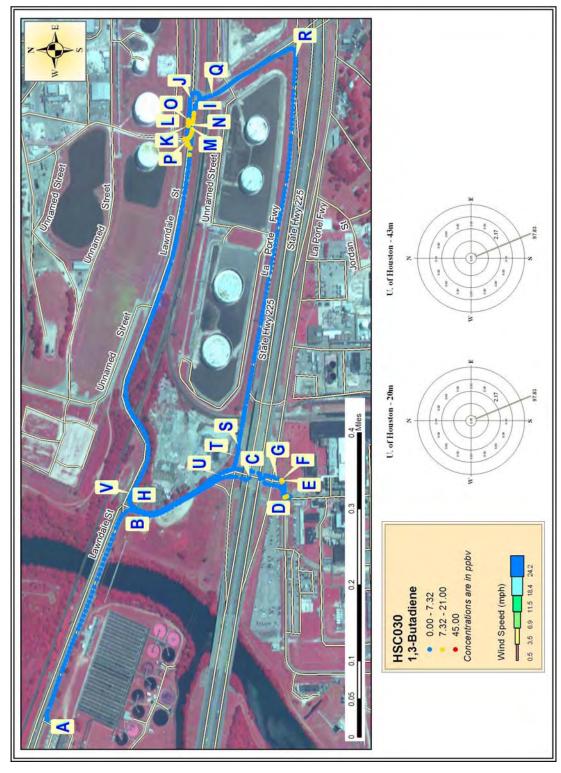


Figure 17f Mobile Monitoring Path for 1,3-Butadiene in Harris County

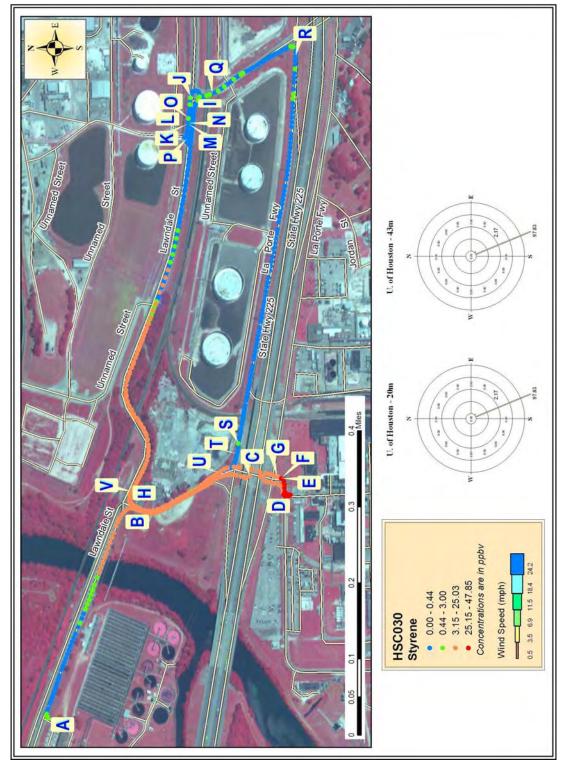


Figure 17g Mobile Monitoring Path for Styrene in Harris County

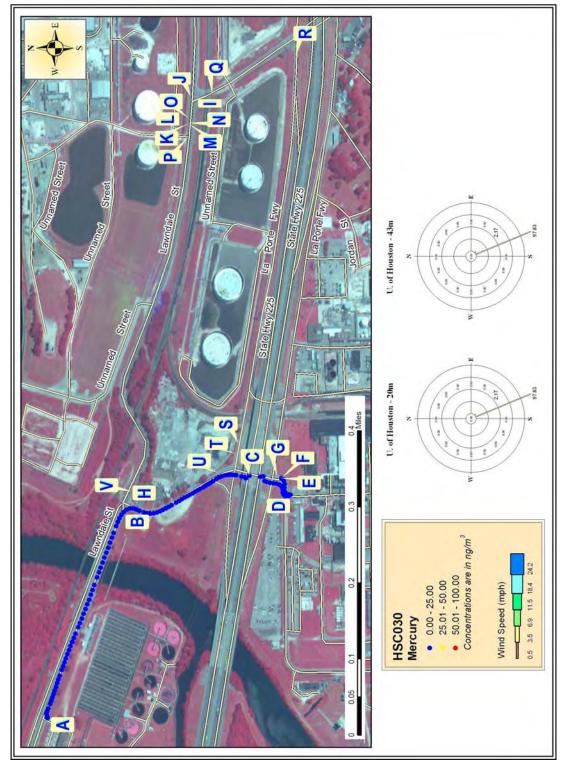


Figure 17h Mobile Monitoring Path for Mercury in Harris County

Figure 17i

TAGA File Event Summary File: HSC030 Acquired on 14 December 2006 at 02:50:26 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description	
A	2.0	59	Start monitoring eastward on Lawndale Street near Goodyear Drive	
В	3.9	112	Turning right onto Goodyear Drive	
С	5.5	159	Passing under State Highway 225	
D	6.3	182	Executing a U-turn	
Е	6.9	199	Stopping to start collecting SUMMA® sample C1161	
F	7.9	226	End collecting SUMMA® sample C1161	
G	15.2	436	Resuming mobile monitoring	
Н	16.9	484	Turning right onto Lawndale Street	
I	19.8	565	Turning right onto Allen Genoa Road; Stopping for train	
J	23.1	660	Executing a U-turn onto Lawndale Street	
K	23.9	684	Stopping	
L	24.4	699	Start collecting SUMMA® sample B1578	
M	25.4	726	End collecting SUMMA® sample B1578	
N	27.8	794	Backing up	
Ο	29.5	842	Stopping	
P	32.3	924	Executing a U-turn	
Q	33.8	967	Turning right onto Allen Genoa Road	
R	35.3	1008	Turning right onto State Highway 225 Service Road	
S	39.5	1128	Stopping	
T	40.0	1144	Resuming mobile monitoring	
U	40.3	1153	Turning right onto Goodyear Drive	
V	41.7	1191	Turning right onto Lawndale Street	
W	44.9	1284	Stopping at Allen Genoa Road	

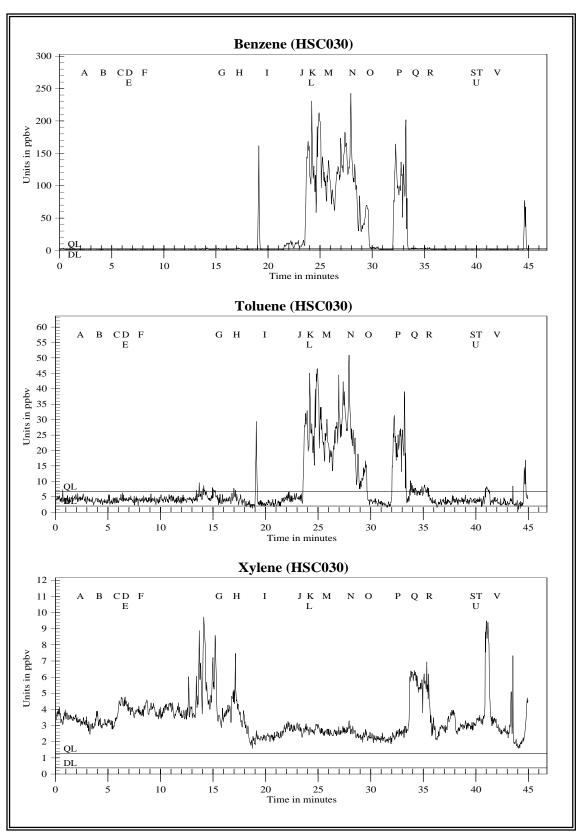


Figure 17j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

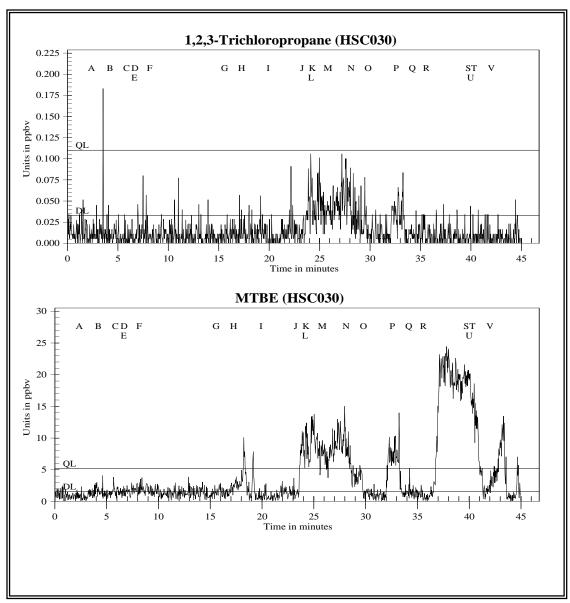


Figure 17k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

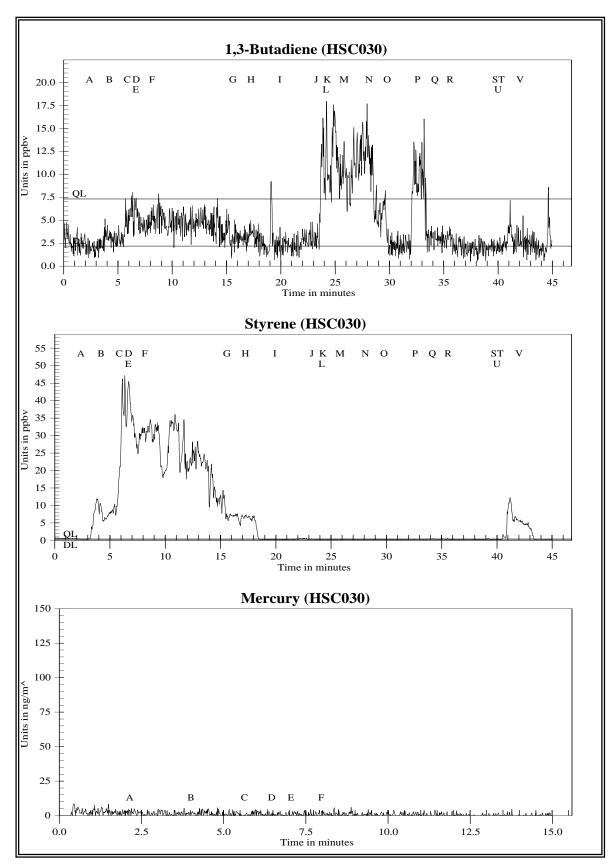


Figure 17l Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

Figure 17m

TAGA Target Compound Averages during Sample Collection File: HSC030 Acquired on 14 December 2006 at 02:50:26 UTC								
		Benzene	Toluene	Xylenes	1,2,3-Trichloropropane			
	Detection Limits (DL):	0.74	2.0	0.38	0.033			
	Quantitation Limits (QL):	2.5	6.7	1.3	0.11			
Flags	Description	Benzene	Toluene	Xylenes	1,2,3-Trichloropropane			
E-F	SUMMA® C1161	1.3J	4.0J	3.9	DL=0.033			
L - M	SUMMA® B1578	140	31.	2.8	0.047J			
		Methyl-t-butyl ether	1,3-Butadiene	Styrene				
	Detection Limits (DL):	1.5	2.2	0.13				
	Quantitation Limits (QL):	5.2	7.3	0.44				
Flags	Description	Methyl-t-butyl ether	1,3-Butadiene	Styrene				
E-F	SUMMA® C1161	1.7J	4.4J	30.	-			
L - M	SUMMA [®] B1578	9.4	12.	0.28J				

Concentrations are in parts per billion by volume (ppbv) J = Below quantitation limit

Figure 18a Mobile Monitoring Path for Benzene in Harris County

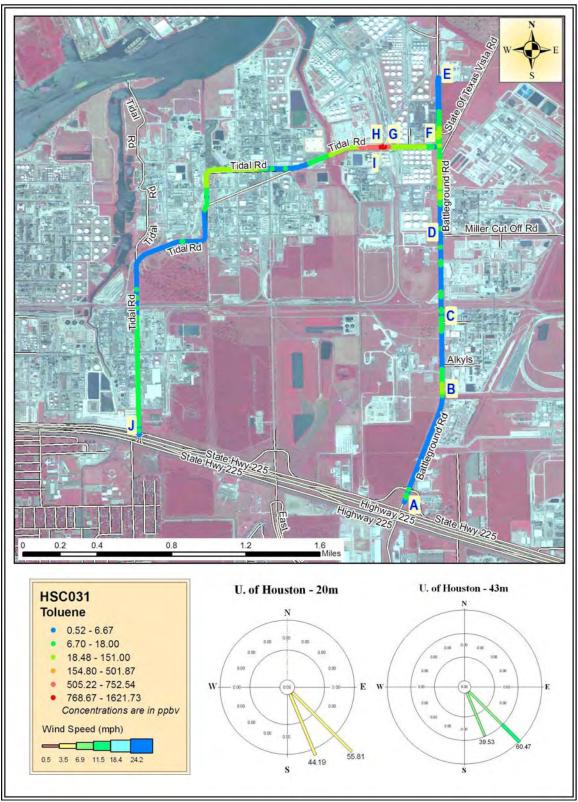


Figure 18b Mobile Monitoring Path for Toluene in Harris County

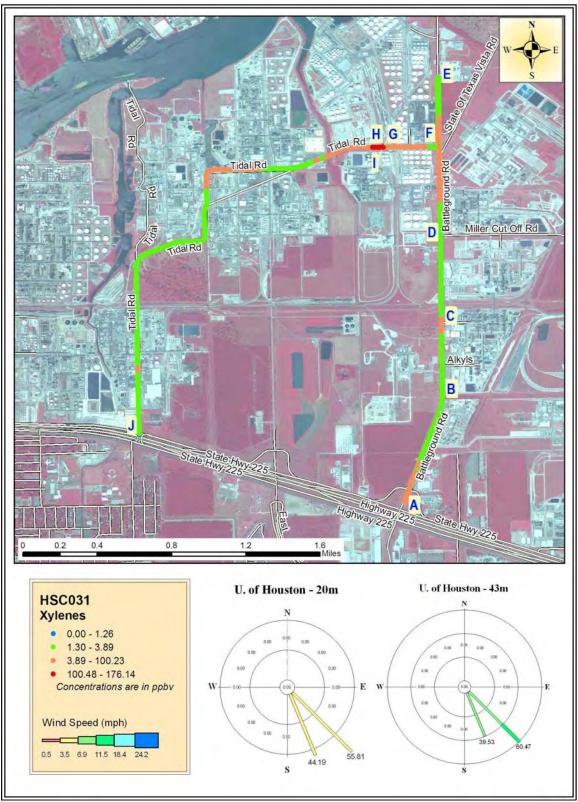


Figure 18c Mobile Monitoring Path for Xylenes in Harris County

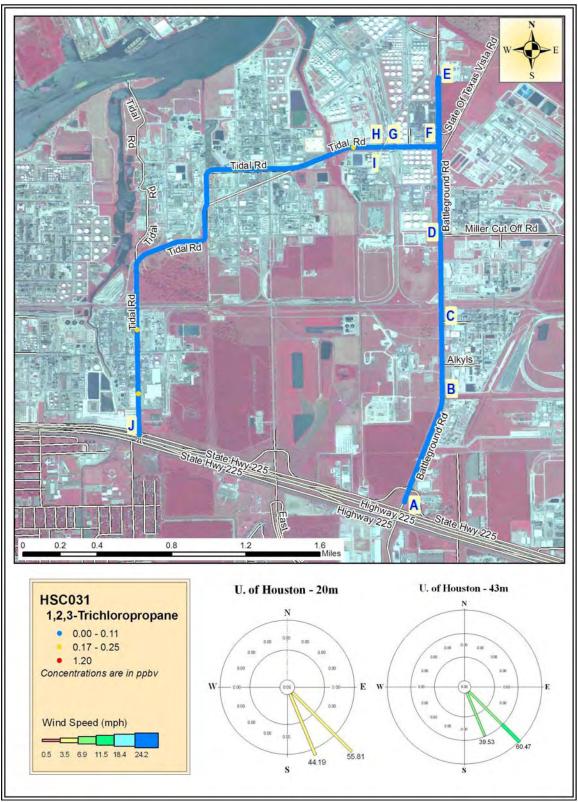


Figure 18d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

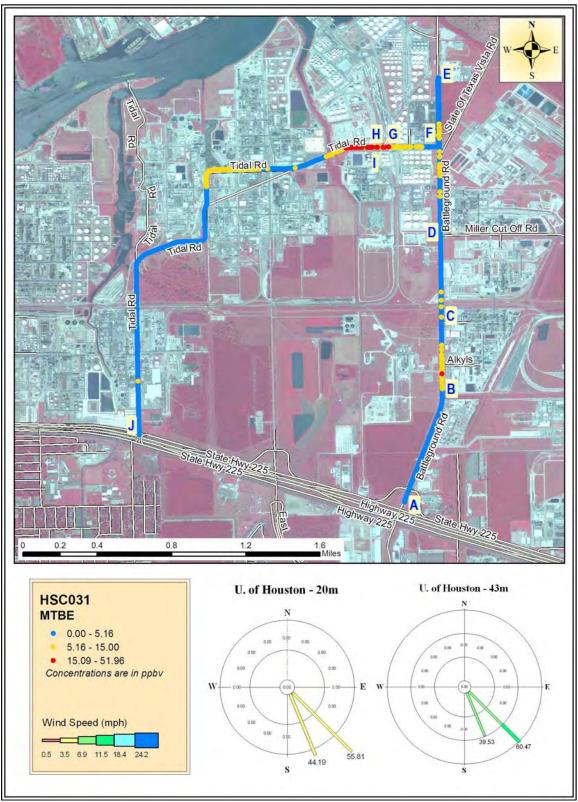


Figure 18e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

Figure 18f Mobile Monitoring Path for 1,3-Butadiene in Harris County

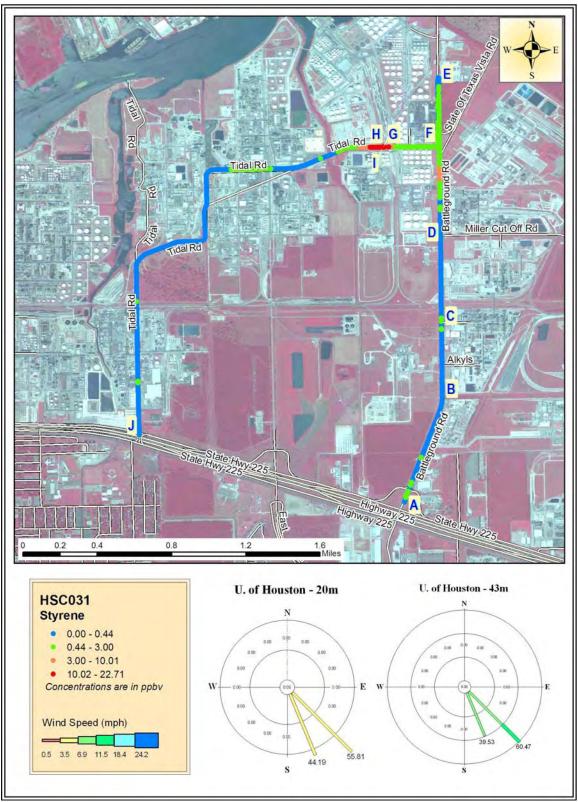


Figure 18g Mobile Monitoring Path for Styrene in Harris County

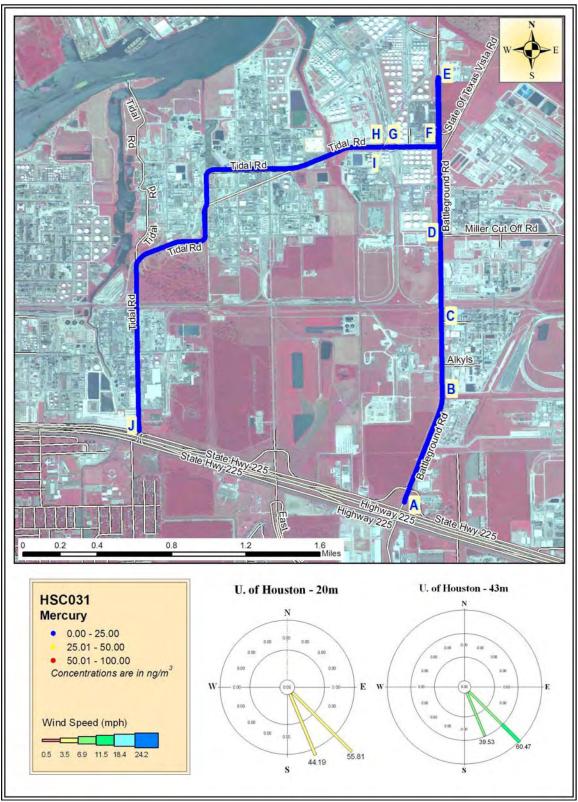


Figure 18h Mobile Monitoring Path for Mercury in Harris County

Figure 18i

TAGA File Event Summary File: HSC031 Acquired on 14 December 2006 at 04:05:25 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description
A	2.3	66	Start monitoring northward on Battleground Road
В	5.7	165	Passing Alkyls Road
C	8.1	233	Passing Celanese Road
D	10.6	304	Passing Miller Cut Off Road
Е	15.9	456	Executing a U-turn
F	17.2	491	Turning right onto Tidal Road
G	19.2	548	Stopping; Start collecting SUMMA® sample F1500
Н	20.2	577	End collecting SUMMA® sample F1500
I	23.2	664	Resuming mobile monitoring
J	41.3	1181	Ending mobile monitoring

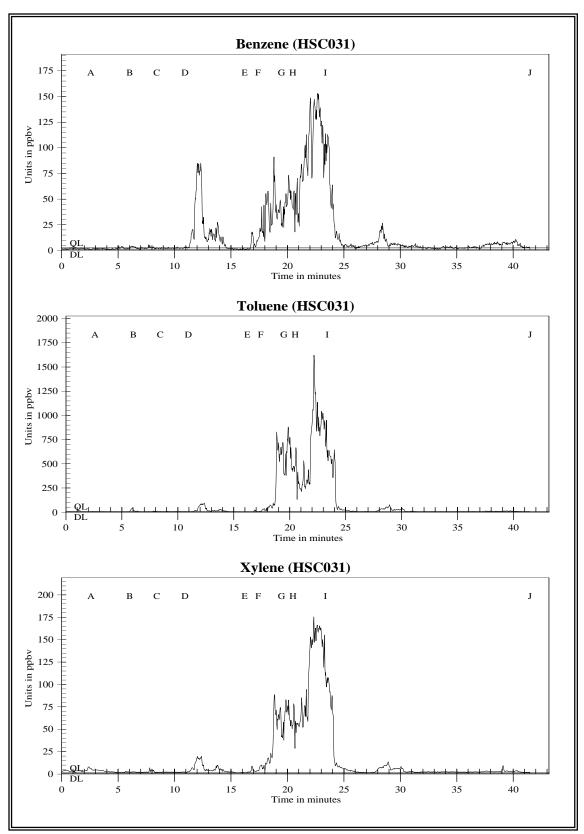


Figure 18j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

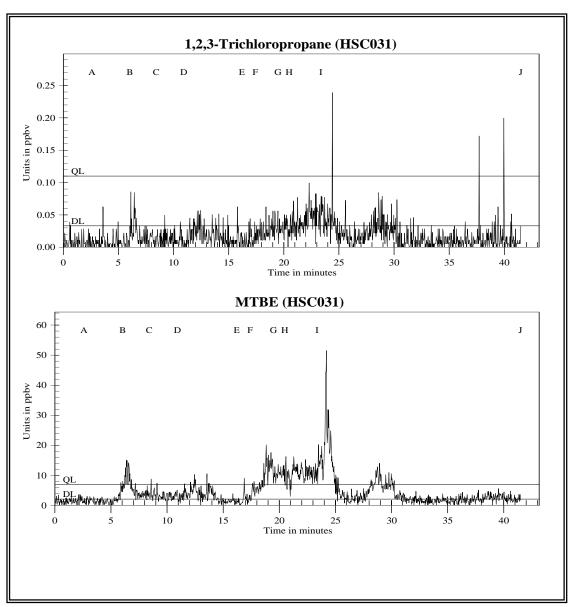


Figure 18k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

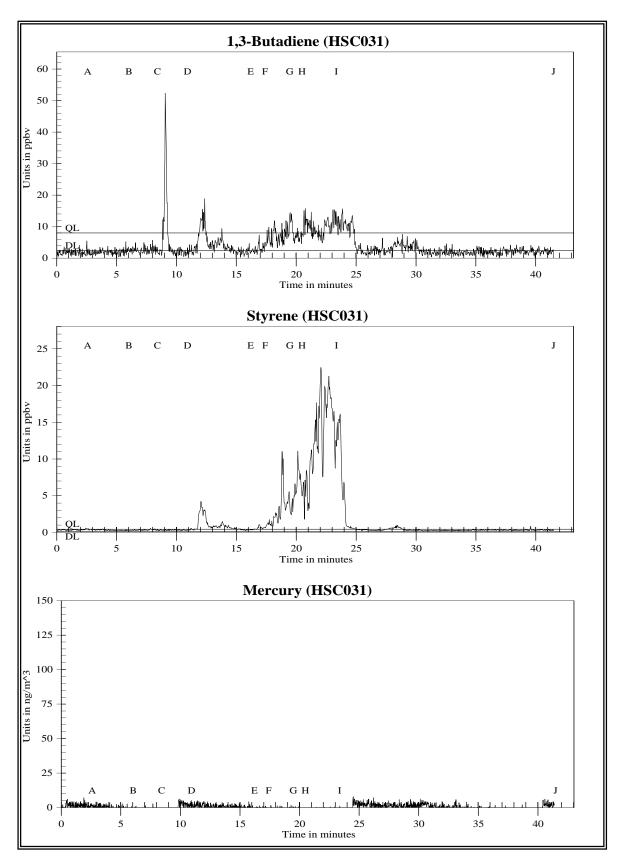


Figure 181 Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

Figure 18m

rigure form									
	TAGA Target Compound Averages during Sample Collection File: HSC031 Acquired on 14 December 2006 at 04:05:25 UTC								
		Benzene	Toluene	Xylenes	1,2,3-Trichloropropane				
	Detection Limits (DL):	0.74	2.0	0.38	0.033				
	Quantitation Limits (QL):	2.5	6.7	1.3	0.11				
Flags	Description	Benzene	Toluene	Xylenes	1,2,3-Trichloropropane				
G - H	SUMMA® F1500	43.	620	63.	DL=0.033				
		Methyl-t-butyl ether	1,3-Butadiene	Styrene					
	Detection Limits (DL):	2.1	2.4	0.13					
	Quantitation Limits (QL):	7.0	8.0	0.44					
Flags	Description	Methyl-t-butyl ether	1,3-Butadiene	Styrene					
G - H	SUMMA® F1500	11.	8.9	4.9					

Concentrations are in parts per billion by volume (ppbv)
J = Below quantitation limit

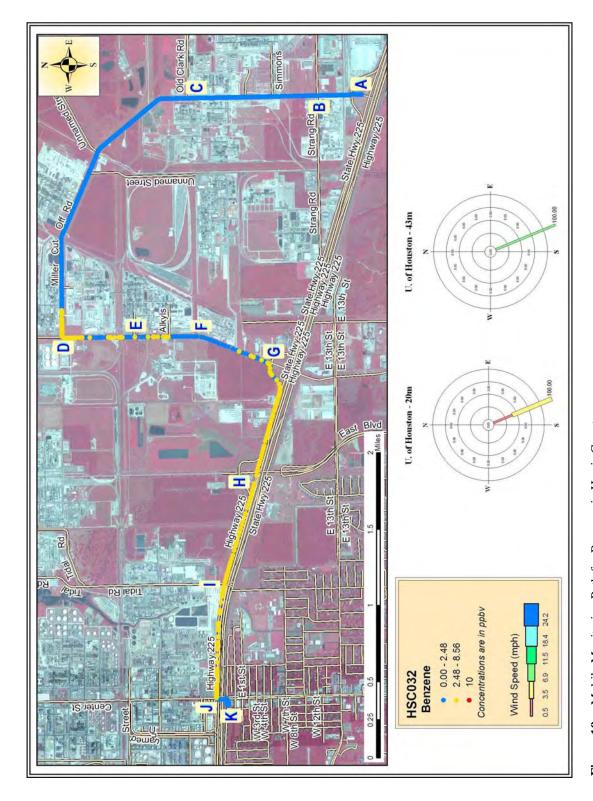


Figure 19a Mobile Monitoring Path for Benzene in Harris County

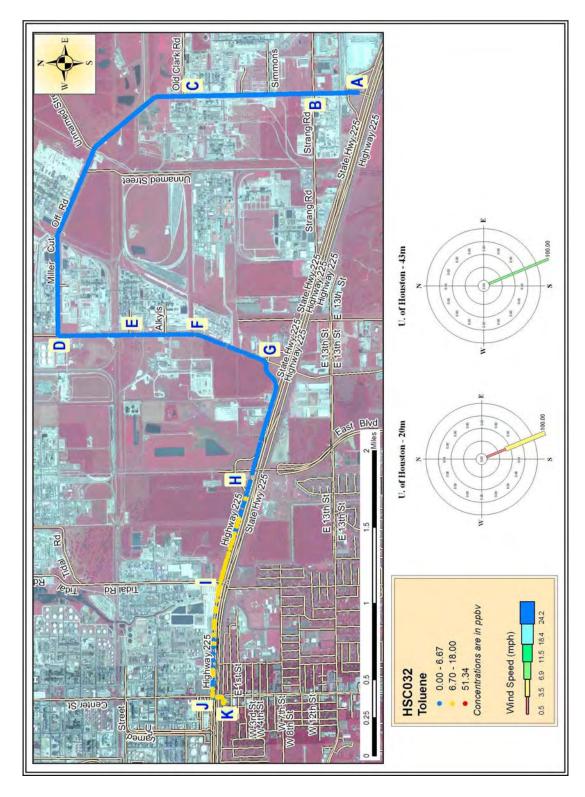


Figure 19b Mobile Monitoring Path for Toluene in Harris County

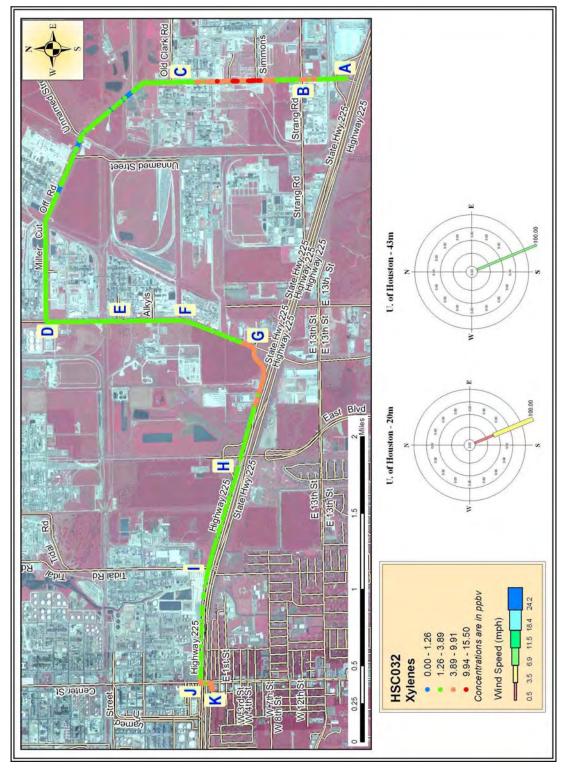


Figure 19c Mobile Monitoring Path for Xylenes in Harris County

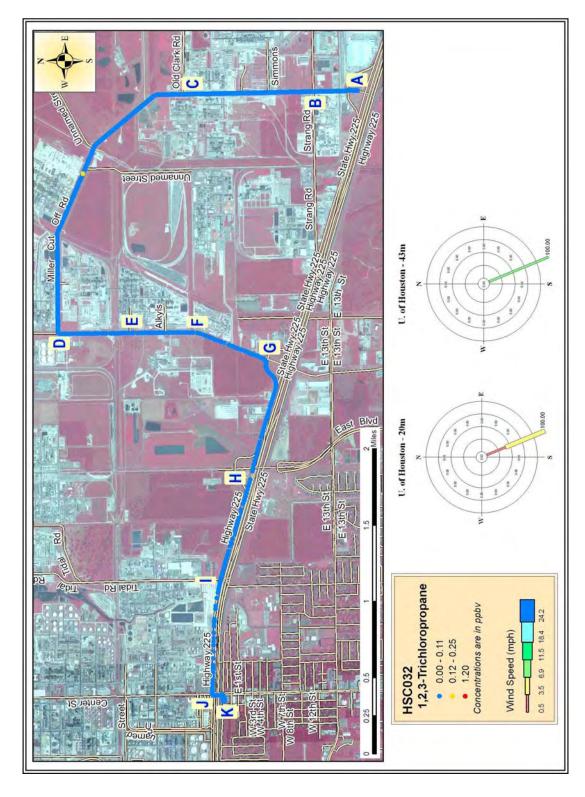


Figure 19d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

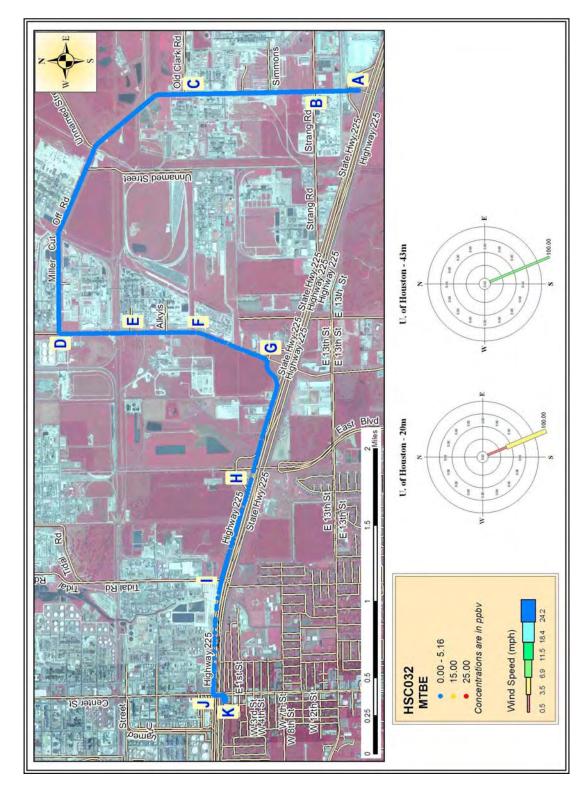


Figure 19e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

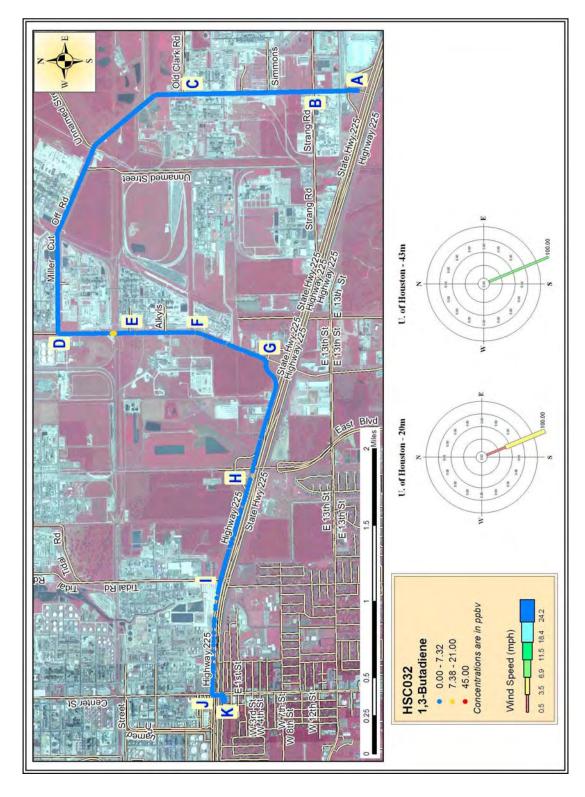


Figure 19f Mobile Monitoring Path for 1,3-Butadiene in Harris County

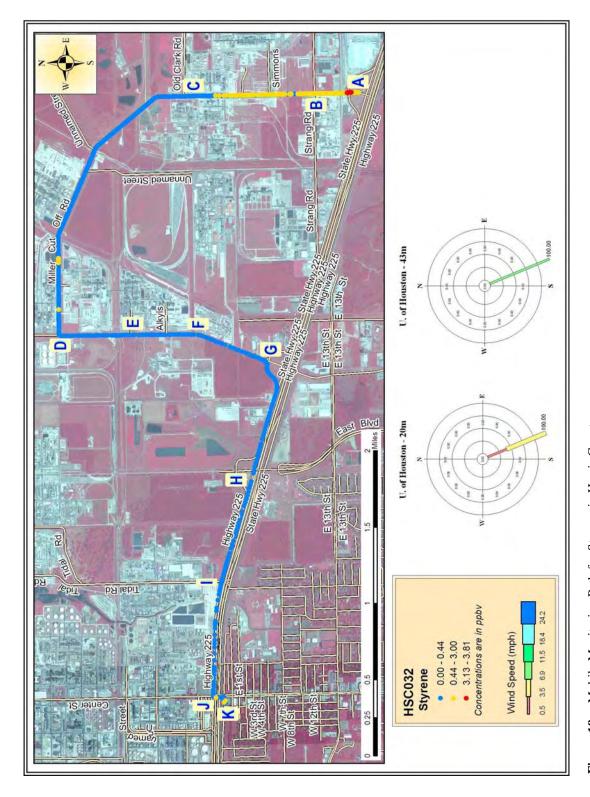


Figure 19g Mobile Monitoring Path for Styrene in Harris County

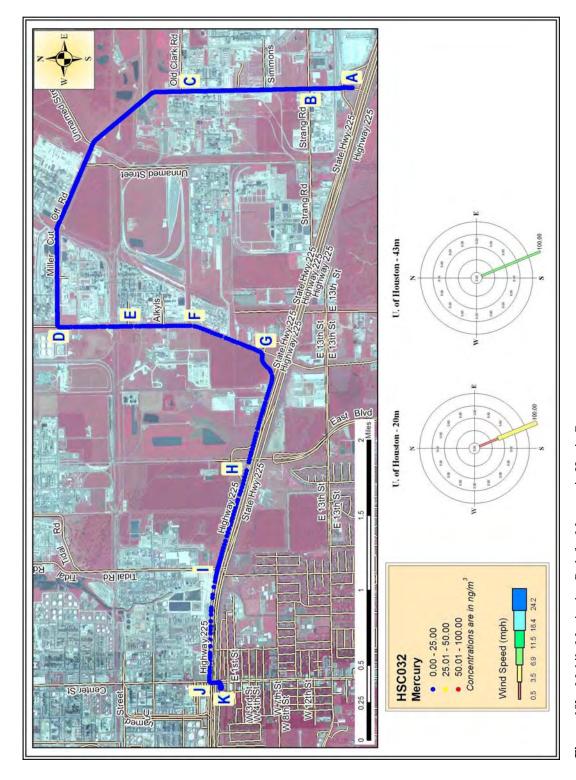


Figure 19h Mobile Monitoring Path for Mercury in Harris County

Figure 19i

TAGA File Event Summary File: HSC032 Acquired on 14 December 2006 at 04:53:11 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description
A	1.8	52	Start monitoring northward on Miller Cut Off Road
В	3.9	113	Passing Strang Road
C	9.0	258	Passing Old Clark Road
D	21.4	612	Turning left onto Battleground Road
Е	22.6	646	Passing Celanese Road
F	23.4	669	Passing Alkyls Road
G	24.4	698	Continuing West onto State Highway 225 Access Road
Н	25.8	739	Passing East Boulevard
I	27.0	771	Passing Tidal Road
J	28.4	811	Turning left onto Center Street
K	29.1	833	Stopping

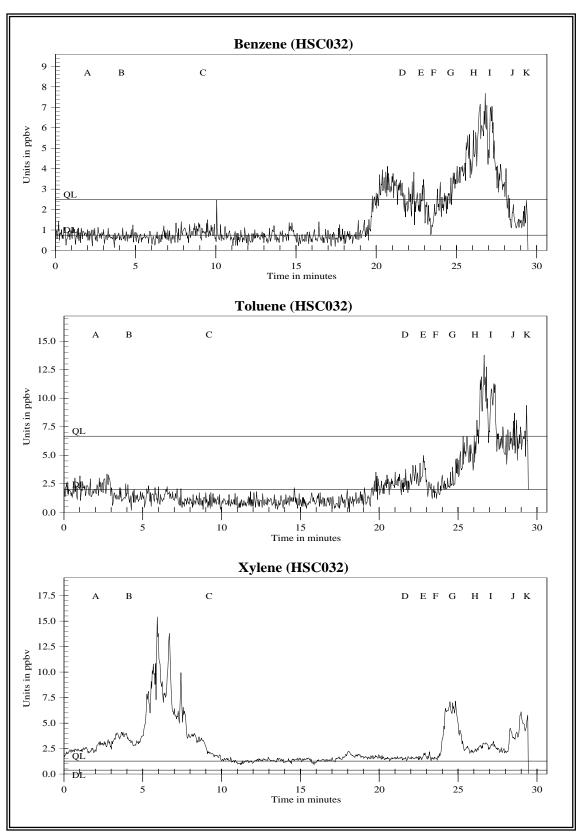


Figure 19j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

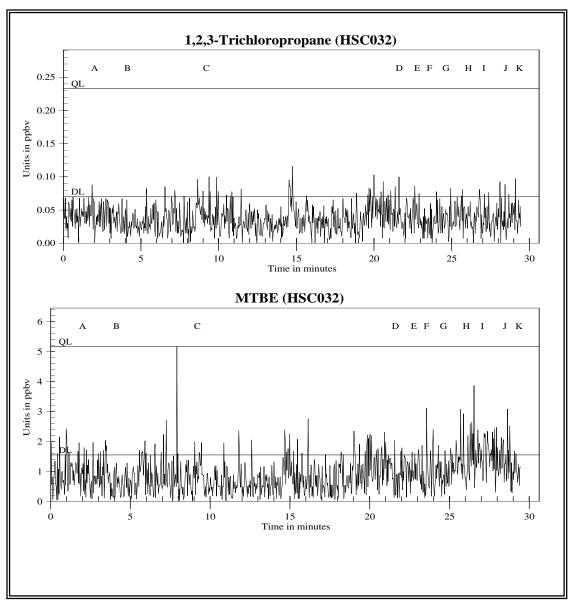
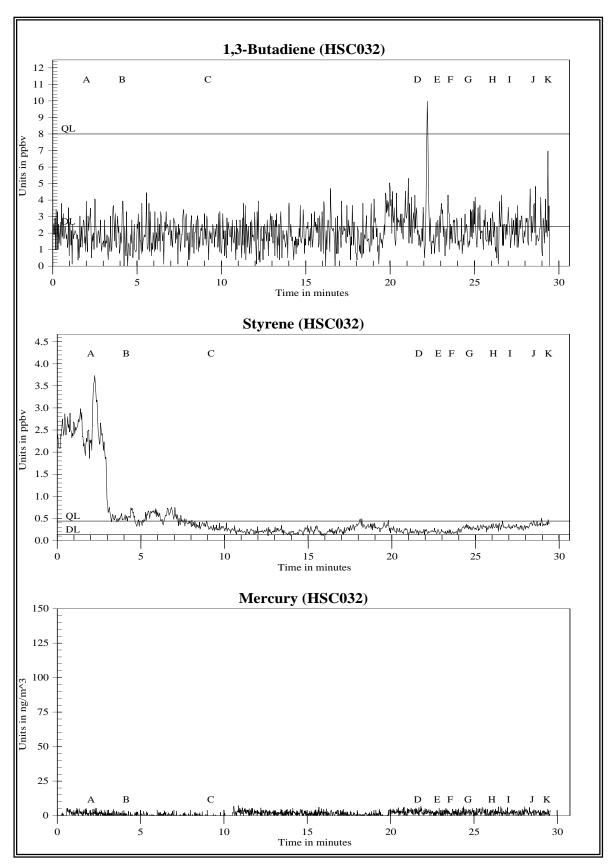



Figure 19k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

Figure 191 Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

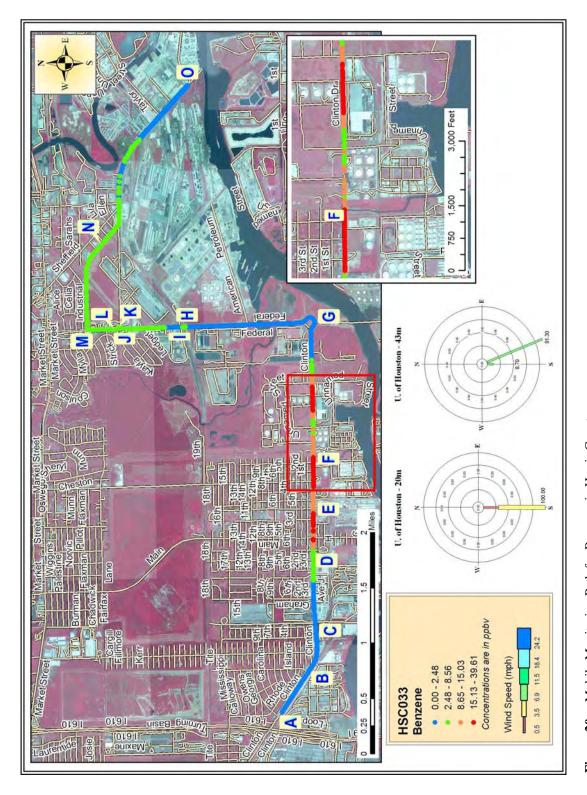


Figure 20a Mobile Monitoring Path for Benzene in Harris County

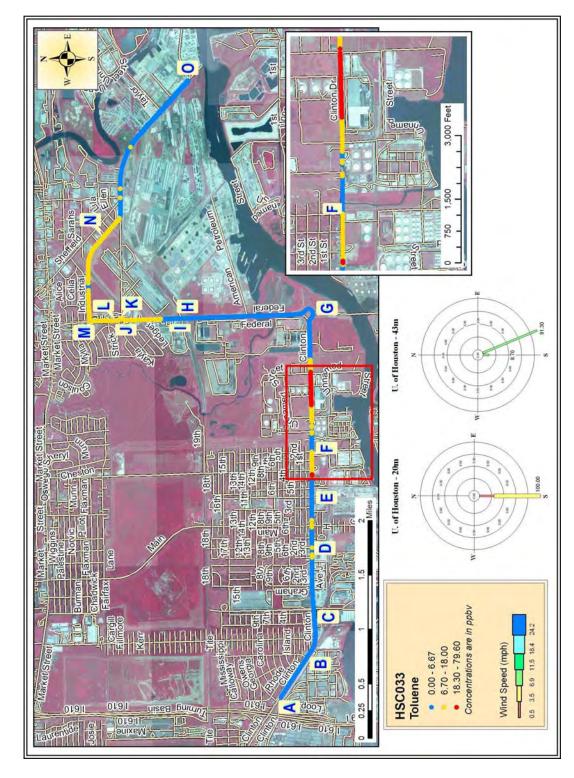


Figure 20b Mobile Monitoring Path for Toluene in Harris County

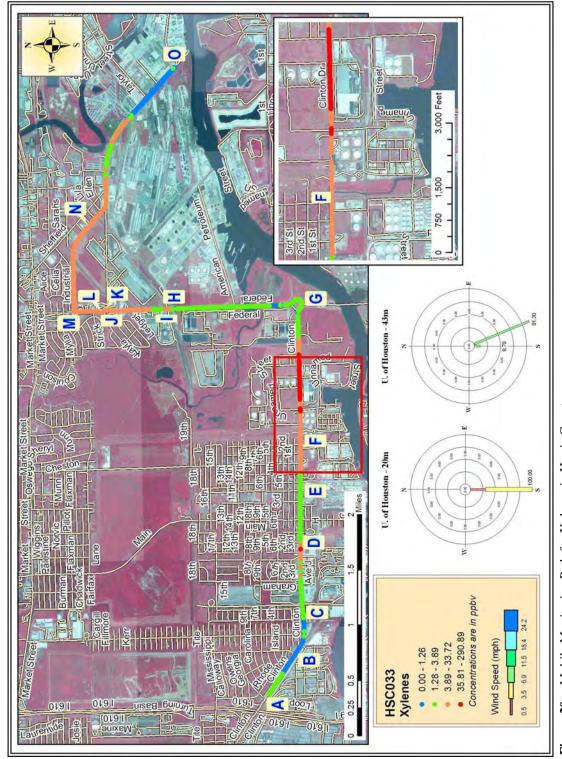


Figure 20c Mobile Monitoring Path for Xylenes in Harris County

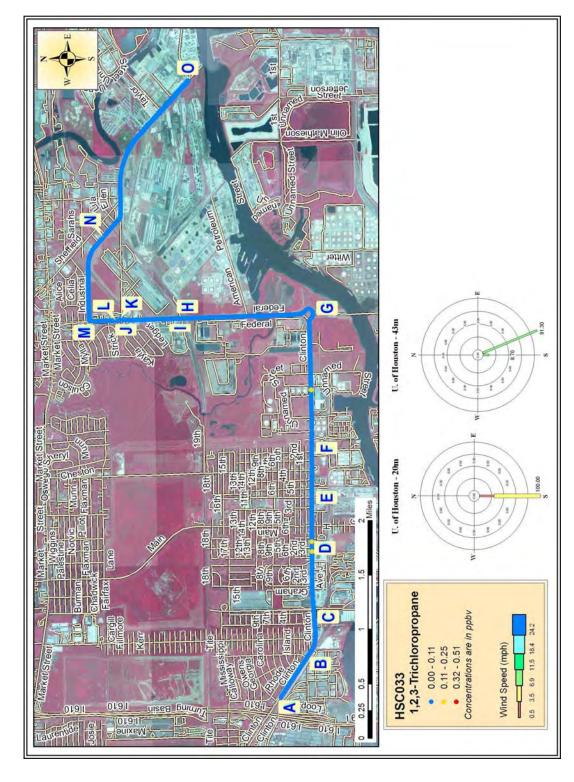


Figure 20d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

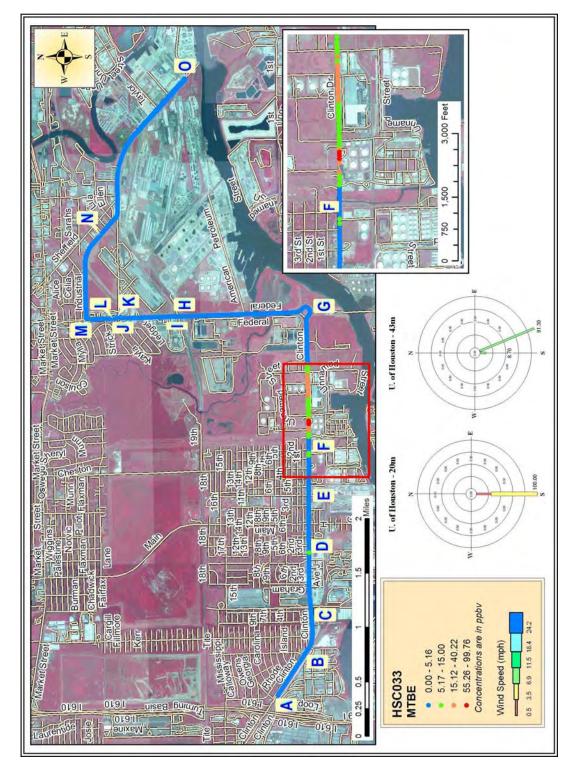


Figure 20e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

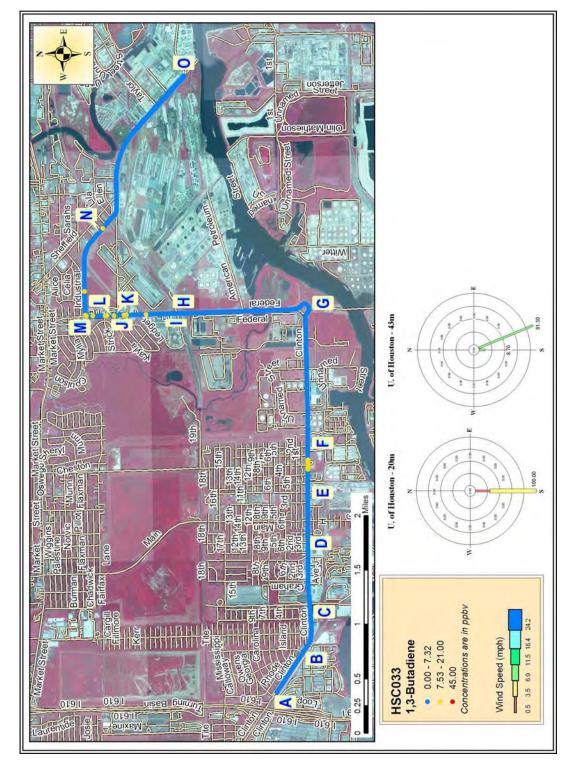


Figure 20f Mobile Monitoring Path for 1,3-Butadiene in Harris County

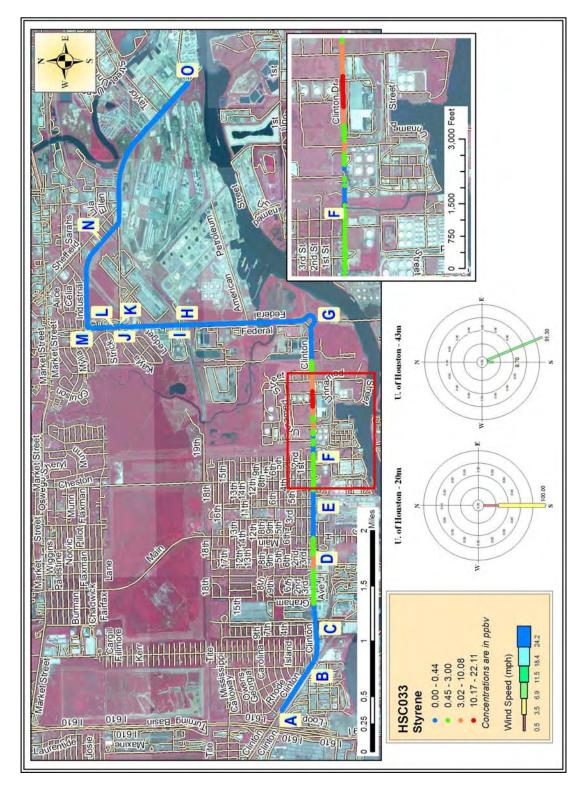


Figure 20g Mobile Monitoring Path for Styrene in Harris County

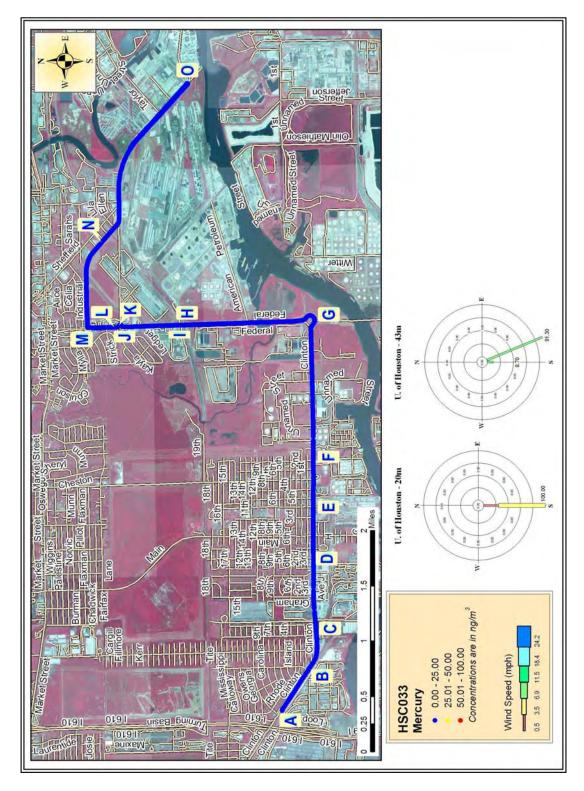


Figure 20h Mobile Monitoring Path for Mercury in Harris County

Figure 20i

TAGA File Event Summary File: HSC033 Acquired on 14 December 2006 at 06:00:26 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description
Α	1.9	56	Start monitoring southeastward on Clinton Drive
В	3.2	92	Passing Cam Station 403
C	4.4	127	Passing Galena Manor
D	7.1	203	Passing Center Drive
Е	9.0	259	Passing Gulf Road
F	10.5	301	Passing Crown Street
G	17.2	493	Turning left onto Federal Road
Н	22.9	656	Stopping for a train
Ι	23.8	682	Resuming mobile monitoring
J	26.4	754	Turning right onto Industrial Road
K	26.8	766	Executing a U-turn
L	27.1	774	Turning right onto Federal Road
M	28.4	813	Turning right onto Industrial Road
N	33.9	968	Passing Rita Lane
О	40.8	1166	Executing a U-turn

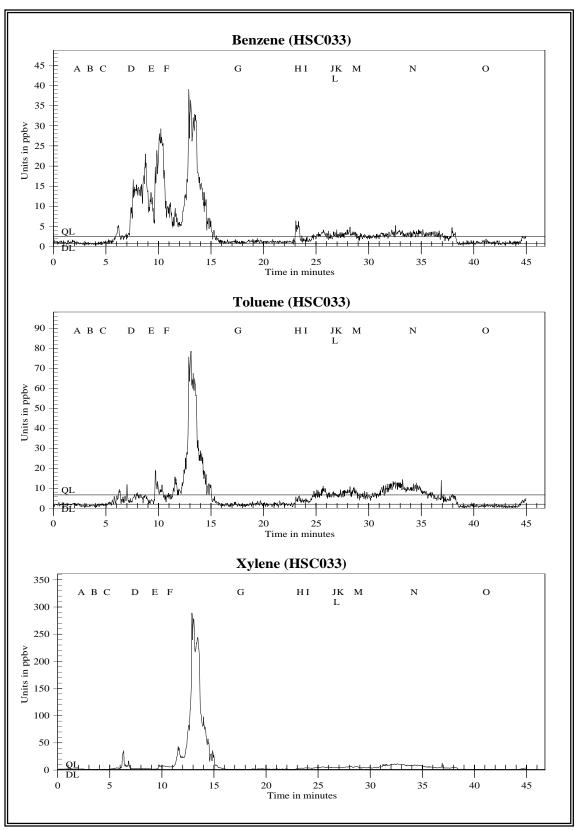


Figure 20j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

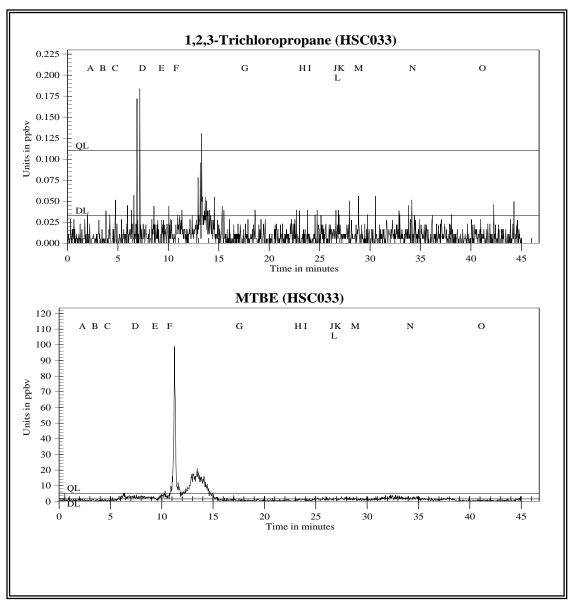


Figure 20k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

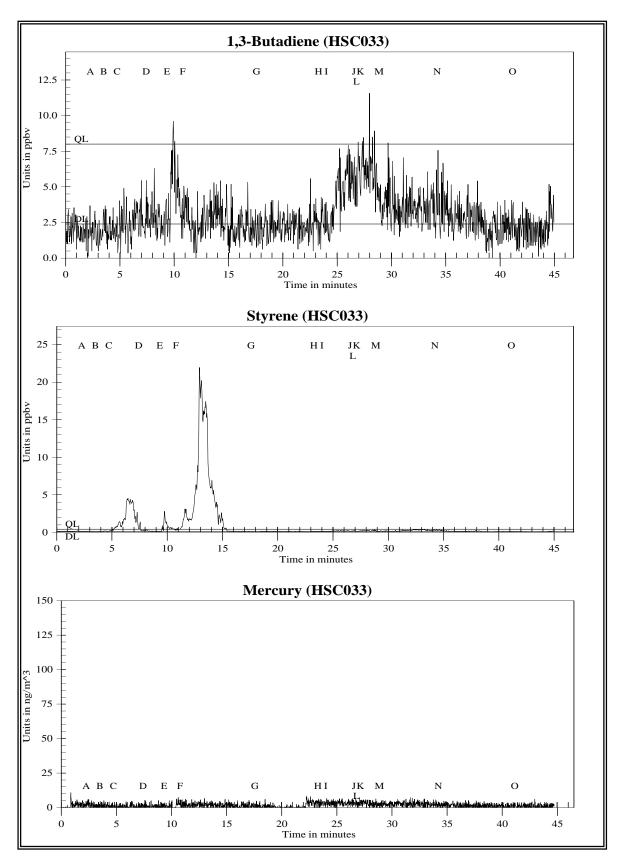


Figure 201 Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

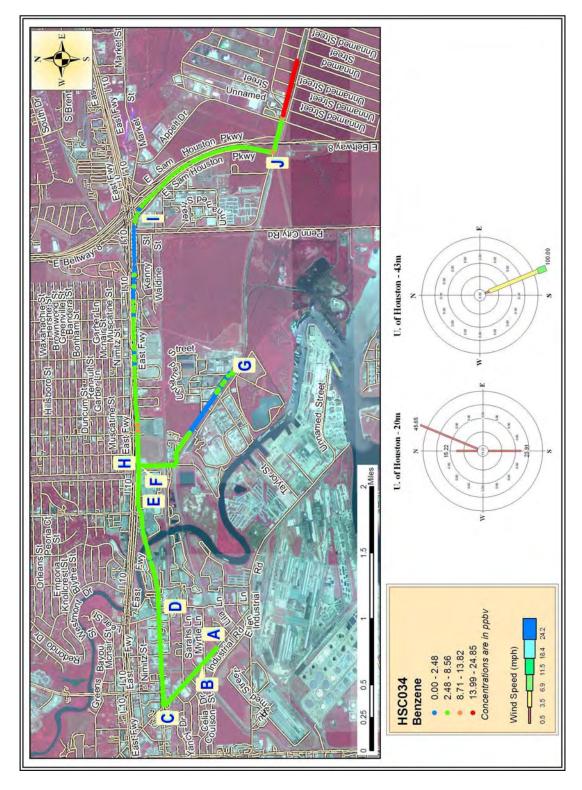


Figure 21a Mobile Monitoring Path for Benzene in Harris County

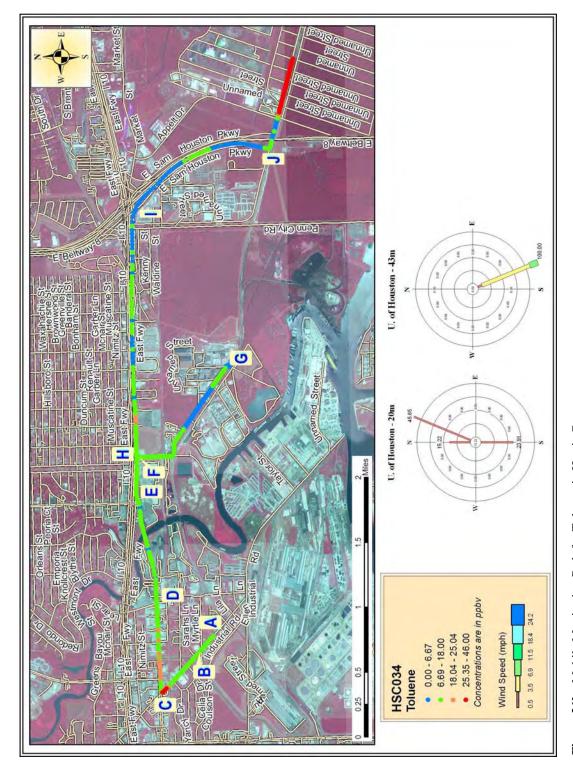


Figure 21b Mobile Monitoring Path for Toluene in Harris County

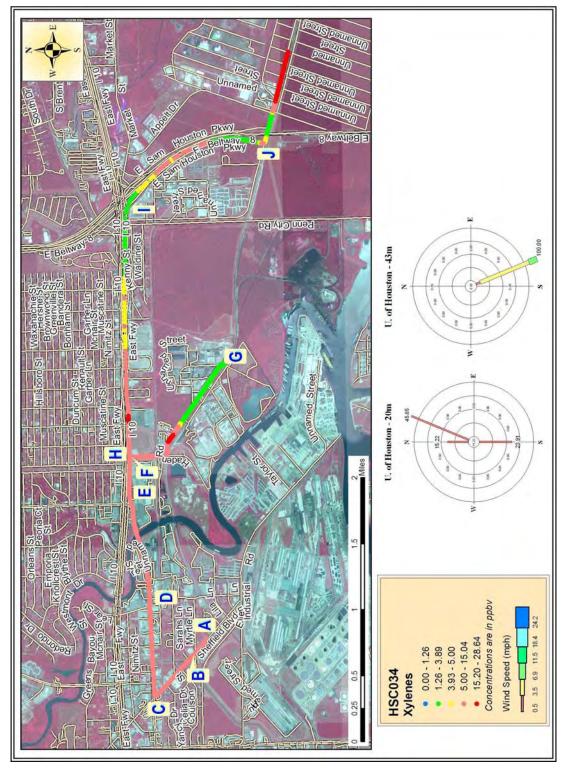


Figure 21c Mobile Monitoring Path for Xylenes in Harris County

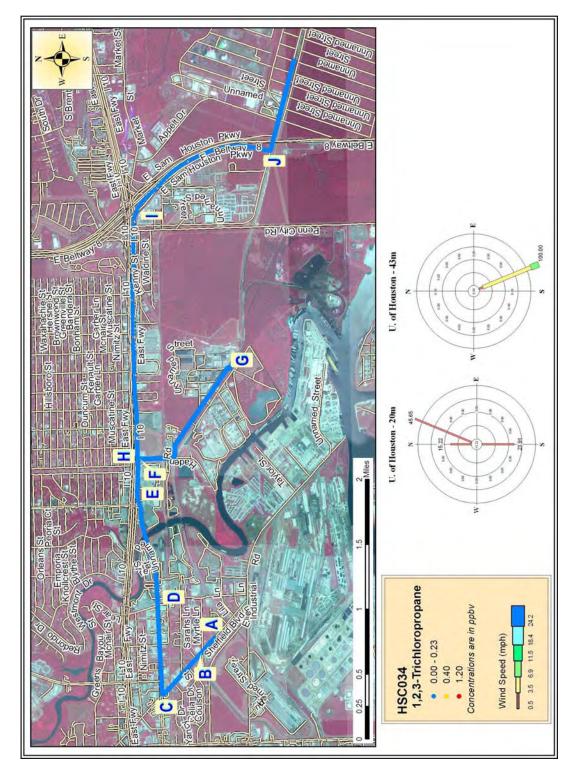


Figure 21d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

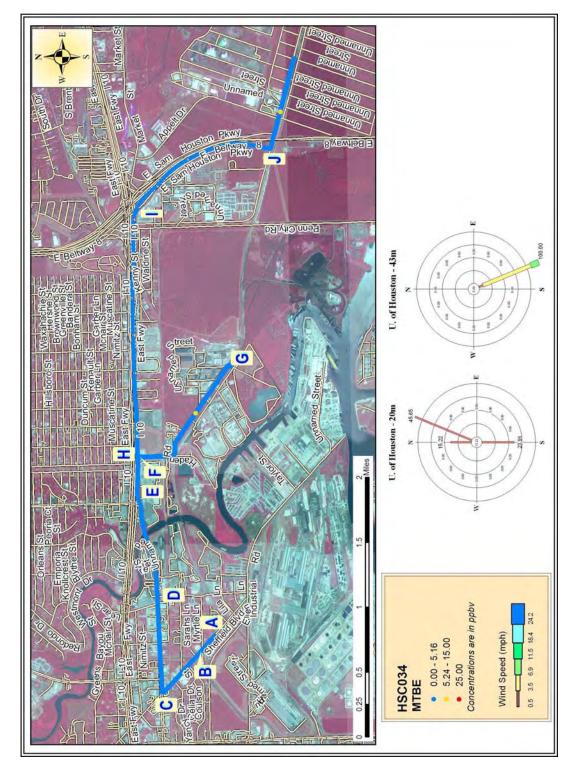


Figure 21e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

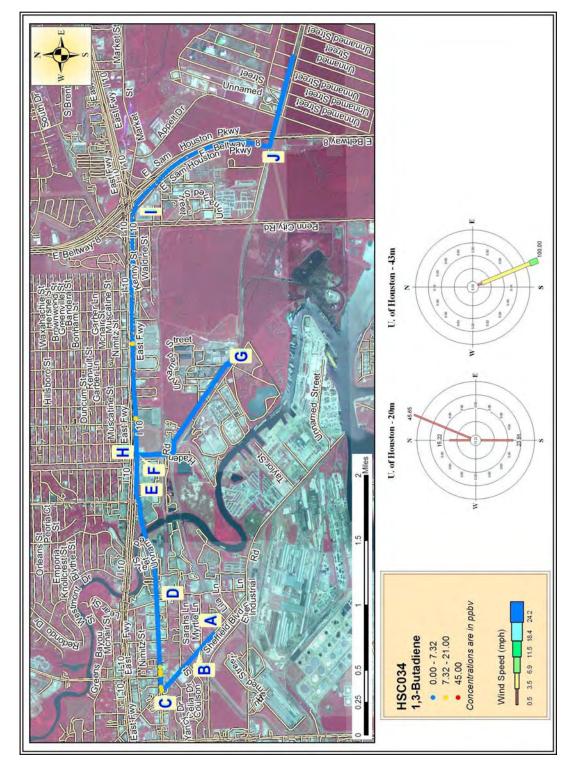


Figure 21f Mobile Monitoring Path for 1,3-Butadiene in Harris County

Figure 21g Mobile Monitoring Path for Styrene in Harris County

Figure 21h Mobile Monitoring Path for Mercury in Harris County

Figure 21i

TAGA File Event Summary File: HSC034 Acquired on 14 December 2006 at 06:48:16 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description	
A	2.5	71	Start monitoring northwestward on Sheffield Boulevard	
В	5.3	152	Passing Myrtle Lane	
C	7.6	217	Turning right onto Market Street Road	
D	10.7	307	Passing Miles Street	
E	13.4	384	Merging onto I-10 Service Road	
F	14.8	425	Turning right onto Haden Road	
G	24.7	705	Executing a U-turn	
Н	35.2	1006	Turning right onto I-10 Service Road	
I	38.0	1087	Merging onto Beltway 8 South	
J	39.9	1140	Turning left onto Jacintoport Boulevard	

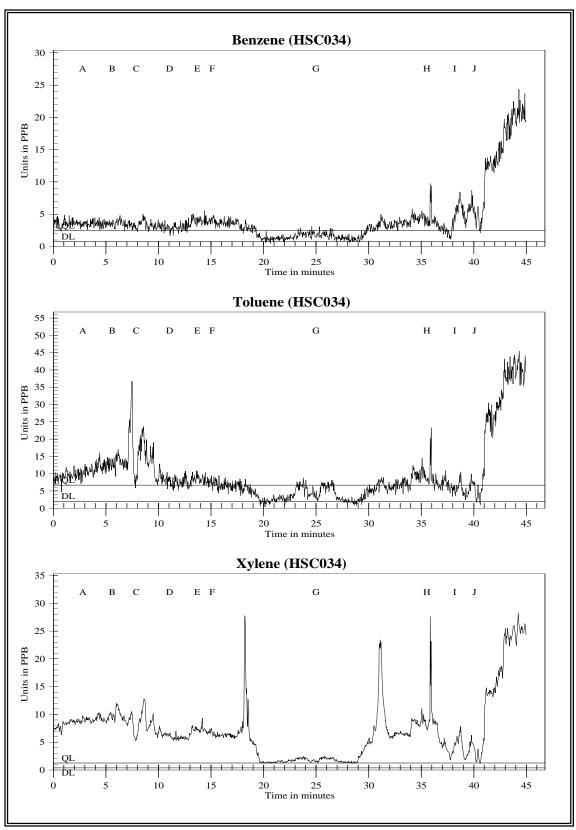


Figure 21j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

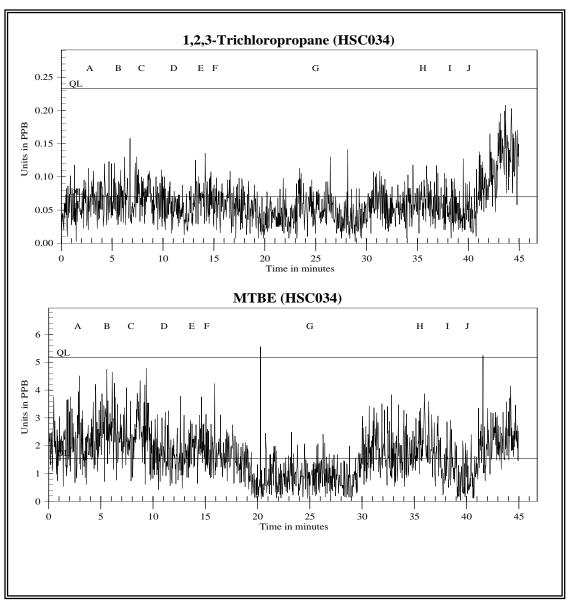


Figure 21k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

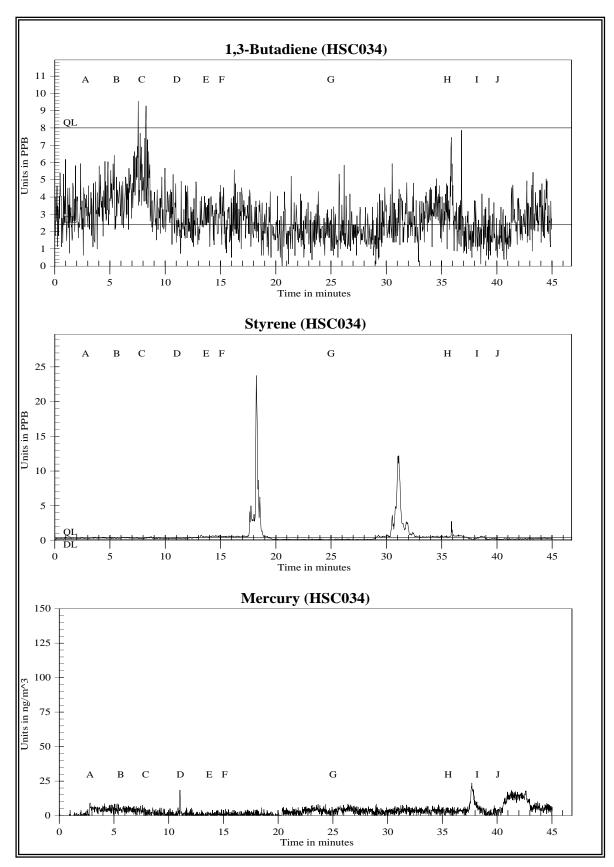


Figure 211 Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

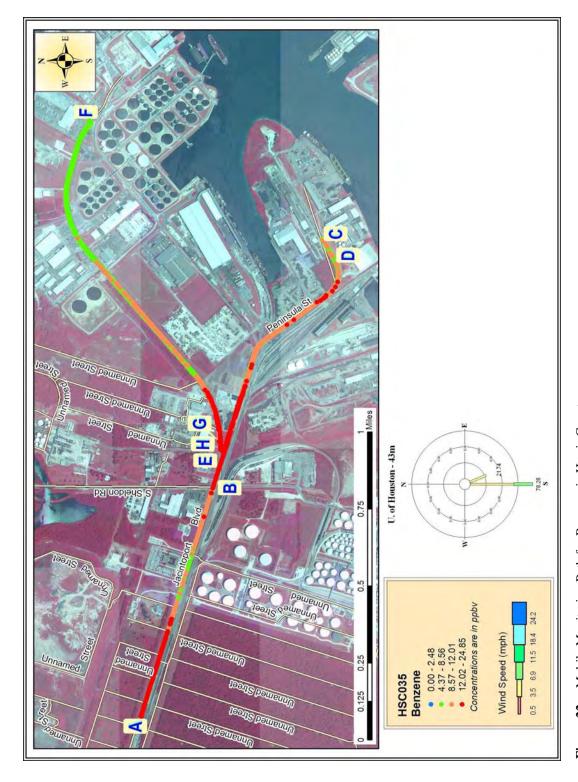


Figure 22a Mobile Monitoring Path for Benzene in Harris County

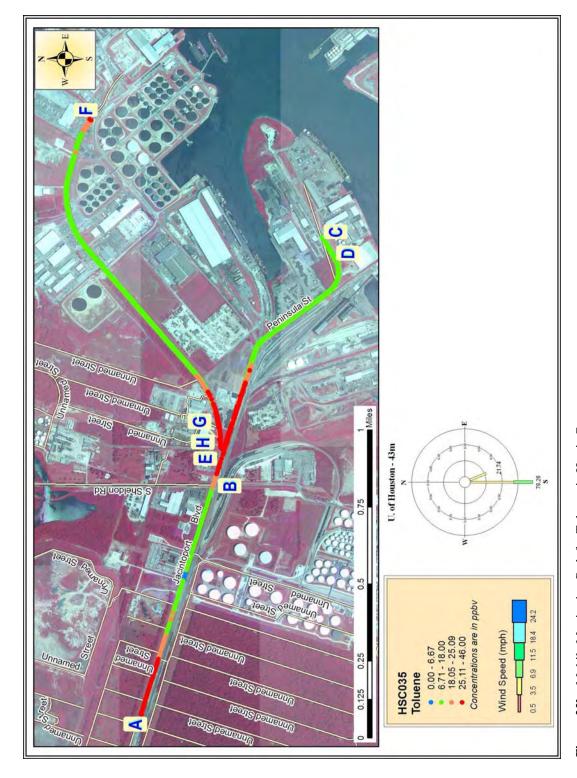


Figure 22b Mobile Monitoring Path for Toluene in Harris County

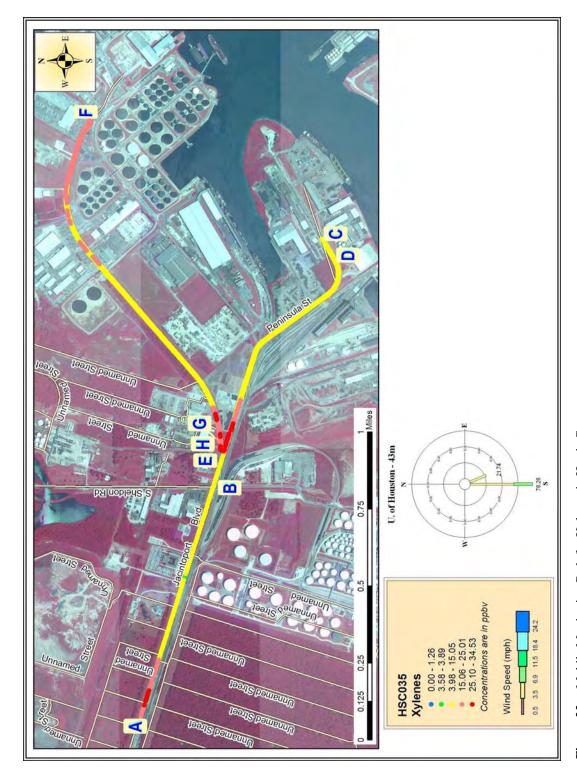


Figure 22c Mobile Monitoring Path for Xylenes in Harris County

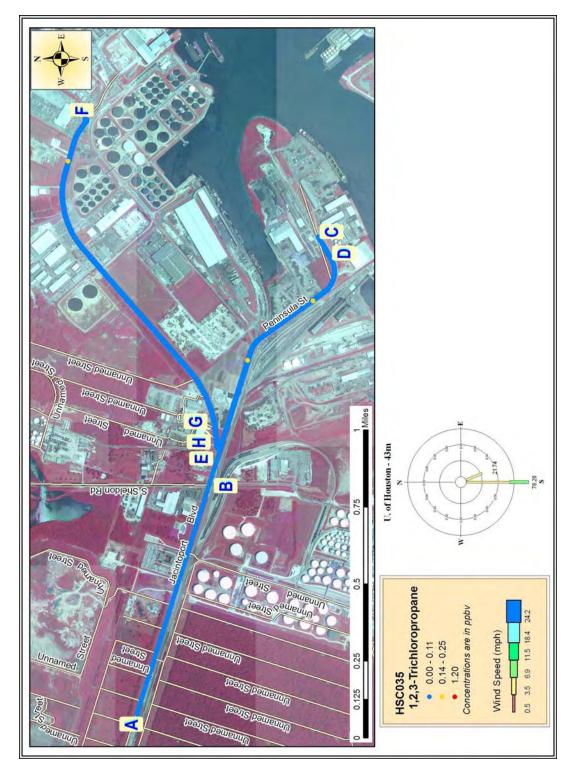


Figure 22d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

Figure 22e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

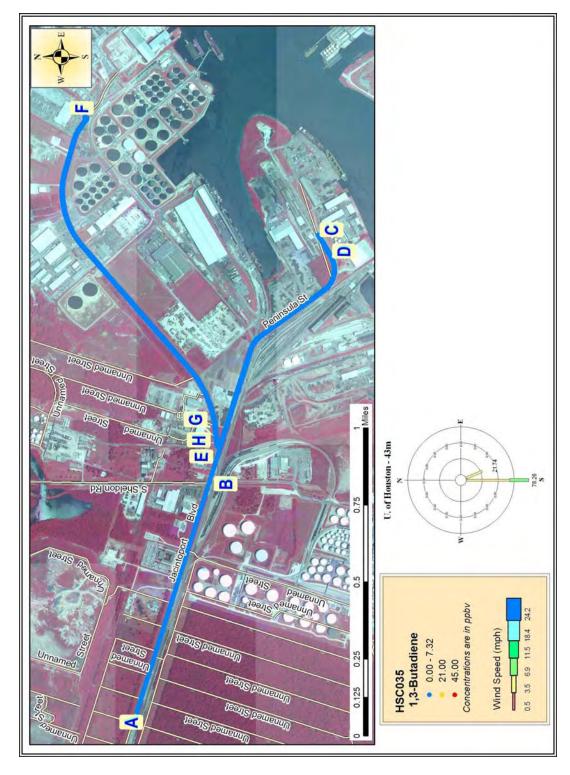


Figure 22f Mobile Monitoring Path for 1,3-Butadiene in Harris County

Figure 22g Mobile Monitoring Path for Styrene in Harris County

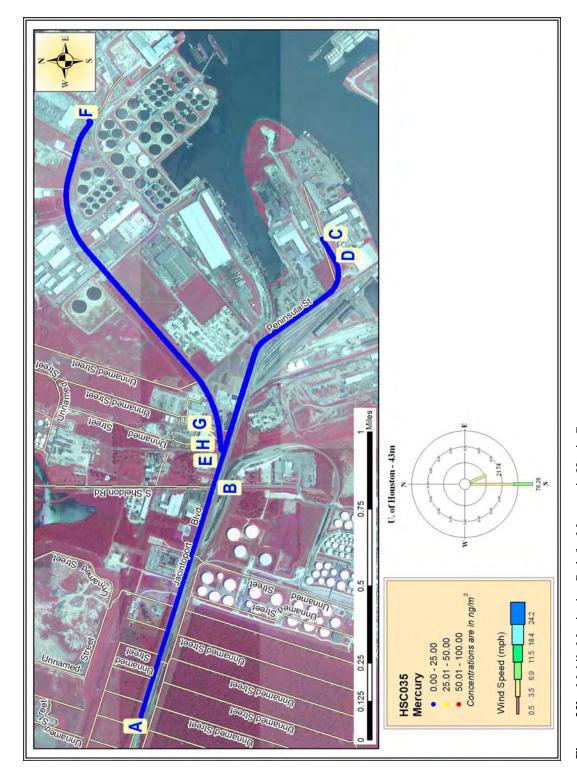


Figure 22h Mobile Monitoring Path for Mercury in Harris County

Figure 22i

TAGA File Event Summary File: HSC035 Acquired on 14 December 2006 at 07:35:47 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description	
A	2.0	58	Start monitoring eastward on Jacintoport Boulevard	
В	8.0	230	Passing Sheldon Road	
С	16.9	484	Reversing	
D	18.8	537	Executing a U-turn	
E	24.8	709	Turning right onto Jacintoport Boulevard Extension	
F	33.9	969	Executing a U-turn	
G	44.1	1261	Stopping; Start collecting SUMMA® sample J0182	
Н	45.0	1285	End collecting SUMMA® sample J0182	

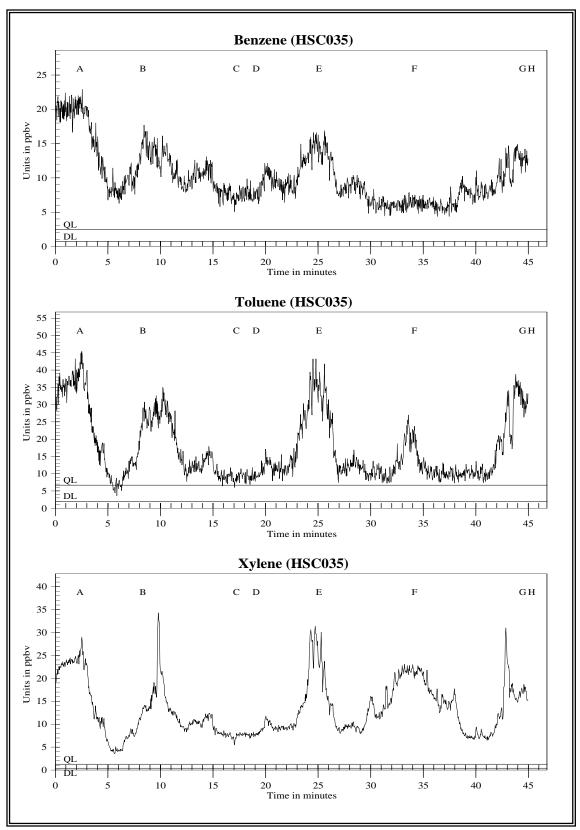


Figure 22j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

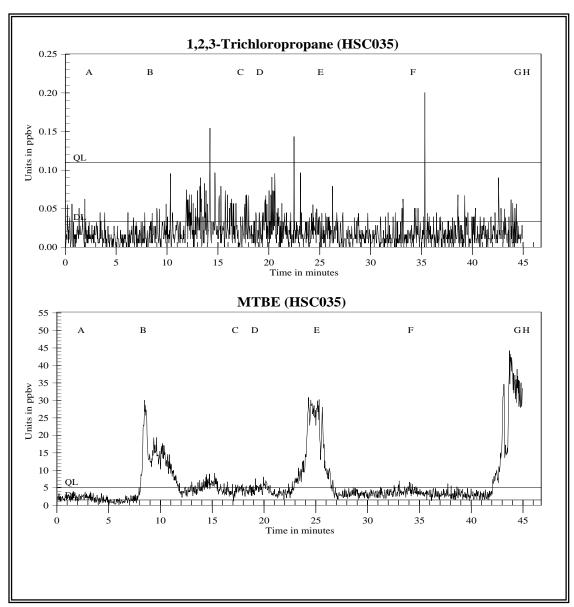


Figure 22k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

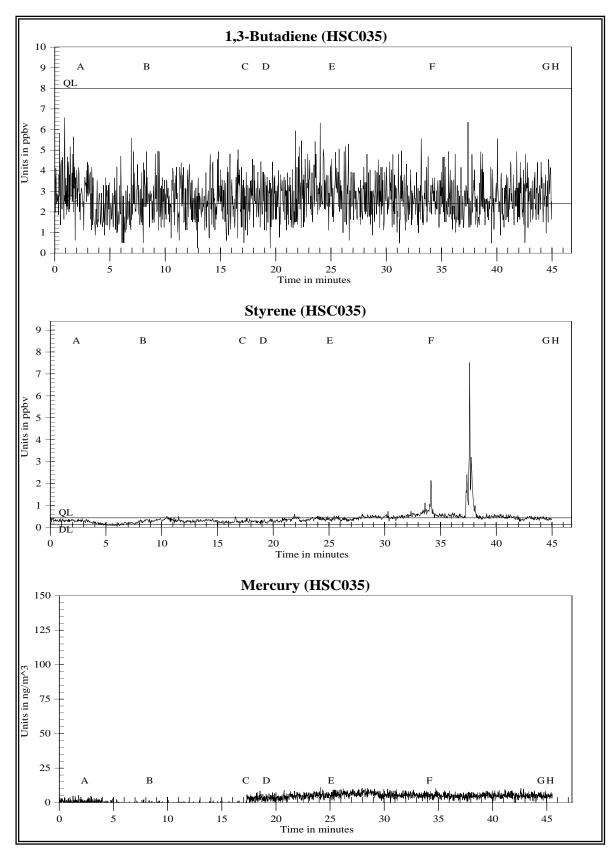


Figure 221 Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

Figure 22m

Tigure 22m							
	TAGA Target Compound Averages during Sample Collection File: HSC035 Acquired on 14 December 2006 at 07:35:47 UTC						
		Benzene	Toluene	Xylenes	1,2,3-Trichloropropane		
	Detection Limits (DL):	0.74	2.0	0.38	0.033		
	Quantitation Limits (QL):	2.5	6.7	1.3	0.11		
Flags	Description	Benzene	Toluene	Xylenes	1,2,3-Trichloropropane		
G - H	SUMMA® J0182	13.	31.	17.	DL=0.033		
		Methyl-t-butyl ether	1,3-Butadiene	Styrene			
	Detection Limits (DL):	1.5	2.4	0.13			
	Quantitation Limits (QL):	5.2	8.0	0.44			
Flags	Description	Methyl-t-butyl ether	1,3-Butadiene	Styrene			
G - H	SUMMA® J0182	33.	2.9J	0.40J			

Concentrations are in parts per billion by volume (ppbv) J = Below quantitation limit

Figure 23a Mobile Monitoring Path for Benzene in Harris County



Figure 23b Mobile Monitoring Path for Toluene in Harris County

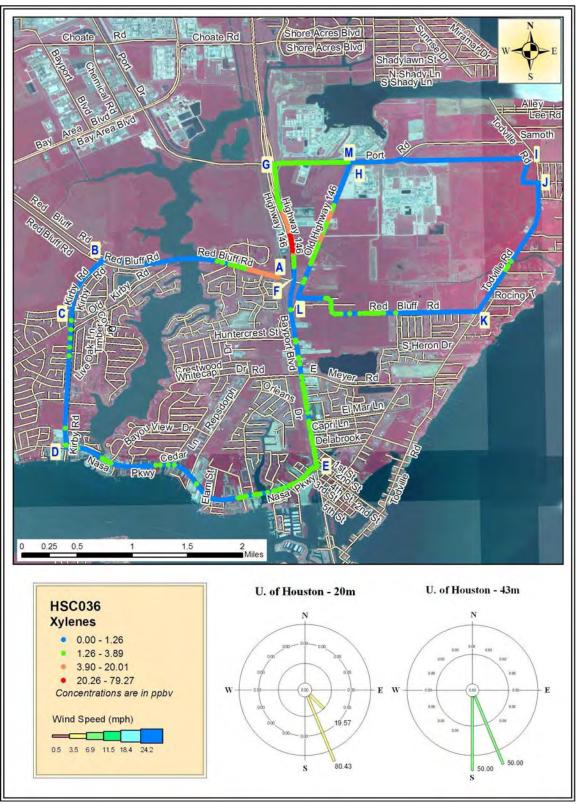


Figure 23c Mobile Monitoring Path for Xylenes in Harris County

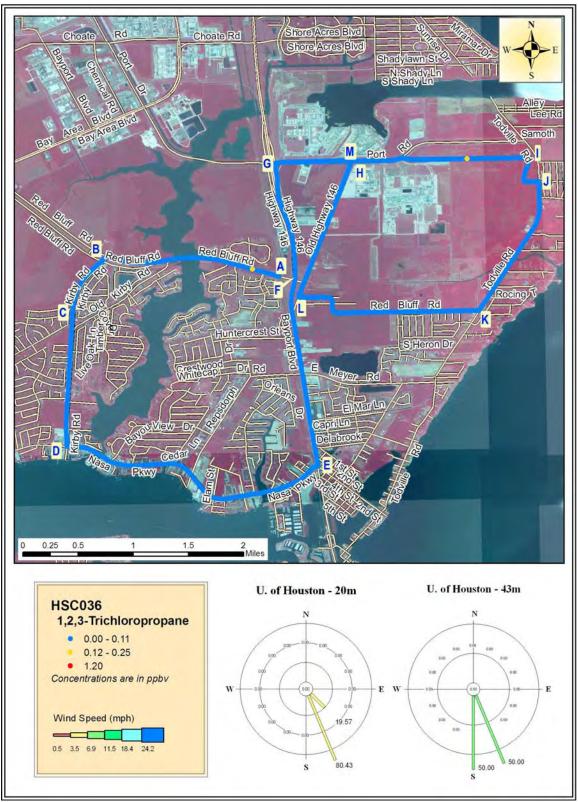


Figure 23d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

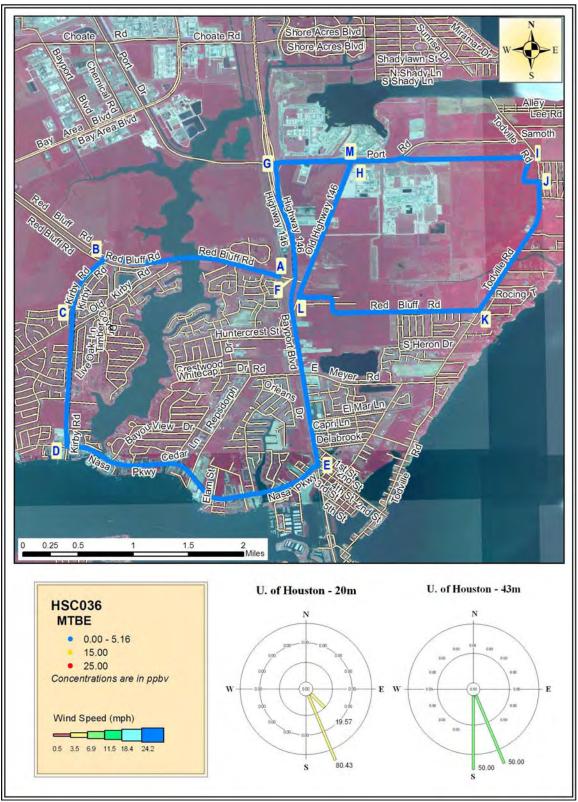


Figure 23e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

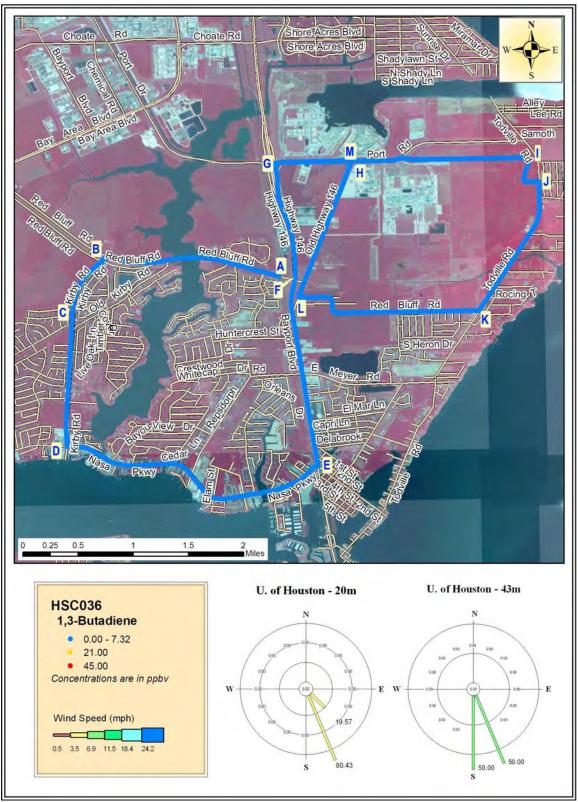


Figure 23f Mobile Monitoring Path for 1,3-Butadiene in Harris County



Figure 23g Mobile Monitoring Path for Styrene in Harris County

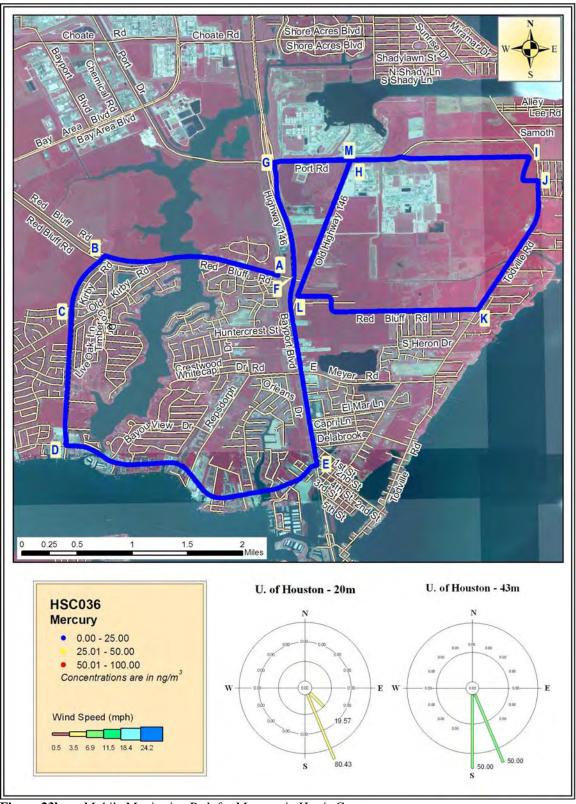


Figure 23h Mobile Monitoring Path for Mercury in Harris County

Figure 23i

TAGA File Event Summary File: HSC036 Acquired on 14 December 2006 at 08:54:28 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description
Α	1.7	50	Start monitoring westward on Red Bluff Road
В	5.4	155	Turning left onto Kirby Boulevard
С	7.2	206	Passing Lake Grove Drive
D	11.1	318	Turning left onto NASA Parkway
Е	16.8	482	Turning left onto Bayport Boulevard
F	19.9	569	Passing Red Bluff Road
G	22.0	630	Turning right onto New Port Road
Н	24.4	699	Passing Old State Highway 146
I	29.3	837	Turning right onto Cruze Terminal Road
J	30.9	882	Turning right onto Todville Road
K	34.1	976	Turning right onto Red Bluff Road
L	38.6	1103	Turning right onto Old State Highway 146
M	43.4	1239	Turning left onto New Port Road

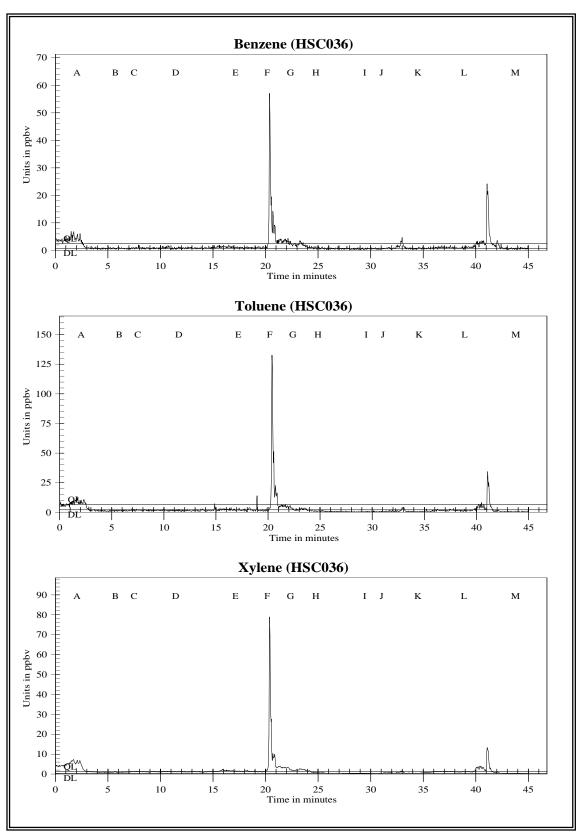


Figure 23j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

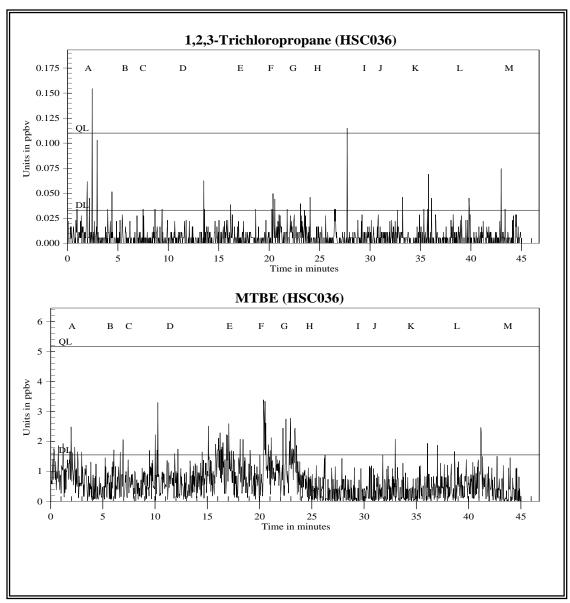


Figure 23k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

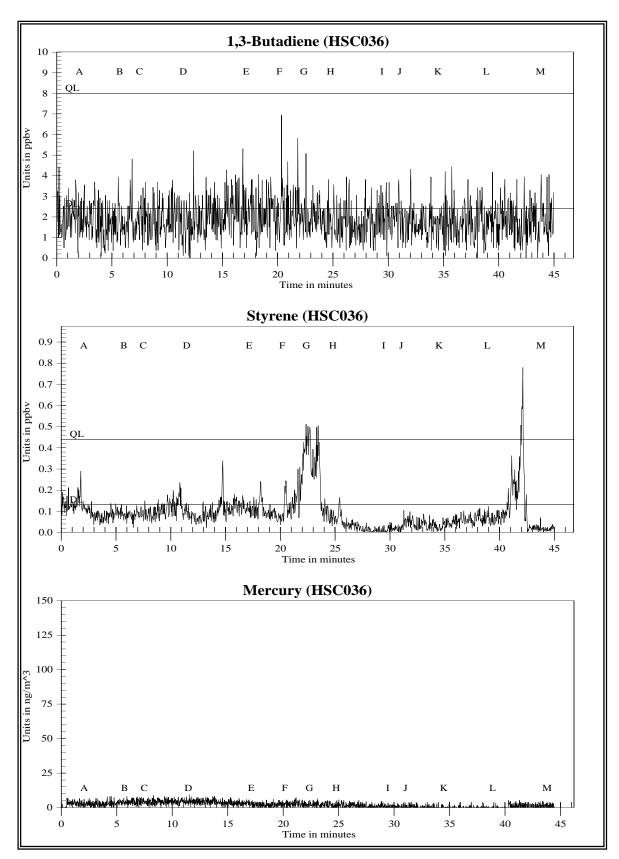


Figure 23l Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

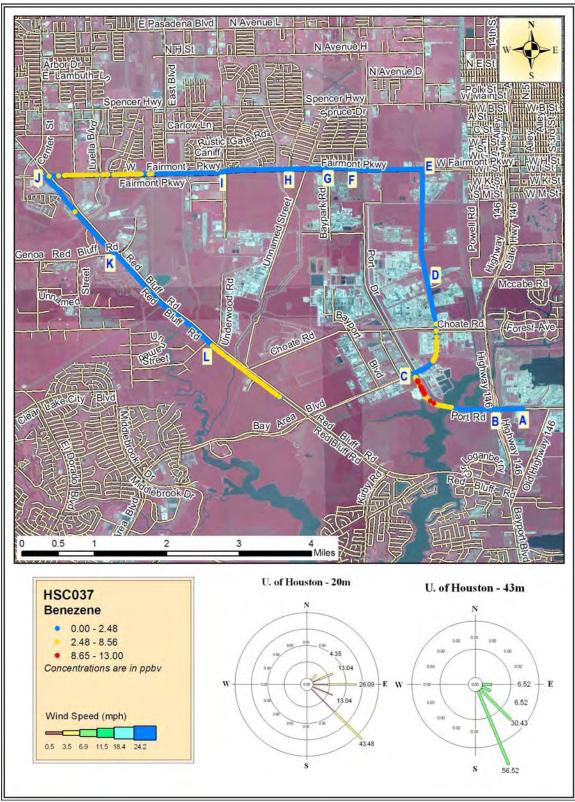


Figure 24a Mobile Monitoring Path for Benzene in Harris County

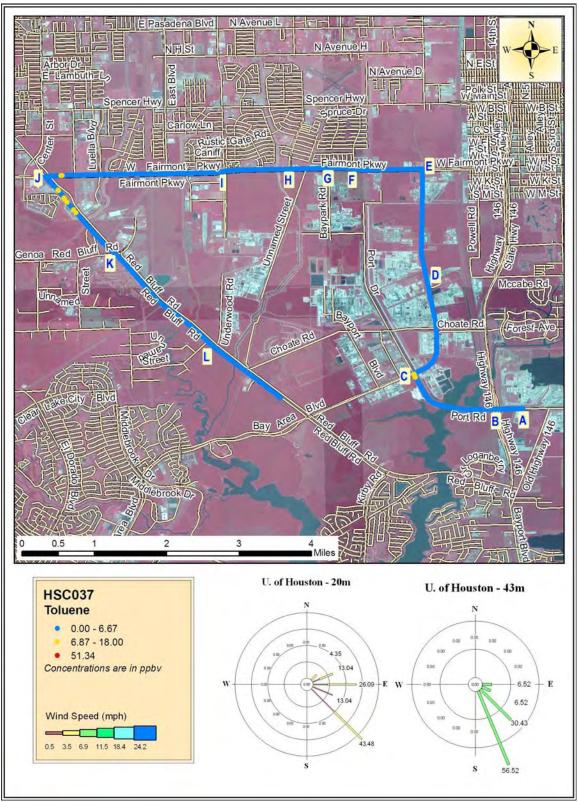


Figure 24b Mobile Monitoring Path for Toluene in Harris County

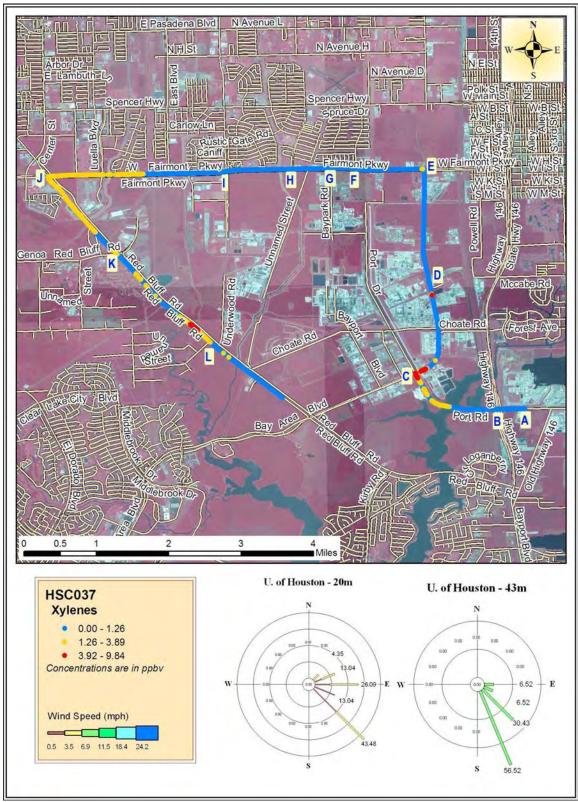


Figure 24c Mobile Monitoring Path for Xylenes in Harris County

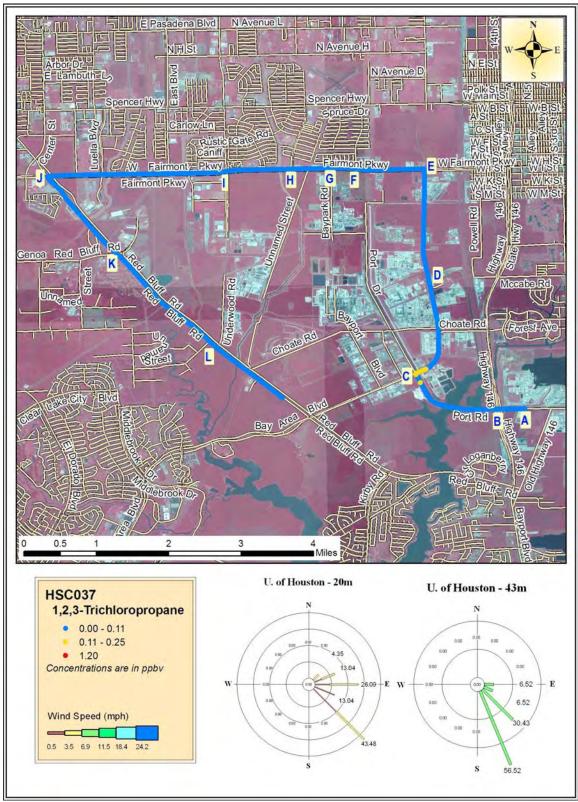


Figure 24d Mobile Monitoring Path for 1,2,3-Trichloropropane in Harris County

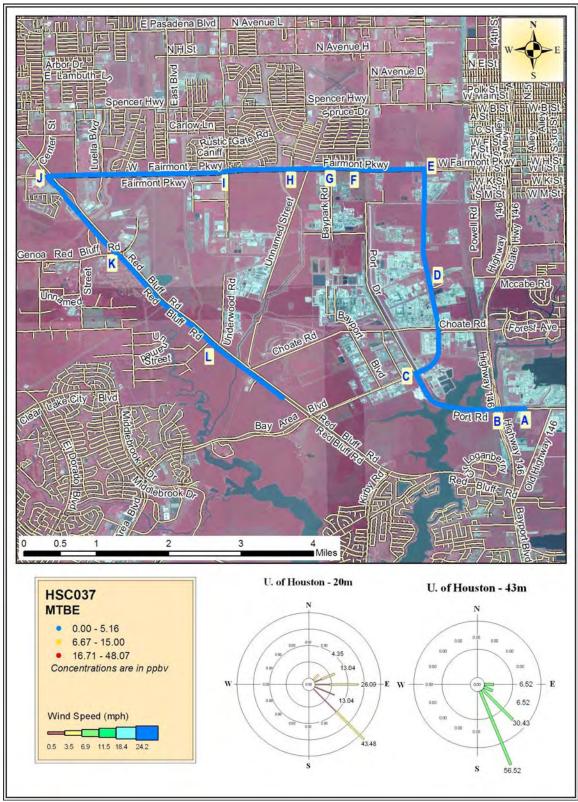


Figure 24e Mobile Monitoring Path for Methyl-t-butyl ether in Harris County

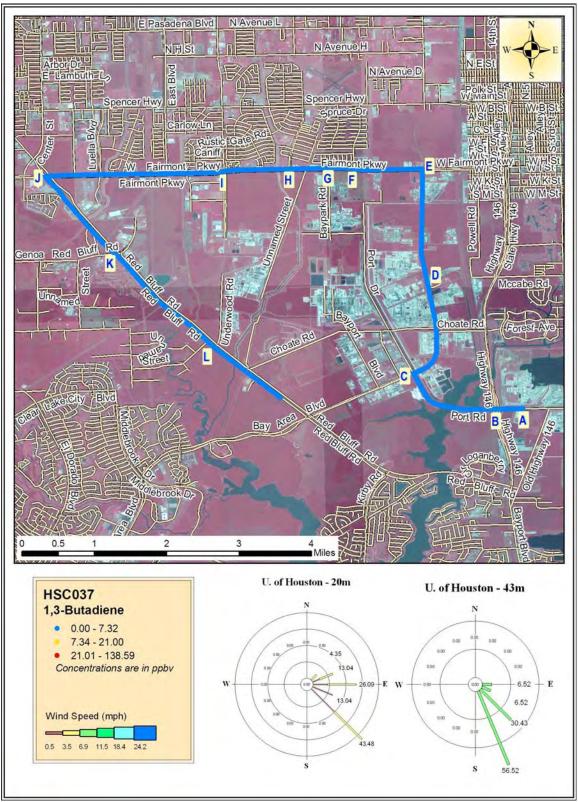


Figure 24f Mobile Monitoring Path for 1,3-Butadiene in Harris County

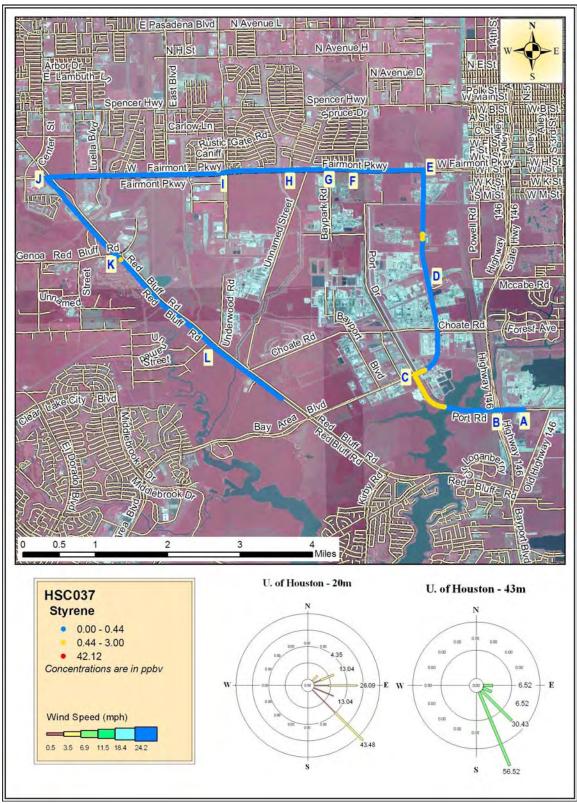


Figure 24g Mobile Monitoring Path for Styrene in Harris County

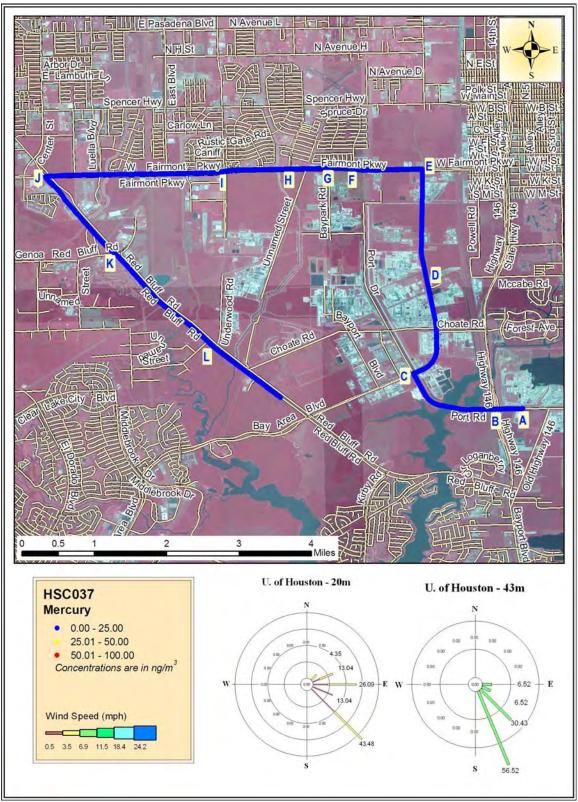


Figure 24h Mobile Monitoring Path for Mercury in Harris County

Figure 24i

TAGA File Event Summary File: HSC037 Acquired on 14 December 2006 at 09:42:01 UTC Title: Mobile Monitoring in Harris County

Flag	Time	Sequence	Description
A	1.7	50	Start monitoring westbound on New Port Road
В	3.4	99	Crossing State Highway 146
С	8.4	242	Turning right onto Bay Area Boulevard
D	14.6	418	Passing Huish Detergent
Е	20.6	589	Turning left onto Fairmont Parkway
F	23.4	670	Passing Driftwood Drive
G	24.5	700	Passing Bay Park Road
Н	26.1	746	Passing Farrington Boulevard
I	28.3	809	Passing Underwood Road
J	33.8	965	Turning left onto Red Bluff Road
K	36.8	1052	Passing Genoa Red Bluff Road
L	42.1	1202	Passing Underwood Road

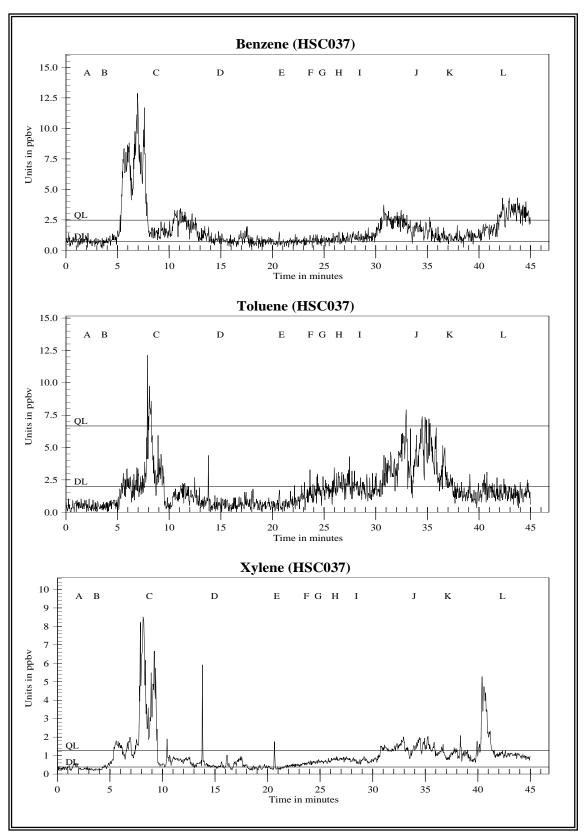


Figure 24j Mobile Monitoring in Harris County for Benzene, Toluene, and Xylenes

Figure 24k Mobile Monitoring in Harris County for 1,2,3-Trichloropropane and Methyl-t-butyl ether

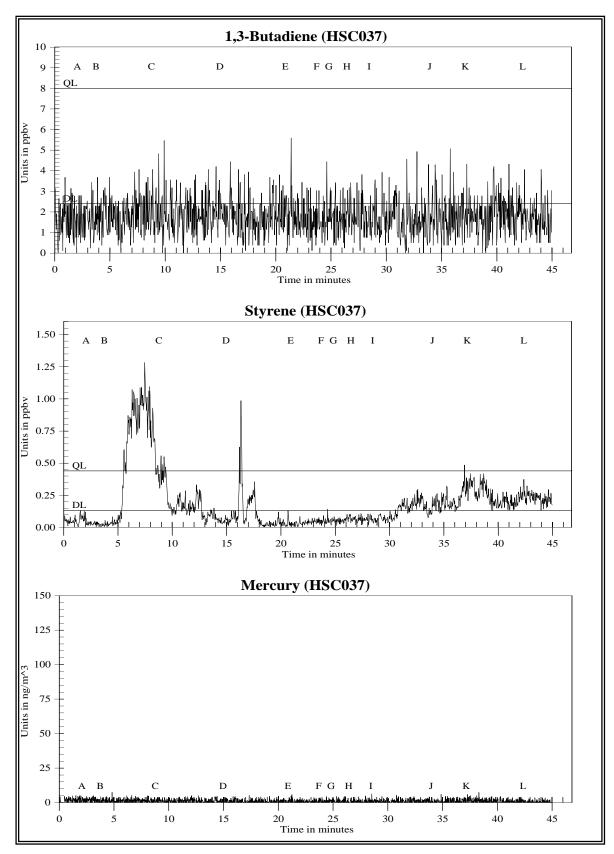


Figure 24l Mobile Monitoring in Harris County for 1,3-Butadiene, Styrene, and Mercury

APPENDIX A

CERTIFICATIONS

URBAN AIR TOXICS STUDY FINAL ANALYTICAL TAGA REPORT MARCH 2007

3434 Route 22 West, Branchburg, New Jersey 08876 USA ISO 9001:2000

SHIPPED FROM: 80 INDUSTRIAL DRIVE ALPHA, NJ. 08865

SHIPPED TO:

Lockheed Martin/Reac

GSA Raritan Depot, Bldg 209 Bay F

2890 Woodbridge Ave

Edison, NJ 08837

CERTIFICATE

OF

ANALYSIS

SGI ORDER#:

BLEND TYPE:

ITEM#:

P.O.#:

0094522

CERTIFICATION DATE: 11/08/2006

CERTIFIED

CC-C SHIELDS

CYLINDER #: CC-99470 CYLINDER PRES: 1200 psig

CYLINDER VALVE: CGA 350

PRODUCT EXPIRATION DATE: 11/08/2007

ANALYTICAL ACCURACY: +/- 2%

COMPONENT	REQUESTED GAS	ANALYSIS		
Vinyl Chloride	-20.0 ppm	20.4 ppm		
Trans-1,2-Dichloroethylene	20.0 ppm	21.5 ppm		
Benzene	20.0 ppm	21.1 ppm		
Trichloroethylene	20.0 ppm	20.4 ppm		
Toluene	20.0 ppm	20.7 ppm		
Tetrachloroethylene	20.0 ppm	20.2 ppm		
p-Xylene	.10.0 ppm	9.87 ppm		
m-Xylene	10.0 ppm	9.87 ppm		
o-Xylene	10.0 ppm	9.61 ppm		
Nitrogen	Balance	Balance		

DATE: 11/09/2006

Tel: +1 908-252-9300 Fax: +1 908-252-0811 www.spectragases.com

3434 Route 22 West, Branchburg, New Jersey 08876 USA ISO 9001:2000

SHIPPED FROM: 80 INDUSTRIAL DRIVE ALPHA, NJ. 08865

SHIPPED TO:

Lockheed Martin/REAC

GSA Raritan Depot, Bldg 209, Bay F

2890 Woodbridge Ave Edison, NJ 08837

CERTIFICATE

OF

ANALYSIS

SGI ORDER#:

BLEND TYPE:

ITEM#:

P.O.#:

0097072

CERTIFICATION DATE: 10/02/2006

CC-C SHIELDS CERTIFIED

CYLINDER #: CC-187714 CYLINDER PRES: 475 psig

CYLINDER VALVE: CGA 350

PRODUCT EXPIRATION DATE: 10/02/2007

ANALYTICAL ACCURACY: +/- 5%

COMPONENT	REQUESTED GAS CONC	ANALYSIS
Methyl Tert Butyl Ether	20.0 ppm	20.4 ppm
Styrene	20.0 ppm	20.0 ppm
1,2,3-Trichloropropane	20.0 ppm	20.6 ppm
Nitrogen	Balance	Balance

DATE: 10/02/2006

Tel: +1 908-252-9300 Fax: +1 908-252-0811 www.spectragases.com

3434 Route 22 West, Branchburg, New Jersey 08876 USA ISO 9001:2000

SHIPPED FROM: 80 IND	USTRIAL DRIVE ALF	PHA, NJ. 08865				
SHIPPED TO:	Lockheed Martin/Re GSA Raritan Depot,	Bldg 209, Bay F				
	2890 Woodbridge A Edison, NJ 08837	ve				
		CERTIFICATE				
		OF				
		ANALYSIS				
SGI ORDER #:	0097072					
ITEM#:	1	CYLINDER # : CC-20198				
CERTIFICATION DATE:	09/29/2006		ER PRES: 2000 psig			
P.O.# :	CC-C SHIELDS		R VALVE: CGA 350			
BLEND TYPE:	CERTIFIED	PRODUCT EXPIRATI	ON DATE: 09/29/2007			
		ANALYTICAL AC	CURACY: + / - 2%			
COMPONENT	_	REQUESTED GAS	ANALYSIS			
1,3-Butadiene		200 ppm	202 ppm			
Nitrogen		Balance	Balance			

ANALYST: April Chamberlain

DATE: 09/29/2006

Tel: +1 908-252-9300 Fax: +1 908-252-0811 www.spectragases.com

APPENDIX B

METEOROLOGICAL DATA

URBAN AIR TOXICS STUDY FINAL ANALYTICAL TAGA REPORT MARCH 2007

TAGA		Start Time	Duration	End Time	CAMS	Ws	Wd	Ws	Wd	Ws	Wd	Ws	Wd	Precipitation
File	Date	UTC	minutes	UTC	Station			10m	10m	20m	20m	43m	43m	Total Per Run
HSC004	12/12/2006	2:45	44.965	3:31	LaPorte C243	3.2	144	2.3	172	3.6	165	7.3	160	0
HSC005	12/12/2006	3:35	42.759	4:19	LaPorte C243	2.6	129	2.8	168	4.1	166	7.2	160	0
HSC006	12/12/2006	4:27	43.494	5:10	LaPorte C243	3.6	130	3.2	153	4.4	156	7.7	154	0
HSC007	12/12/2006	5:15	44.966	6:00	Deer Park C35	1.7	244	3.7	157	4.9	157	8.4	149	0
HSC008	12/12/2006	6:46	44.755	7:32	Manchester C1029	2.2	261	3.1	252	3.7	251	5.6	239	0
HSC009	12/12/2006	7:41	42.76	8:25	Clinton C403	4.0	280	3.3	256	3.9	256	6.3	248	0
HSC010	12/12/2006	8:31	44.58	9:17	Clinton C403	2.3	246	4.9	292	5.8	292	8.5	287	0
HSC011	12/12/2006	9:19	24.724	9:45	Channelview C15	1.2	270	3.3	292	3.9	294	6.0	287	0
HSC017	12/13/2006	2:39	44.406	3:23	Manchester C1029	Calm	Calm	Calm	Calm	4.5	312	10.1	323	0
HSC018	12/13/2006	3:26	44.334	4:10	Manchester C1029	Calm	Calm	Calm	Calm	3.1	328	9.3	333	0
HSC019	12/13/2006	4:17	44.334	5:01	Manchester C1029	Calm	Calm	Calm	Calm	2.8	343	7.6	347	0
HSC020	12/13/2006	5:05	44.334	5:49	Lynchburg C1015	1.9	352	Calm	Calm	3.2	43	6.8	27	0
HSC021	12/13/2006	5:53	31.343	6:24	Lynchburg C1015	2.7	347	Calm	Calm	3.2	59	4.7	44	0
HSC022	12/13/2006	7:13	44.475	7:57	LaPorte C243	2.7	279	Calm	Calm	4.0	53	7.8	56	0
HSC023	12/13/2006	8:01	44.965	8:45	Baytown C148	Calm	Calm	1.2	352	4.5	52	8.6	56	0
HSC024	12/13/2006	8:49	29.172	9:18	Baytown C148	Calm	Calm	2.9	339	5.1	19	6.3	44	0
HSC030	12/14/2006	2:50	44.965	3:35	Manchester C1029	1.3	194	1.9	169	5.0	156	11.6	149	0
HSC031	12/14/2006	4:05	41.50	4:47	Deer Park C35	1.3	223	1.7	159	5.0	147	11.1	145	0
HSC032	12/14/2006	4:53	29.451	5:22	Deer Park C35	2.0	179	1.1	176	4.0	158	9.2	153	0
HSC033	12/14/2006	6:00	44.966	6:45	Clinton C403	1.6	266	1.1	187	4.1	176	9.9	167	0
HSC034	12/14/2006	6:48	44.965	7:33	Haden Road C603	2.1	17	1.1	355	1.6	24	5.2	161	0
HSC035	12/14/2006	7:35	44.965	8:20	Jacinto Port C1036	Calm	Calm	Calm	Calm	Calm	Calm	6.2	172	0
HSC036	12/14/2006	8:54	44.966	9:39	LaPorte C243	4.6	112	Calm	Calm	4.4	154	9.6	168	0
HSC037	12/14/2006	9:42	44.965	10:27	LaPorte C243	6.1	114	Calm	Calm	3.8	107	8.0	145	0
NO TES:														
	rdinated Unive	ersal Time								-		+	-	
	ontinuous Air N		tation							-		_		
	onitoring heigh													
Ws in mph														
"Calm" Wd ex	xcluded from avera	ige												
Rainfall fro	m U of H tow	er												

APPENDIX C

SUMMA® CANISTER ANALYTICAL DATA

URBAN AIR TOXICS STUDY FINAL ANALYTICAL TAGA REPORT MARCH 2007

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 6 Laboratory

Environmental Services Branch 10625 Fallstone Road, Houston, TX 77099 Phone: (281)983-2100 Fax: (281)983-2248

Final Analytical Report

Site Name	Harris County TAGA Project
Sample Collection Date(s)	12/12/06- 12/14/06
Contact	Kyndall Barry (6EN-AT)
Report Date	02/26/07
Project #	07CAA042
Work Order(s)	0612012

Analyses included in this report:

Air TO-15(2)

Report Narrative

The canister containing sample 0612012-01 exhibited a small leak. It is possible there was some contamination or loss of analytes. The magnitude of the contamination or loss, if present, is not known.

The amount of 1,3-Butadiene in sample 0612012-11 was estimated by manual integration due to the presence of interfering compounds.

Standard procedures for quality assurance and quality control were followed in the analysis and reporting of the sample results. The results apply only to the samples tested. This final report should only be reproduced in full.

Reporting limits are adjusted for sample size and matrix interference.

Report Approvals:	
Richard McMillin Region 6 Laboratory Manager	David Neleigh Region 6 Laboratory Branch Chief

ONITED STATES

Please provide a reason for holding:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 6 Environmental Services Branch Laboratory

10625 Fallstone Road Houston, Texas 77099

Sample Receipt and Disposal

Site Name: Harris County TAGA Project	Project Number: 07CAA042
Data Management Coordinator: Christy Warren	/ /
Data Management Coordinator Signature	Date
Date Transmitted:/	
Please have the U.S. EPA Project Manager/Officer cal comments or questions.	ll the Data Management Coordinator at 3-2137 for any
Please sign and date this form below and return it with	any comments to:
Christy Warren Data Management Coordinator Region 6 Laboratory 6MD-HS	
Received by and Date	
Comments:	
The laboratory routinely disposes of samples 90 days a hold these samples in custody longer than 90 days, ple	after all analyses have been completed. If you have a need to ease sign below.
Signature	Date

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

ANALYTICAL REPORT FOR SAMPLES

Station ID	Laboratory ID	Sample Type	Date Collected	Date Received
G1567	0612012-01	air	12/12/06 7:18	12/14/06 14:00
K0175	0612012-02	air	12/12/06 7:24	12/14/06 14:00
F1582	0612012-03	air	12/13/06 3:19	12/14/06 14:00
A1498	0612012-04	air	12/13/06 3:22	12/14/06 14:00
F1496	0612012-05	air	12/13/06 3:42	12/14/06 14:00
B0125	0612012-06	air	12/13/06 5:58	12/14/06 14:00
H1499	0612012-07	air	12/13/06 8:07	12/14/06 14:00
J0165	0612012-08	air	12/13/06 8:43	12/14/06 14:00
C1161	0612012-09	air	12/14/06 2:58	12/14/06 14:00
B1578	0612012-10	air	12/14/06 3:16	12/14/06 14:00
F1500	0612012-11	air	12/14/06 4:24	12/14/06 14:00
J0182	0612012-12	air	12/14/06 8:20	12/14/06 14:00
TRIP	0612012-13	air	12/14/06 0:00	12/14/06 14:00

Report Name: 0612012 FINAL 02 26 07 0715 Page 1 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-01 Station ID: G1567

Batch: B6L2002 Date Collected: 12/12/06 Initial Pressure: 14.3 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
Surr: 4-Bromofluorobenzene	9.29		92.9	70-130	12/19/06	01/03/07
Surr: 1,2-Dichloroethane-d4	8.80		117	70-130	"	"
Surr: Toluene-d8	8.85		118	70-130	"	"
Surr: 1,2-Dichlorobenzene-d4	7.24		96.5	70-130	"	"

Targets

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
Acetone (67-64-1)	7.4		0.2	1	12/19/06	01/03/07
Benzene (71-43-2)	0.2		0.2	"	"	"
Benzyl chloride (100-44-7)	U		2.5	"	"	"
1,3-Butadiene (106-99-0)	0.2		0.2	"	"	"
2-Butanone (78-93-3)	1.9		0.2	"	"	"
Bromodichloromethane (75-27-4)	U		0.2	"	"	"
Bromoform (75-25-2)	U		0.2	"	"	"
Bromomethane (74-83-9)	U		0.2	"	"	"
Carbon disulfide (75-15-0)	U		0.2	"	"	"
Carbon tetrachloride (56-23-5)	U		0.2	"	"	"
Chlorobenzene (108-90-7)	U		0.2	"	"	"
Chlorodibromomethane (124-48-1)	U		0.2	"	"	"
Chloroethane (75-00-3)	U		0.2	"	"	"
Chloroform (67-66-3)	U		0.2	"	"	"
Chloromethane (74-87-3)	0.6		0.2	"	"	"
Cyclohexane (110-82-7)	U		0.2	"	"	"
1,2-Dibromoethane (106-93-4)	U		0.2	"	"	"
1,2-Dichlorobenzene (95-50-1)	U		0.2	"	"	"
1,3-Dichlorobenzene (541-73-1)	U		0.2	"	"	"
1,4-Dichlorobenzene (106-46-7)	U		0.2	"	"	"
Dichlorodifluoromethane (75-71-8)	0.3		0.2	"	"	"
1,1-Dichloroethane (75-34-3)	U		0.2	"	"	"
1,2-Dichloroethane (107-06-2)	U		0.2	"	"	"
1,1-Dichloroethene (75-35-4)	U		0.2	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U		0.2	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U		0.2	"	"	"
1,2-Dichloropropane (78-87-5)	U		0.2	"	"	"
cis-1,3-Dichloropropene (10061-01-5)	U		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 2 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-01 Station ID: G1567

Batch: B6L2002 Date Collected: 12/12/06 Initial Pressure: 14.3 psia Sample Type: air Sample Qualifiers:

Targets (Continued)

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
,		C			•	
trans-1,3-Dichloropropene (10061-02-6)	U		0.2	1	12/19/06	01/03/07
1,2-Dichloro-1,1,2,2-tetrafluoroethane (76-14-2)	U		0.2			
1,4-Dioxane (123-91-1)	U		2.5	"	"	"
Ethyl alcohol (64-17-5)	2.7		0.2	"	"	"
Ethyl acetate (141-78-6)	U		1.0	"	"	,,
Ethylbenzene (141-76-6)	0.2		0.2	"	"	"
1-Ethyl-4-methylbenzene (622-96-8)	U		0.5	"	"	"
n-Heptane (142-82-5)	U		0.2	"	"	"
Hexachlorobutadiene (87-68-3)	U		0.2	"	"	"
n-Hexane (110-54-3)	0.2		0.2	"	"	"
2-Hexanone (591-78-6)	U		0.5	"	"	**
Isopropyl alcohol (67-63-0)	Ü		1.2	"	"	"
Methylene chloride (75-09-2)	0.2		0.2	"	"	**
4-Methyl-2-pentanone (108-10-1)	U		2.5	"	"	**
Methyl tertiary-butyl ether (1634-04-4)	Ü		0.2	"	"	**
Propene (115-07-1)	0.8		0.2	"	"	"
Styrene (100-42-5)	U		0.5	"	"	"
1,1,2,2-Tetrachloroethane (79-34-5)	U		0.2	"	"	"
Tetrachloroethene (127-18-4)	U		0.2	"	"	"
Tetrahydrofuran (109-99-9)	U		0.5	"	"	"
Toluene (108-88-3)	0.6		0.2	"	"	**
1,2,4-Trichlorobenzene (120-82-1)	U		0.2	"	"	"
1,1,1-Trichloroethane (71-55-6)	U		0.2	"	"	"
1,1,2-Trichloroethane (79-00-5)	U		0.2	"	"	**
Trichloroethene (79-01-6)	U		0.2	"	"	"
Trichlorofluoromethane (75-69-4)	0.2		0.2	"	"	"
1,1,2-Trichloro-1,2,2-trifluoroethane (76-13-1)	U		0.2	"	"	"
1,2,4-Trimethylbenzene (95-63-6)	U		0.2	"	"	**
1,3,5-Trimethylbenzene (108-67-8)	U		0.2	"	"	"
Vinyl acetate (108-05-4)	U		1.0	"	"	"
Vinyl chloride (75-01-4)	0.2		0.2	"	"	"
meta-/para-Xylene (na)	0.6		0.5	"	"	"
ortho-Xylene (95-47-6)	0.2		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 3 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-01 Station ID: G1567

Batch: B6L2002 Date Collected: 12/12/06 Initial Pressure: 14.3 psia Sample Type: air Sample Qualifiers:

Tentatively Identified Compounds

Compound (CAS)	Result ppbv	Analyte Retention Qualifiers Time	Dilution	Prepared	Analyzed
2,4-Dimethylpentane (108-08-7)	46	10.99	1	12/19/06	01/03/07
2,3-Dimethylpentane (565-59-3)	21	12.63	"	"	"
2,2,4-Trimethylpentane (540-84-1)	290	13.48	"	"	"
2,5-Dimethylhexane (592-13-2)	40	15.30	"	"	"
Alkane at 15.42' (NA)	17	15.42	"	"	"
2,3,4-Trimethylpentane (565-75-3)	260	16.22	"	"	"
2,3,3-Trimethylpentane (560-21-4)	270	16.48	"	"	"
2,2,5-Trimethylhexane (3522-94-9)	100	17.66	"	"	"
2,3,5-Trimethylhexane (1069-53-0)	13	19.13	"	"	"
Alkane at 25.35' (NA)	13	25.35	"	"	"

The compounds listed are *tentatively* identified by the best match with the NIST or Wiley mass spectral data base or by manual interpretation. The concentrations are estimated based on a Response Factor of 1.0 to the nearest internal standard. A minimum of the top 10 most significant peaks that are at least 10% in area of the nearest internal standard are reported, excluding those found in the laboratory blank.

Report Name: 0612012 FINAL 02 26 07 0715

Page 4 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

0612012-02 Station ID: K0175 Lab ID:

Batch: B6L2002 Date Collected: 12/12/06 Initial Pressure: 14.3 psia Sample Type: air

Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
Surr: 4-Bromofluorobenzene	9.08		90.8	70-130	12/19/06	01/03/07
Surr: 1,2-Dichloroethane-d4	6.66		88.8	70-130	"	"
Surr: Toluene-d8	8.75		117	70-130	"	"
Surr: 1,2-Dichlorobenzene-d4	7.17		95.6	70-130	"	"

Targets

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
Acetone (67-64-1)	6.6		0.2	1	12/19/06	01/03/07
Benzene (71-43-2)	0.4		0.2	"	"	"
Benzyl chloride (100-44-7)	U		2.5	"	"	"
1,3-Butadiene (106-99-0)	U		0.2	"	"	"
2-Butanone (78-93-3)	3.9		0.2	"	"	"
Bromodichloromethane (75-27-4)	U		0.2	"	"	"
Bromoform (75-25-2)	U		0.2	"	"	"
Bromomethane (74-83-9)	U		0.2	"	"	"
Carbon disulfide (75-15-0)	U		0.2	"	"	"
Carbon tetrachloride (56-23-5)	U		0.2	"	"	"
Chlorobenzene (108-90-7)	U		0.2	"	"	"
Chlorodibromomethane (124-48-1)	U		0.2	"	"	"
Chloroethane (75-00-3)	U		0.2	"	"	"
Chloroform (67-66-3)	U		0.2	"	"	"
Chloromethane (74-87-3)	0.9		0.2	"	"	"
Cyclohexane (110-82-7)	U		0.2	"	"	"
1,2-Dibromoethane (106-93-4)	U		0.2	"	"	"
1,2-Dichlorobenzene (95-50-1)	U		0.2	"	"	"
1,3-Dichlorobenzene (541-73-1)	U		0.2	"	"	"
1,4-Dichlorobenzene (106-46-7)	U		0.2	"	"	"
Dichlorodifluoromethane (75-71-8)	0.5		0.2	"	"	"
1,1-Dichloroethane (75-34-3)	U		0.2	"	"	"
1,2-Dichloroethane (107-06-2)	U		0.2	"	"	"
1,1-Dichloroethene (75-35-4)	U		0.2	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U		0.2	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U		0.2	"	"	"
1,2-Dichloropropane (78-87-5)	U		0.2	"	"	"
cis-1,3-Dichloropropene (10061-01-5)	U		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 5 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-02 Station ID: K0175

Batch: B6L2002 Date Collected: 12/12/06 Initial Pressure: 14.3 psia Sample Type: air Sample Qualifiers:

Targets (Continued)

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
trans-1,3-Dichloropropene (10061-02-6)	U		0.2	1	12/19/06	01/03/07
1,2-Dichloro-1,1,2,2-tetrafluoroethane	Ü		0.2	"	"	"
(76-14-2)	-					
1,4-Dioxane (123-91-1)	U		2.5	"	"	"
Ethyl alcohol (64-17-5)	U		0.2	"	"	"
Ethyl acetate (141-78-6)	U		1.0	"	"	"
Ethylbenzene (100-41-4)	0.6		0.2	"	"	"
1-Ethyl-4-methylbenzene (622-96-8)	U		0.5	"	"	"
n-Heptane (142-82-5)	U		0.2	"	"	"
Hexachlorobutadiene (87-68-3)	U		0.2	"	"	"
n-Hexane (110-54-3)	0.6		0.2	"	"	"
2-Hexanone (591-78-6)	U		0.5	"	"	"
Isopropyl alcohol (67-63-0)	U		1.2	"	"	"
Methylene chloride (75-09-2)	0.2		0.2	"	"	"
4-Methyl-2-pentanone (108-10-1)	U		2.5	"	"	"
Methyl tertiary-butyl ether (1634-04-4)	0.2		0.2	"	"	"
Propene (115-07-1)	2.2		0.2	"	"	"
Styrene (100-42-5)	U		0.5	"	"	"
1,1,2,2-Tetrachloroethane (79-34-5)	U		0.2	"	"	"
Tetrachloroethene (127-18-4)	U		0.2	"	"	"
Tetrahydrofuran (109-99-9)	U		0.5	"	"	"
Toluene (108-88-3)	1.7		0.2	"	"	"
1,2,4-Trichlorobenzene (120-82-1)	U		0.2	"	"	"
1,1,1-Trichloroethane (71-55-6)	U		0.2	"	"	"
1,1,2-Trichloroethane (79-00-5)	U		0.2	"	"	"
Trichloroethene (79-01-6)	U		0.2	"	"	"
Trichlorofluoromethane (75-69-4)	0.2		0.2	"	"	"
1,1,2-Trichloro-1,2,2-trifluoroethane (76-13-1)	U		0.2	"	"	"
1,2,4-Trimethylbenzene (95-63-6)	0.3		0.2	"	"	"
1,3,5-Trimethylbenzene (108-67-8)	U		0.2	"	"	"
Vinyl acetate (108-05-4)	U		1.0	"	"	"
Vinyl chloride (75-01-4)	0.3		0.2	"	"	"
meta-/para-Xylene (na)	2.1		0.5	"	"	"
ortho-Xylene (95-47-6)	0.7		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 6 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-02 Station ID: K0175

Batch: B6L2002 Date Collected: 12/12/06 Initial Pressure: 14.3 psia Sample Type: air Sample Qualifiers:

Tentatively Identified Compounds

Compound (CAS)	Result ppbv	Analyte Retention Qualifiers Time	Dilution	Prepared	Analyzed
2,3-Dimethylbutane (79-29-8)	47	8.75	1	12/19/06	01/03/07
2,4-Dimethylpentane (108-08-7)	150	10.99	"	"	"
2,3-Dimethylpentane (565-59-3)	58	12.63	"	"	"
2,2,4-Trimethylpentane (540-84-1)	420	13.50	"	"	"
2,5-Dimethylhexane (592-13-2)	140	15.32	"	"	"
Branched alkanes (NA)	190	15.43	"	"	"
2,3,4-Trimethylpentane (565-75-3)	200	16.25	"	"	"
2,3,3-Trimethylpentane (560-21-4)	230	16.51	"	"	"
2,3-Dimethylhexane (584-94-1)	63	16.64	"	"	"
2,3,4-Trimethylhexane (16747-26-5)	120	17.68	"	"	"

The compounds listed are *tentatively* identified by the best match with the NIST or Wiley mass spectral data base or by manual interpretation. The concentrations are estimated based on a Response Factor of 1.0 to the nearest internal standard. A minimum of the top 10 most significant peaks that are at least 10% in area of the nearest internal standard are reported, excluding those found in the laboratory blank.

Report Name: 0612012 FINAL 02 26 07 0715

Page 7 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

0612012-03 Station ID: F1582 Lab ID:

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 14.2 psia Sample Qualifiers: Sample Type: air

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
Surr: 4-Bromofluorobenzene	9.55		95.5	70-130	12/19/06	01/03/07
Surr: 1,2-Dichloroethane-d4	8.45		113	70-130	"	"
Surr: Toluene-d8	7.70		103	70-130	"	"
Surr: 1,2-Dichlorobenzene-d4	7.80		104	70-130	"	"

Targets

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
Acetone (67-64-1)	U		0.2	1	12/19/06	01/03/07
Benzene (71-43-2)	1.7		0.2	"	"	01/03/07
Benzyl chloride (100-44-7)	U		2.5	"	"	"
1,3-Butadiene (106-99-0)	U		0.2	"	"	01/03/07
2-Butanone (78-93-3)	U		0.2	"	"	01/03/07
Bromodichloromethane (75-27-4)	U		0.2	"	"	"
Bromoform (75-25-2)	U		0.2	"	"	"
Bromomethane (74-83-9)	U		0.2	"	"	"
Carbon disulfide (75-15-0)	U		0.2	"	"	"
Carbon tetrachloride (56-23-5)	U		0.2	"	"	"
Chlorobenzene (108-90-7)	U		0.2	"	"	"
Chlorodibromomethane (124-48-1)	U		0.2	"	"	"
Chloroethane (75-00-3)	U		0.2	"	"	"
Chloroform (67-66-3)	0.3		0.2	"	"	"
Chloromethane (74-87-3)	0.6		0.2	"	"	"
Cyclohexane (110-82-7)	0.3		0.2	"	"	"
1,2-Dibromoethane (106-93-4)	U		0.2	"	"	"
1,2-Dichlorobenzene (95-50-1)	U		0.2	"	"	"
1,3-Dichlorobenzene (541-73-1)	U		0.2	"	"	"
1,4-Dichlorobenzene (106-46-7)	U		0.2	"	"	"
Dichlorodifluoromethane (75-71-8)	0.5		0.2	"	"	"
1,1-Dichloroethane (75-34-3)	U		0.2	"	"	"
1,2-Dichloroethane (107-06-2)	U		0.2	"	"	"
1,1-Dichloroethene (75-35-4)	U		0.2	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U		0.2	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U		0.2	"	"	"
1,2-Dichloropropane (78-87-5)	U		0.2	"	"	"
cis-1,3-Dichloropropene (10061-01-5)	U		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 8 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-03 Station ID: F1582

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 14.2 psia Sample Type: air Sample Qualifiers:

Targets (Continued)

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
trans-1,3-Dichloropropene (10061-02-6)	U		0.2	1	12/19/06	01/03/07
1,2-Dichloro-1,1,2,2-tetrafluoroethane	Ü		0.2	"	"	"
(76-14-2)			٠. <u>-</u>			
1,4-Dioxane (123-91-1)	2.8		2.5	"	"	"
Ethyl alcohol (64-17-5)	14.4		0.2	"	"	"
Ethyl acetate (141-78-6)	U		1.0	"	"	01/03/07
Ethylbenzene (100-41-4)	1.0		0.2	"	"	01/03/07
1-Ethyl-4-methylbenzene (622-96-8)	U		0.5	"	"	01/03/07
n-Heptane (142-82-5)	1.1		0.2	"	"	01/03/07
Hexachlorobutadiene (87-68-3)	U		0.2	"	"	"
n-Hexane (110-54-3)	1.7		0.2	"	"	"
2-Hexanone (591-78-6)	U		0.5	"	"	"
Isopropyl alcohol (67-63-0)	U		1.2	"	"	01/03/07
Methylene chloride (75-09-2)	0.6		0.2	"	"	01/03/07
4-Methyl-2-pentanone (108-10-1)	U		2.5	"	"	01/03/07
Methyl tertiary-butyl ether (1634-04-4)	U		0.2	"	"	01/03/07
Propene (115-07-1)	13.9		0.2	"	"	"
Styrene (100-42-5)	2.2		0.5	"	"	"
1,1,2,2-Tetrachloroethane (79-34-5)	U		0.2	"	"	"
Tetrachloroethene (127-18-4)	0.2		0.2	"	"	"
Tetrahydrofuran (109-99-9)	U		0.5	"	"	"
Toluene (108-88-3)	5.2		0.2	"	"	"
1,2,4-Trichlorobenzene (120-82-1)	U		0.2	"	"	"
1,1,1-Trichloroethane (71-55-6)	U		0.2	"	"	"
1,1,2-Trichloroethane (79-00-5)	U		0.2	"	"	"
Trichloroethene (79-01-6)	U		0.2	"	"	"
Trichlorofluoromethane (75-69-4)	0.3		0.2	"	"	"
1,1,2-Trichloro-1,2,2-trifluoroethane (76-13-1)	U		0.2	"	"	"
1,2,4-Trimethylbenzene (95-63-6)	1.1		0.2	"	"	"
1,3,5-Trimethylbenzene (108-67-8)	0.3		0.2	"	"	"
Vinyl acetate (108-05-4)	U		1.0	"	"	"
Vinyl chloride (75-01-4)	U		0.2	"	"	"
meta-/para-Xylene (na)	2.8		0.5	"	"	"
ortho-Xylene (95-47-6)	1.0		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 9 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-03 Station ID: F1582

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 14.2 psia Sample Type: air Sample Qualifiers:

Tentatively Identified Compounds

Compound (CAS)	Result ppbv	Analyte Retention Qualifiers Time	Dilution	Prepared	Analyzed
Isobutane (75-28-5)	18	5.32	1	12/19/06	01/03/07
1-Butene (106-98-9)	2	5.51	"	"	"
n-Butane (106-97-8)	13	5.60	"	"	"
2-Methylbutane (78-78-4)	6	6.43	"	"	"
n-Pentane (109-66-0)	5	7.06	"	"	"
2-Methylpentane (107-83-5)	4	8.84	"	"	"
3-Methylpentane (96-14-0)	2	9.32	"	"	"
3-Methylhexane (589-34-4)	2	12.87	"	"	"
2,2-Dimethylhexane (590-73-8)	3	13.50	"	"	01/03/07
C3-Alkylbenzene (NA)	2	25.02	"	"	01/03/07

The compounds listed are *tentatively* identified by the best match with the NIST or Wiley mass spectral data base or by manual interpretation. The concentrations are estimated based on a Response Factor of 1.0 to the nearest internal standard. A minimum of the top 10 most significant peaks that are at least 10% in area of the nearest internal standard are reported, excluding those found in the laboratory blank.

Report Name: 0612012 FINAL 02 26 07 0715

Page 10 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

0612012-04 Station ID: A1498 Lab ID:

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 14.6 psia Sample Type: air

Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
Surr: 4-Bromofluorobenzene	10.7		107	70-130	12/19/06	01/05/07
Surr: 1,2-Dichloroethane-d4	8.73		116	70-130	"	"
Surr: Toluene-d8	7.69		103	70-130	"	"
Surr: 1,2-Dichlorobenzene-d4	7.41		98.8	70-130	"	"

Targets

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
Acetone (67-64-1)	15.4		0.2	1	12/19/06	01/05/07
Benzene (71-43-2)	1.8		0.2	"	"	"
Benzyl chloride (100-44-7)	U		2.5	"	"	"
1,3-Butadiene (106-99-0)	0.2		0.2	"	"	"
2-Butanone (78-93-3)	U		0.2	"	"	"
Bromodichloromethane (75-27-4)	U		0.2	"	"	"
Bromoform (75-25-2)	U		0.2	"	"	"
Bromomethane (74-83-9)	U		0.2	"	"	"
Carbon disulfide (75-15-0)	U		0.2	"	"	"
Carbon tetrachloride (56-23-5)	U		0.2	"	"	"
Chlorobenzene (108-90-7)	U		0.2	"	"	"
Chlorodibromomethane (124-48-1)	U		0.2	"	"	"
Chloroethane (75-00-3)	U		0.2	"	"	"
Chloroform (67-66-3)	0.4		0.2	"	"	"
Chloromethane (74-87-3)	0.9		0.2	"	"	"
Cyclohexane (110-82-7)	0.4		0.2	"	"	"
1,2-Dibromoethane (106-93-4)	U		0.2	"	"	"
1,2-Dichlorobenzene (95-50-1)	U		0.2	"	"	"
1,3-Dichlorobenzene (541-73-1)	U		0.2	"	"	"
1,4-Dichlorobenzene (106-46-7)	0.3		0.2	"	"	"
Dichlorodifluoromethane (75-71-8)	0.6		0.2	"	"	"
1,1-Dichloroethane (75-34-3)	U		0.2	"	"	"
1,2-Dichloroethane (107-06-2)	U		0.2	"	"	"
1,1-Dichloroethene (75-35-4)	U		0.2	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U		0.2	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U		0.2	"	"	"
1,2-Dichloropropane (78-87-5)	U		0.2	"	"	"
cis-1,3-Dichloropropene (10061-01-5)	U		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 11 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-04 Station ID: A1498

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 14.6 psia Sample Type: air Sample Qualifiers:

Targets (Continued)

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
trans-1,3-Dichloropropene (10061-02-6)	U		0.2	1	12/19/06	01/05/07
1,2-Dichloro-1,1,2,2-tetrafluoroethane	U		0.2	1	"	"
(76-14-2)	O		0.2			
1,4-Dioxane (123-91-1)	4.1		2.5	"	"	"
Ethyl alcohol (64-17-5)	17.1		0.2	"	"	"
Ethyl acetate (141-78-6)	U		1.0	"	"	"
Ethylbenzene (100-41-4)	6.1		0.2	"	"	"
1-Ethyl-4-methylbenzene (622-96-8)	0.5		0.5	"	"	"
n-Heptane (142-82-5)	1.6		0.2	"	"	"
Hexachlorobutadiene (87-68-3)	U		0.2	"	"	"
n-Hexane (110-54-3)	2.2		0.2	"	"	"
2-Hexanone (591-78-6)	U		0.5	"	"	"
Isopropyl alcohol (67-63-0)	U		1.2	"	"	"
Methylene chloride (75-09-2)	0.7		0.2	"	"	"
4-Methyl-2-pentanone (108-10-1)	U		2.5	"	"	"
Methyl tertiary-butyl ether (1634-04-4)	0.2		0.2	"	"	"
Propene (115-07-1)	14.8		0.2	"	"	"
Styrene (100-42-5)	113		5.0	10	"	01/03/07
1,1,2,2-Tetrachloroethane (79-34-5)	U		0.2	1	"	01/05/07
Tetrachloroethene (127-18-4)	0.3		0.2	"	"	"
Tetrahydrofuran (109-99-9)	U		0.5	"	"	"
Toluene (108-88-3)	6.7		0.2	"	"	"
1,2,4-Trichlorobenzene (120-82-1)	0.2		0.2	"	"	"
1,1,1-Trichloroethane (71-55-6)	U		0.2	"	"	"
1,1,2-Trichloroethane (79-00-5)	U		0.2	"	"	"
Trichloroethene (79-01-6)	U		0.2	"	"	"
Trichlorofluoromethane (75-69-4)	0.4		0.2	"	"	"
1,1,2-Trichloro-1,2,2-trifluoroethane (76-13-1)	U		0.2	"	"	"
1,2,4-Trimethylbenzene (95-63-6)	1.4		0.2	"	"	"
1,3,5-Trimethylbenzene (108-67-8)	0.4		0.2	"	"	"
Vinyl acetate (108-05-4)	U		1.0	"	"	"
Vinyl chloride (75-01-4)	U		0.2	"	"	"
meta-/para-Xylene (na)	4.0		0.5	"	"	"
ortho-Xylene (95-47-6)	1.5		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 12 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-04 Station ID: A1498

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 14.6 psia Sample Type: air Sample Qualifiers:

Tentatively Identified Compounds

Compound (CAS)	Result ppbv	Analyte Retention Qualifiers Time	Dilution	Prepared	Analyzed
Isobutane (75-28-5)	3	5.31	1	12/19/06	01/05/07
n-Butane (106-97-8)	12	5.60	"	"	"
2-Methylbutane (78-78-4)	12	6.57	"	"	"
n-Pentane (109-66-0)	5	7.05	"	"	"
2-Methylpentane (107-83-5)	4	8.84	"	"	"
Methylcyclopentane (96-37-7)	4	10.95	"	"	"
3-Methylhexane (589-34-4)	3	12.87	"	"	"
n-Decane (124-18-5)	2	26.62	"	"	"
C3-Alkylbenzene (NA)	1	27.51	"	"	"
C4-Alkylbenzene (NA)	2	28.59	"	"	"

The compounds listed are *tentatively* identified by the best match with the NIST or Wiley mass spectral data base or by manual interpretation. The concentrations are estimated based on a Response Factor of 1.0 to the nearest internal standard. A minimum of the top 10 most significant peaks that are at least 10% in area of the nearest internal standard are reported, excluding those found in the laboratory blank.

Report Name: 0612012 FINAL 02 26 07 0715

Page 13 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

0612012-05 Station ID: F1496 Lab ID:

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 14.7 psia Sample Type: air

Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
Surr: 4-Bromofluorobenzene	9.84		98.4	70-130	12/19/06	01/05/07
Surr: 1,2-Dichloroethane-d4	6.78		90.4	70-130	"	"
Surr: Toluene-d8	7.54		101	70-130	"	"
Surr: 1,2-Dichlorobenzene-d4	7.08		94.4	70-130	"	"

Targets

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
Acetone (67-64-1)	10.4		0.2	1	12/19/06	01/05/07
Benzene (71-43-2)	8.5		0.2	"	"	"
Benzyl chloride (100-44-7)	U		2.5	"	"	"
1,3-Butadiene (106-99-0)	U		0.2	"	"	"
2-Butanone (78-93-3)	U		0.2	"	"	"
Bromodichloromethane (75-27-4)	U		0.2	"	"	"
Bromoform (75-25-2)	U		0.2	"	"	"
Bromomethane (74-83-9)	U		0.2	"	"	"
Carbon disulfide (75-15-0)	U		0.2	"	"	"
Carbon tetrachloride (56-23-5)	U		0.2	"	"	"
Chlorobenzene (108-90-7)	U		0.2	"	"	"
Chlorodibromomethane (124-48-1)	U		0.2	"	"	"
Chloroethane (75-00-3)	U		0.2	"	"	"
Chloroform (67-66-3)	0.2		0.2	"	"	"
Chloromethane (74-87-3)	0.8		0.2	"	"	"
Cyclohexane (110-82-7)	9.7		0.2	"	"	"
1,2-Dibromoethane (106-93-4)	U		0.2	"	"	"
1,2-Dichlorobenzene (95-50-1)	U		0.2	"	"	"
1,3-Dichlorobenzene (541-73-1)	U		0.2	"	"	"
1,4-Dichlorobenzene (106-46-7)	U		0.2	"	"	"
Dichlorodifluoromethane (75-71-8)	0.6		0.2	"	"	"
1,1-Dichloroethane (75-34-3)	U		0.2	"	"	"
1,2-Dichloroethane (107-06-2)	U		0.2	"	"	"
1,1-Dichloroethene (75-35-4)	U		0.2	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U		0.2	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U		0.2	"	"	"
1,2-Dichloropropane (78-87-5)	U		0.2	"	"	"
cis-1,3-Dichloropropene (10061-01-5)	U		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 14 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-05 Station ID: F1496

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 14.7 psia Sample Type: air Sample Qualifiers:

Targets (Continued)

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
		Qualificis			•	
trans-1,3-Dichloropropene (10061-02-6)	U		0.2	1	12/19/06	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	U		0.2	"	"	"
(76-14-2)	* *		2.5	"	"	"
1,4-Dioxane (123-91-1)	U		2.5		"	01/05/07
Ethyl alcohol (64-17-5)	41.4		1.2	5	"	
Ethyl acetate (141-78-6)	U		1.0	1	"	01/05/07
Ethylbenzene (100-41-4)	1.6		0.2	"	"	"
1-Ethyl-4-methylbenzene (622-96-8)	U		0.5	"	"	"
n-Heptane (142-82-5)	4.7		0.2	"	"	"
Hexachlorobutadiene (87-68-3)	U		0.2		"	
n-Hexane (110-54-3)	48.0		1.2	5	"	01/05/07
2-Hexanone (591-78-6)	U		0.5	1	"	01/05/07
Isopropyl alcohol (67-63-0)	U		1.2	"	"	"
Methylene chloride (75-09-2)	0.7		0.2		"	"
4-Methyl-2-pentanone (108-10-1)	U		2.5	"	"	"
Methyl tertiary-butyl ether (1634-04-4)	U		0.2	"	"	"
Propene (115-07-1)	22.2		0.2	"	"	"
Styrene (100-42-5)	16.4		0.5		"	"
1,1,2,2-Tetrachloroethane (79-34-5)	U		0.2	"	"	"
Tetrachloroethene (127-18-4)	0.2		0.2			
Tetrahydrofuran (109-99-9)	U		0.5	"	"	"
Toluene (108-88-3)	6.2		0.2	"	"	"
1,2,4-Trichlorobenzene (120-82-1)	U		0.2	"	"	"
1,1,1-Trichloroethane (71-55-6)	U		0.2	"	"	"
1,1,2-Trichloroethane (79-00-5)	U		0.2	"	"	"
Trichloroethene (79-01-6)	U		0.2	"	"	"
Trichlorofluoromethane (75-69-4)	0.3		0.2	"	"	"
1,1,2-Trichloro-1,2,2-trifluoroethane (76-13-1)	U		0.2	"	"	"
1,2,4-Trimethylbenzene (95-63-6)	1.2		0.2	"	"	"
1,3,5-Trimethylbenzene (108-67-8)	0.4		0.2	"	"	"
Vinyl acetate (108-05-4)	U		1.0	"	"	"
Vinyl chloride (75-01-4)	U		0.2	"	"	"
meta-/para-Xylene (na)	3.2		0.5	"	"	"
ortho-Xylene (95-47-6)	1.2		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 15 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-05 Station ID: F1496

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 14.7 psia Sample Type: air Sample Qualifiers:

Tentatively Identified Compounds

Compound (CAS)	Result ppbv	Analyte Retention Qualifiers Time	Dilution	Prepared	Analyzed
Isobutane (75-28-5)	4	5.31	1	12/19/06	01/05/07
n-Butane (106-97-8)	4	5.60	"	"	"
2-Methylbutane (78-78-4)	5	6.57	"	"	"
n-Pentane (109-66-0)	3	7.05	"	"	"
2-Methylpentane (107-83-5)	10	8.84	"	"	"
3-Methylpentane (96-14-0)	7	9.32	"	"	"
Methylcyclopentane (96-37-7)	8	10.96	"	"	"
2,3-Dimethylpentane (565-59-3)	3	12.63	"	"	"
3-Methylhexane (589-34-4)	7	12.87	"	"	"
Methylcyclohexane (108-87-2)	4	15.01	"	"	"

The compounds listed are *tentatively* identified by the best match with the NIST or Wiley mass spectral data base or by manual interpretation. The concentrations are estimated based on a Response Factor of 1.0 to the nearest internal standard. A minimum of the top 10 most significant peaks that are at least 10% in area of the nearest internal standard are reported, excluding those found in the laboratory blank.

Report Name: 0612012 FINAL 02 26 07 0715

Page 16 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

0612012-06 Station ID: B0125 Lab ID:

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 14.5 psia Sample Type: air

Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
Surr: 4-Bromofluorobenzene	9.51		95.1	70-130	12/19/06	01/05/07
Surr: 1,2-Dichloroethane-d4	8.82		118	70-130	"	"
Surr: Toluene-d8	7.53		100	70-130	"	"
Surr: 1,2-Dichlorobenzene-d4	6.51		86.8	70-130	"	"

Targets

Analyta (CAS Number)	Result ppbv	Analyte	Reporting	Diludia :	Duamani 1	A molecus d
Analyte (CAS Number)		Qualifiers	Limit	Dilution	*	Analyzed
Acetone (67-64-1)	1.5		0.2	1	12/19/06	01/05/07
Benzene (71-43-2)	114		2.5	10	"	01/05/07
Benzyl chloride (100-44-7)	U		2.5	1	"	01/05/07
1,3-Butadiene (106-99-0)	U		0.2	"	"	"
2-Butanone (78-93-3)	72.7		2.5	10	"	01/05/07
Bromodichloromethane (75-27-4)	U		0.2	1	"	01/05/07
Bromoform (75-25-2)	U		0.2	"	"	"
Bromomethane (74-83-9)	U		0.2	"	"	"
Carbon disulfide (75-15-0)	U		0.2	"	"	"
Carbon tetrachloride (56-23-5)	U		0.2	"	"	"
Chlorobenzene (108-90-7)	U		0.2	"	"	"
Chlorodibromomethane (124-48-1)	U		0.2	"	"	"
Chloroethane (75-00-3)	U		0.2	"	"	"
Chloroform (67-66-3)	U		0.2	"	"	"
Chloromethane (74-87-3)	0.7		0.2	"	"	"
Cyclohexane (110-82-7)	1.6		0.2	"	"	"
1,2-Dibromoethane (106-93-4)	U		0.2	"	"	"
1,2-Dichlorobenzene (95-50-1)	U		0.2	"	"	"
1,3-Dichlorobenzene (541-73-1)	U		0.2	"	"	"
1,4-Dichlorobenzene (106-46-7)	U		0.2	"	"	"
Dichlorodifluoromethane (75-71-8)	0.6		0.2	"	"	"
1,1-Dichloroethane (75-34-3)	U		0.2	"	"	"
1,2-Dichloroethane (107-06-2)	U		0.2	"	"	"
1,1-Dichloroethene (75-35-4)	U		0.2	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U		0.2	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U		0.2	"	"	"
1,2-Dichloropropane (78-87-5)	U		0.2	"	"	"
cis-1,3-Dichloropropene (10061-01-5)	U		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 17 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

0612012-06 Station ID: B0125 Lab ID:

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 14.5 psia Sample Type: air

Sample Qualifiers:

Targets (Continued)

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
trans-1,3-Dichloropropene (10061-02-6)	U		0.2	1	12/19/06	01/05/07
1,2-Dichloro-1,1,2,2-tetrafluoroethane	Ü		0.2	"	"	"
(76-14-2)			٠. ـ			
1,4-Dioxane (123-91-1)	U		2.5	"	"	"
Ethyl alcohol (64-17-5)	14.9		0.2	"	"	"
Ethyl acetate (141-78-6)	U		1.0	"	"	"
Ethylbenzene (100-41-4)	0.3		0.2	"	"	"
1-Ethyl-4-methylbenzene (622-96-8)	U		0.5	"	"	"
n-Heptane (142-82-5)	0.6		0.2	"	"	"
Hexachlorobutadiene (87-68-3)	U		0.2	"	"	"
n-Hexane (110-54-3)	9.4		0.2	"	"	"
2-Hexanone (591-78-6)	U		0.5	"	"	"
Isopropyl alcohol (67-63-0)	5.1		1.2	"	"	"
Methylene chloride (75-09-2)	U		0.2	"	"	"
4-Methyl-2-pentanone (108-10-1)	U		2.5	"	"	"
Methyl tertiary-butyl ether (1634-04-4)	22.7		2.5	10	"	01/05/07
Propene (115-07-1)	10.8		0.2	1	"	01/05/07
Styrene (100-42-5)	0.7		0.5	"	"	"
1,1,2,2-Tetrachloroethane (79-34-5)	U		0.2	"	"	"
Tetrachloroethene (127-18-4)	U		0.2	"	"	"
Tetrahydrofuran (109-99-9)	U		0.5	"	"	"
Toluene (108-88-3)	5.5		0.2	"	"	"
1,2,4-Trichlorobenzene (120-82-1)	U		0.2	"	"	"
1,1,1-Trichloroethane (71-55-6)	U		0.2	"	"	"
1,1,2-Trichloroethane (79-00-5)	U		0.2	"	"	"
Trichloroethene (79-01-6)	U		0.2	"	"	"
Trichlorofluoromethane (75-69-4)	0.2		0.2	"	"	"
1,1,2-Trichloro-1,2,2-trifluoroethane (76-13-1)	U		0.2	"	"	"
1,2,4-Trimethylbenzene (95-63-6)	U		0.2	"	"	"
1,3,5-Trimethylbenzene (108-67-8)	U		0.2	"	"	"
Vinyl acetate (108-05-4)	U		1.0	"	"	"
Vinyl chloride (75-01-4)	U		0.2	"	"	"
meta-/para-Xylene (na)	1.3		0.5	"	"	"
ortho-Xylene (95-47-6)	0.3		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 18 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-06 Station ID: B0125

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 14.5 psia Sample Type: air Sample Qualifiers:

Tentatively Identified Compounds

Compound (CAS)	Result ppbv	Analyte Retention Qualifiers Time	Dilution	Prepared	Analyzed
Isobutane (75-28-5)	12	5.31	1	12/19/06	01/05/07
n-Butane (106-97-8)	14	5.60	"	"	"
2-Methylbutane (78-78-4)	11	6.57	"	"	"
n-Pentane (109-66-0)	8	7.05	"	"	"
3-Methylpentane (96-14-0)	8	9.31	"	"	"
Methylcyclopentane (96-37-7)	10	10.96	"	"	"
2,2,4-Trimethylpentane (540-84-1)	7	13.49	"	"	"
C5-Alkane: Branched (NA)	3	16.23	"	"	"
5-Methyl-1-heptene (13151-04-7)	5	16.72	"	"	"
1-Octene (111-66-0)	3,600	17.82	10	"	"

The compounds listed are *tentatively* identified by the best match with the NIST or Wiley mass spectral data base or by manual interpretation. The concentrations are estimated based on a Response Factor of 1.0 to the nearest internal standard. A minimum of the top 10 most significant peaks that are at least 10% in area of the nearest internal standard are reported, excluding those found in the laboratory blank.

Report Name: 0612012 FINAL 02 26 07 0715

Page 19 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

0612012-07 Station ID: H1499 Lab ID:

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 14.2 psia Sample Type: air

Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
Surr: 4-Bromofluorobenzene	11.4		114	70-130	12/19/06	01/05/07
Surr: 1,2-Dichloroethane-d4	8.54		114	70-130	"	"
Surr: Toluene-d8	7.82		104	70-130	"	"
Surr: 1,2-Dichlorobenzene-d4	8.61		115	70-130	"	"

Targets

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
		Zuminion			*	•
Acetone (67-64-1)	U 3.1		0.2	1	12/19/06	01/05/07
Benzene (71-43-2)			0.2	"	"	"
Benzyl chloride (100-44-7)	U		2.5		"	"
1,3-Butadiene (106-99-0)	U		0.2	"		
2-Butanone (78-93-3)	U		0.2	"	"	"
Bromodichloromethane (75-27-4)	U		0.2	"	"	"
Bromoform (75-25-2)	U		0.2	"	"	"
Bromomethane (74-83-9)	U		0.2	"	"	"
Carbon disulfide (75-15-0)	U		0.2	"	"	"
Carbon tetrachloride (56-23-5)	U		0.2	"	"	"
Chlorobenzene (108-90-7)	U		0.2	"	"	"
Chlorodibromomethane (124-48-1)	U		0.2	"	"	"
Chloroethane (75-00-3)	U		0.2	"	"	"
Chloroform (67-66-3)	0.3		0.2	"	11	"
Chloromethane (74-87-3)	1.0		0.2	"	"	"
Cyclohexane (110-82-7)	4.0		0.2	"	"	"
1,2-Dibromoethane (106-93-4)	U		0.2	"	"	"
1,2-Dichlorobenzene (95-50-1)	U		0.2	"	"	"
1,3-Dichlorobenzene (541-73-1)	U		0.2	"	"	"
1,4-Dichlorobenzene (106-46-7)	U		0.2	"	11	"
Dichlorodifluoromethane (75-71-8)	0.5		0.2	"	"	"
1,1-Dichloroethane (75-34-3)	U		0.2	"	"	"
1,2-Dichloroethane (107-06-2)	U		0.2	"	"	"
1,1-Dichloroethene (75-35-4)	U		0.2	"	"	"
cis-1,2-Dichloroethene (156-59-2)	Ü		0.2	"	"	"
trans-1,2-Dichloroethene (156-60-5)	Ü		0.2	"	"	"
1,2-Dichloropropane (78-87-5)	U		0.2	"	"	"
cis-1,3-Dichloropropene (10061-01-5)	Ü		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 20 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-07 Station ID: H1499

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 14.2 psia Sample Type: air Sample Qualifiers:

Targets (Continued)

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
			0.2		•	
trans-1,3-Dichloropropene (10061-02-6)	U U		0.2	1	12/19/06	01/05/07
1,2-Dichloro-1,1,2,2-tetrafluoroethane (76-14-2)	U		0.2			
1,4-Dioxane (123-91-1)	U		2.5	"	"	"
Ethyl alcohol (64-17-5)	U		0.2	"	"	"
Ethyl acetate (141-78-6)	U		1.0	"	"	"
Ethylbenzene (100-41-4)	3.6		0.2	"	"	**
1-Ethyl-4-methylbenzene (622-96-8)	4.6		0.5	"	"	**
n-Heptane (142-82-5)	13.5		0.2	"	"	"
Hexachlorobutadiene (87-68-3)	U		0.2	"	"	"
n-Hexane (110-54-3)	10.3		0.2	"	"	"
2-Hexanone (591-78-6)	U		0.5	"	"	**
Isopropyl alcohol (67-63-0)	U		1.2	"	"	**
Methylene chloride (75-09-2)	U		0.2	"	"	**
4-Methyl-2-pentanone (108-10-1)	U		2.5	"	"	**
Methyl tertiary-butyl ether (1634-04-4)	18.4		0.2	"	"	"
Propene (115-07-1)	9.1		0.2	11	"	"
Styrene (100-42-5)	U		0.5	"	"	"
1,1,2,2-Tetrachloroethane (79-34-5)	U		0.2	"	"	"
Tetrachloroethene (127-18-4)	U		0.2	"	"	"
Tetrahydrofuran (109-99-9)	U		0.5	"	"	"
Toluene (108-88-3)	12.5		0.2	"	"	"
1,2,4-Trichlorobenzene (120-82-1)	U		0.2	"	"	"
1,1,1-Trichloroethane (71-55-6)	U		0.2	"	"	"
1,1,2-Trichloroethane (79-00-5)	U		0.2	"	"	"
Trichloroethene (79-01-6)	U		0.2	"	"	"
Trichlorofluoromethane (75-69-4)	0.2		0.2	"	"	"
1,1,2-Trichloro-1,2,2-trifluoroethane (76-13-1)	U		0.2	"	"	"
1,2,4-Trimethylbenzene (95-63-6)	16.0		0.2	"	"	"
1,3,5-Trimethylbenzene (108-67-8)	4.2		0.2	"	"	"
Vinyl acetate (108-05-4)	U		1.0	"	"	"
Vinyl chloride (75-01-4)	U		0.2	"	"	"
meta-/para-Xylene (na)	21.7		0.5	"	"	"
ortho-Xylene (95-47-6)	8.5		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 21 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-07 Station ID: H1499

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 14.2 psia Sample Type: air Sample Qualifiers:

Tentatively Identified Compounds

Compound (CAS)	Result ppbv	Analyte Retention Qualifiers Time	Dilution	Prepared	Analyzed
Isobutane (75-28-5)	12	5.32	1	12/19/06	01/05/07
3-Methylpentane (96-14-0)	14	9.32	"	"	"
Branched Alkane(s) at 13.49' (NA)	34	13.49	"	"	"
n-Octane (111-65-9)	13	18.31	"	"	"
n-Nonane (111-84-2)	30	22.61	"	"	"
2,6-Dimethyloctane (2051-30-1)	17	24.11	"	"	"
C3-Alkylbenzene at 25.01' (NA)	15	25.01	"	"	"
n-Decane (124-18-5)	37	26.62	"	"	"
Alkylbenzene at 27.51' (NA)	18	27.51	"	"	"
n-Undecane (1120-21-4)	20	29.97	"	"	"

The compounds listed are *tentatively* identified by the best match with the NIST or Wiley mass spectral data base or by manual interpretation. The concentrations are estimated based on a Response Factor of 1.0 to the nearest internal standard. A minimum of the top 10 most significant peaks that are at least 10% in area of the nearest internal standard are reported, excluding those found in the laboratory blank.

Report Name: 0612012 FINAL 02 26 07 0715

Page 22 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

0612012-08 Station ID: J0165 Lab ID:

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 13.6 psia Sample Type: air

Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
Surr: 4-Bromofluorobenzene	9.62		96.2	70-130	12/19/06	01/05/07
Surr: 1,2-Dichloroethane-d4	8.38		112	70-130	"	"
Surr: Toluene-d8	7.49		99.9	70-130	"	"
Surr: 1,2-Dichlorobenzene-d4	7.03		93.7	70-130	"	"

Targets

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
Acetone (67-64-1)	U		0.2	1	12/19/06	01/05/07
Benzene (71-43-2)	1.2		0.2	"	"	"
Benzyl chloride (100-44-7)	U		2.5	"	"	"
1,3-Butadiene (106-99-0)	21.9		0.2	"	"	"
2-Butanone (78-93-3)	U		0.2	"	"	"
Bromodichloromethane (75-27-4)	Ü		0.2	"	"	"
Bromoform (75-25-2)	U		0.2	"	"	"
Bromomethane (74-83-9)	U		0.2	"	"	"
Carbon disulfide (75-15-0)	U		0.2	"	"	"
Carbon tetrachloride (56-23-5)	U		0.2	"	"	"
Chlorobenzene (108-90-7)	U		0.2	"	"	"
Chlorodibromomethane (124-48-1)	U		0.2	"	"	"
Chloroethane (75-00-3)	U		0.2	"	"	"
Chloroform (67-66-3)	U		0.2	"	"	"
Chloromethane (74-87-3)	0.8		0.2	"	"	"
Cyclohexane (110-82-7)	0.6		0.2	"	"	"
1,2-Dibromoethane (106-93-4)	U		0.2	"	"	"
1,2-Dichlorobenzene (95-50-1)	U		0.2	"	"	"
1,3-Dichlorobenzene (541-73-1)	U		0.2	"	"	"
1,4-Dichlorobenzene (106-46-7)	U		0.2	"	"	"
Dichlorodifluoromethane (75-71-8)	0.6		0.2	"	"	"
1,1-Dichloroethane (75-34-3)	U		0.2	"	"	"
1,2-Dichloroethane (107-06-2)	U		0.2	"	"	"
1,1-Dichloroethene (75-35-4)	U		0.2	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U		0.2	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U		0.2	"	"	"
1,2-Dichloropropane (78-87-5)	U		0.2	"	"	"
cis-1,3-Dichloropropene (10061-01-5)	U		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 23 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-08 Station ID: J0165

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 13.6 psia Sample Type: air Sample Qualifiers:

Targets (Continued)

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
	U		0.2		12/19/06	
trans-1,3-Dichloropropene (10061-02-6)	U		0.2	1	12/19/00	01/05/07
1,2-Dichloro-1,1,2,2-tetrafluoroethane (76-14-2)	U		0.2			
1,4-Dioxane (123-91-1)	U		2.5	"	"	"
Ethyl alcohol (64-17-5)	U		0.2	"	"	"
Ethyl acetate (141-78-6)	Ü		1.0	"	"	"
Ethylbenzene (100-41-4)	0.3		0.2	"	"	"
1-Ethyl-4-methylbenzene (622-96-8)	U		0.5	"	"	"
n-Heptane (142-82-5)	0.7		0.2	"	"	"
Hexachlorobutadiene (87-68-3)	U		0.2	"	"	"
n-Hexane (110-54-3)	1.7		0.2	"	"	"
2-Hexanone (591-78-6)	U		0.5	"	"	"
Isopropyl alcohol (67-63-0)	U		1.2	"	"	"
Methylene chloride (75-09-2)	U		0.2	"	"	"
4-Methyl-2-pentanone (108-10-1)	U		2.5	"	"	"
Methyl tertiary-butyl ether (1634-04-4)	U		0.2	"	"	"
Propene (115-07-1)	20.0		0.2	"	"	"
Styrene (100-42-5)	13.6		0.5	"	"	"
1,1,2,2-Tetrachloroethane (79-34-5)	U		0.2	"	"	"
Tetrachloroethene (127-18-4)	0.6		0.2	"	"	"
Tetrahydrofuran (109-99-9)	U		0.5	"	"	"
Toluene (108-88-3)	2.2		0.2	"	"	"
1,2,4-Trichlorobenzene (120-82-1)	U		0.2	"	"	"
1,1,1-Trichloroethane (71-55-6)	U		0.2	"	"	"
1,1,2-Trichloroethane (79-00-5)	U		0.2	"	"	"
Trichloroethene (79-01-6)	U		0.2	"	"	"
Trichlorofluoromethane (75-69-4)	0.3		0.2	"	"	"
1,1,2-Trichloro-1,2,2-trifluoroethane (76-13-1)	U		0.2	"	"	"
1,2,4-Trimethylbenzene (95-63-6)	0.4		0.2	"	"	"
1,3,5-Trimethylbenzene (108-67-8)	U		0.2	"	"	"
Vinyl acetate (108-05-4)	U		1.0	"	"	"
Vinyl chloride (75-01-4)	U		0.2	"	"	"
meta-/para-Xylene (na)	1.2		0.5	"	"	"
ortho-Xylene (95-47-6)	0.4		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 24 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-08 Station ID: J0165

Batch: B6L2002 Date Collected: 12/13/06 Initial Pressure: 13.6 psia Sample Type: air Sample Qualifiers:

Tentatively Identified Compounds

Compound (CAS)	Result ppbv	Analyte Retention Qualifiers Time	Dilution	Prepared	Analyzed
Isobutane (75-28-5)	22	5.32	1	12/19/06	01/05/07
n-Butane (106-97-8)	17	5.60	"	"	"
2-Methylbutane (78-78-4)	9	6.57	"	"	"
n-Pentane (109-66-0)	9	7.05	"	"	"
2-Methylpropanol (75-65-0)	6	8.42	"	"	"
2,3-Dimethylbutane (79-29-8)	2	8.75	"	"	"
2-Methylpentane (107-83-5)	4	8.85	"	"	"
3-Methylpentane (96-14-0)	2	9.32	"	"	"
Alkane(s) (NA)	2	13.50	"	"	"
Methylcyclohexane (108-87-2)	2	15.01	"	"	"

The compounds listed are *tentatively* identified by the best match with the NIST or Wiley mass spectral data base or by manual interpretation. The concentrations are estimated based on a Response Factor of 1.0 to the nearest internal standard. A minimum of the top 10 most significant peaks that are at least 10% in area of the nearest internal standard are reported, excluding those found in the laboratory blank.

Report Name: 0612012 FINAL 02 26 07 0715

Page 25 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

0612012-09 Station ID: C1161 Lab ID:

Batch: B6L2002 Date Collected: 12/14/06 Initial Pressure: 13.7 psia Sample Type: air

Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
Surr: 4-Bromofluorobenzene	9.83		98.3	70-130	12/19/06	01/05/07
Surr: 1,2-Dichloroethane-d4	8.26		110	70-130	"	"
Surr: Toluene-d8	7.50		100	70-130	"	"
Surr: 1,2-Dichlorobenzene-d4	7.54		101	70-130	"	"

Targets

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting	Dibution	Dranaga	Analyzad
		Qualifiers	Limit	Dilution	*	Analyzed
Acetone (67-64-1)	2.4		0.2	1	12/19/06	01/05/07
Benzene (71-43-2)	1.0		0.2	"	"	"
Benzyl chloride (100-44-7)	U		2.5	"	"	"
1,3-Butadiene (106-99-0)	3.3		0.2	"	"	"
2-Butanone (78-93-3)	U		0.2	"	"	"
Bromodichloromethane (75-27-4)	U		0.2	"	"	"
Bromoform (75-25-2)	U		0.2	"	"	"
Bromomethane (74-83-9)	U		0.2	"	"	"
Carbon disulfide (75-15-0)	U		0.2	"	"	"
Carbon tetrachloride (56-23-5)	U		0.2	"	"	"
Chlorobenzene (108-90-7)	U		0.2	"	"	"
Chlorodibromomethane (124-48-1)	U		0.2	"	"	"
Chloroethane (75-00-3)	U		0.2	"	"	"
Chloroform (67-66-3)	0.2		0.2	"	"	"
Chloromethane (74-87-3)	0.7		0.2	"	"	"
Cyclohexane (110-82-7)	0.3		0.2	"	"	"
1,2-Dibromoethane (106-93-4)	U		0.2	"	"	"
1,2-Dichlorobenzene (95-50-1)	U		0.2	"	"	"
1,3-Dichlorobenzene (541-73-1)	U		0.2	"	"	"
1,4-Dichlorobenzene (106-46-7)	U		0.2	"	"	"
Dichlorodifluoromethane (75-71-8)	0.6		0.2	"	"	"
1,1-Dichloroethane (75-34-3)	U		0.2	"	"	"
1,2-Dichloroethane (107-06-2)	U		0.2	"	"	"
1,1-Dichloroethene (75-35-4)	U		0.2	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U		0.2	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U		0.2	"	"	"
1,2-Dichloropropane (78-87-5)	U		0.2	"	"	"
cis-1,3-Dichloropropene (10061-01-5)	U		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 26 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

0612012-09 Station ID: C1161 Lab ID:

Batch: B6L2002 Date Collected: 12/14/06 Initial Pressure: 13.7 psia Sample Type: air

Sample Qualifiers:

Targets (Continued)

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
trans-1,3-Dichloropropene (10061-02-6)	U		0.2	1	12/19/06	01/05/07
1,2-Dichloro-1,1,2,2-tetrafluoroethane	U		0.2	"	"	"
(76-14-2)						
1,4-Dioxane (123-91-1)	U		2.5	"	"	"
Ethyl alcohol (64-17-5)	17.1		0.2	"	"	"
Ethyl acetate (141-78-6)	U		1.0	"	"	"
Ethylbenzene (100-41-4)	1.5		0.2	"	"	"
1-Ethyl-4-methylbenzene (622-96-8)	U		0.5	"	"	"
n-Heptane (142-82-5)	0.5		0.2	"	"	"
Hexachlorobutadiene (87-68-3)	U		0.2	"	"	"
n-Hexane (110-54-3)	1.4		0.2	"	"	"
2-Hexanone (591-78-6)	U		0.5	"	"	"
Isopropyl alcohol (67-63-0)	U		1.2	"	"	"
Methylene chloride (75-09-2)	0.4		0.2	"	"	"
4-Methyl-2-pentanone (108-10-1)	U		2.5	"	"	"
Methyl tertiary-butyl ether (1634-04-4)	0.7		0.2	"	"	"
Propene (115-07-1)	1.9		0.2	"	"	"
Styrene (100-42-5)	16.5		0.5	"	"	"
1,1,2,2-Tetrachloroethane (79-34-5)	U		0.2	"	"	"
Tetrachloroethene (127-18-4)	U		0.2	"	"	"
Tetrahydrofuran (109-99-9)	U		0.5	"	"	"
Toluene (108-88-3)	3.0		0.2	"	"	"
1,2,4-Trichlorobenzene (120-82-1)	U		0.2	"	"	"
1,1,1-Trichloroethane (71-55-6)	U		0.2	"	"	"
1,1,2-Trichloroethane (79-00-5)	U		0.2	"	"	"
Trichloroethene (79-01-6)	U		0.2	"	"	"
Trichlorofluoromethane (75-69-4)	0.3		0.2	"	"	"
1,1,2-Trichloro-1,2,2-trifluoroethane (76-13-1)	U		0.2	"	"	"
1,2,4-Trimethylbenzene (95-63-6)	0.4		0.2	"	"	"
1,3,5-Trimethylbenzene (108-67-8)	U		0.2	"	"	"
Vinyl acetate (108-05-4)	U		1.0	"	"	"
Vinyl chloride (75-01-4)	U		0.2	"	"	"
meta-/para-Xylene (na)	1.2		0.5	"	"	"
ortho-Xylene (95-47-6)	0.5		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 27 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-09 Station ID: C1161

Batch: B6L2002 Date Collected: 12/14/06 Initial Pressure: 13.7 psia Sample Type: air Sample Qualifiers:

Tentatively Identified Compounds

Compound (CAS)	Result ppbv	Analyte Retention Qualifiers Time	Dilution	Prepared	Analyzed
Isobutane (75-28-5)	3	5.32	1	12/19/06	01/05/07
n-Butane (106-97-8)	6	5.60	"	"	"
2-Methylbutane (78-78-4)	6	6.57	"	"	"
n-Pentane (109-66-0)	4	7.05	"	"	"
2-Methylpentane (107-83-5)	2	8.85	"	"	"
3-Methylpentane (96-14-0)	1	9.31	"	"	"
3-Methylhexane (589-34-4)	1	12.88	"	"	"
2,2-Dimethylhexane (590-73-8)	2	13.50	"	"	"
Benzaldehyde (100-52-7)	2	24.78	"	"	"
n-Decane (124-18-5)	1	26.62	"	"	"

The compounds listed are *tentatively* identified by the best match with the NIST or Wiley mass spectral data base or by manual interpretation. The concentrations are estimated based on a Response Factor of 1.0 to the nearest internal standard. A minimum of the top 10 most significant peaks that are at least 10% in area of the nearest internal standard are reported, excluding those found in the laboratory blank.

Report Name: 0612012 FINAL 02 26 07 0715

Page 28 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

0612012-10 Station ID: B1578 Lab ID:

Batch: B6L2002 Date Collected: 12/14/06 Initial Pressure: 13.9 psia Sample Type: air

Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
Surr: 4-Bromofluorobenzene	9.50		95.0	70-130	12/19/06	01/05/07
Surr: 1,2-Dichloroethane-d4	6.71		89.5	70-130	"	"
Surr: Toluene-d8	7.15		95.3	70-130	"	"
Surr: 1,2-Dichlorobenzene-d4	6.89		91.9	70-130	"	"

Targets

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
Acetone (67-64-1)	U		0.2	1	12/19/06	01/05/07
Benzene (71-43-2)	88.6		2.5	10	"	01/05/07
Benzyl chloride (100-44-7)	U		2.5	1	"	01/05/07
1,3-Butadiene (106-99-0)	U		0.2	"	"	"
2-Butanone (78-93-3)	U		0.2	"	"	"
Bromodichloromethane (75-27-4)	U		0.2	"	"	"
Bromoform (75-25-2)	U		0.2	"	"	"
Bromomethane (74-83-9)	U		0.2	"	"	"
Carbon disulfide (75-15-0)	U		0.2	"	"	"
Carbon tetrachloride (56-23-5)	U		0.2	"	"	"
Chlorobenzene (108-90-7)	U		0.2	"	"	"
Chlorodibromomethane (124-48-1)	U		0.2	"	"	"
Chloroethane (75-00-3)	U		0.2	"	"	"
Chloroform (67-66-3)	U		0.2	"	"	"
Chloromethane (74-87-3)	0.5		0.2	"	"	"
Cyclohexane (110-82-7)	126		2.5	10	"	01/05/07
1,2-Dibromoethane (106-93-4)	U		0.2	1	"	01/05/07
1,2-Dichlorobenzene (95-50-1)	U		0.2	"	"	"
1,3-Dichlorobenzene (541-73-1)	U		0.2	"	"	"
1,4-Dichlorobenzene (106-46-7)	U		0.2	"	"	"
Dichlorodifluoromethane (75-71-8)	0.5		0.2	"	"	"
1,1-Dichloroethane (75-34-3)	U		0.2	"	"	"
1,2-Dichloroethane (107-06-2)	U		0.2	"	"	"
1,1-Dichloroethene (75-35-4)	U		0.2	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U		0.2	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U		0.2	"	"	"
1,2-Dichloropropane (78-87-5)	U		0.2	"	"	"
cis-1,3-Dichloropropene (10061-01-5)	U		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 29 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-10 Station ID: B1578

Batch: B6L2002 Date Collected: 12/14/06 Initial Pressure: 13.9 psia Sample Type: air Sample Qualifiers:

Targets (Continued)

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
trans-1,3-Dichloropropene (10061-02-6)	U		0.2	1	12/19/06	01/05/07
1,2-Dichloro-1,1,2,2-tetrafluoroethane	U		0.2	"	"	"
(76-14-2)						
1,4-Dioxane (123-91-1)	U		2.5	"	"	"
Ethyl alcohol (64-17-5)	13.8		0.2	"	"	"
Ethyl acetate (141-78-6)	U		1.0	"	"	"
Ethylbenzene (100-41-4)	0.4		0.2	"	"	"
1-Ethyl-4-methylbenzene (622-96-8)	U		0.5	"	"	"
n-Heptane (142-82-5)	50.2		2.5	10	"	01/05/07
Hexachlorobutadiene (87-68-3)	U		0.2	1	"	01/05/07
n-Hexane (110-54-3)	461		7.5	30	"	01/05/07
2-Hexanone (591-78-6)	U		0.5	1	"	01/05/07
Isopropyl alcohol (67-63-0)	U		1.2	"	"	"
Methylene chloride (75-09-2)	U		0.2	"	"	"
4-Methyl-2-pentanone (108-10-1)	U		2.5	"	"	"
Methyl tertiary-butyl ether (1634-04-4)	U		0.2	"	"	"
Propene (115-07-1)	9.6		0.2	"	"	"
Styrene (100-42-5)	U		0.5	"	"	"
1,1,2,2-Tetrachloroethane (79-34-5)	U		0.2	"	"	"
Tetrachloroethene (127-18-4)	U		0.2	"	"	"
Tetrahydrofuran (109-99-9)	U		0.5	"	"	"
Toluene (108-88-3)	15.9		0.2	"	"	"
1,2,4-Trichlorobenzene (120-82-1)	U		0.2	"	"	"
1,1,1-Trichloroethane (71-55-6)	U		0.2	"	"	"
1,1,2-Trichloroethane (79-00-5)	U		0.2	"	"	"
Trichloroethene (79-01-6)	U		0.2	"	"	"
Trichlorofluoromethane (75-69-4)	U		0.2	"	"	"
1,1,2-Trichloro-1,2,2-trifluoroethane (76-13-1)	U		0.2	"	"	"
1,2,4-Trimethylbenzene (95-63-6)	0.3		0.2	"	"	"
1,3,5-Trimethylbenzene (108-67-8)	U		0.2	"	"	"
Vinyl acetate (108-05-4)	U		1.0	"	"	"
Vinyl chloride (75-01-4)	U		0.2	"	"	"
meta-/para-Xylene (na)	0.9		0.5	"	"	"
ortho-Xylene (95-47-6)	0.3		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 30 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-10 Station ID: B1578

Batch: B6L2002 Date Collected: 12/14/06 Initial Pressure: 13.9 psia Sample Type: air Sample Qualifiers:

Tentatively Identified Compounds

Compound (CAS)	Result ppbv	Analyte Retention Qualifiers Time	Dilution	Prepared	Analyzed
Isobutane (75-28-5)	210	5.32	1	12/19/06	01/05/07
n-Butane (106-97-8)	170	5.60	"	"	"
2-Methylbutane (78-78-4)	380	6.58	"	"	"
n-Pentane (109-66-0)	310	7.06	"	"	"
2,2-Dimethylbutane (75-83-2)	110	7.92	"	"	"
2,3-Dimethylbutane (79-29-8)	190	8.76	"	"	"
2-Methylpentane (107-83-5)	700	8.86	"	"	"
3-Methylpentane (96-14-0)	530	9.33	"	"	"
Methylcyclopentane (96-37-7)	620	10.98	"	"	"
2-Methylhexane (591-76-4)	150	12.50	"	"	"
3-Methylhexane (589-34-4)	180	12.88	"	"	"

The compounds listed are *tentatively* identified by the best match with the NIST or Wiley mass spectral data base or by manual interpretation. The concentrations are estimated based on a Response Factor of 1.0 to the nearest internal standard. A minimum of the top 10 most significant peaks that are at least 10% in area of the nearest internal standard are reported, excluding those found in the laboratory blank.

Report Name: 0612012 FINAL 02 26 07 0715

Page 31 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

0612012-11 Station ID: F1500 Lab ID:

Batch: B6L2002 Date Collected: 12/14/06 Initial Pressure: 14.2 psia Sample Type: air

Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
Surr: 4-Bromofluorobenzene	9.70		97.0	70-130	12/19/06	01/05/07
Surr: 1,2-Dichloroethane-d4	7.12		94.9	70-130	"	"
Surr: Toluene-d8	7.65		102	70-130	"	"
Surr: 1,2-Dichlorobenzene-d4	7.10		94.7	70-130	"	"

Targets

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
Acetone (67-64-1)	5.8		0.2	1	12/19/06	01/05/07
Benzene (71-43-2)	25.6		1.2	5	"	01/05/07
Benzyl chloride (100-44-7)	U		2.5	1	"	01/05/07
1,3-Butadiene (106-99-0)	2.1	J	0.2	"	"	"
2-Butanone (78-93-3)	U		0.2	"	"	"
Bromodichloromethane (75-27-4)	U		0.2	"	"	"
Bromoform (75-25-2)	U		0.2	"	"	"
Bromomethane (74-83-9)	U		0.2	"	"	"
Carbon disulfide (75-15-0)	U		0.2	"	"	"
Carbon tetrachloride (56-23-5)	U		0.2	"	"	"
Chlorobenzene (108-90-7)	0.8		0.2	"	"	"
Chlorodibromomethane (124-48-1)	U		0.2	"	"	"
Chloroethane (75-00-3)	0.4		0.2	"	"	"
Chloroform (67-66-3)	U		0.2	"	"	"
Chloromethane (74-87-3)	0.7		0.2	"	"	"
Cyclohexane (110-82-7)	6.4		0.2	"	"	"
1,2-Dibromoethane (106-93-4)	U		0.2	"	"	"
1,2-Dichlorobenzene (95-50-1)	U		0.2	"	"	"
1,3-Dichlorobenzene (541-73-1)	U		0.2	"	"	"
1,4-Dichlorobenzene (106-46-7)	U		0.2	"	"	"
Dichlorodifluoromethane (75-71-8)	0.6		0.2	"	"	"
1,1-Dichloroethane (75-34-3)	U		0.2	"	"	"
1,2-Dichloroethane (107-06-2)	1.2		0.2	"	"	"
1,1-Dichloroethene (75-35-4)	U		0.2	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U		0.2	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U		0.2	"	"	"
1,2-Dichloropropane (78-87-5)	U		0.2	"	"	"
cis-1,3-Dichloropropene (10061-01-5)	U		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 32 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

0612012-11 Station ID: F1500 Lab ID:

Batch: B6L2002 Date Collected: 12/14/06 Initial Pressure: 14.2 psia Sample Type: air

Sample Qualifiers:

Targets (Continued)

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
trans-1,3-Dichloropropene (10061-02-6)	U		0.2	1	12/19/06	01/05/07
1,2-Dichloro-1,1,2,2-tetrafluoroethane	U		0.2	"	"	"
(76-14-2)	O		0.2			
1,4-Dioxane (123-91-1)	U		2.5	"	"	"
Ethyl alcohol (64-17-5)	146		5.0	20	"	01/06/07
Ethyl acetate (141-78-6)	U		1.0	1	"	01/05/07
Ethylbenzene (100-41-4)	8.7		0.2	"	"	"
1-Ethyl-4-methylbenzene (622-96-8)	0.9		0.5	"	"	"
n-Heptane (142-82-5)	2.7		0.2	"	"	"
Hexachlorobutadiene (87-68-3)	U		0.2	"	"	"
n-Hexane (110-54-3)	46.1		1.2	5	"	01/05/07
2-Hexanone (591-78-6)	U		0.5	1	"	01/05/07
Isopropyl alcohol (67-63-0)	U		1.2	"	"	"
Methylene chloride (75-09-2)	1.1		0.2	"	"	"
4-Methyl-2-pentanone (108-10-1)	U		2.5	"	"	"
Methyl tertiary-butyl ether (1634-04-4)	5.8		0.2	"	"	"
Propene (115-07-1)	68.4		1.2	5	"	01/05/07
Styrene (100-42-5)	2.6		0.5	1	"	01/05/07
1,1,2,2-Tetrachloroethane (79-34-5)	U		0.2	"	"	"
Tetrachloroethene (127-18-4)	U		0.2	"	"	"
Tetrahydrofuran (109-99-9)	1.6		0.5	"	"	"
Toluene (108-88-3)	408		5.0	20	"	01/06/07
1,2,4-Trichlorobenzene (120-82-1)	U		0.2	1	"	01/05/07
1,1,1-Trichloroethane (71-55-6)	U		0.2	"	"	"
1,1,2-Trichloroethane (79-00-5)	U		0.2	"	"	"
Trichloroethene (79-01-6)	U		0.2	"	"	"
Trichlorofluoromethane (75-69-4)	0.3		0.2	"	"	"
1,1,2-Trichloro-1,2,2-trifluoroethane (76-13-1)	U		0.2	"	"	"
1,2,4-Trimethylbenzene (95-63-6)	1.8		0.2	"	"	"
1,3,5-Trimethylbenzene (108-67-8)	0.6		0.2	"	"	"
Vinyl acetate (108-05-4)	U		1.0	"	"	"
Vinyl chloride (75-01-4)	U		0.2	"	"	"
meta-/para-Xylene (na)	24.2		0.5	"	"	"
ortho-Xylene (95-47-6)	7.8		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 33 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-11 Station ID: F1500

Batch: B6L2002 Date Collected: 12/14/06 Initial Pressure: 14.2 psia Sample Type: air Sample Qualifiers:

Tentatively Identified Compounds

Compound (CAS)	Result ppbv	Analyte Retention Qualifiers Time	Dilution	Prepared	Analyzed
Isobutane (75-28-5)	48	5.32	1	12/19/06	01/05/07
n-Butane (106-97-8)	15	5.61	"	"	"
2-Methylbutane (78-78-4)	81	6.58	"	"	"
n-Pentane (109-66-0)	7	7.06	"	"	"
2-Propenenitrile (000107-13-1)	14	7.17	"	"	"
2-Methylpentane (107-83-5)	16	8.85	"	"	"
3-Methylpentane (96-14-0)	17	9.32	"	"	"
Methylcyclopentane (96-37-7)	16	10.97	"	"	"
3a,4,7,7a-Tetrahydro-4,7-methano-1H-indene (77-73-6)	10	27.96	"	"	"
Branched alkane(s) at 28.26' (NA)	8	28.26	"	"	"

The compounds listed are *tentatively* identified by the best match with the NIST or Wiley mass spectral data base or by manual interpretation. The concentrations are estimated based on a Response Factor of 1.0 to the nearest internal standard. A minimum of the top 10 most significant peaks that are at least 10% in area of the nearest internal standard are reported, excluding those found in the laboratory blank.

Report Name: 0612012 FINAL 02 26 07 0715

Page 34 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

0612012-12 Station ID: J0182 Lab ID:

Batch: B6L2002 Date Collected: 12/14/06 Initial Pressure: 14.2 psia Sample Type: air

Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
Surr: 4-Bromofluorobenzene	9.89		98.9	70-130	12/19/06	01/06/07
Surr: 1,2-Dichloroethane-d4	6.56		87.5	70-130	"	"
Surr: Toluene-d8	7.69		103	70-130	"	"
Surr: 1,2-Dichlorobenzene-d4	6.79		90.5	70-130	"	"

Targets

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
Acetone (67-64-1)	3.7		0.2	1	12/19/06	01/06/07
Benzene (71-43-2)	13.8		0.2	"	"	"
Benzyl chloride (100-44-7)	U		2.5	"	"	"
1,3-Butadiene (106-99-0)	Ü		0.2	"	"	"
2-Butanone (78-93-3)	25.0		0.5	2	"	01/06/07
Bromodichloromethane (75-27-4)	U		0.2	1	"	01/06/07
Bromoform (75-25-2)	U		0.2	"	"	"
Bromomethane (74-83-9)	U		0.2	"	"	"
Carbon disulfide (75-15-0)	Ü		0.2	"	"	"
Carbon tetrachloride (56-23-5)	Ü		0.2	"	"	"
Chlorobenzene (108-90-7)	U		0.2	"	"	"
Chlorodibromomethane (124-48-1)	U		0.2	"	"	"
Chloroethane (75-00-3)	U		0.2	"	"	"
Chloroform (67-66-3)	U		0.2	"	"	"
Chloromethane (74-87-3)	0.9		0.2	"	"	"
Cyclohexane (110-82-7)	21.2		0.2	"	"	"
1,2-Dibromoethane (106-93-4)	U		0.2	"	"	"
1,2-Dichlorobenzene (95-50-1)	U		0.2	"	"	"
1,3-Dichlorobenzene (541-73-1)	U		0.2	"	"	"
1,4-Dichlorobenzene (106-46-7)	U		0.2	"	"	"
Dichlorodifluoromethane (75-71-8)	0.6		0.2	"	"	"
1,1-Dichloroethane (75-34-3)	U		0.2	"	"	"
1,2-Dichloroethane (107-06-2)	U		0.2	"	"	"
1,1-Dichloroethene (75-35-4)	U		0.2	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U		0.2	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U		0.2	"	"	"
1,2-Dichloropropane (78-87-5)	U		0.2	"	"	"
cis-1,3-Dichloropropene (10061-01-5)	U		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 35 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-12 Station ID: J0182

Batch: B6L2002 Date Collected: 12/14/06 Initial Pressure: 14.2 psia Sample Type: air Sample Qualifiers:

Targets (Continued)

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
trans-1,3-Dichloropropene (10061-02-6)	U		0.2	1	12/19/06	01/06/07
1,2-Dichloro-1,1,2,2-tetrafluoroethane	Ü		0.2	"	"	"
(76-14-2)	C		0.2			
1,4-Dioxane (123-91-1)	U		2.5	"	"	"
Ethyl alcohol (64-17-5)	U		0.2	"	"	"
Ethyl acetate (141-78-6)	U		1.0	"	"	"
Ethylbenzene (100-41-4)	3.2		0.2	"	"	"
1-Ethyl-4-methylbenzene (622-96-8)	0.8		0.5	"	"	"
n-Heptane (142-82-5)	8.9		0.2	"	"	"
Hexachlorobutadiene (87-68-3)	U		0.2	"	"	"
n-Hexane (110-54-3)	38.6		0.5	2	"	01/06/07
2-Hexanone (591-78-6)	U		0.5	1	"	01/06/07
Isopropyl alcohol (67-63-0)	U		1.2	"	"	"
Methylene chloride (75-09-2)	3.3		0.2	"	"	"
4-Methyl-2-pentanone (108-10-1)	U		2.5	"	"	"
Methyl tertiary-butyl ether (1634-04-4)	32.4		0.5	2	"	01/06/07
Propene (115-07-1)	22.0		0.2	1	"	01/06/07
Styrene (100-42-5)	U		0.5	"	"	"
1,1,2,2-Tetrachloroethane (79-34-5)	U		0.2	"	"	"
Tetrachloroethene (127-18-4)	U		0.2	"	"	"
Tetrahydrofuran (109-99-9)	U		0.5	"	"	"
Toluene (108-88-3)	23.4		0.5	2	"	01/06/07
1,2,4-Trichlorobenzene (120-82-1)	U		0.2	1	"	01/06/07
1,1,1-Trichloroethane (71-55-6)	U		0.2	"	"	"
1,1,2-Trichloroethane (79-00-5)	U		0.2	"	"	"
Trichloroethene (79-01-6)	U		0.2	"	"	"
Trichlorofluoromethane (75-69-4)	0.3		0.2	"	"	"
1,1,2-Trichloro-1,2,2-trifluoroethane (76-13-1)	U		0.2	"	"	"
1,2,4-Trimethylbenzene (95-63-6)	2.0		0.2	"	"	"
1,3,5-Trimethylbenzene (108-67-8)	0.6		0.2	"	"	"
Vinyl acetate (108-05-4)	U		1.0	"	"	"
Vinyl chloride (75-01-4)	U		0.2	"	"	"
meta-/para-Xylene (na)	10.2		0.5	"	"	"
ortho-Xylene (95-47-6)	3.1		0.2	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 36 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-12 Station ID: J0182

Batch: B6L2002 Date Collected: 12/14/06 Initial Pressure: 14.2 psia Sample Type: air Sample Qualifiers:

Tentatively Identified Compounds

Compound (CAS)	Result ppbv	Analyte Retention Qualifiers Time	Dilution	Prepared	Analyzed
Isobutane (75-28-5)	95	5.32	1	12/19/06	01/06/07
n-Butane (106-97-8)	92	5.61	"	"	"
2-Methylbutane (78-78-4)	160	6.59	"	"	"
n-Pentane (109-66-0)	49	7.06	"	"	"
2-Methylpentane (107-83-5)	25	8.85	"	"	"
Methylcyclopentane (96-37-7)	25	10.98	"	"	"
Branched Alkane(s) at 13.49' (NA)	51	13.49	"	"	"
Methylcyclohexane (108-87-2)	25	15.01	"	"	"
2,3,4-Trimethylpentane (565-75-3)	18	16.22	"	"	"
2,3,3-Trimethylpentane (560-21-4)	18	16.48	"	"	"

The compounds listed are *tentatively* identified by the best match with the NIST or Wiley mass spectral data base or by manual interpretation. The concentrations are estimated based on a Response Factor of 1.0 to the nearest internal standard. A minimum of the top 10 most significant peaks that are at least 10% in area of the nearest internal standard are reported, excluding those found in the laboratory blank.

Report Name: 0612012 FINAL 02 26 07 0715

Page 37 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

0612012-13 **Station ID: TRIP** Lab ID:

Batch: B6L2002 Date Collected: 12/14/06 Initial Pressure: 0.1 psia Sample Qualifiers: Sample Type: air

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
Surr: 4-Bromofluorobenzene	8.75		87.5	70-130	12/19/06	01/06/07
Surr: 1,2-Dichloroethane-d4	8.61		115	70-130	"	"
Surr: Toluene-d8	7.29		97.2	70-130	"	"
Surr: 1,2-Dichlorobenzene-d4	6.03		80.4	70-130	"	"

Targets

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
Acetone (67-64-1)	U		0.1	0.4	12/19/06	01/06/07
Benzene (71-43-2)	U		0.1	"	"	"
Benzyl chloride (100-44-7)	U		1.0	"	"	"
1,3-Butadiene (106-99-0)	U		0.1	"	"	"
2-Butanone (78-93-3)	U		0.1	"	"	"
Bromodichloromethane (75-27-4)	U		0.1	"	"	"
Bromoform (75-25-2)	U		0.1	"	"	"
Bromomethane (74-83-9)	U		0.1	"	"	"
Carbon disulfide (75-15-0)	U		0.1	"	"	"
Carbon tetrachloride (56-23-5)	U		0.1	"	"	"
Chlorobenzene (108-90-7)	U		0.1	"	"	"
Chlorodibromomethane (124-48-1)	U		0.1	"	"	"
Chloroethane (75-00-3)	U		0.1	"	"	"
Chloroform (67-66-3)	U		0.1	"	"	"
Chloromethane (74-87-3)	U		0.1	"	"	"
Cyclohexane (110-82-7)	U		0.1	"	"	"
1,2-Dibromoethane (106-93-4)	U		0.1	"	"	"
1,2-Dichlorobenzene (95-50-1)	U		0.1	"	"	"
1,3-Dichlorobenzene (541-73-1)	U		0.1	"	"	"
1,4-Dichlorobenzene (106-46-7)	U		0.1	"	"	"
Dichlorodifluoromethane (75-71-8)	U		0.1	"	"	"
1,1-Dichloroethane (75-34-3)	U		0.1	"	"	"
1,2-Dichloroethane (107-06-2)	U		0.1	"	"	"
1,1-Dichloroethene (75-35-4)	U		0.1	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U		0.1	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U		0.1	"	"	"
1,2-Dichloropropane (78-87-5)	U		0.1	"	"	"
cis-1,3-Dichloropropene (10061-01-5)	U		0.1	"	11	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 38 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 0612012-13 Station ID: TRIP

Batch: B6L2002 Date Collected: 12/14/06 Initial Pressure: 0.1 psia Sample Type: air Sample Qualifiers:

Targets (Continued)

Analyte (CAS Number)	Result ppbv	Analyte Qualifiers	Reporting Limit	Dilution	Prepared	Analyzed
trans-1,3-Dichloropropene (10061-02-6)	U		0.1	0.4	12/19/06	01/06/07
1,2-Dichloro-1,1,2,2-tetrafluoroethane	Ü		0.1	"	"	"
(76-14-2)						
1,4-Dioxane (123-91-1)	U		1.0	"	"	"
Ethyl alcohol (64-17-5)	U		0.1	"	"	"
Ethyl acetate (141-78-6)	U		0.4	"	"	"
Ethylbenzene (100-41-4)	U		0.1	"	"	"
1-Ethyl-4-methylbenzene (622-96-8)	U		0.2	"	"	"
n-Heptane (142-82-5)	U		0.1	"	"	"
Hexachlorobutadiene (87-68-3)	U		0.1	"	"	"
n-Hexane (110-54-3)	U		0.1	"	"	"
2-Hexanone (591-78-6)	U		0.2	"	"	"
Isopropyl alcohol (67-63-0)	U		0.5	"	"	"
Methylene chloride (75-09-2)	U		0.1	"	"	"
4-Methyl-2-pentanone (108-10-1)	U		1.0	"	"	"
Methyl tertiary-butyl ether (1634-04-4)	U		0.1	"	"	"
Propene (115-07-1)	U		0.1	"	"	"
Styrene (100-42-5)	U		0.2	"	"	"
1,1,2,2-Tetrachloroethane (79-34-5)	U		0.1	"	"	"
Tetrachloroethene (127-18-4)	U		0.1	"	"	"
Tetrahydrofuran (109-99-9)	U		0.2	"	"	"
Toluene (108-88-3)	U		0.1	"	"	"
1,2,4-Trichlorobenzene (120-82-1)	U		0.1	"	"	"
1,1,1-Trichloroethane (71-55-6)	U		0.1	"	"	"
1,1,2-Trichloroethane (79-00-5)	U		0.1	"	"	"
Trichloroethene (79-01-6)	U		0.1	"	"	"
Trichlorofluoromethane (75-69-4)	U		0.1	"	"	"
1,1,2-Trichloro-1,2,2-trifluoroethane (76-13-1)	U		0.1	"	"	"
1,2,4-Trimethylbenzene (95-63-6)	U		0.1	"	"	"
1,3,5-Trimethylbenzene (108-67-8)	U		0.1	"	"	"
Vinyl acetate (108-05-4)	U		0.4	"	"	"
Vinyl chloride (75-01-4)	U		0.1	"	"	"
meta-/para-Xylene (na)	U		0.2	"	"	"
ortho-Xylene (95-47-6)	U		0.1	"	"	"

Report Name: 0612012 FINAL 02 26 07 0715

Page 39 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

0612012-13 **Station ID: TRIP** Lab ID:

Batch: B6L2002 Date Collected: 12/14/06 Initial Pressure: 0.1 psia Sample Qualifiers: Sample Type: air

Tentatively Identified Compounds

	Result	Analyte	Retention			
Compound (CAS)	ppbv	Qualifiers	Time	Dilution	Prepared	Analyzed

No TICs present in this sample.

Report Name: 0612012 FINAL 02 26 07 0715

Page 40 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B6L2002 Sample Type: air

Blank (**B6L2002-BLK1**)

Prepared: 12/19/2006 Analyzed: 1/3/2007

Surrogates

ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
Surr: 4-Bromofluorobenzene	8.99		10.0	89.9	70-130
Surr: 1,2-Dichloroethane-d4	8.27		7.50	110	70-130
Surr: Toluene-d8	7.31		7.50	97.5	70-130
Surr: 1,2-Dichlorobenzene-d4	6.69		7.50	89.2	70-130

Blank (**B6L2002-BLK1**)

Prepared: 12/19/2006 Analyzed: 01/03/07

Targets

ANALYTE	Result ppbv	Analyte Reporting Qualifiers Limit
Acetone	0.1	0.1
Benzene	U	0.1
Benzyl chloride	U	1.0
1,3-Butadiene	U	0.1
2-Butanone	U	0.1
Bromodichloromethane	U	0.1
Bromoform	U	0.1
Bromomethane	U	0.1
Carbon disulfide	U	0.1
Carbon tetrachloride	U	0.1
Chlorobenzene	U	0.1
Chlorodibromomethane	U	0.1
Chloroethane	U	0.1
Chloroform	U	0.1
Chloromethane	U	0.1
Cyclohexane	U	0.1
1,2-Dibromoethane	U	0.1
1,2-Dichlorobenzene	U	0.1
1,3-Dichlorobenzene	U	0.1
1,4-Dichlorobenzene	U	0.1

Report Name: 0612012 FINAL 02 26 07 0715

Page 41 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B6L2002 Sample Type: air

Blank (**B6L2002-BLK1**)

Prepared: 12/19/2006 Analyzed: 01/03/07

Targets (Continued)

Targets (Continued)							
ANALYTE	Result ppbv	Analyte Reporting Qualifiers Limit					
Dichlorodifluoromethane	U	0.1					
1,1-Dichloroethane	U	0.1					
1,2-Dichloroethane	U	0.1					
1,1-Dichloroethene	U	0.1					
cis-1,2-Dichloroethene	U	0.1					
trans-1,2-Dichloroethene	U	0.1					
1,2-Dichloropropane	U	0.1					
cis-1,3-Dichloropropene	U	0.1					
trans-1,3-Dichloropropene	U	0.1					
1,2-Dichloro-1,1,2,2-tetrafluoro ethane	U	0.1					
1,4-Dioxane	U	1.0					
Ethyl alcohol	U	0.1					
Ethyl acetate	U	0.4					
Ethylbenzene	U	0.1					
1-Ethyl-4-methylbenzene	U	0.2					
n-Heptane	U	0.1					
Hexachlorobutadiene	U	0.1					
n-Hexane	U	0.1					
2-Hexanone	U	0.2					
Isopropyl alcohol	U	0.5					
Methylene chloride	U	0.1					
4-Methyl-2-pentanone	U	1.0					
Methyl tertiary-butyl ether	U	0.1					
Propene	U	0.1					
Styrene	U	0.2					
1,1,2,2-Tetrachloroethane	U	0.1					
Tetrachloroethene	U	0.1					
Tetrahydrofuran	U	0.2					
Toluene	U	0.1					

Report Name: 0612012 FINAL 02 26 07 0715 Page 42 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B6L2002 Sample Type: air

Blank (**B6L2002-BLK1**)

Prepared: 12/19/2006 Analyzed: 01/03/07

Targets (Continued)

ANALYTE	Result ppbv	Analyte Reporting Qualifiers Limit	
1,2,4-Trichlorobenzene	U	0.1	
1,1,1-Trichloroethane	U	0.1	
1,1,2-Trichloroethane	U	0.1	
Trichloroethene	U	0.1	
Trichlorofluoromethane	U	0.1	
1,1,2-Trichloro-1,2,2-trifluoroet hane	U	0.1	
1,2,4-Trimethylbenzene	U	0.1	
1,3,5-Trimethylbenzene	U	0.1	
Vinyl acetate	U	0.4	
Vinyl chloride	U	0.1	
meta-/para-Xylene	U	0.2	
ortho-Xylene	U	0.1	

Tentatively Identified Compounds

	Result	Analyte	Retention
Compound (CAS)	ppbv	Qualifiers	Time

No TICs present in this sample.

Blank (**B6L2002-BLK2**)

Prepared: 1/5/2007 Analyzed: 1/5/2007

Surrogates

ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
Surr: 4-Bromofluorobenzene	9.00		10.0	90.0	70-130
Surr: 1,2-Dichloroethane-d4	8.39		7.50	112	70-130
Surr: Toluene-d8	7.56		7.50	101	70-130
Surr: 1,2-Dichlorobenzene-d4	6.94		7.50	92.5	70-130

Report Name: 0612012 FINAL 02 26 07 0715

Page 43 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B6L2002 Sample Type: air

Blank (**B6L2002-BLK2**)

Prepared: 1/5/2007 Analyzed: 01/05/07

Targets

ANALYTE	Result ppbv	Analyte Reporting Qualifiers Limit
Acetone	0.1	0.1
Benzene	U	0.1
Benzyl chloride	U	1.0
1,3-Butadiene	U	0.1
2-Butanone	U	0.1
Bromodichloromethane	U	0.1
Bromoform	U	0.1
Bromomethane	U	0.1
Carbon disulfide	U	0.1
Carbon tetrachloride	U	0.1
Chlorobenzene	U	0.1
Chlorodibromomethane	U	0.1
Chloroethane	U	0.1
Chloroform	U	0.1
Chloromethane	U	0.1
Cyclohexane	U	0.1
1,2-Dibromoethane	U	0.1
1,2-Dichlorobenzene	U	0.1
1,3-Dichlorobenzene	U	0.1
1,4-Dichlorobenzene	U	0.1
Dichlorodifluoromethane	U	0.1
1,1-Dichloroethane	U	0.1
1,2-Dichloroethane	U	0.1
1,1-Dichloroethene	U	0.1
cis-1,2-Dichloroethene	U	0.1
trans-1,2-Dichloroethene	U	0.1
1,2-Dichloropropane	U	0.1
cis-1,3-Dichloropropene	U	0.1
trans-1,3-Dichloropropene	U	0.1
,- r - r - r - r	=-	

Report Name: 0612012 FINAL 02 26 07 0715 Page 44 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B6L2002 Sample Type: air

Blank (**B6L2002-BLK2**)

Prepared: 1/5/2007 Analyzed: 01/05/07

Targets (Continued)

	Result	Analyte Reporting	
ANALYTE	ppbv	Qualifiers Limit	
1,2-Dichloro-1,1,2,2-tetrafluoro	U	0.1	
ethane	T T	1.0	
1,4-Dioxane	U	1.0	
Ethyl alcohol	U	0.1	
Ethyl acetate	U	0.4	
Ethylbenzene	U	0.1	
1-Ethyl-4-methylbenzene	U	0.2	
n-Heptane	U	0.1	
Hexachlorobutadiene	U	0.1	
n-Hexane	U	0.1	
2-Hexanone	U	0.2	
Isopropyl alcohol	U	0.5	
Methylene chloride	U	0.1	
4-Methyl-2-pentanone	U	1.0	
Methyl tertiary-butyl ether	U	0.1	
Propene	U	0.1	
Styrene	U	0.2	
1,1,2,2-Tetrachloroethane	U	0.1	
Tetrachloroethene	U	0.1	
Tetrahydrofuran	U	0.2	
Toluene	U	0.1	
1,2,4-Trichlorobenzene	U	0.1	
1,1,1-Trichloroethane	U	0.1	
1,1,2-Trichloroethane	U	0.1	
Trichloroethene	U	0.1	
Trichlorofluoromethane	U	0.1	
1,1,2-Trichloro-1,2,2-trifluoroet	U	0.1	
hane			
1,2,4-Trimethylbenzene	U	0.1	
1,3,5-Trimethylbenzene	U	0.1	
Vinyl acetate	U	0.4	

Report Name: 0612012 FINAL 02 26 07 0715

Page 45 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B6L2002 Sample Type: air

Blank (B6L2002-BLK2)

Prepared: 1/5/2007 Analyzed: 01/05/07

Targets (Continued)

ANALYTE	Result Analyt ppbv Qualific	te Reporting ers Limit	
Vinyl chloride	U	0.1	
meta-/para-Xylene	U	0.2	
ortho-Xylene	U	0.1	

Tentatively Identified Compounds

	Result	Analyte	Retention
Compound (CAS)	ppbv	Qualifiers	Time

No TICs present in this sample.

LCS (B6L2002-BS1)

Prepared: 1/3/2007 Analyzed: 1/3/2007

Surrogates

ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
Surr: 4-Bromofluorobenzene	9.96		10.0	99.6	70-130
Surr: 1,2-Dichloroethane-d4	7.47		7.50	99.6	70-130
Surr: Toluene-d8	7.78		7.50	104	70-130
Surr: 1,2-Dichlorobenzene-d4	7.49		7.50	99.9	70-130

LCS (B6L2002-BS1)

Prepared: 1/3/2007 Analyzed: 01/03/07

Targets

ANALYTE	Result Analyte ppbv Qualifier	Reporting Spike s Limit Level	%REC %REC Limits	
Acetone	4.5	5.00	90.0 70-130	
Benzene	4.7	5.00	94.0 70-130	
Benzyl chloride	3.3	5.00	66.0# 70-130	
1,3-Butadiene	5.5	5.00	110 70-130	

Report Name: 0612012 FINAL 02 26 07 0715

Page 46 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B6L2002 Sample Type: air

LCS (B6L2002-BS1)

Prepared: 1/3/2007 Analyzed: 01/03/07

Targets (Continued)

Result Analyte	Reporting Spike		%REC		
1 0 110	Result Analyte Reporting Spike				
ppbv Qualifiers	Limit Level	%REC	Limits		
4.6	5.00	92.0	70-130		
4.6	5.00	92.0	70-130		
4.3	5.00	86.0	70-130		
5.4	5.00	108	70-130		
5.4	5.00	108	70-130		
5.1	5.00	102	70-130		
4.3	5.00	86.0	70-130		
4.5	5.00	90.0	70-130		
5.4	5.00	108	70-130		
4.8	5.00	96.0	70-130		
5.4	5.00	108	70-130		
5.1	5.00	102	70-130		
4.3	5.00	86.0	70-130		
4.1	5.00	82.0	70-130		
4.1	5.00	82.0	70-130		
4.1	5.00	82.0	70-130		
5.4	5.00	108	70-130		
4.9	5.00	98.0	70-130		
4.7	5.00	94.0	70-130		
5.2	5.00	104	70-130		
5.1	5.00	102	70-130		
5.3	5.00	106	70-130		
4.5	5.00	90.0	70-130		
4.3	5.00	86.0	70-130		
4.4	5.00	88.0	70-130		
5.5	5.00	110	70-130		
4.8			70-130		
4.2	5.00	84.0	70-130		
4.2	5.00	84.0	70-130		
	4.6 4.6 4.3 5.4 5.4 5.1 4.3 4.5 5.4 4.8 5.4 5.1 4.3 4.1 4.1 4.1 4.1 5.4 4.9 4.7 5.2 5.1 5.3 4.5 4.3 4.5 4.3 4.4 5.5	4.6 5.00 4.6 5.00 4.3 5.00 5.4 5.00 5.4 5.00 5.1 5.00 4.3 5.00 4.5 5.00 5.4 5.00 5.4 5.00 5.1 5.00 5.1 5.00 4.3 5.00 4.1 5.00 4.1 5.00 4.1 5.00 5.4 5.00 4.9 5.00 4.7 5.00 5.2 5.00 5.1 5.00 5.2 5.00 5.3 5.00 4.5 5.00 4.3 5.00 4.4 5.00 5.5 5.00	4.6 5.00 92.0 4.6 5.00 92.0 4.3 5.00 86.0 5.4 5.00 108 5.4 5.00 108 5.1 5.00 102 4.3 5.00 86.0 4.5 5.00 90.0 5.4 5.00 108 4.8 5.00 96.0 5.1 5.00 102 4.3 5.00 102 4.3 5.00 86.0 4.1 5.00 82.0 4.1 5.00 82.0 4.1 5.00 82.0 4.1 5.00 82.0 4.1 5.00 82.0 5.4 5.00 98.0 4.7 5.00 98.0 4.7 5.00 94.0 5.2 5.00 104 5.1 5.00 90.0 4.3 5.00 86.0 4.4 5.00 86.0 4.4 5.00 86.0		

Report Name: 0612012 FINAL 02 26 07 0715 Page 47 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B6L2002 Sample Type: air

LCS (B6L2002-BS1)

Prepared: 1/3/2007 Analyzed: 01/03/07

Targets (Continued)

Result Analyte Reporting Spike %REC									
ANALYTE	ppbv Qual		Level	%REC	Limits				
Ethylbenzene	4.3		5.00	86.0	70-130				
1-Ethyl-4-methylbenzene	4.2		5.00	84.0	70-130				
n-Heptane	4.7		5.00	94.0	70-130				
Hexachlorobutadiene	4.2		5.00	84.0	70-130				
n-Hexane	5.1		5.00	102	70-130				
2-Hexanone	4.0		5.00	80.0	70-130				
Isopropyl alcohol	4.1		5.00	82.0	70-130				
Methylene chloride	4.8		5.00	96.0	70-130				
4-Methyl-2-pentanone	5.2		5.00	104	70-130				
Methyl tertiary-butyl ether	4.9		5.00	98.0	70-130				
Propene	5.0		5.00	100	70-130				
Styrene	4.1		5.00	82.0	70-130				
1,1,2,2-Tetrachloroethane	4.6		5.00	92.0	70-130				
Tetrachloroethene	4.5		5.00	90.0	70-130				
Tetrahydrofuran	4.4		5.00	88.0	70-130				
Toluene	4.4		5.00	88.0	70-130				
1,2,4-Trichlorobenzene	3.7		5.00	74.0	70-130				
1,1,1-Trichloroethane	5.0		5.00	100	70-130				
1,1,2-Trichloroethane	4.6		5.00	92.0	70-130				
Trichloroethene	4.4		5.00	88.0	70-130				
Trichlorofluoromethane	5.4		5.00	108	70-130				
1,1,2-Trichloro-1,2,2-trifluoroet hane	5.3		5.00	106	70-130				
1,2,4-Trimethylbenzene	4.4		5.00	88.0	70-130				
1,3,5-Trimethylbenzene	4.5		5.00	90.0	70-130				
Vinyl acetate	3.8		5.00	76.0	70-130				
Vinyl chloride	5.5		5.00	110	70-130				
meta-/para-Xylene	8.6		10.0	86.0	70-130				
ortho-Xylene	4.4		5.00	88.0	70-130				

Report Name: 0612012 FINAL 02 26 07 0715 Page 48 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B6L2002 Sample Type: air

LCS (B6L2002-BS2)

Prepared: 1/5/2007 Analyzed: 1/5/2007

Surrogates

ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
Surr: 4-Bromofluorobenzene	10.1		10.0	101	70-130
Surr: 1,2-Dichloroethane-d4	7.72		7.50	103	70-130
Surr: Toluene-d8	7.58		7.50	101	70-130
Surr: 1,2-Dichlorobenzene-d4	7.27		7.50	96.9	70-130

LCS (B6L2002-BS2)

Prepared: 1/5/2007 Analyzed: 01/05/07

Targets

ANALYTE	Result Analy ppbv Qualifi	rte Reporting Spike ers Limit Level	%REC	%REC Limits
Acetone	4.6	5.00	92.0	70-130
Benzene	4.9	5.00	98.0	70-130
Benzyl chloride	3.8	5.00	76.0	70-130
1,3-Butadiene	5.4	5.00	108	70-130
2-Butanone	4.0	5.00	80.0	70-130
Bromodichloromethane	4.7	5.00	94.0	70-130
Bromoform	4.6	5.00	92.0	70-130
Bromomethane	5.4	5.00	108	70-130
Carbon disulfide	5.4	5.00	108	70-130
Carbon tetrachloride	5.1	5.00	102	70-130
Chlorobenzene	4.5	5.00	90.0	70-130
Chlorodibromomethane	4.6	5.00	92.0	70-130
Chloroethane	5.4	5.00	108	70-130
Chloroform	5.0	5.00	100	70-130
Chloromethane	5.5	5.00	110	70-130
Cyclohexane	5.1	5.00	102	70-130
1,2-Dibromoethane	4.5	5.00	90.0	70-130
1,2-Dichlorobenzene	4.3	5.00	86.0	70-130
1,3-Dichlorobenzene	4.3	5.00	86.0	70-130
1,4-Dichlorobenzene	4.4	5.00	88.0	70-130

Report Name: 0612012 FINAL 02 26 07 0715

Page 49 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B6L2002 Sample Type: air

LCS (B6L2002-BS2)

Prepared: 1/5/2007 Analyzed: 01/05/07

Targets (Continued)

	Targets (Continued)						
	Result A	Analyte Reporting	Spike	%REC			
ANALYTE	ppbv Q	ualifiers Limit	Level	%REC Limits			
Dichlorodifluoromethane	5.5		5.00	110 70-130			
1,1-Dichloroethane	5.0		5.00	100 70-130			
1,2-Dichloroethane	4.9		5.00	98.0 70-130			
1,1-Dichloroethene	5.2		5.00	104 70-130			
cis-1,2-Dichloroethene	5.1		5.00	102 70-130			
trans-1,2-Dichloroethene	5.2		5.00	104 70-130			
1,2-Dichloropropane	4.7		5.00	94.0 70-130			
cis-1,3-Dichloropropene	4.5		5.00	90.0 70-130			
trans-1,3-Dichloropropene	4.4		5.00	88.0 70-130			
1,2-Dichloro-1,1,2,2-tetrafluoro ethane	5.5		5.00	110 70-130			
1,4-Dioxane	4.3		5.00	86.0 70-130			
Ethyl alcohol	5.2		5.00	104 70-130			
Ethyl acetate	4.2		5.00	84.0 70-130			
Ethylbenzene	4.6		5.00	92.0 70-130			
1-Ethyl-4-methylbenzene	4.3		5.00	86.0 70-130			
n-Heptane	4.8		5.00	96.0 70-130			
Hexachlorobutadiene	4.4		5.00	88.0 70-130			
n-Hexane	5.1		5.00	102 70-130			
2-Hexanone	4.3		5.00	86.0 70-130			
Isopropyl alcohol	4.7		5.00	94.0 70-130			
Methylene chloride	5.0		5.00	100 70-130			
4-Methyl-2-pentanone	5.6		5.00	112 70-130			
Methyl tertiary-butyl ether	5.1		5.00	102 70-130			
Propene	5.2		5.00	104 70-130			
Styrene	4.3		5.00	86.0 70-130			
1,1,2,2-Tetrachloroethane	4.7		5.00	94.0 70-130			
Tetrachloroethene	4.6		5.00	92.0 70-130			
Tetrahydrofuran	4.4		5.00	88.0 70-130			
Toluene	4.7		5.00	94.0 70-130			

Report Name: 0612012 FINAL 02 26 07 0715 Page 50 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B6L2002 Sample Type: air

LCS (B6L2002-BS2)

Prepared: 1/5/2007 Analyzed: 01/05/07

Targets (Continued)

ANALYTE	Result ppbv	Analyte Reporting Qualifiers Limit	Spike Level	%REC %REC Limits	
1,2,4-Trichlorobenzene	3.8		5.00	76.0 70-130	
1,1,1-Trichloroethane	5.1		5.00	102 70-130	
1,1,2-Trichloroethane	4.8		5.00	96.0 70-130	
Trichloroethene	4.7		5.00	94.0 70-130	
Trichlorofluoromethane	5.4		5.00	108 70-130	
1,1,2-Trichloro-1,2,2-trifluoroet hane	5.4		5.00	108 70-130	
1,2,4-Trimethylbenzene	4.6		5.00	92.0 70-130	
1,3,5-Trimethylbenzene	4.7		5.00	94.0 70-130	
Vinyl acetate	4.1		5.00	82.0 70-130	
Vinyl chloride	5.6		5.00	112 70-130	
meta-/para-Xylene	9.0		10.0	90.0 70-130	
ortho-Xylene	4.6		5.00	92.0 70-130	

Duplicate (B6L2002-DUP1)

Prepared: 1/3/2007 Analyzed: 1/3/2007 Source: 0612012-02

Surrogates

			0		
ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
Surr: 4-Bromofluorobenzene	9.54		10.0	95.4	70-130
Surr: 1,2-Dichloroethane-d4	6.29		7.50	83.9	70-130
Surr: Toluene-d8	8.70		7.50	116	70-130
Surr: 1,2-Dichlorobenzene-d4	7.26		7.50	96.8	70-130

Duplicate (B6L2002-DUP1)

Prepared: 1/3/2007 Analyzed: 01/03/07 Source: 0612012-02

Targets

	Result Analyte Reporting Spike Source	RPD
ANALYTE	ppbv Qualifiers Limit Level Result	RPD Limit

Report Name: 0612012 FINAL 02 26 07 0715

Page 51 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B6L2002 Sample Type: air

Duplicate (B6L2002-DUP1)

Prepared: 1/3/2007 Analyzed: 01/03/07 Source: 0612012-02

Targets (Continued)

	Result	Analyte Reporting Spike	Source	RPD
ANALYTE	ppbv	Qualifiers Limit Level		RPD Limit
Acetone	7.0	0.2	6.6	5.88 40
Benzene	0.5	0.2	0.4	22.2 40
Benzyl chloride	U	2.5		NR 40
1,3-Butadiene	U	0.2		NR 40
2-Butanone	4.8	0.2	3.9	20.7 40
Bromodichloromethane	U	0.2		NR 40
Bromoform	U	0.2		NR 40
Bromomethane	U	0.2		NR 40
Carbon disulfide	U	0.2		NR 40
Carbon tetrachloride	U	0.2		NR 40
Chlorobenzene	U	0.2		NR 40
Chlorodibromomethane	U	0.2		NR 40
Chloroethane	U	0.2		NR 40
Chloroform	U	0.2		NR 40
Chloromethane	0.9	0.2	0.9	0.00 40
Cyclohexane	U	0.2		NR 40
1,2-Dibromoethane	U	0.2		NR 40
1,2-Dichlorobenzene	U	0.2		NR 40
1,3-Dichlorobenzene	U	0.2		NR 40
1,4-Dichlorobenzene	U	0.2		NR 40
Dichlorodifluoromethane	0.6	0.2	0.5	18.2 40
1,1-Dichloroethane	U	0.2		NR 40
1,2-Dichloroethane	U	0.2		NR 40
1,1-Dichloroethene	U	0.2		NR 40
cis-1,2-Dichloroethene	U	0.2		NR 40
trans-1,2-Dichloroethene	U	0.2		NR 40
1,2-Dichloropropane	U	0.2		NR 40
cis-1,3-Dichloropropene	U	0.2		NR 40
trans-1,3-Dichloropropene	U	0.2		NR 40

Report Name: 0612012 FINAL 02 26 07 0715 Page 52 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B6L2002 Sample Type: air

Duplicate (B6L2002-DUP1)

Prepared: 1/3/2007 Analyzed: 01/03/07 Source: 0612012-02

Targets (Continued)

		rargets (Continued)		
ANALYZE	Result	110001111111111111111111111111111111111	Source	RPD Linit
ANALYTE	ppbv	Qualifiers Limit Level	Result	RPD Limit
1,2-Dichloro-1,1,2,2-tetrafluoro	U	0.2		NR 40
ethane		2.7		
1,4-Dioxane	U	2.5		NR 40
Ethyl alcohol	U	0.2		NR 40
Ethyl acetate	U	1.0		NR 40
Ethylbenzene	0.6	0.2	0.6	0.00 40
1-Ethyl-4-methylbenzene	5.1	0.5		NR 40
n-Heptane	0.3	0.2		NR 40
Hexachlorobutadiene	U	0.2		NR 40
n-Hexane	0.7	0.2	0.6	15.4 40
2-Hexanone	U	0.5		NR 40
Isopropyl alcohol	U	1.2		NR 40
Methylene chloride	0.3	0.2		NR 40
4-Methyl-2-pentanone	U	2.5		NR 40
Methyl tertiary-butyl ether	U	0.2		NR 40
Propene	2.5	0.2	2.2	12.8 40
Styrene	U	0.5		NR 40
1,1,2,2-Tetrachloroethane	U	0.2		NR 40
Tetrachloroethene	U	0.2		NR 40
Tetrahydrofuran	U	0.5		NR 40
Toluene	1.7	0.2	1.7	0.00 40
1,2,4-Trichlorobenzene	U	0.2		NR 40
1,1,1-Trichloroethane	U	0.2		NR 40
1,1,2-Trichloroethane	U	0.2		NR 40
Trichloroethene	U	0.2		NR 40
Trichlorofluoromethane	0.3	0.2		NR 40
1,1,2-Trichloro-1,2,2-trifluoroet	U	0.2		NR 40
hane	Č	V. -		1111 10
1,2,4-Trimethylbenzene	0.3	0.2	0.3	0.00 40
1,3,5-Trimethylbenzene	U	0.2		NR 40
Vinyl acetate	U	1.0		NR 40
•				

Report Name: 0612012 FINAL 02 26 07 0715

Page 53 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B6L2002 Sample Type: air

Duplicate (B6L2002-DUP1)

Prepared: 1/3/2007 Analyzed: 01/03/07 Source: 0612012-02

Targets (Continued)

ANALYTE	Result ppbv	Analyte Reporting Qualifiers Limit	Spike Level	Source Result	RPD	RPD Limit
Vinyl chloride	0.3	0.2		0.3	0.00	40
meta-/para-Xylene	2.4	0.5		2.1	13.3	40
ortho-Xylene	0.8	0.2		0.7	13.3	40

Duplicate (B6L2002-DUP2)

Prepared: 1/5/2007 Analyzed: 1/5/2007 Source: 0612012-07

Surrogates

ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
Surr: 4-Bromofluorobenzene	11.2		10.0	112	70-130
Surr: 1,2-Dichloroethane-d4	8.67		7.50	116	70-130
Surr: Toluene-d8	7.68		7.50	102	70-130
Surr: 1,2-Dichlorobenzene-d4	8.46		7.50	113	70-130

Duplicate (B6L2002-DUP2)

Prepared: 1/5/2007 Analyzed: 01/05/07 Source: 0612012-07

Targets

		8			
ANALYTE	Result ppbv	Analyte Reporting Qualifiers Limit	Spike Source Level Result	RPD I	RPD Limit
Acetone	U	0.2		NR	40
Benzene	3.7	0.2	3.1	17.6	40
Benzyl chloride	U	2.5		NR	40
1,3-Butadiene	U	0.2		NR	40
2-Butanone	U	0.2		NR	40
Bromodichloromethane	U	0.2		NR	40
Bromoform	U	0.2		NR	40
Bromomethane	U	0.2		NR	40
Carbon disulfide	U	0.2		NR	40

Report Name: 0612012 FINAL 02 26 07 0715

Page 54 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B6L2002 Sample Type: air

Duplicate (B6L2002-DUP2)

Prepared: 1/5/2007 Analyzed: 01/05/07 Source: 0612012-07

Targets (Continued)

	Result	Analyte Reporting Spike	Source	RPD
ANALYTE	ppbv	Qualifiers Limit Level	Result	RPD Limit
Carbon tetrachloride	U	0.2		NR 40
Chlorobenzene	U	0.2		NR 40
Chlorodibromomethane	U	0.2		NR 40
Chloroethane	U	0.2		NR 40
Chloroform	0.4	0.2	0.3	28.6 40
Chloromethane	1.0	0.2	1.0	0.00 40
Cyclohexane	4.3	0.2	4.0	7.23 40
1,2-Dibromoethane	U	0.2		NR 40
1,2-Dichlorobenzene	U	0.2		NR 40
1,3-Dichlorobenzene	U	0.2		NR 40
1,4-Dichlorobenzene	U	0.2		NR 40
Dichlorodifluoromethane	0.5	0.2	0.5	0.00 40
1,1-Dichloroethane	U	0.2		NR 40
1,2-Dichloroethane	U	0.2		NR 40
1,1-Dichloroethene	U	0.2		NR 40
cis-1,2-Dichloroethene	U	0.2		NR 40
trans-1,2-Dichloroethene	U	0.2		NR 40
1,2-Dichloropropane	U	0.2		NR 40
cis-1,3-Dichloropropene	U	0.2		NR 40
trans-1,3-Dichloropropene	U	0.2		NR 40
1,2-Dichloro-1,1,2,2-tetrafluoro ethane	U	0.2		NR 40
1,4-Dioxane	U	2.5		NR 40
Ethyl alcohol	U	0.2		NR 40
Ethyl acetate	U	1.0		NR 40
Ethylbenzene	4.2	0.2	3.6	15.4 40
1-Ethyl-4-methylbenzene	5.1	0.5	4.6	10.3 40
n-Heptane	14.9	0.2	13.5	9.86 40
Hexachlorobutadiene	U	0.2		NR 40
n-Hexane	11.5	0.2	10.3	11.0 40

Report Name: 0612012 FINAL 02 26 07 0715 Page 55 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

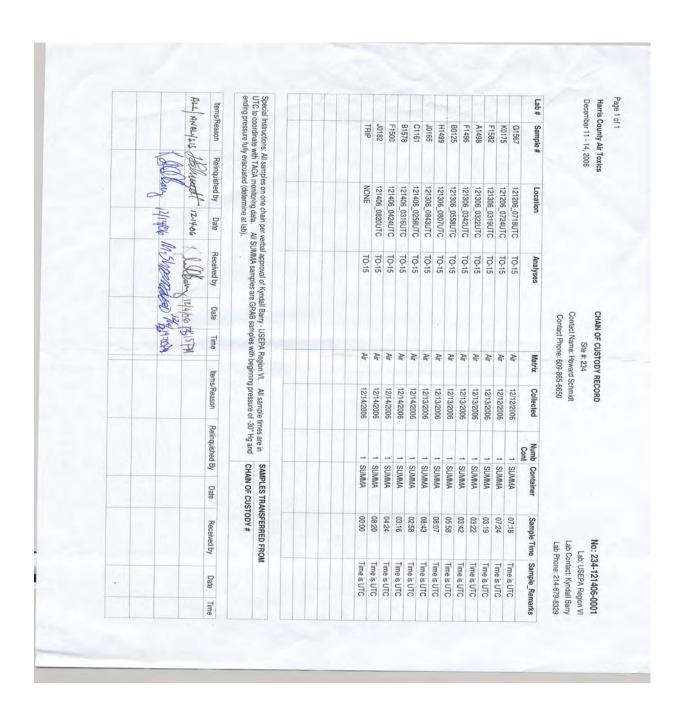
Batch: B6L2002 Sample Type: air

Duplicate (B6L2002-DUP2)

Source: 0612012-07 Prepared: 1/5/2007 Analyzed: 01/05/07

Targets (Continued)

	Result	Analyte Reporting Spik	e Source	R	RPD
ANALYTE	ppbv	Qualifiers Limit Leve		RPD Li	
2-Hexanone	U	0.5		NR	40
Isopropyl alcohol	U	1.2		NR	40
Methylene chloride	U	0.2		NR	40
4-Methyl-2-pentanone	U	2.5		NR	40
Methyl tertiary-butyl ether	18.8	0.2	18.4	2.15	40
Propene	9.1	0.2	9.1	0.00	40
Styrene	U	0.5		NR	40
1,1,2,2-Tetrachloroethane	U	0.2		NR	40
Tetrachloroethene	U	0.2		NR	40
Tetrahydrofuran	U	0.5		NR	40
Toluene	13.8	0.2	12.5	9.89	40
1,2,4-Trichlorobenzene	U	0.2		NR	40
1,1,1-Trichloroethane	U	0.2		NR	40
1,1,2-Trichloroethane	U	0.2		NR	40
Trichloroethene	U	0.2		NR	40
Trichlorofluoromethane	0.3	0.2		NR	40
1,1,2-Trichloro-1,2,2-trifluoroet hane	U	0.2		NR	40
1,2,4-Trimethylbenzene	17.5	0.2	16.0	8.96	40
1,3,5-Trimethylbenzene	4.7	0.2	4.2	11.2	40
Vinyl acetate	U	1.0		NR	40
Vinyl chloride	U	0.2		NR	40
meta-/para-Xylene	25.0	0.5	21.7	14.1	40
ortho-Xylene	9.6	0.2	8.5	12.2	40


Report Name: 0612012 FINAL 02 26 07 0715

Page 56 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Report Name: 0612012 FINAL 02 26 07 0715 Page 57 of 58

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Notes and Definitions

The identification of the analyte is acceptable; the reported value is an estimate. J

This sample was extracted at a single acid pH. A

HTS Sample was prepared and/or analyzed past recommended holding time. Concentrations should be

considered minimum values.

AES Atomic Emission Spectrometer

CVAA Cold Vapor Atomic Absorption

ECD Electron Capture Detector

GC Gas Chromatograph

GFAA Graphite Furnace Atomic Absorption

ICP Inductively Coupled Plasma

MS Mass Spectrometer

NA Not Applicable

NPD Nitrogen Phosphorous Detector

NR Not Reported

TCLP Toxicity Characteristic Leaching Procedure

U Undetected

Out of QC limits

Initial pressure in air analyses is the pressure at which the canister was received in psia (pounds per square inch absolute pressure).

The pH reported for Volatile liquid samples was tested using a 0-14 pH indicator strip for the purpose of verifying chemical preservation.

The statistical software used for the reporting of toxicity data is ToxStat 3.5, Western Ecosystems Technology, Inc., Cheyenne, Wyoming 1996.

Report Name: 0612012 FINAL 02 26 07 0715

Page 58 of 58

APPENDIX D

GRAPHICAL MULTIRAE DATA

URBAN AIR TOXICS STUDY FINAL ANALYTICAL TAGA REPORT MARCH 2007

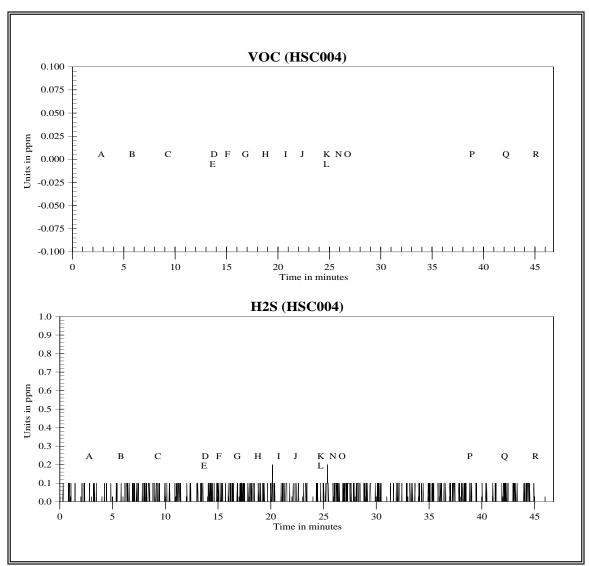


Figure D1 VOC and H₂S in Harris County

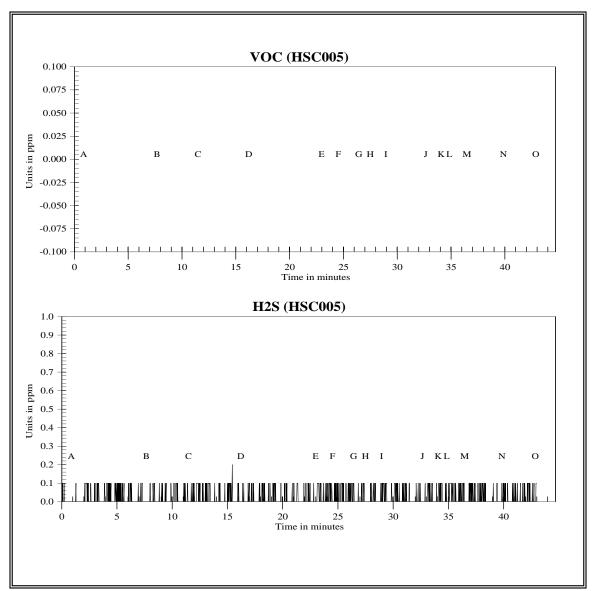


Figure D2 VOC and H₂S in Harris County

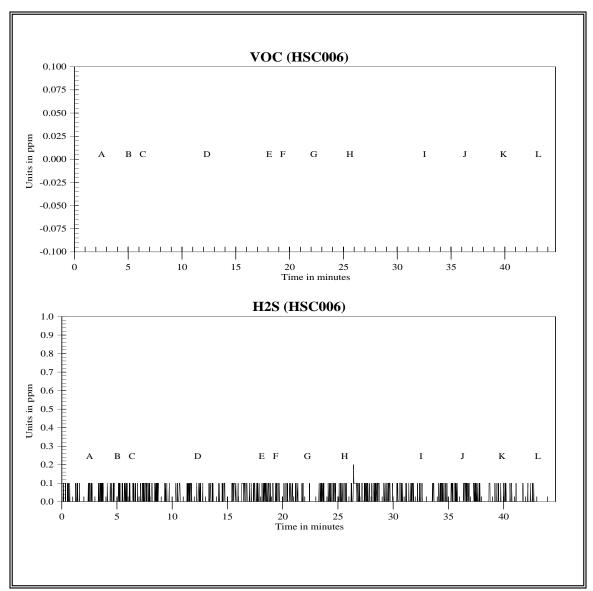
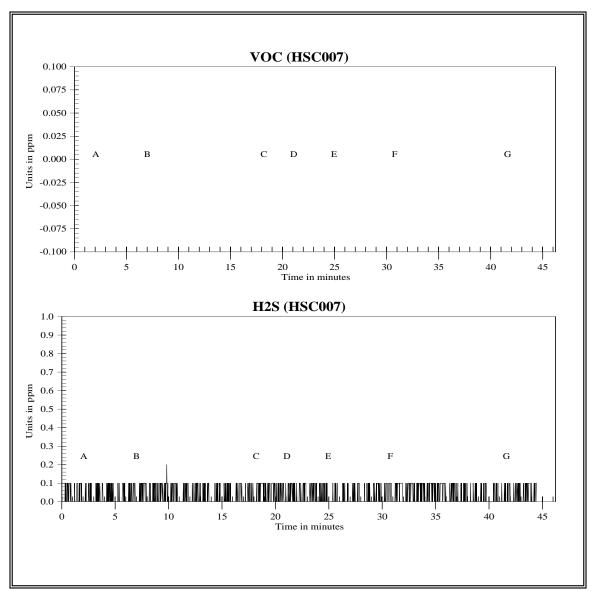



Figure D3 VOC and H₂S in Harris County

Figure D4 VOC and H₂S in Harris County

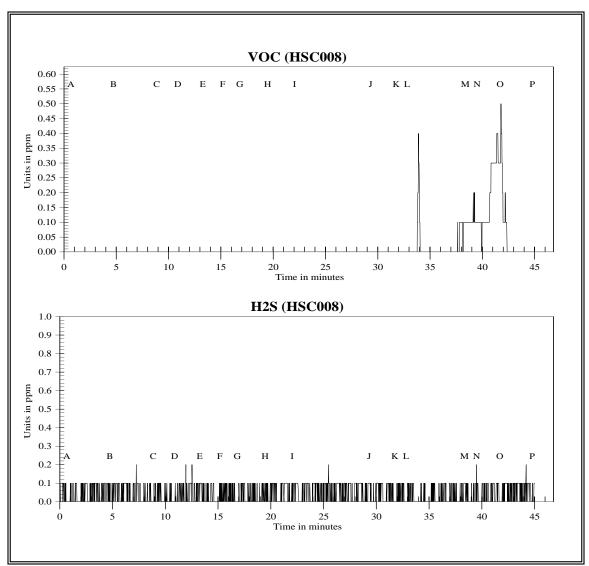


Figure D5 VOC and H₂S in Harris County

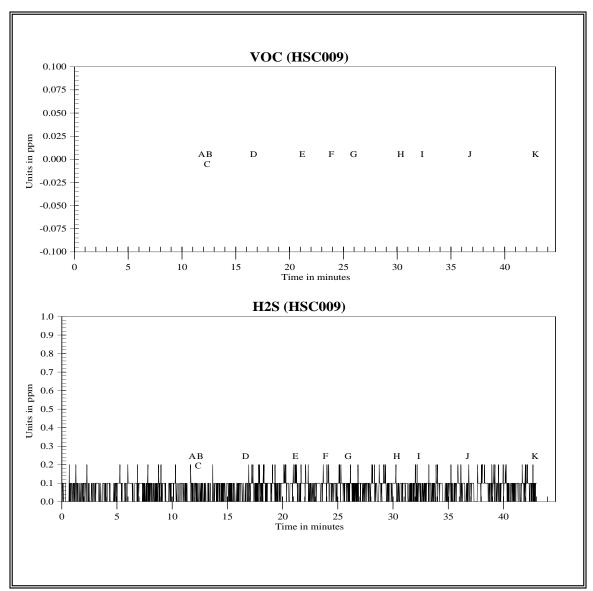
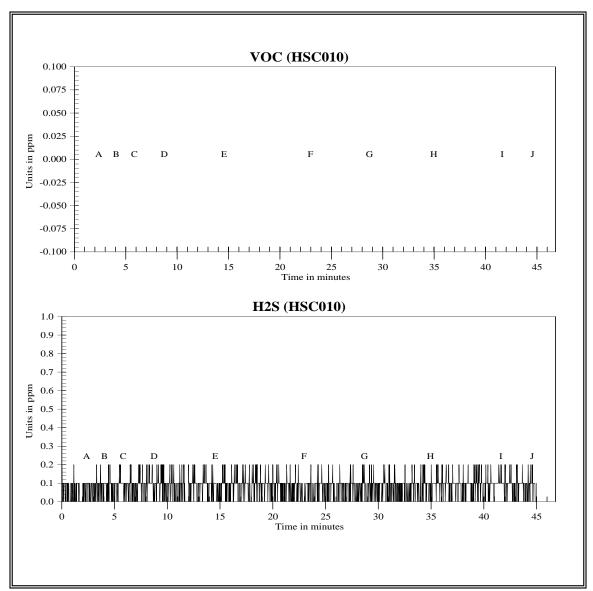



Figure D6 VOC and H₂S in Harris County

Figure D7 VOC and H₂S in Harris County

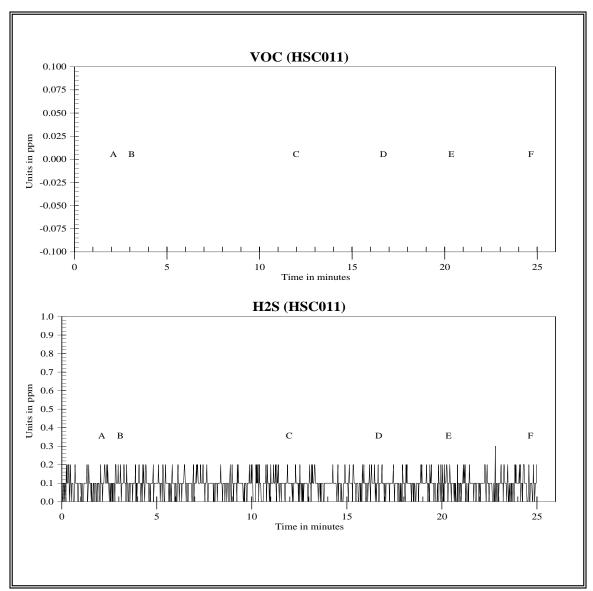


Figure D8 VOC and H₂S in Harris County

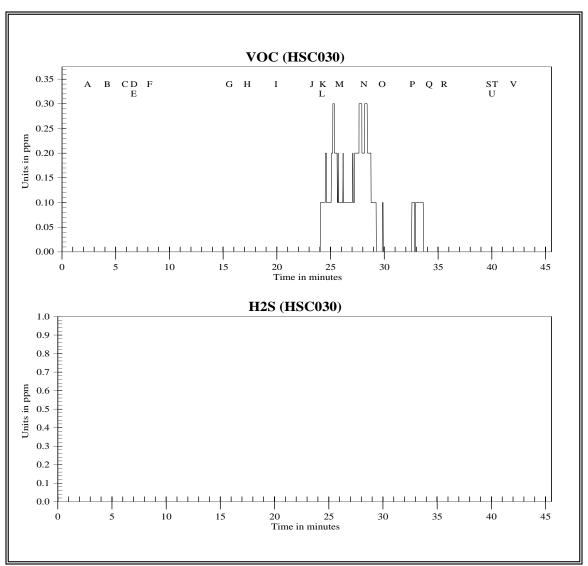


Figure D9 VOC and H₂S in Harris County

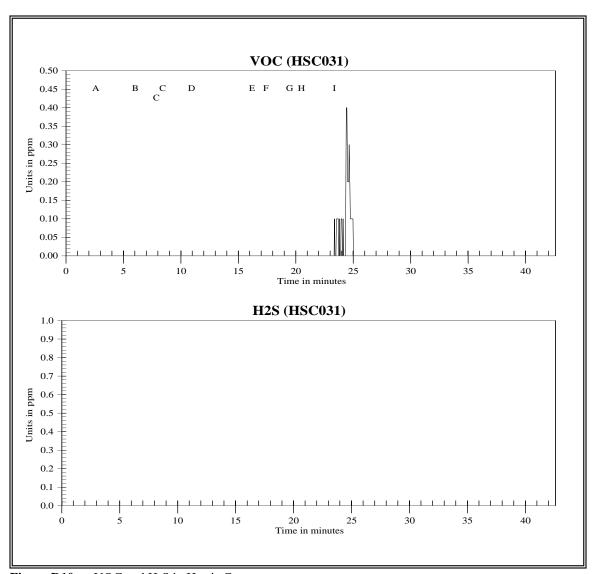


Figure D10 VOC and H₂S in Harris County

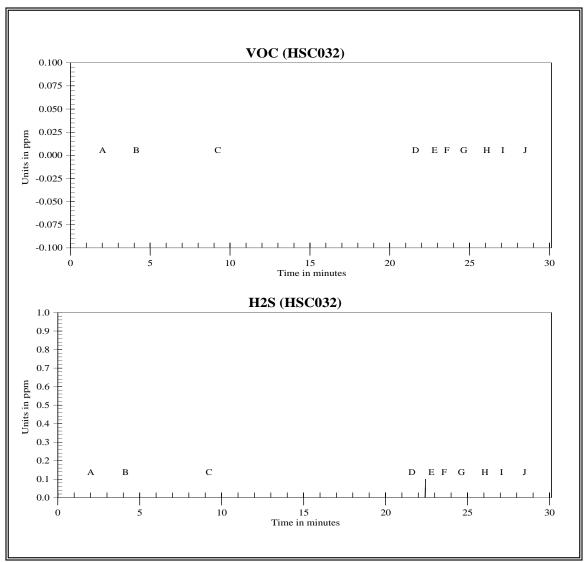


Figure D11 VOC and H₂S in Harris County

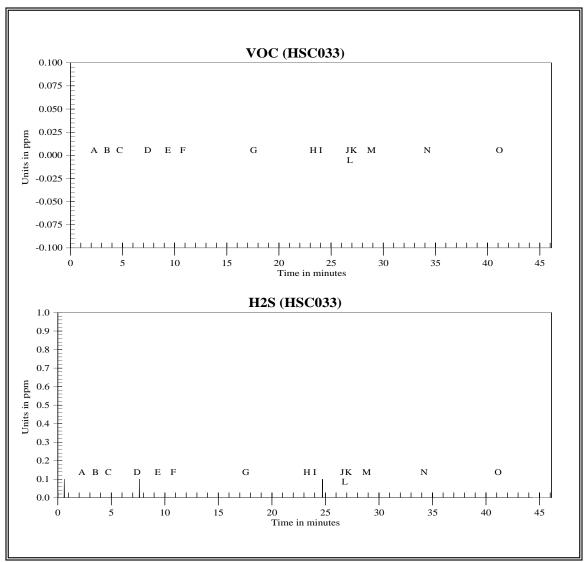


Figure D12 VOC and H₂S in Harris County

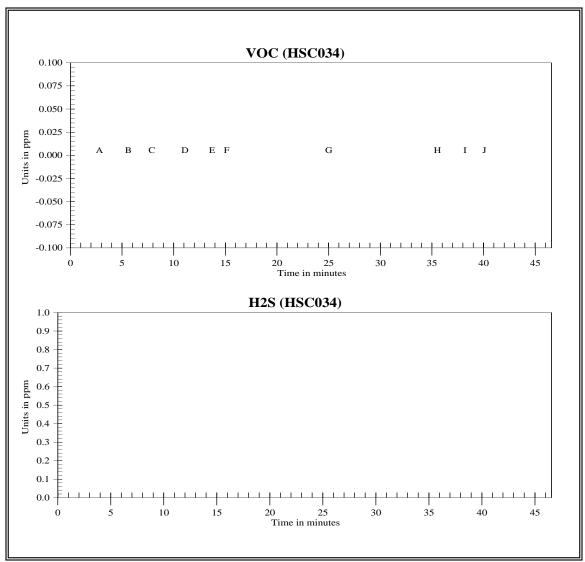


Figure D13 VOC and H₂S in Harris County

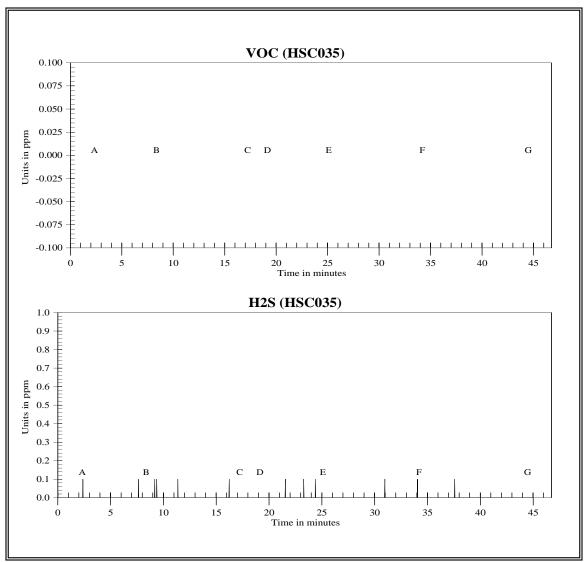


Figure D14 VOC and H₂S in Harris County

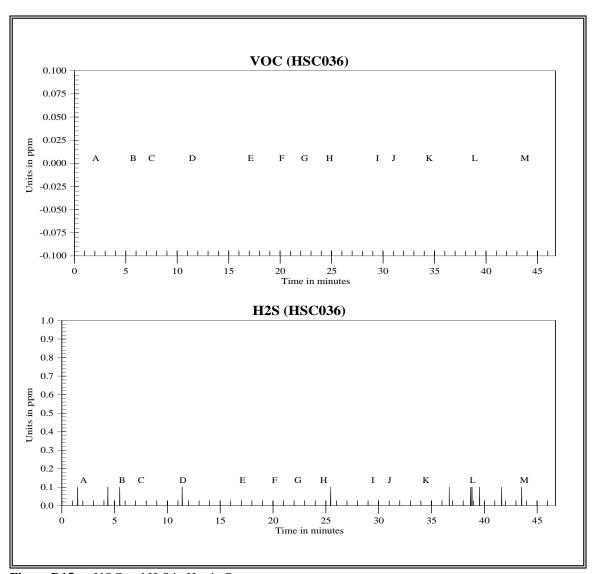


Figure D15 VOC and H₂S in Harris County

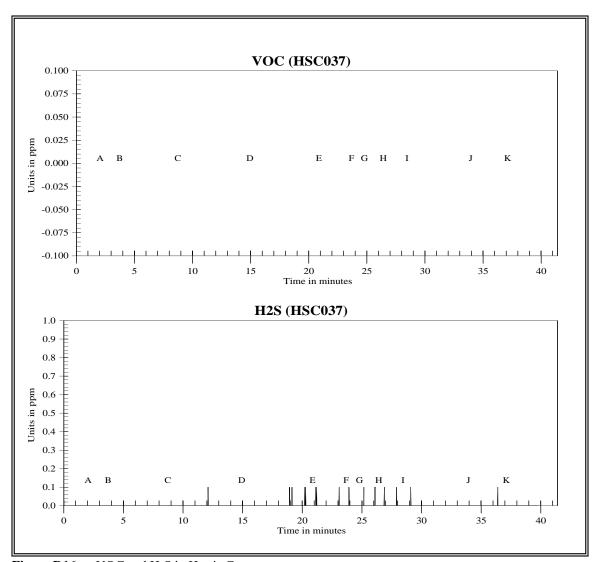
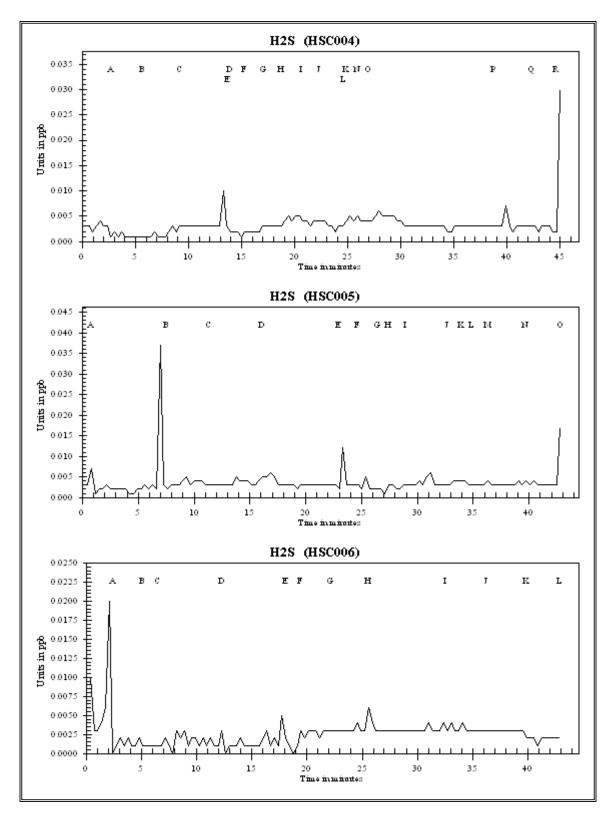



Figure D16 VOC and H₂S in Harris County

APPENDIX E

GRAPHICAL JEROME DATA

URBAN AIR TOXICS STUDY FINAL ANALYTICAL TAGA REPORT MARCH 2007

Figure E1 Monitoring for H₂S in Harris County

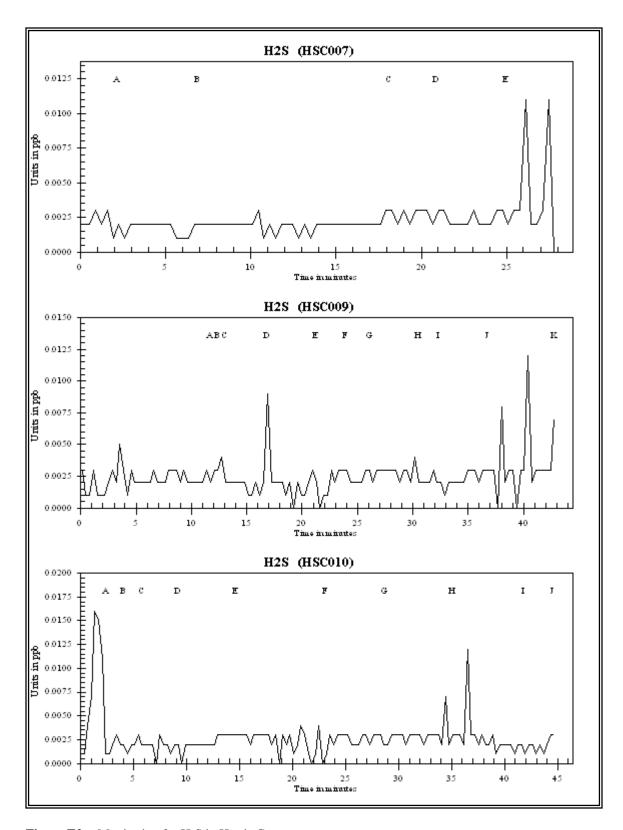


Figure E2 Monitoring for H₂S in Harris County

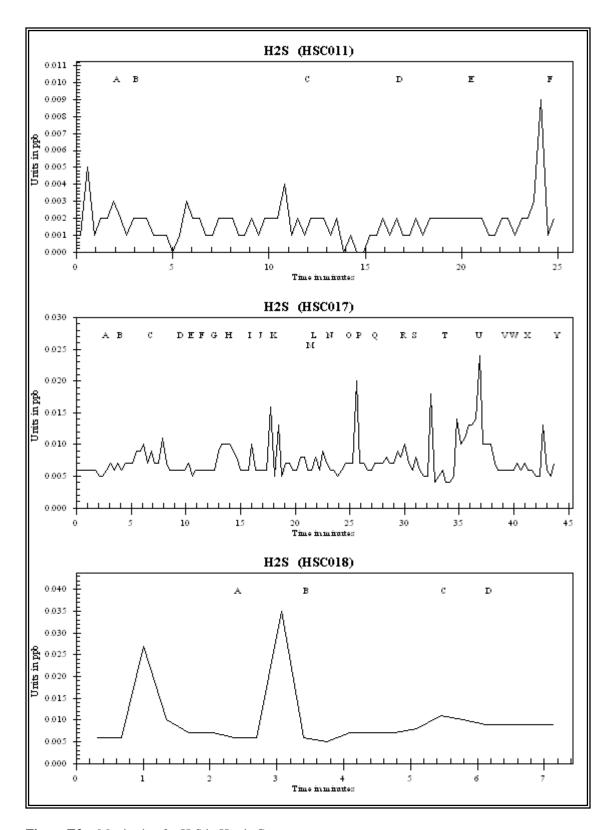


Figure E3 Monitoring for H₂S in Harris County

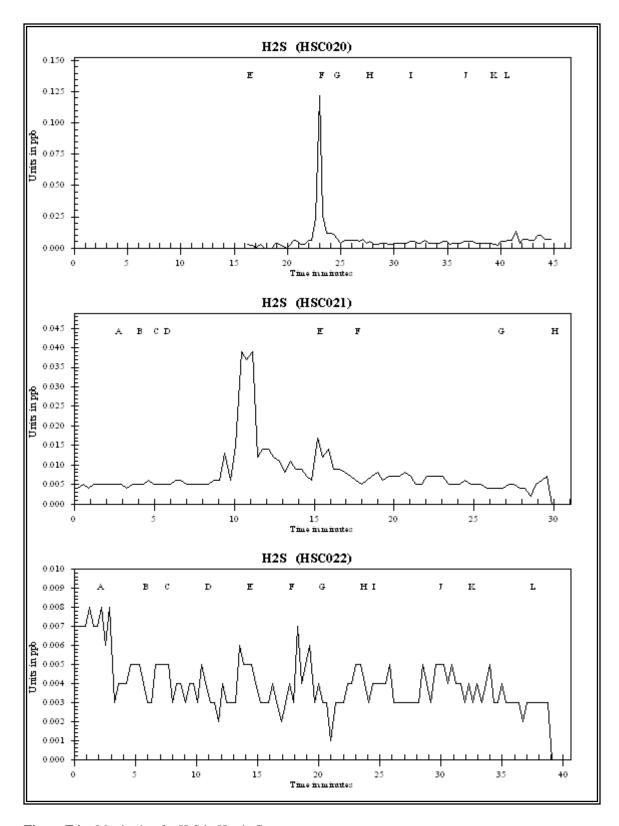
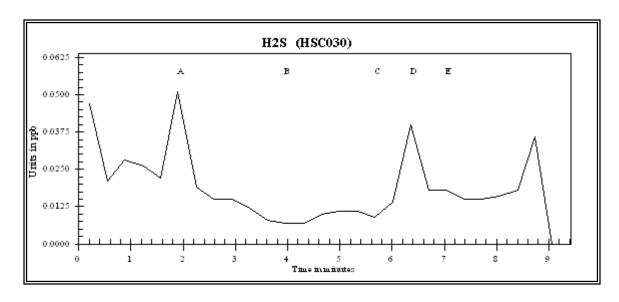



Figure E4 Monitoring for H₂S in Harris County

Figure E5 Monitoring for H₂S in Harris County

APPENDIX F

GRAPHICAL LUMEX DATA

URBAN AIR TOXICS STUDY FINAL ANALYTICAL TAGA REPORT MARCH 2007

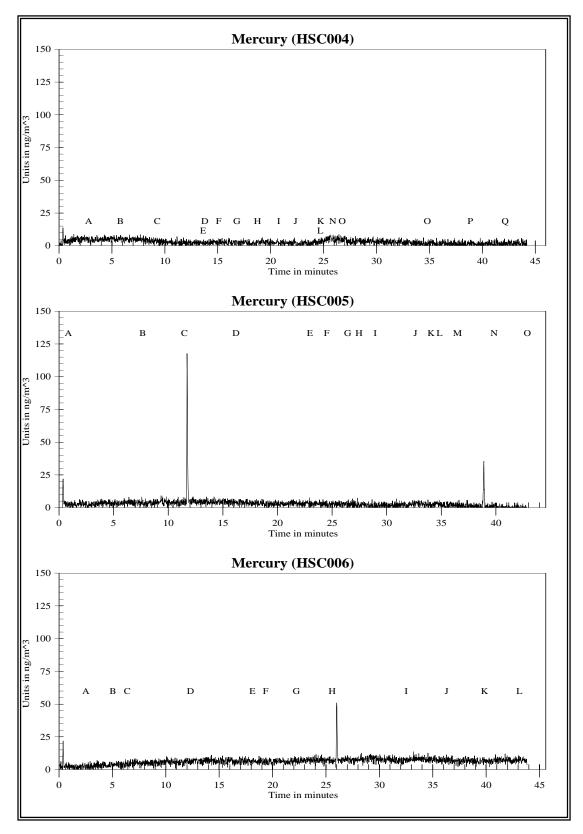


Figure F1 Monitoring for Mercury in Harris County

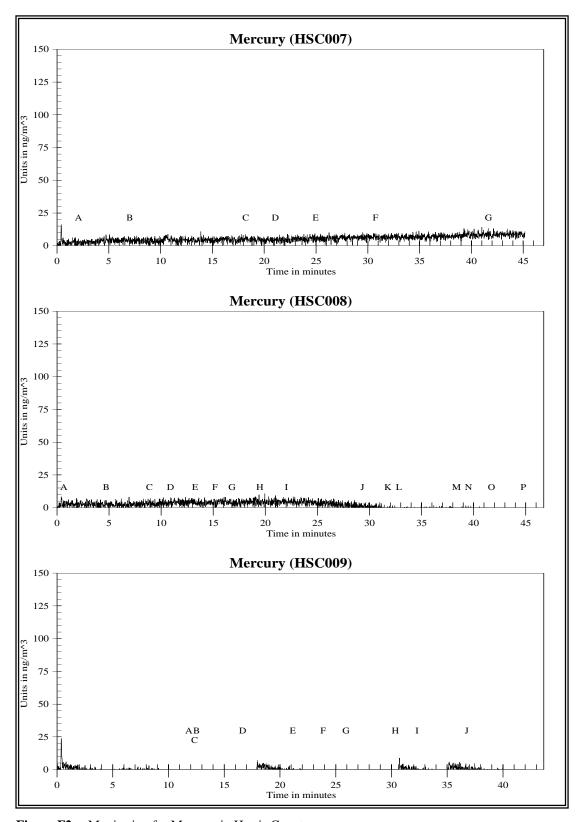


Figure F2 Monitoring for Mercury in Harris County

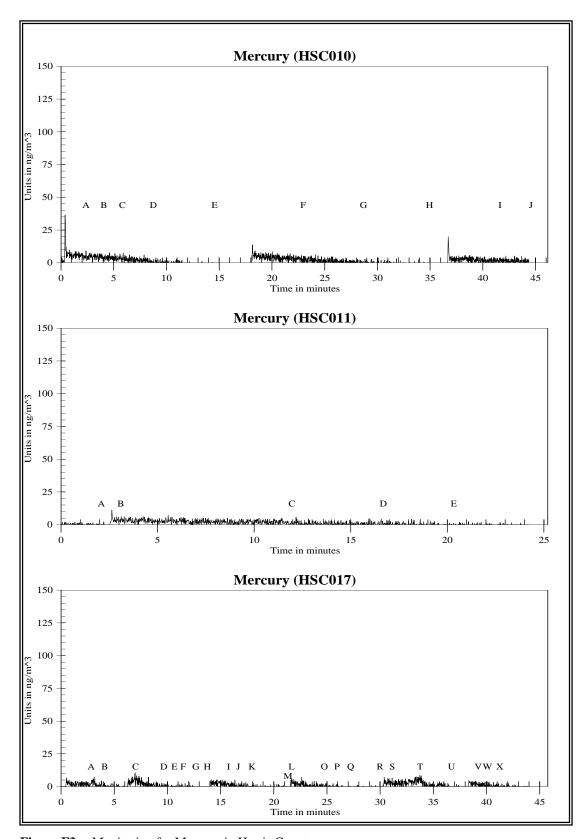


Figure F3 Monitoring for Mercury in Harris County

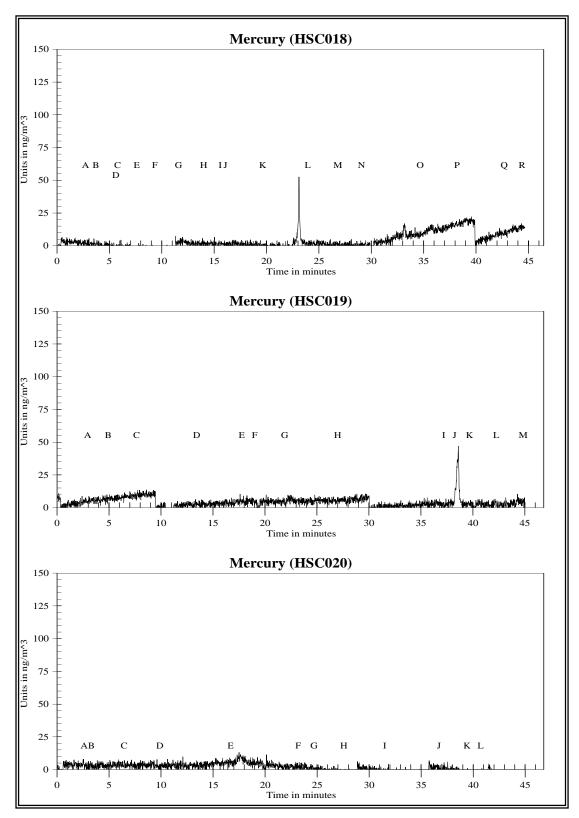


Figure F4 Monitoring for Mercury in Harris County

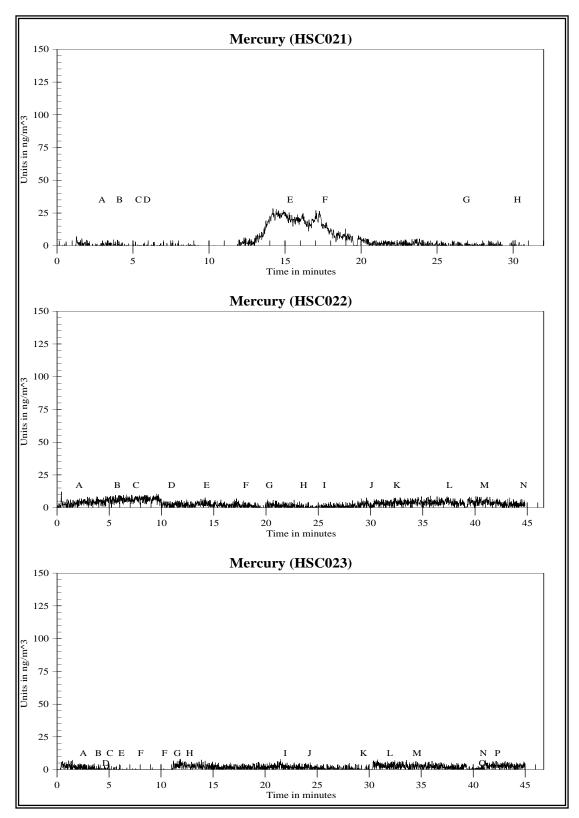


Figure F5 Monitoring for Mercury in Harris County

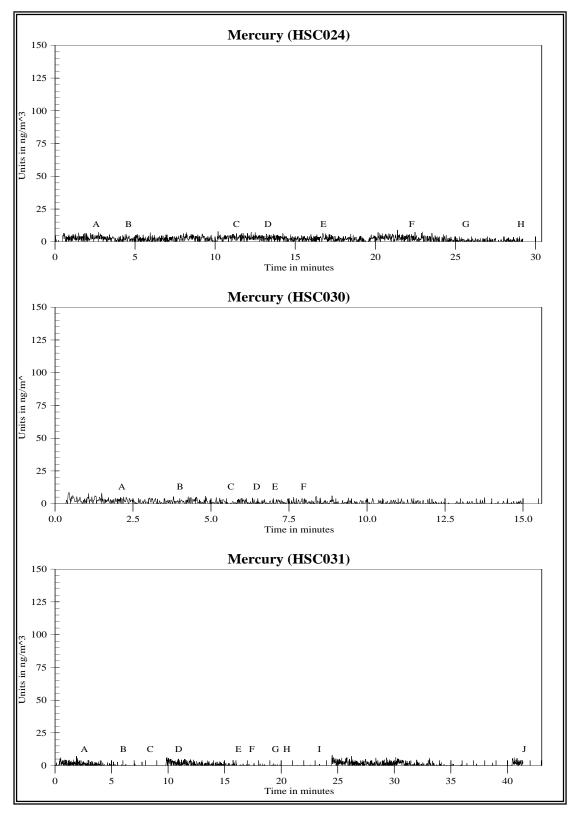


Figure F6 Monitoring for Mercury in Harris County

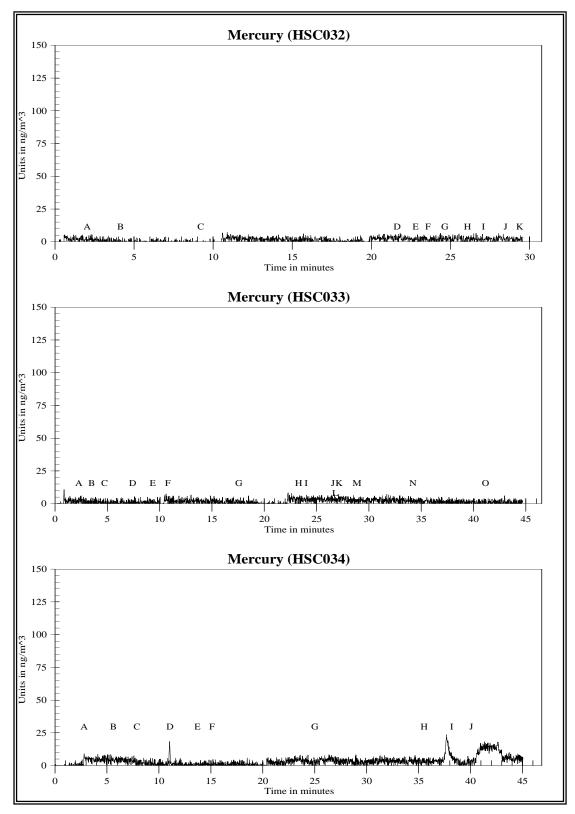


Figure F7 Monitoring for Mercury in Harris County

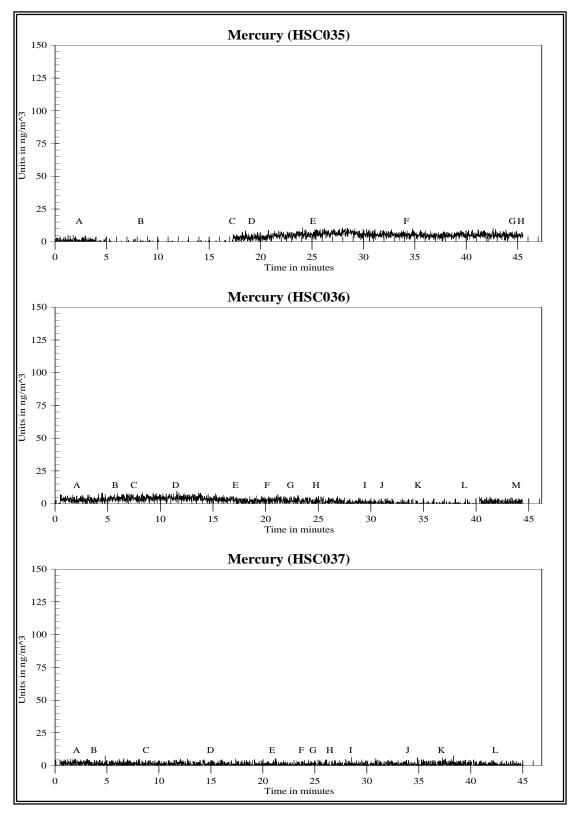


Figure F8 Monitoring for Mercury in Harris County

APPENDIX G

CHAIN OF CUSTODY RECORDS AND SAMPLING WORKSHEETS

URBAN AIR TOXICS STUDY FINAL ANALYTICAL TAGA REPORT MARCH 2007

## Totales Contact Size # 224	# 114	Items/	Special I UTC to c ending p							1							Lab#	Decem	Harris
to Container to SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 2 SUMMA 3 SUMMA 5 SUMMA 6 SUMMA 6 SUMMA 7 SUMMA 7 SUMMA 8 SUMMA 8 SUMMA 8 SUMMA 9 Date Date	SITHM	Items/Reason	nstructions: coordinate w ressure fully			TRIP	10182	B1578	C1161	J0165	H1499	B0125	A1498	F1582	K0175	G1567	Sample #	DET 11 - 14,	County Air
to Container to SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 2 SUMMA 3 SUMMA 5 SUMMA 6 SUMMA 6 SUMMA 7 SUMMA 7 SUMMA 8 SUMMA 8 SUMMA 8 SUMMA 9 Date Date	January Comment	Relinquished	All samples on ith TAGA monit vevacuated (de		ž	71 July 21	12	12	12	12	12	12	12	12	12	12		2008	Toxics
th Container th SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 2 SUMMA 3 SUMMA 5 SUMMA 6 SUMMA 6 SUMMA 7 SUMMA 7 SUMMA 8 SUMMA 8 SUMMA 8 SUMMA 9 Date Date	17/14/06	by Date	one chain per loring data. A termine at lab).		ŕ	WIE _0020010	406_0424UTC	1406_0316UTC	1406_0258UTC	1306_0843UTC	1306_0807UTC	1306 05581170	1306_0322UTC	1306_0319UTC	1206_0724UT0	1206_0718UT0	cation		
th Container th SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 2 SUMMA 3 SUMMA 5 SUMMA 6 SUMMA 6 SUMMA 7 SUMMA 7 SUMMA 8 SUMMA 8 SUMMA 8 SUMMA 9 Date Date	M.C.		rerbal approval of II SUMMA sample		Ş	10 CI-OI	TO 15	1									Analyses		
th Container th SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 2 SUMMA 3 SUMMA 5 SUMMA 6 SUMMA 6 SUMMA 7 SUMMA 7 SUMMA 8 SUMMA 8 SUMMA 8 SUMMA 9 Date Date	14/00 12/4/00		Kyndall Barry - I s are GRAB san															Contac	CHAIN
b Container 1 SUMMA 2 SUMMA 3 SUMMA 3 SUMMA 4 SUMMA 5 SUMMA 6 SUMMA 6 SUMMA 7 SUMMA 7 SUMMA 8 SUMMA 8 SUMMA 8 SUMMA 9 Date Date	THE WEST	Time	USEPA Rei		AIT	Air	Air	Air	Air	Air	A: 2	A A	Air	Ai	Air	Ai.	W	Site #: 21 Name: H act Phone: (OF CUSTODY REC
th Container th SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 1 SUMMA 2 SUMMA 3 SUMMA 5 SUMMA 6 SUMMA 6 SUMMA 7 SUMMA 7 SUMMA 8 SUMMA 8 SUMMA 8 SUMMA 9 Date Date		Items/	gion VI. beginning															234 oward Sci 609-865-6	
b Container 1 SUMMA 2 SUMMA 3 SUMMA 3 SUMMA 4 SUMMA 5 SUMMA 6 SUMMA 6 SUMMA 7 SUMMA 7 SUMMA 8 SUMMA 8 SUMMA 8 SUMMA 9 Date Date		Reason	All sample to pressure of		12/14/2006	12/14/2006	12/14/2006	12/14/2006	12/14/2006	12/13/2006	12/13/2006	12/13/2006	12/13/2006	12/13/2006	12/12/2006	12/12/2006	Collected	hmidt 650	ORD
Ontainer UMAAA UMAAA JMAAA		Relinquishe	imes are in 30" Hg and													0	Num		
No: 234-121406- Lab: USEPA Rep Lab Confact Kyndal Lab Phone: 214-676 Sample Time Suric 07:48 Time is UTC 07:44 Time is UTC 07:49 Time is UTC 07:49 Time is UTC 07:49 Time is UTC 07:49 Time is UTC 07:40 Time is UTC 07:40 Time is UTC 08:43 Time is UTC 08:43 Time is UTC 08:43 Time is UTC 08:20 Time is U			SAMPLES T		SUMMA	SUMMA	NIMMA	1 SUMMA	SUMMA	SUMMA	SUMMA	SUMMA	1 SUMMA	1 SUMMA	1 SUMMA	1 SUMMA	b Container		
Date			RANSFERRED F		00:00	08:20	04:24	03:16	02:58	08:43	05:58	03:42	03:22	03:19	07:24	07:18	Sample T		Z.
0001 pion VI Baury marks		Date	FROM		Time is UTC	Time is UTC	Time is UTC	Time is UTC	Time is UTC	Time is UTC	Time is UTC	Time is UTC	Time is UTC	Time is UTC	Time is UTC	Time is UTC	ime Sample_Re	Lab: USEPA Region VI ab Contact: Kyndall Barry ab Phone: 214-679-8329	0: 234-121406-

Work Sheet

Sample #	Sample Date EventID	Location	Matrix	Analyses	Container	COC	Remarks
A1498	12/13/2006 Day 2	121306_0322UTC	Air	TO-15	SUMMA	234-121406-000	l Time is UTC
B0125	12/13/2006 Day 2	121306_0558UTC	Air	TO-15	SUMMA	234-121406-000	1 Time is UTC
B1578	12/14/2006 Day 3	121406_0316UTC	Air	TO-15	SUMMA	234-121406-000	1 Time is UTC
C1161	12/14/2006 Day 3	121406_0258UTC	Air	TO-15	SUMMA	234-121406-000	l Time is UTC
F1496	12/13/2006 Day 2	121306_0342UTC	Air	TO-15	SUMMA	234-121406-000	1 Time is UTC
F1500	12/14/2006 Day 3	121406_0424UTC	Air	TO-15	SUMMA	234-121406-000	1 Time is UTC
F1582	12/13/2006 Day 2	121306_0319UTC	Air	TO-15	SUMMA	234-121406-000	1 Time is UTC
G1567	12/12/2006 Day 1	121206_0718UTC	Air	TO-15	SUMMA	234-121406-000	1 Time is UTC
H1499	12/13/2006 Day 2	121306_0807UTC	Air	TO-15	SUMMA	234-121406-000	l Time is UTC
J0165	12/13/2006 Day 2	121306_0843UTC	Air	TO-15	SUMMA	234-121406-000	1 Time is UTC
J0182	12/14/2006 Day 3	121406_0820UTC	Air	TO-15	SUMMA	234-121406-000	1 Time is UTC
K0175	12/12/2006 Day 1	121206_0724UTC	Air	TO-15	SUMMA	234-121406-000	l Time is UTC
TRIP	12/14/2006 Day 3	NONE	Air	TO-15	SUMMA	234-121406-000	1 Time is UTC