# THE EMISSIONS & GENERATION RESOURCE INTEGRATED DATABASE FOR 2007

# (eGRID2007) TECHNICAL SUPPORT DOCUMENT

## Prepared for:

U.S. Environmental Protection Agency Office of Atmospheric Programs Climate Protection Partnerships Division Washington, DC 20460

Prepared by:

E.H. Pechan & Associates, Inc. 5528-B Hempstead Way Springfield, VA 22151

September 2008

Contract No. EP-D-06-001 Work Assignment No. 2-39 Pechan Rpt. No. 08.09.006/9011.239



U. S. Environmental Protection Agency Office of Atmospheric Programs
Prepared by E.H. Pechan & Associates, Inc.



eGRID2007 Version 1.0 September 2008



# **NOTICES**

This document has been reviewed by the Climate Protection Partnerships Division (CPPD), Office of Atmospheric Programs (OAP), U.S. Environmental Protection Agency (EPA), and approved for distribution.

This document is available to the public through CPPD's website at http://www.epa.gov/egrid.

# **ACKNOWLEDGMENTS**

This edition of eGRID was developed under the leadership of EPA's Mr. Art Diem, Climate Protection Partnerships Division (CPPD), State & Local Branch, and E. H. Pechan & Associates' Electric Power Team Manager, Dr. Susy Rothschild, who also prepared all the earlier editions of eGRID. The eGRID system was conceived of by Mr. Rick Morgan, former EPA Senior Energy Analyst in the Office of Atmospheric Programs. The cover graphics were supplied by the National Renewable Energy Laboratory.

# **CONTENTS**

|              |                                                                                          | <u>Page</u> |
|--------------|------------------------------------------------------------------------------------------|-------------|
| ACKNOWLE     | DGMENTS                                                                                  | iv          |
| ABBREVIAT    | IONS AND ACRONYMS                                                                        | vii         |
| SECTION I. I | NTRODUCTION                                                                              | 1           |
| CECTION II   | CLIMATA DAY OF A CDIDAGGAD A TA                                                          | 2           |
|              | SUMMARY OF eGRID2007 DATA                                                                |             |
| A.<br>B.     | eGRID FILESeGRID SOURCES                                                                 |             |
| Б.<br>С.     | WHAT'S NEW IN eGRID2007                                                                  |             |
| D.           | USERS OF eGRID                                                                           |             |
| SECTION III  | eGRID METHODOLOGY                                                                        | 7           |
| A.           | TREATMENT OF ELECTRICITY GENERATION AND EMISSIONS FROM                                   | /           |
| 71.          | BIOMASS                                                                                  | 7           |
| B.           | TREATMENT OF ELECTRICITY GENERATION AND EMISSIONS FROM S WASTE                           |             |
| C.           | ESTIMATION OF EMISSIONS                                                                  |             |
| C.           | 1. Unadjusted Emission Estimates for Year 2005                                           |             |
|              | 2. Annual Emission Estimates for CO <sub>2</sub> , SO <sub>2</sub> , and NO <sub>x</sub> |             |
|              | 3. Annual Emission Estimates for CH <sub>4</sub> and N <sub>2</sub> O                    |             |
|              | 4. Annual Emission Estimates for Mercury (Hg)                                            |             |
|              | 5. Ozone Season Emission Estimates for NO <sub>x</sub>                                   |             |
|              | 6. Adjusted Emission Estimates.                                                          |             |
|              | 7. Adjustments for Biomass                                                               |             |
|              | 8. Adjustments for CHP                                                                   |             |
|              | 9. Emission Rate Estimates                                                               | 13          |
| D.           | TREATMENT OF PLANT OWNERSHIP                                                             | 16          |
| E.           | DETERMINATION OF PLANT PRIMARY FUEL                                                      | 17          |
| F.           | ESTIMATION OF RESOURCE MIX                                                               | 18          |
| G.           | DETERMINATION OF PLANT AGGREGATION LINKS                                                 | 19          |
|              | 1. Power Control Area                                                                    | 19          |
|              | 2. NERC Region                                                                           | 19          |
|              | 3. eGRID Subregion                                                                       |             |
| H.           | TREATMENT OF AGGREGATION LEVELS                                                          | 25          |
| SECTION IV.  | SPECIFIC eGRID ID AND NAME CHANGES AND ASSOCIATIONS                                      |             |
| A.           | PLANT LEVEL                                                                              |             |
| В.           | EGC, COMPANY LEVEL                                                                       |             |
| C.           | PARENT COMPANY LEVEL                                                                     |             |
| D.           | POWER CONTROL AREA (PCA) and NERC REGION LEVELS                                          |             |
| E.           | eGRID SUBREGION LEVEL                                                                    | 29          |
| SECTION V.   | DESCRIPTION OF DATA ELEMENTS                                                             |             |
| A.           | THE BLR (BOILER) FILE                                                                    |             |
| B.           | THE GEN (GENERATOR) FILE                                                                 |             |
| C.           | THE PLNT (PLANT) FILE                                                                    | 40          |

| D.             | THE ST (STATE) FILE                                   | 54          |
|----------------|-------------------------------------------------------|-------------|
| E.             | THE EGCL AND EGCO (EGC) FILES                         |             |
| F.             | THE PRCL AND PRCO (PARENT COMPANY) FILES              | 60          |
| G.             | THE PCAL (PCA) FILE.                                  |             |
| H.             | THE SRL (eGRID SUBREGION) FILE                        |             |
| I.             | THE NRL (NERC REGION) FILE                            |             |
| J.             | THE US (U.S.) FILE                                    | 60          |
| K.             | THE STIE04 (2004 STATE IMPORT-EXPORT) FILE            | 61          |
| L.             | THE STIE05 (2005 STATE IMPORT-EXPORT) FILE            | 62          |
| M.             | THE USGC (U.S. GENERATION AND CONSUMPTION) FILE       |             |
|                | REFERENCES                                            |             |
|                |                                                       |             |
|                | . eGRID2007 eGRID SUBREGION AND NERC REGION REPRESENT |             |
| TABLES         |                                                       |             |
|                |                                                       | <b>Page</b> |
| Table III-1. M | Iunicipal Solid Waste MSB and MSF Splits              | 7           |
|                | omparison of 100-Year GWPs                            |             |
|                | loors for Power to Heat Ratio and ELCALLOC            |             |
|                | lant Primary Fuel                                     |             |
|                | CA-NERC Region Relationship                           |             |
|                | CA-eGRID Subregion – NERC Region Relationship         |             |

## ABBREVIATIONS AND ACRONYMS

AR4 Fourth Intergovernmental Panel on Climate Change Assessment

BACT Best Available Control Technology

BBtu Billion Btu

Btu British thermal unit

CAMD Clean Air Markets Division
CEM Continuous Emissions Monitoring

CHP Combined heat and power (cogeneration)

CH<sub>4</sub> Methane

CO<sub>2</sub> Carbon dioxide

CPPD Climate Protection Partnerships Division

DOE U.S. Department of Energy

EEA Energy and Environmental Analysis, an ICF International Company

eGRID Emissions & Generation Resource Integrated Database

eGRID96 Emissions & Generation Resource Integrated Database for the year 1996

(1995 data)

eGRID97 Emissions & Generation Resource Integrated Database for the year 1997

(1995-1996 data)

eGRID2000 Emissions & Generation Resource Integrated Database for the year 2000

(1996-1998 data)

eGRID2002 Emissions & Generation Resource Integrated Database for the year 2002

(1996-2000 data)

eGRID2006 Emissions & Generation Resource Integrated Database for the year 2006

(2004 data)

eGRID2007 Emissions & Generation Resource Integrated Database for the year 2007

(2004 and 2005 data)

EGC Electric generating company
EIA Energy Information Administration
EPA U.S. Environmental Protection Agency

ERG Eastern Research Group ETS Emissions Tracking System

FERC Federal Energy Regulatory Commission
FIPS Federal Information Processing Standards
GATS Generation Attribute Tracking System

GHG Greenhouse gas

GIS Geographic Information System

GWh Gigawatt-hour Hg Mercury

ICE Information Collection Effort (by EPA for 1999 mercury data)

ICF International Company

IPCC Intergovernmental Panel on Climate Change

IPM Integrated Planning Model (developed by ICF Incorporated)

kWh kilowatt-hour

LAER Lowest Achievable Emission Rate

IbPoundMMBtuMillion BtuMMcfMillion cubic feetMSWMunicipal Solid Waste

# **ABBREVIATIONS AND ACRONYMS (continued)**

MW Megawatt

MWC Municipal Waste Combustor

MWh Megawatt-hour

NATCARB Distributed National Carbon Sequestration Database and Geographic Information

System

NERC North American Electric Reliability Corporation NESCAUM Northeast States for Coordinated Air Use Management

NETL National Energy Technology Laboratory

NGO Nongovernmental Organizations

NIST National Institute of Standards and Technology

NO<sub>x</sub> Nitrogen oxides

NREL National Renewable Energy Laboratory

N<sub>2</sub>O Nitrous oxide

OAP Office of Atmospheric Programs

OMEGA JV Ohio Municipal Electric Generation Agency Joint Ventures

ORIS Office of the Regulatory Information System

ORNL Oak Ridge National Laboratory
OTC Ozone Transport Commission
OTR Ozone Transport Region
PCA Power control area

Pechan E.H. Pechan & Associates, Inc.

RACT Reasonably Available Control Technology

RECS Renewable Energy Credits

RGGI Regional Greenhouse Gas Initiative RPS Renewable Portfolio Standards

SAR Second Intergovernmental Panel on Climate Change Assessment

SAS Statistical Analysis System

SO<sub>2</sub> Sulfur dioxide

TAR Third Intergovernmental Panel on Climate Change Assessment

## SECTION I. INTRODUCTION

The Emissions & Generation Resource Integrated Database (eGRID) is a comprehensive inventory of environmental attributes of electric power systems. The preeminent source of emissions data for the electric power sector, eGRID is based on available plant-specific data for all U.S. electricity generating plants that provide power to the electric grid and report data to the U.S. government. Data reported include generation in megawatt-hour (MWh); resource mix (for renewable and nonrenewable generation); emissions in tons for carbon dioxide (CO<sub>2</sub>), nitrogen oxides (NO<sub>x</sub>), and sulfur dioxide (SO<sub>2</sub>); emissions in pounds for methane (CH<sub>4</sub>), nitrous oxide (N<sub>2</sub>O) and mercury (Hg); emission rates for CO<sub>2</sub>, NO<sub>x</sub>, and SO<sub>2</sub> (in both pounds per megawatt-hour [lb/MWh]) and pounds per million British thermal unit [lb/MMBtu]) and for CH<sub>4</sub>, N<sub>2</sub>O, and Hg (in pounds per gigawatt-hour [lb/GWh] and pounds per billion Btu [lb/BBtu]); heat input in MMBtu; and nameplate capacity in megawatts (MW). eGRID reports this information on an annual basis (as well as by ozone season for NO<sub>x</sub> emissions and emission rates, generation, and heat input) at different levels of aggregation (boiler, generator, plant, companies, and grid regions of the country).

The 1996 eGRID (eGRID96) was first released in December 1998; the 1997 eGRID (eGRID97) with 1996 and 1997 data, was first released in December 1999; and the 2000 eGRID (eGRID2000), with 1996 and 1997 data as in eGRID97, and 1998 data, was released in March and September 2001. The 2002 eGRID (eGRID2002), with preliminary 2000 data, was first released as Version 1.0 in December 2002 and with 1996-2000 data as Version 2.0 in April 2003 and Version 2.01 in May 2003. eGRID2006 Version 1.0, with the year 2004 plant spreadsheet file, was first released in December 2006; Version 2.0, which includes one Excel workbook with an updated plant file, as well as the boiler and generator files for year 2004, was released in early April 2007; and Version 2.1, with the complete set of files – boiler, generator, plant, State, EGC location (operator)- and owner-based, power control area, eGRID subregion, and NERC region – was released in late April 2007 and updated for typos in May 2007.

The newest and sixth edition of eGRID, eGRID2007 Version 1.0, was released in September 2008, published in October 2008, and includes three Excel workbooks with year 2005 data. The year 2004 data are the same as those included in eGRID2006. The three workbooks consist of 12 year 2005 data files -- boiler, generator, plant, State, EGC location (operator)- and owner-based, parent company location (operator)- and owner-based, power control area, eGRID subregion, and NERC region – as well as the State Import-Export files years 2004 and 2005 and a U.S. generation and consumption file for years 2004 and 2005. A web-based eGRID user friendly application is planned for release in 2009.

eGRID2007's date in the name represents the year that the industry data are adjusted to. eGRID2007's year 2005 data have been reconfigured to reflect the industry's current structure as was known by December 31, 2007, including plant ownership and operators, parent company affiliations, company mergers, and grid configurations.

Although eGRID is based on more than existing Federal data sources, its development required substantial attention to quality control. Accurate matching of entities from different databases required great care, even where identification codes were available. Inconsistencies between data sources, missing data, and ambiguous data necessitated adjustments to values of individual data elements, especially identification data. In general, however, questionable data have not been altered, except with regard to the relationship of plants to the power grid.

This document provides a description of the eGRID2007 data elements in the 12 Excel spreadsheet files for each level of aggregation as well as the three State Import-Export files. Section II provides a

summary of the database; Section III is the Methodology Section and presents the methodology for emissions estimations, including adjustments for biomass and combined heat and power (CHP), among other issues; Section IV includes discussion of eGRID specific ID and name changes and associations; and Section V describes the data elements in detail. There is a set of Reference citations in Section VI and two Appendices – Appendix A, which includes the file structure, and Appendix B, which includes the eGRID subregion and NERC region representational maps.

## SECTION II. SUMMARY OF eGRID2007 DATA

#### A. eGRID FILES

eGRID2007 contains electric power data at different levels of aggregation. As the database name implies, the focus of the data files is on two areas: generation and emissions. Generation is expressed in both MWh and as a percentage (called "resource mix" – generation of a certain fuel or resource type divided by total generation).  $CO_2$ ,  $NO_x$ , and  $SO_2$  emissions are expressed in tons and  $CH_4$ ,  $N_2O$ , and  $H_2$  emissions are expressed in pounds. Emission rates are expressed in lb/MWh, lb/MMBtu for  $CO_2$ ,  $NO_x$ , and  $SO_2$  and are expressed in lb/GWh and lb/BBtu for  $CH_4$ ,  $N_2O$ , and  $H_2$ . The measurement units are United States units, not metric units.

Data users should take note that eGRID's emissions and emission rates are calculated at the generation source level, as they are derived for individual power plants. If eGRID's output emission rates (in lb per M[G]Wh) are applied at the retail source level (i.e., by assigning emissions to usage by retail customers), emissions should generally be revised upwards by an appropriate factor to reflect transmission and distribution line losses. eGRID data do not include imports – just plant generated net MWh, MMBtu, and emissions.

eGRID2007's year 2005 data have been reconfigured to reflect the industry's current structure as was known by December 31, 2007, including plant ownership and operators, parent company affiliations, company mergers, and grid configurations. eGRID2007 also includes the year 2004 data from eGRID2006, which were configured to reflect the industry's structure as was known by October 1, 2006. Only certain eGRID files can be linked from year 2005 to year 2004. The files that can be linked include the NERC region (by NERC acronym), eGRID subregion (by eGRID subregion acronym), State (by postal State abbreviation), and plant (by eGRID plant sequence number). The eGRID year 2005 plant data are linked to the year 2004 plant data with the inclusion of the year 2004 plant file's SEQPLT04 variable in the year 2005 plant file – when the plants match. (Although most plants will match on ORISPL, there are some exceptions, so it is completely accurate to match from year 2005 to 2004 using SEQPLT04).

The year 2005 data are displayed in three workbooks. Two of the workbooks include the aggregation files. The boiler, generator, and plant data are included in the first workbook, the plant workbook. The location (operator)-based spreadsheets for State, electric generating company, parent company, power control area, eGRID subregion, NERC region, and U.S. are included in the second workbook, the aggregation workbook. The owner-based spreadsheet for electric generating company and parent company are also included in the second workbook. State Import-Export data are contained in the third workbook, the ImportExport workbook. The spreadsheets can be downloaded from the EPA Climate Protection Partnerships Division's (CPPD) Clean Energy eGRID web site, <a href="http://www.epa.gov/egrid">http://www.epa.gov/egrid</a>, along with Summary Tables and this document. The data were originally processed on the EPA IBM mainframe using SAS, the Statistical Analysis System software.

#### The 12 eGRID2007 aggregation files are:

- BLR (boiler), with 4,866 year 2005 records;
- GEN (generator), with 16,306 year 2005 records;
- PLNT (plant), with 4,998 year 2005 records with non-zero generation and/or heat input;
- ST (State), with 51 year 2005 records;
- EGCL and EGCO (electric generating company), with 1,667 year 2005 records for the location (operator)-based file and 1,898 year 2005 records for the owner-based file, respectively;

- PRCL and PRCO (parent company), with 97 year 2005 records in the location (operator)-based file and 101 year 2005 records in the owner-based file, respectively;
- PCAL (power control area), with 112 year 2005 records in the location (operator)-based file;
- SRL (eGRID subregion), with 26 eGRID subregion year 2005 records in the location (operator)based file;
- NRL (NERC region), with 10 NERC region year 2005 records in the location (operator)-based file; and
- US, with 1 year 2005 U.S. totals record.

The number of variables in each of the 12 aggregation files varies, with 34 in BLR, 15 in GEN, 158 in PLNT, 109 in ST, 111 in EGCL and EGCO, 109 in PRCL and PRCO, 109 in PCAL, 110 in SRL, 109 in NRL, and 107 in US. The first variable in each file is a unique sequence number for that file. The boiler file is sorted by State postal code abbreviation, plant name, plant code, and boiler ID. The generator file is sorted by State postal code abbreviation, plant name, plant code, and generator ID. The plant file is sorted by State postal code abbreviation, plant name, and plant code. The State file is sorted by State postal code abbreviation. The two electric generating company files are sorted by electric generating company name, the two parent company files are sorted by parent company name, the power control area file is sorted by power control area name, the eGRID subregion file is sorted by eGRID subregion name, and the NERC region file is sorted by NERC region acronym.

In this edition of eGRID, Import-Export Files for years 2004 and 2005 and the Generation and Consumption file for the U.S have been included in a third workbook; similar files were in eGRID2002, but not in eGRID2006.

The file structure for all the year 2005 files is included in Appendix A. The file structure also includes a description of the variables and the original data sources. The file structure indicates which variables in year 2005 are new or different from those in year 2004.

#### B. eGRID SOURCES

eGRID is developed from a variety of data collected by the U.S. Environmental Protection Agency (EPA), Energy Information Administration (EIA), and Federal Energy Regulatory Commission (FERC). Federal data sources include:

- EPA, Emissions Tracking System/Continuous Emissions Monitoring (ETS/CEM) (EPA, 2007);
- EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2005;
- EPA, Electric Utility Steam Generating Units Hazardous Air Pollutant Emission Study: 1999 Mercury Information Collection Request (ICR) Database (EPA, 2001) updated to 2002 (RTI, 2005);
- EPA, Large Municipal Waste Combustor Emissions for 2000 (EPA, 2002);
- EIA, EIA-767: Steam-Electric Plant Operation and Design Report (EIA, 2006a);
- EIA, EIA-860: Annual Electric Generator Report (EIA, 2007a);
- EIA, EIA-906: Power Plant Report (EIA, 2006c);
- EIA, EIA-920: Combined Heat and Power Plant Report (EIA, 2006b);
- EIA, EIA-861: Annual Electric Power Industry Report (EIA, 2007b);
- EIA, EIA-423: Monthly Cost and Quality of Fuels for Electric Plants Report (unregulated [nonutility]) (EIA, 2006d);
- FERC, FERC-423: Monthly Report of Cost and Quality of Fuels for Electric Plants (regulated [utility]) (FERC, 2006); and

• EIA, Electric Power Monthly, Plants Sold and Transferred (EIA, 2006-2008).

An additional source of eGRID data, the North American Electric Reliability Corporation [formerly the North American Electric Reliability Council] (NERC), is quasi-governmental since it was certified by FERC in July 2006 as the "electric reliability organization" (NERC, 2008).

Data displayed in eGRID are derived from the above data sources; EPA does not collect data directly from electric generators for eGRID. Inconsistencies between data sources, missing data, and ambiguous data occasionally necessitate adjustments to values of individual data elements. When necessary, EPA substitutes data from secondary sources or default values. EPA also updates ownership, corporate affiliation, and grid configuration data. In general, however, data are displayed as reported; this may lead to plant file outliers to which users should be alert.

#### C. WHAT'S NEW IN eGRID2007

eGRID2007 includes several new data element delineated below:

- Because of increased interest in curbing greenhouse gases (GHG) associated with electricity production, beginning with the plant file, eGRID now includes emission tons and rates for two other GHGs, methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O).
- In the plant file, there is a new flag indicating whether the latitude and longitude values comprise the county centroid or not.
- In the plant file, there is a coal flag indicating whether the plant burns any amount of coal.
- In the plant file, there is another new flag indicating whether the plant combusts fuel. Two noteworthy plants that have both generators that combust fuel and that do not combust fuel are Crystal River and Turkey Point, both in Florida.
- Beginning with the plant file, there are four new resource mix variables: combustion and noncombustion generation in terms of MWh and percent.
- Beginning with the plant file, there are seven new combustion output emission rates for each aggregation file for ozone season NO<sub>x</sub> and annual NO<sub>x</sub>, SO<sub>2</sub>, CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, and Hg.

Three files that were included in eGRID2002, but not in eGRID2006, are included in eGRID2007: the State Import-Export files for 2004 and 2005, and the U.S. Generation and Consumption file. The file structure is included in Appendix A.

Methodological changes in eGRID2007 for year 2005 data include a revised methodology for splitting out the municipal solid waste data into biomass and fossil components; some updated IDs; updated latitude and longitudes and data sources; updated Hg data source; updated generation methodology for missing data; updated CO<sub>2</sub> emission factors; updated primary fuel determination; expansion of the plant coal/oil/gas primary fuel category variable to include other fossil fuel; and the addition of emissions for geothermal plants. Methodological changes are detailed in Section III, the Methodology Section. Year 2004 data included in eGRID2007 are unchanged from the data in eGRID2006. For more information about the year 2004 data, see the eGRID2006 Technical Support Document (Pechan, 2007).

There have been a few changes to the NERC regions, power control areas, and eGRID subregions. Representational maps of the NERC regions and eGRID subregions are included in Appendix B.

#### D. USERS OF eGRID

eGRID data support tools that are produced such as labeling/environmental disclosure, Renewable Portfolio Standards (RPS) and Renewable Energy Credits (RECS) attributes, and the Regional Greenhouse Gas Initiative (RGGI). The eGRID data are specifically used for other EPA tools and programs such as Power Profiler, Climate Leaders, Portfolio Manager, and Personal Greenhouse Gas Emissions Calculator.

eGRID is also used by other Federal Government agencies such as Oak Ridge National Laboratory (ORNL) for their Combined Heat and Power Calculator, the National Energy Technology Laboratory (NETL) for their sponsored Distributed National Carbon Sequestration Database and Geographic Information System (NATCARB), and the National Renewable Energy Laboratory (NREL) for their micropower distributed generation optimization model named HOMER. RECS Tracking Systems, such as ISO-New England's Generation Information System (GIS) and PJM's Generation Attribute Tracking System (GATS) utilize eGRID data; and States rely on eGRID data for electricity labeling (environmental disclosure programs), emissions inventories, and registries (such as The Climate Registry and the California Climate Action Registry), and for policy decisions/impacts such as output based standards; many States also publish state-specific eGRID data on the web.

eGRID is additionally used for nongovernmental organizations' (NGOs) tools and analysis such as the Northeast States for Coordinated Air Use Management (NESCAUM) analysis, Powerscorecard.org, the Ozone Transport Commission's (OTC) Emission Workbook, the Greenhouse Gas (GHG) Protocol Initiative, the Rocky Mountain Institute's Community Energy Finder, Leonardo Academy's "Cleaner and Greener Environmental Program," the National Resource Defense Council's Benchmarking Air Emissions, The Berkeley Institute of the Environment, Cool Climate Carbon Footprint Calculator, the Climate and Air Pollution Planning Assistant (CAPPA), Emission Solution's Carbon Footprint Calculator, and the Clean Air Climate Protection software developed by the International Council for Local Environmental Initiatives (ICLEI). The Center for Global Developments' Carbon Monitoring for Action Database (CARMA) at carma.org, which contains information about carbon emissions for power plant and companies in the U.S. as well as other countries, used eGRID year 2004 data as a base, according to the Center's David Wheeler (Wheeler, 2007).

eGRID has many academic uses and is often cited in relevant research and analysis papers and lessons prepared by various consulting groups as well as universities such as Stanford, North Carolina University, Texas A&M University, Penn State, Eastern Connecticut University, and Michigan Tech.

# SECTION III. eGRID METHODOLOGY

This section describes eGRID development methodologies that are not transparent. Some methods used for eGRID2007 are modified or refined from previous editions of eGRID and are so noted in this section.

# A. TREATMENT OF ELECTRICITY GENERATION AND EMISSIONS FROM BIOMASS

Biomass and solid waste burning plants are specifically addressed in eGRID as follows:

Biomass is a fuel derived from organic matter such as wood and paper products, agricultural waste, or methane (e.g., from landfills). eGRID assumes that these materials are subject to the natural carbon cycle and, therefore, do not contribute to global warming. eGRID assigns zero  $CO_2$  emissions to generation from the combustion of all biomass because these organic materials would otherwise release  $CO_2$  (or other greenhouse gases) to the atmosphere through decomposition.

Emissions from generation powered by renewable methane (landfill gas and digester gas) are also treated as a special case in eGRID with respect to  $NO_x$  and  $SO_2$ . Landfill gas and digester gas emissions must be flared in most cases if the gas is not consumed as useful energy. eGRID determines the amount of incremental  $NO_x$  emissions attributable to utilizing renewable methane to generate electricity and eGRID assumes that renewable methane such as landfill gas or digester gas would have been flared if not used to generate electricity. This generation is then assigned the appropriate  $NO_x$  emission factor, e.g., for a boiler or internal combustion engine or turbine. These emissions are then offset by the amount of emissions represented by a typical flare.  $SO_2$  emissions are assumed to be the same as the flare's emissions and are, therefore, assigned a value of zero.

# B. TREATMENT OF ELECTRICITY GENERATION AND EMISSIONS FROM SOLID WASTE

Solid waste typically consists of a mixture of renewable materials (biomass such as wood, paper, and food waste) and nonrenewable materials (fossil-based materials such as plastics and tires) and, therefore, requires special treatment in eGRID. In 2007, both EIA and EPA updated the methodology regarding the renewable-nonrenewable composition (biomass and fossil) of municipal solid waste (MSW). Beginning with eGRID's year 2005 data, EPA modified EIA's biomass-fossil splits for fuel consumption, heat input, and generation. EPA's municipal solid waste (MSW) splits' methodology utilizes decimal values and also provides different splits for the consumption data, based on the type of combustor. The MSW percentages for the MSW biomass component (called MSB) and the MSW fossil component (called MSF) are described in Table III-1 below (EIA, 2007c). The type of MSW is obtained from an EPA data file (EPA, 2002).

Table III-1. Municipal Solid Waste MSB and MSF Splits

| MSW Type            | Variable(s)            | MSB Split (%) | MSF Split (%) |
|---------------------|------------------------|---------------|---------------|
| Mass Burn           | Heat Input, Generation | 52.7%         | 47.3%         |
| Mass Burn           | Fuel Consumption       | 65.4%         | 34.6%         |
| Refuse Derived Fuel | Heat Input, Generation | 52.7%         | 47.3%         |
| Refuse Derived Fuel | Fuel Consumption       | 75.1%         | 24.9%         |
| Unknown             | Heat Input, Generation | 52.7%         | 47.3%         |
| Unknown             | Fuel Consumption       | 67.7%         | 32.3%         |

As with all biomass generation, the renewable portion of solid waste is assumed to have zero CO<sub>2</sub> emissions, but other emissions are reported based on appropriate emission factors. Generation from supplemental fossil fuels co-fired with solid waste is identified if known and reflected in emission rates.

#### C. ESTIMATION OF EMISSIONS

Emissions ( $CO_2$ ,  $NO_x$ ,  $SO_2$ , Hg,  $CH_4$ , and  $N_2O$ ) in eGRID are estimated using data from a variety of sources from EPA and EIA (see SOURCEM variable in the eGRID plant file). Carbon dioxide ( $CO_2$ ) is a product of fossil fuel combustion and is the primary greenhouse gas (GHG) emitted by human activities that is contributing to global climate change; nitrogen oxides ( $NO_x$ ) is a product of fossil fuel combustion and is a precursor to the formation of ozone, or smog, and also contributes to acid rain and other environmental and human health impacts; sulfur dioxide ( $SO_2$ ) is an air pollutant emitted primarily by power plants burning fossil fuels, especially coal, which is a precursor to acid rain and is associated with other environmental and human health impacts; and mercury (Hg) is a toxic heavy metal that is a byproduct of the combustion of fossil fuels, especially coal. Methane ( $CH_4$ ) and nitrous oxide ( $N_2O$ ), two other GHG emitted by electric power generators, are included in eGRID beginning at the plant level. These latter two emissions data can be used to supplement the eGRID2007 year 2005 eGRID subregion  $CO_2$  output emission rates as default factors as specified in a variety of climate protocols (including The Climate Registry, The California Climate Action Registry, and EPA's Climate Leaders) for indirect emissions estimation calculations for the three electric power GHGs.

Although many small units, as well as some nonutilities and cogenerators, are not subject to EPA's ETS/CEM data reporting, the vast majority of emissions reported in eGRID are from the ETS/CEM data. Sources that report to ETS/CEM are generally utility and nonutility steam units with at least 25 MW capacity, nonsteam units – gas turbines, internal combustion engines – that came on-line after 1990, and independent power producers/cogenerators that sell a specific amount of electricity.

Plant level emissions in eGRID are built by summing its component parts – which could simply be unit level boilers and/or turbines or a combination of boilers and prime movers representing an aggregation of like generating units. In general, eGRID plant level emissions reflect a combination of monitored and estimated data. Emissions and emission rates in eGRID represent emissions and rates at the point(s) of generation. They do account for losses within the generating plants (net generation). However, they do not take into account any power purchases, imports or exports of electricity into a specific State or any other grouping of plants; and they do not account for any transmission and distribution losses between the points of generation and the points of consumption.

eGRID emissions and heat input that are displayed in the boiler file are unadjusted, while both adjusted and unadjusted emissions and heat input are displayed in the plant file. Adjusted emissions and heat input as well as generation are used in calculating plant emission rates and for all aggregation emission values.

# 1. Unadjusted Emission Estimates for Year 2005

Emissions that are reported and estimated for eGRID are unadjusted, except for biomass CO<sub>2</sub> values, and are displayed only at the plant level. The plant file emission rates and any subsequent aggregation files only include adjusted emissions, emission rates, and heat input. Depending on the source of data and the emissions type, component emissions are adjusted for biomass and then summed to the plant level before making the CHP adjustment specific to eGRID. Both the source(s) of emissions data and the adjustments flags are provided in the plant file.

## 2. Annual Emission Estimates for CO<sub>2</sub>, SO<sub>2</sub>, and NO<sub>x</sub>

Mass emissions in eGRID are estimated using data from a variety of sources. eGRID's primary source for CO<sub>2</sub>, SO<sub>2</sub>, and NO<sub>x</sub>, data is ETS/CEM unit level annual data. CO<sub>2</sub> is a greenhouse gas, while SO<sub>2</sub> and NO<sub>x</sub> are not. SO<sub>2</sub> and NO<sub>x</sub> are acid rain pollutants and have been regulated under the Clean Air Act Amendments for many years. If ETS/CEM data are not reported, the emissions are generally estimated using fuel consumption – on a boiler-fuel level if the data are in the EIA-767, and/or on a prime moverfuel level if the data are only in the EIA-906/920 file. For estimating CO<sub>2</sub>, the Intergovernmental Panel on Climate Change (IPCC) greenhouse gas (GHG) methodology using fuel consumption, a fuel-specific carbon coefficient, and the fuel-related fraction of carbon oxidized is implemented. Note that beginning with year 2005 data, the IPCC's mandated change to a uniform oxidation fraction of 1 is used for all fuels. For SO<sub>2</sub>, EPA-approved uncontrolled emissions factors, sulfur content, and control efficiencies, if available, are also used in the calculation of these emissions.

The following describes how NO<sub>x</sub> emissions are estimated for cases in which ETS/CEM data are not reported or cannot be used. For data originating from the EIA-767, the controlled annual emission rate and heat input are used. For data originating from the EIA-906/920, for steam prime movers, fuel use and EPA-approved emissions factors are used; and for nonsteam prime movers, beginning with year 2004 eGRID data, a better method is used to calculate NO<sub>x</sub> emissions for combined cycles, turbines, and internal combustion engines. NO<sub>x</sub> emission factors were developed based on the prime mover technology, size, and location. The location is important due to the differing stringency of air pollution controls in some areas with severe air quality problems. For larger nonsteam generators, the factors were based on data from the EPA Reasonably Available Control Technology/Best Available Control Technology/Lowest Achievable Emission Rate RACT/BACT/LAER) Clearinghouse (EPA, undated2). The methodology also reviewed current RACT requirements for large generating facilities in regions with stringent limits in areas such as the Ozone Transport Region (OTR), California, and Texas. For smaller nonsteam generators (including small combustion turbines, microturbines and reciprocating engines), the methodology draws from several sources including the EPA CHP Partnership Catalogue of CHP (EPA, undated1) and the U.S. Department of Energy (DOE) Gas-Fired Distributed Energy Resource Technology Characterizations (DOE, 2003).

Beginning with year 2005 data, geothermal emissions, albeit minimal, are estimated for  $CO_2$ ,  $SO_2$ , and  $NO_x$ . While  $CO_2$  is a gas in the geothermal reservoir,  $SO_2$  and  $NO_x$  result from hydrogen sulfide combustion. The three pollutants' emission factors, obtained from a 2007 Geothermal Energy Association environmental guide (GEA, 2007), are applied to net generation, and differ depending on the type of geothermal plant (GEA, 2008). For a binary or flash/binary geothermal plant, there are no  $CO_2$ ,  $SO_2$ , or  $NO_x$  emission factors; for a flash geothermal plant, there are no  $NO_x$  emission factors and small  $CO_2$  and  $SO_2$  emission factors; and for a dry steam geothermal plant, there are small  $CO_2$ ,  $SO_2$ , and  $NO_x$  emission factors.

#### 3. Annual Emission Estimates for CH<sub>4</sub> and N<sub>2</sub>O

In addition to  $CO_2$ , electric power plants also emit some  $CH_4$ , and  $N_2O$  GHG emissions. Thus, in eGRID2007, for year 2005 data, these emissions and emission output rates are estimated and displayed, beginning at the plant level.  $CH_4$  and  $N_2O$  emissions are reported in pounds and are estimated by multiplying the fuel specific heat input in MMBtu by appropriate emissions factors from the latest (fourth) 2006 IPCC (AR4) (IPCC, 2007) that have been converted to lb/MMBtu units (IPCC, 2007).

Nitrous oxide ( $N_2O$ ) is an oxide of nitrogen that is not part of the  $NO_x$  subset of oxides of nitrogen.  $N_2O$  is a greenhouse gas, the emissions of which are contributing toward global climate change;  $NO_x$  is not a GHG.  $N_2O$  should not be confused with  $NO_x$ .

#### a. Global Warming Potential

Global Warming Potential (GWP) is a value assigned to a GHG so that the emissions of different gases can be assessed on an equivalent basis to the emissions of the reference gas, CO<sub>2</sub>, which has a GWP of 1. Traditionally, the 100-year GWPs are used when calculating an overall CO<sub>2</sub> equivalent, which is the sum of the products of each GHG emission value and its GWP. Note: be sure when calculating the CO<sub>2</sub> equivalent that each of the GHG emission values has the same measurement units (either all in tons or all in pounds) since in eGRID, CO<sub>2</sub> are expressed in tons while both CH<sub>4</sub> and N<sub>2</sub>O are expressed in pounds. Additionally, in order to compare emissions across previous data years', the GWP for the second (1996) IPCC assessment (SAR), is used, although there have been subsequent third (2001) (TAR) and fourth (2006) (AR4) assessments. A comparison of the three GWP for the three electric power GHG gases is presented in Table III-2 (EPA, 2008).

 Gas
 SAR
 TAR
 AR4

 CO2
 1
 1
 1

 CH4
 21
 23
 25

 N2O
 310
 296
 298

Table III-2. Comparison of 100-Year GWPs

### 4. Annual Emission Estimates for Mercury (Hg)

The most important mercury (Hg) electric power sources – coal and municipal solid waste boilers – are represented in eGRID using two EPA-developed data files: one with 2000 Hg emissions for large municipal waste combustors (MWC) (EPA, 2002) and one with 2002 Hg emissions for coal-fired boilers (RTI, 2005); previous versions of eGRID use year 2000 MWC and 1999 Hg mercury values (EPA, 2001). Mercury emissions, reported in pounds, for identified coal plants are estimated in eGRID by multiplying the 2002 emissions by the ratio of the plant's 2005 to 2002 coal tons. In a similar fashion, mercury emissions for identified large municipal solid waste plants are estimated by multiplying the 2000 emissions by the ratio of the plant's 2005 to 2000 solid waste tons.

Care should be taken when using Hg emissions data from eGRID. Because data used to determine emission rates originated from a different year from the plant operational data year there are potential discrepancies that would cause the estimates of Hg emissions presented in eGRID to be less representative of actual Hg emissions.

## 5. Ozone Season Emission Estimates for NO<sub>x</sub>

The ozone season is the five-month period from May through September when excessive levels of ozone, or smog, are most likely to form in the atmosphere due to a chemical reaction of nitrogen oxides with other pollutants in the presence of sunlight. EPA provides ozone season ETS/CEM  $NO_x$  emissions for many units that do not report annual emissions. For purposes of eGRID, the ETS/CEM ozone season data are included only if the annual ETS/CEM  $NO_x$  emissions are also available (with two exceptions – see discussion of Hay Road units 1 and 2 under subsection 9.b. in this Methodology Section). Otherwise, for those units that report to the EIA-767, as well as sampled plants with prime movers that report to the EIA-906/920 file and are not covered by either ETS/CEM or EIA-767 data, monthly fuel quantity is provided

so that five-month (May through September) ozone season  $NO_x$  emissions can be estimated in the same estimates are calculated as the annual estimates multiplied by 5/12.

## 6. Adjusted Emission Estimates

Emissions reported in eGRID represent emissions from fuel utilized only for electricity generation. Thus, for certain plants, there are two possible cases for which eGRID adjusts the emission estimates: if components of the plant burn biomass, including renewable methane (such as landfill, methane, and digester [other biomass] gas), and if the plant is a CHP facility. A biomass facility's emissions reported in eGRID may be different from that reported in other EPA sources such as EPA/CAMD's ETS/CEM.

There are seven plant-prime movers (all steam) whose net generation is reported as zero even though positive fuel use is reported to EPA and/or the EIA-767. For six of these plants, Elizabethtown Power (ORISPL=10380), Lumberton Power (ORISPL=10382), Tillamook Lumber (ORISPL=50232), Walter B. Hall Resource Recovery Facility (ORISPL=50660), Shenango Neville Island Coke Works (ORISPL=54532), and Geneva Energy LLC (ORISPL=55174), the adjusted emissions and heat input for the entire plant were set to zero (the unadjusted values are published for reference purposes). For the seventh plant, 74<sup>th</sup> Street (ORISPL=2504), only the steam portions are adjusted to zero; the gas turbine adjusted emissions and heat input remain positive. The assignment of zero adjusted values was based on research regarding the operation of these plants, as well as experience and judgment.

## 7. Adjustments for Biomass

eGRID makes adjustments for biomass emissions, for renewable methane biomass emissions, and for solid waste emissions. Solid waste typically consists of a mixture of renewable materials – biomass such as wood, paper, and food waste – and "other fossil" nonrenewable materials – fossil-based materials such as plastics and tires. A flag in the plant file indicates whether there is any biomass adjustment and the type of adjustment. The possible adjustments for  $CO_2$ ,  $NO_x$ , and  $SO_2$  emissions (and heat input) are explained below. There are no Hg emissions associated with the combustion of biomass in eGRID, so there are no biomass adjustments for Hg.

#### a. $CO_2$

Biomass is a fuel derived from organic matter, including, but not limited to, wood and paper products, agricultural waste, or methane (e.g., from landfills). eGRID assumes that these materials are subject to the natural carbon cycle and, therefore, do not contribute to global warming. Thus, all biomass CO<sub>2</sub> emissions (including those from renewable methane) are assigned a value of zero because these organic materials would otherwise release CO<sub>2</sub> (or other greenhouse gases) through decomposition. For estimated biomass plant emissions components, the unadjusted emission values and the adjusted-for-biomass emissions values are the same because there are no carbon coefficients for these fuels. For those units burning biomass and reporting non-zero emissions to the Clean Air Markets Division (CAMD), their CO<sub>2</sub> emissions are reported as zero in eGRID.

## b. $NO_x$ , $SO_2$ , $CH_4$ , and $N_2O$

In most cases, emissions from renewable methane from sources such as landfill gas and digester gas must be flared if the gas is not utilized to generate electricity. Therefore, eGRID assumes that renewable methane would not have been flared if used to generate electricity. The amount of incremental  $NO_x$  and  $SO_2$  emissions attributable to utilizing renewable methane to generate electricity is what is considered for

eGRID's emissions. Thus, emissions from these fuels are adjusted by decreasing the uncontrolled emission factors (used to estimate the emissions) by the emissions factor represented by a typical flare.

For NO<sub>x</sub>, the EPA-approved flare emission factor is assumed to be 40 lb per million cubic feet (MMcf) of methane, 20 lb per MMcf of methane for landfill gas, and 26 lb per MMcf of methane for digester gas, and is subtracted from the respective original EPA-approved uncontrolled emission factors before being applied. For SO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O, the emission factors are assumed to be the same as the flares', so there are no incremental SO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O emissions attributable to utilizing renewable methane to generate electricity, and values of zero are assigned.

In eGRID, there are no fuel adjustments for NO<sub>x</sub>, SO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O emissions for biomass other than renewable methane.

#### 8. Adjustments for CHP

CHP is a type of generating facility that produces electricity and another form of useful thermal energy (such as heat or steam) used for industrial, commercial, heating, or cooling purposes. CHP, also known as cogeneration, converts energy more efficiently than facilities that separately produce heat and electricity. The plants labeled as CHP in eGRID are an EPA designation based on a CHP file developed for DOE. A flag in the plant file indicates if a plant is considered a CHP for purposes of eGRID. Since emissions reported in eGRID represent electricity generation only, emissions associated with useful thermal output – the amount of heat produced in a CHP facility that is used for purposes other than making electricity – are excluded (and a plant's emissions data reported in eGRID may be different from that reported in other EPA sources).

eGRID's methodology is designed to share CHP's efficiency gains between electricity and useful thermal output. For CHP facilities in the year 2005 data, eGRID allocates emissions between electricity and thermal output using a plant level electric allocation factor that discounts the value of useful thermal output by 25%. (Whereas in eGRID2006 and eGRID2007 there is a 75/25 split, in eGRID2002 there was a 50/50 split.) If a plant is a CHP and has an electric allocation factor, it is applied to the emissions (and heat input) for the entire plant after any biomass adjustment has been made. Specifically, the adjusted value is the product of the electric allocation factor and the original value.

The methodology for estimating an electric allocation factor is as follows:

There are two sources of thermal output from EIA, one indirect and the other direct. The useful thermal output value can be calculated from EIA-906/920 data as 0.8 multiplied by (total heat input minus electricity heat input) MMBtu; or as reported to the EIA-767. With these data, the electric allocation factor is calculated as the ratio of the electricity heat output to the sum of the electricity and steam heat outputs, where electricity heat output in MMBtu is the net generation MWh multiplied by 3.413 (a slight change in eGRID2007 (previously the conversion factor was 3.412) and steam heat output MMBtu is 0.75 multiplied by useful thermal output. If a plant reports (directly or indirectly) useful thermal output to both EIA-906/920 and EIA-767, the EIA-906/920 data are used.

If the useful thermal output is unknown, the electric allocation factor (ELCALLOC) is estimated given specific conditions. But, if there are non-zero values for both annual net generation and annual total heat input, an 8,500 Btu per kilowatt-hour (kWh) median plant nominal heat rate is assumed. Since actual heat rate equals (electric allocation factor multiplied by 1000 multiplied by heat input MMBtu) divided by (net generation MWh), then the electric allocation factor for CHP plants without a given useful thermal output is initially calculated as:

ELCALLOC = (8.5 \* plant net generation MWh) / (unadjusted plant heat input MMBtu).

If, however, the plant's CHP prime mover has been designated steam and the heat rate is less than 22,747 Btu/kWh, then the electric allocation factor for the CHP plant is initially calculated as:

ELCALLOC = ((12.68 \* plant net generation) / (unadjusted plant heat input)) - 0.17444.

For calculated electric allocation factors that fall below a specified minimum, additional adjustments are made as summarized in Table III-3 below.

 Type of CHP Prime Mover
 Minimum ELCALLOC
 Minimum Power to Heat Ratio

 Coal or MWC Boilers
 0.11765
 0.10

 All Other Boilers
 0.06250
 0.05

 Gas Turbines
 0.30556
 0.33

 Combined Cycles
 0.47183
 0.67

0.40000

0.50

Table III-3. Floors for Power to Heat Ratio and ELCALLOC

The CHP electric allocation "floors" were derived from an analysis of the theoretical power-to-heat ratio of different CHP technologies and the actual operating characteristics of existing CHP systems. The power-to-heat ratio is largely a function of the CHP prime mover, its efficiency, and the amount and temperature of heat available from the system. In addition, the reported operating characteristics of a large number of CHP facilities as reported in the DOE ORNL CHP database (EEA, 2007) were reviewed. The combination of theoretical and reported characteristics was used to establish the minimum values for the electric allocation factors.

#### 9. Emission Rate Estimates

Internal Combustion Engines

Both output and input emission rates are calculated for eGRID, beginning with the plant level of aggregation. In addition to emission values, annual and ozone season net generation and heat input values (adjusted heat input values if it is a CHP) are required for emission rate calculations.

#### a. Generation

Net generation, in MWh, is the amount of electricity produced by the generator and transmitted to the electric grid; it does not include any generation consumed by the plant. If the generation consumed by the plant is greater than the gross generation, negative net generation will occur and be displayed in eGRID; this can further result in negative emission rates.

Plant-fuel-prime mover net generation for all prime mover types can be obtained from the EIA-906/920. Steam generator unit level net generation can be obtained from the EIA-767, if reported. Nuclear generator unit level net generation can be obtained from the EIA-906.

For sampled plants with EIA-906/920 net generation or only EIA-767 generator net generation, generation is reported monthly and annually, so that ozone season generation is calculated by summing up the generation for the five months of May through September. If none of these sources provide monthly data, ozone season generation is calculated as 5/12 of the annual generation. If a plant reports generation to both EIA-906/920 and EIA-767, the EIA-906/920 data are used. In eGRID2007, for year 2005 data, an attempt has been made to provide generation for those plant-prime movers (or entire plants) that did not

report data to the EIA-906/920, yet did report emissions to the ETS/CEM and/or fuel use to the EIA-767 (from which emissions were calculated).

The following methodology was employed for obtaining year 2005 net generation data:

#### Plant level net generation

To determine plant level net generation, use EIA-906/920 plant-prime mover annual and ozone season MWh net generation, if available. If plant-prime mover net generation is also needed because there is CAMD non-zero reported emissions or EIA-767 non-zero estimated emissions without associated EIA-906/920 net generation, then use EIA-767 annual generation for all steam prime movers aggregated to the plant level, if available. If no EIA-767 data are available for this purpose, then use CAMD annual gross load multiplied by a prime mover-level factor found in Velocity Suite's data (Ventyx, 2007) for the specific unit(s) to estimate annual net generation MWh, aggregated to the plant level by prime mover. Otherwise, if net generation for that prime mover is zero, then the associated adjusted emissions is assigned a value of zero. Ozone season net generation for those plants/generators that report monthly to the EIA-906/920 or to the EIA-767, is calculated by summing the May through September net generation; for plants/units that report annually to the EIA-906/920 or to CAMD ETS/CEM, the ozone season net generation is calculated as 5/12 of annual net generation. Fuel type generation is taken care of in the EIA-906/920; for the selected EIA-767 and CAMD net generation, the fuel code of the primary fuel is used (see subsection F about resource mix).

#### Generator level net generation

To determine generator level net generation, use the EIA-767 generators' non-zero annual and ozone season net generation MWh for steam turbine (ST) and combine cycle steam turbine (CA) units, if available. Otherwise, use EIA-906/920 annual and ozone season net generation MWh for plants with one prime mover at a non-nuclear plant operating in year 2005. Additionally, for nuclear generators, use EIA-906 annual and ozone season net generation.

#### b. Heat Input

Heat input, in MMBtu, is the amount of heat energy consumed by a generating unit that combusts fuel. Annual boiler level heat input (MMBtu) for eGRID is initially obtained from ETS/CEM reported data. If these data are unavailable, heat input is calculated by multiplying the fuel consumption by the heat content from the EIA-767; otherwise, heat input is obtained directly from the EIA-906/920. The component parts (unit and prime mover levels) are then summed to the plant level.

EPA provides ozone season ETS/CEM heat input for some units that do not report annual heat input or emissions. For purposes of eGRID, units with ETS/CEM ozone season data are included only if annual ETS/CEM heat input is non-zero. (For eGRID2007 year 2005 data, Hay Road 1 and 2 are exceptions to this rule.) Otherwise, for sampled plants with EIA-906/920 heat input or only EIA-767 boiler calculated heat input, heat input or fuel use/heat content is reported monthly and annually. If available, the ozone season generation is calculated by summing up the data for the five months of May through September. If none of these sources provide monthly data, then ozone season heat input is calculated as 5/12 of the annual heat input. If a plant reports heat input or data to calculate heat input for the same prime mover to EIA-906/920 and/or EIA-767 and/or CAMD ETS/CEM, the CAMD ETS/CEM data are used first, the EIA-767 data are used second, and the EIA-906/920 data are used last. If the sources are different for different components of the plant, then the heat input data are summed for the plant.

#### c. Rates

The units for output emission rates are lb/MWh for  $SO_2$ ,  $NO_x$ , and  $CO_2$ , and lb/GWh for Hg,  $CH_4$ , and  $N_2O$ . These rates are calculated as the emissions divided by the net generation and multiplied by a unit conversion factor. For input emission rates, the units are lb/MMBtu for  $SO_2$ ,  $NO_x$ , and  $CO_2$ , and lb/BBtu for Hg;  $CH_4$ , and  $N_2O$ ; these rates are calculated as the emissions divided by the heat input and multiplied by a unit conversion factor.

#### i. Fuel-based Emission Rates

Beginning at the State level, coal, oil, gas, and fossil fuel output and input emission rates are calculated based on plants' fossil fuel category, which in turn is based on the plants' primary fuel (see subsection E). If a plant's primary fuel is in the coal, oil, or gas category, then all of its adjusted emissions and heat input, and generation are included in the respective aggregation level for that fuel category. For example, all plants whose primary fuel is in the coal category and who are located in Alabama will have their emissions, heat input, and generation summed and then the appropriate calculations will be applied to determine the fuel-based output and input emission rates for Alabama.

New for year 2005 data in eGRID2007, the fossil fuel category will include not only coal, oil, and gas, but also other fossil fuels. See Table III-4 for a list of primary fuels and fuel categories.

#### ii. Non-baseload Emission Rates

Beginning at the State level, there are seven annual non-baseload emission rates which are the annual output emission rates for plants that combust fuel and have capacity factors less than 0.8, weighted by generation and a percent of generation determined by capacity factor. These data values are derived from plant level data and supplement, rather than replace, the fossil fuel output emission rates, which are sometimes used as a rough estimate to determine how much emissions could be avoided if energy efficiency and/or renewable energy displaces fossil fuel generation. These non-baseload output emission rates would somewhat improve this rough estimate by factoring out baseload generation, which is generally unaffected by measures that affect marginal generation.

The plant level capacity factor is used as a surrogate for determining how much non-baseload generation and emissions occur at each facility. Although there are reasons that can influence a particular plant's capacity factor besides dispatch or load order (e.g., repairs, etc.), capacity factor is being used as a surrogate for dispatch-order for this calculation. The non-baseload information is published in eGRID just at the aggregate level (State, PCA, etc.), and not for individual plants.

The following describes the procedure used to generate these non-baseload emission rates. The emission rates are determined starting with plant level data. First, all generation from resources that do not combust fuel is removed from each plant. Plants with 100% hydro, nuclear, wind, solar, and/or geothermal generation are removed from the non-baseload calculation. For any plants that have partial generation from the combustion of fuel, the emissions from the plant are retained and the generation from resources that do not combust fuel is subtracted out for this calculation, and the plant's output emission rate is recalculated. Next, a capacity factor relationship is used to determine the percent of the plant's generation and emissions to be considered non-baseload generation. All generation at plants with low capacity factors (greater than 0.0 and less than 0.2) would be considered non-baseload. No generation at plants with negative generation from combustion sources would be considered non-baseload generation. A linear relationship would determine the percent generation that is non-baseload at plants

with capacity factors between these 0.2 and 0.8. The non-baseload generation of each plant is multiplied by the plant's output emission rate, to determine the non-baseload emissions. Finally, the total non-baseload generation and the total non-baseload emissions are summed up at each level of aggregation (State, EGCs, parent companies, PCA, eGRID subregion, NERC region, and U.S. Total) and are used to calculate the non-baseload output emission rates.

eGRID non-baseload values can be useful when attempting to estimate the emissions benefits of reductions in electricity use. For example, if one is interested in estimating the carbon dioxide emission reductions associated with the installation of energy efficient equipment or products (e.g. and ENERGYSTAR heating, ventilating, and air conditioning (HVAC) system); or the installation of building envelop technologies (e.g. sealing air leaks and insulation improvements), then one could use the eGRID subregion non-baseload CO<sub>2</sub> output emission rate and the expected or actual energy savings resulting from the installation to estimate the CO<sub>2</sub> emission reductions. Non-baseload values may be less appropriate when attempting to determine the emissions benefits of some intermittent resources, such as wind power. Non-baseload values should not be used for assigning an emission value for electricity use in carbon-footprinting exercises or GHG emissions inventory efforts.

#### iii. Combustion Emission Rates

New for year 2005 data in eGRID2007 and beginning at the plant level, are combustion output emission rates for all pollutants. Whereas the generation used in the denominator for calculating the traditional output emission rate is the total net generation, the denominator used for calculating the combustion output emission rate is the net generation associated with emissions, namely, the combustion generation only. Thus, generation from nuclear, hydro, geothermal, solar, and wind will not be included in the calculation of this rate.

#### D. TREATMENT OF PLANT OWNERSHIP

The owner(s) and operator of a plant are tracked for eGRID using daily and bi-weekly trade press releases as well as EIA's Electric Power Monthly's "Plants Sold and Transferred" table. This information, through December 2007, overrides and updates any ownership and/or operator information provided in the 2006 EIA-860. Since ownership is reported in eGRID only on the plant level, but in the EIA-860 on the generator level, the generators' owner companies and percentages must be aggregated to the plant level, which is accomplished for each plant by MW-weighting each generator's ownership and then summing to the plant level.

Unfortunately, there are some plants for which this methodology will result in misleading percentages. For example, if one company owns only one of several generators and that one generator is connected to a "clean" boiler that has emissions whose ratio to the entire plant's emissions is much less than its MW's ratio to the entire plant's MW, that one company will, because of its MW-to-plant MW ratio, have a higher plant ownership percentage attributed to it than its actual emissions plant percentage; thus, that company will be associated with greater emissions and generation than it actually has.

This situation is not typical since most plants do not have "jointly owned" generators or different owners for all the plant's generators. It affects only some plants and companies and some percentage of emissions and generation associations in this situation. One example that does not benefit from this methodology is Ohio's Cardinal plant (ORISPL = 2828) which has three generators and three boilers, associated on a one-to-one basis. Each generator has about the same nameplate capacity. One generator is owned by Ohio Power, and two by Buckeye Power Inc. The Cardinal plant ownership is approximately 33% Ohio Power and 67% Buckeye, so 67% of the plant emissions would be attributable to Buckeye

Power using eGRID methodology. However, the  $SO_2$  emissions for the two boilers associated with Buckeye's two generators combined are only about 60% of the Cardinal plant's  $SO_2$  emissions total. Note that these misleading emission proportions for  $SO_2$  are not duplicated for Cardinal's  $NO_x$  or  $CO_2$  emissions.

#### E. DETERMINATION OF PLANT PRIMARY FUEL

The primary fuel of a plant that consumes any amount of combustible fuel is determined solely by the fuel that has the maximum heat input for year 2005 data. This is different from eGRID2006's year 2004 data in two respects. For year 2004 data, if any type of coal was consumed, then coal was the plant's primary fuel; and the ETS/CEM primary fuel designation was used in eGRID for ETS/CEM units. For year 2005 data, there is now a coal flag, which indicates whether any coal is burned at the plant; this is helpful if the primary fuel is not a coal type.

For plants that do not consume any combustible fuel, the primary "fuel" is determined by the resource associated with the prime mover (nuclear, solar, wind, geothermal, or hydro/pumped storage) with the maximum generation associated with that prime mover.

The possible original fuel codes and fuel categories for the plant primary fuel data variable (PLPRMFL in the eGRID plant file) are as shown in Table III-4 below.

**Table III-4. Plant Primary Fuel** 

| Fuel Code | Description              | Fuel Category | Fuel Group   |
|-----------|--------------------------|---------------|--------------|
| AB        | Agricultural byproducts  | Biomass       | Solid fuel   |
| BLQ       | Black liquor             | Biomass       | Solid fuel   |
| DG        | Digester gas             | Biomass       | Gaseous fuel |
| LFG       | Landfill gas             | Biomass       | Gaseous fuel |
| ME        | Methane                  | Biomass       | Gaseous fuel |
| MSB       | MSW biomass component    | Biomass       | Solid fuel   |
| OBL       | Other biomass liquid     | Biomass       | Liquid fuel  |
| OBS       | Other biomass solids     | Biomass       | Solid fuel   |
| PP        | Paper pellets            | Biomass       | Solid fuel   |
| SLW       | Sludge waste             | Biomass       | Solid fuel   |
| WDL       | Wood, wood waste liquids | Biomass       | Liquid fuel  |
| WDS       | Wood, wood waste solids  | Biomass       | Solid fuel   |
| BIT       | Bituminous coal          | Coal          | Solid fuel   |
| LIG       | Lignite coal             | Coal          | Solid fuel   |
| SUB       | Subbituminous coal       | Coal          | Solid fuel   |
| SC        | Syncoal                  | Coal          | Solid fuel   |
| WC        | Waste coal               | Coal          | Solid fuel   |
| NG        | Natural gas              | Gas           | Gaseous fuel |
| PG        | Propane gas/LPG          | Gas           | Gaseous fuel |
| DFO       | Distillate/diesel oil    | Oil           | Liquid fuel  |
| JF        | Jet fuel                 | Oil           | Liquid fuel  |
| KER       | Kerosene                 | Oil           | Liquid fuel  |
| OOL       | Other oil                | Oil           | Liquid fuel  |
| PC        | Petroleum coke           | Oil           | Solid fuel   |
| RG        | Refinery gas             | Oil           | Gaseous fuel |
| RFO       | Residual oil             | Oil           | Liquid fuel  |
| WO        | Waste oil                | Oil           | Liquid fuel  |
| BFG       | Blast furnace gas        | Other fossil  | Gaseous fuel |

Table III-4 (continued).

| Fuel Code | Description           | Fuel Category | Fuel Group   |
|-----------|-----------------------|---------------|--------------|
| COG       | Coke oven gas         | Other fossil  | Gaseous fuel |
| HY        | Hydrogen              | Other fossil  | Gaseous fuel |
| LB        | Liquid byproducts     | Other fossil  | Liquid fuel  |
| MH        | Methanol              | Other fossil  | Liquid fuel  |
| MSF       | MSW other fossil part | Other fossil  | Solid fuel   |
| OG        | Other gas             | Other fossil  | Gaseous fuel |
| PRG       | Process gas           | Other fossil  | Gaseous fuel |
| TDF       | Tire-derived fuel     | Other fossil  | Solid fuel   |

Note that since solid waste plants are broken down into biomass and fossil components, a solid waste plant will have "MSB" as the primary fuel.

#### F. ESTIMATION OF RESOURCE MIX

Resource mix is a collection of nonrenewable and renewable resources that are used to generate electricity. Nonrenewable resources include fossil fuels (e.g., coal, oil, natural gas, and other fossil) and nuclear energy source; renewable energy resources include biomass, solar, wind, geothermal, and hydro. A percentage is assigned to each resource or group of resources. Resource mix is displayed in eGRID and expressed in both MWh and generation percent.

For cases in which there is only one fuel and its generation is negative, that fuel's generation percent is assigned 100%. For cases in which there are fuels with both negative and positive net generation, the generation percents only include the positive generation in both the denominator and numerator. For cases in which there are only two fuels and both net generations are negative, both fuels' generation percents are assigned 0%.

For the three grouped aggregate categories – total net generation from nonrenewable, total net generation from all renewables, and total net generation from renewables minus hydro, the sum of the total net generation from renewables and from all nonrenewables equals the total net generation. In cases for which there is both positive and negative fuel generation in the nonrenewables category (it is unlikely to happen in the renewables category), the category percentages may be misleading since only the positive generation components are considered in calculating the generation percents for total renewables and nonrenewables. Similarly, for the two grouped aggregated categories of combustion net generation and noncombustion net generation, their sum equals the total net generation. For cases in which there is more than one negative nonrenewables (or combustion) net generation, the total nonrenewables (or combustion) resource mix is assigned 100 %.

eGRID plant resource mix and net generation are derived from the EIA-906/920, which provides the information on a plant-prime mover-fuel level. However, there are some cases for which only the EIA-767 or the CAMD ETS/CEM generation are available for use in eGRID. In these cases, the plant's primary fuel (based on the maximum heat input value) is assigned 100% of the generation for the resource mix. As a result, there may be a few eGRID plants that did not report generation to the EIA-906/920 that burned some coal (but coal is not the primary fuel), that have its COALFLAG = 1, yet there is no coal generation displayed; or vice versa.

#### G. DETERMINATION OF PLANT AGGREGATION LINKS

The plant's State, operator, and owner(s), as well as the utility service area EGC (for nonutility plants), are already associated with each plant, based on EIA data that have been updated to correct known errors and to reflect 2007 industry configuration.

#### 1. Power Control Area

A Power Control Area (PCA) (or Balancing Authority, as NERC terms it) is a portion of an integrated power grid for which a single dispatcher has operational control of all electric generators. PCAs range in size from small municipal utilities such as Columbia Water & Light (MO), to large power pools such as PJM Interconnection. In Alaska, isolated electric utility systems which are not part of an integrated power grid have been grouped into a nominal PCA called "Alaska Misc." In Hawaii, isolated electric utility systems which are not part of an integrated power grid, have been grouped into a nominal PCA called "Hawaii Misc."

For utility plants, a location (operator)-based PCA includes all generating plants operated by electric generating companies whose system is dispatched by that power control area, including portions of generating plants owned by generating companies outside the control area. For nonutility plants, PCAs are generally assigned according to the utility service area in which the nonutility plant is physically located. See Section IV for further information about PCAs.

The PCA associated with a plant is determined by the utility/regulated EGC (not parent company) associated with the plant. At present, there is not one Federal file that can be used to link 2006 utility EGCs with their PCAs. There is an association between utility EGC and PCA reported in the 2006 EIA-861 data (EIA, 2007b), but the relationship and entities involved reflect year 2006 industry configurations, and is, thus, only partially useful for eGRID2007, whose plants' owners and operator have been updated to reflect 2007 industry configuration. Additionally, the eGRID PCAs have been updated and reported by the North American Electric Reliability Corporation (NERC), too, to reflect a 2007 configuration (NERC, 2008).

For eGRID purposes, with a few exceptions (for a list of the exceptions, see Section IV), if the plant's operator EGC is a utility, then it is used as the link to the PCA; otherwise, the plant's utility service area, a utility EGC, is used determine the nonutility plant's PCA. (A utility service area is determined by the geographic region within which an electric utility has a franchise to sell electricity subject to regulation by State and/or Federal ratemaking authorities.)

Although the utility service area data provide by EIA has been updated by EPA, in some cases, it is a best guess.

#### 2. NERC Region

NERC region refers to a region designated by the North American Electric Reliability Corporation (NERC). Each NERC region listed in eGRID represents one of ten regional portions of the North American electricity transmission grid: eight in the contiguous United States, plus Alaska and Hawaii (which are not part of the formal NERC regions, but are considered so in eGRID). The ten NERC region names and their acronyms for eGRID are as follows:

- Alaska Systems Coordinating Council (ASCC),
- Florida Reliability Coordinating Council (FRCC).

- Hawaiian Islands Coordinating Council (HICC),
- Midwest Reliability Organization (MRO),
- Northeast Power Coordinating Council (NPCC),
- Reliability First Corporation (RFC),
- SERC Reliability Corporation (SERC),
- Southwest Power Pool (SPP),
- Texas Regional Entity (TRE) (previously ERCOT), and
- Western Electricity Coordinating Council (WECC).

Although some NERC regions include portions of Canada and/or Mexico that are integrated with U.S. grids, eGRID data are limited to generation within the United States. See Section IV for further information about NERC regions.

The PCA link to the NERC region has been determined by NERC. The plant's associated PCA determines the plant's associated NERC region, except for the PJM Interconnection PCA, which has plants in two NERC regions. The relationship between PCAs and NERC regions as of December 31, 2007 is displayed below in Table III-5.

Table III-5. PCA-NERC Region Relationship

| PCA Name                                          | NERC Name                                |
|---------------------------------------------------|------------------------------------------|
| Alabama Electric Cooperative, Inc.                | SERC Reliability Corporation             |
| Alaska Misc                                       | Alaska Systems Coordinating Council      |
| Alliant Energy - CA – ALTE                        | Midwest Reliability Organization         |
| Alliant Energy - CA – ALTW                        | Midwest Reliability Organization         |
| Ameren – Illinois (reconfigured)                  | SERC Reliability Corporation             |
| Ameren – Missouri (reconfigured)                  | SERC Reliability Corporation             |
| Anchorage, Municipality of                        | Alaska Systems Coordinating Council      |
| Aquila Networks – MPS                             | Southwest Power Pool                     |
| Aquila Networks – WPK                             | Southwest Power Pool                     |
| Arizona Public Service Company                    | Western Electricity Coordinating Council |
| Associated Electric Cooperative, Inc.             | SERC Reliability Corporation             |
| Avista Corp.                                      | Western Electricity Coordinating Council |
| Big Rivers Electric Corp.                         | SERC Reliability Corporation             |
| Board of Public Utilities                         | Southwest Power Pool                     |
| Bonneville Power Administration                   | Western Electricity Coordinating Council |
| California Independent System Operator            | Western Electricity Coordinating Council |
| Central and Southwest                             | Southwest Power Pool                     |
| Chugach Electric Association Inc.                 | Alaska Systems Coordinating Council      |
| Cinergy Corporation                               | Reliability First Corporation            |
| City of Homestead                                 | Florida Reliability Coordinating Council |
| City of Independence Missouri                     | Southwest Power Pool                     |
| City of Lafayette                                 | Southwest Power Pool                     |
| City of Tallahassee                               | Florida Reliability Coordinating Council |
| City Water Light & Power (moved from RFC to SERC) | SERC Reliability Corporation             |
| Cleco Corporation, Inc.                           | Southwest Power Pool                     |
| Columbia Water & Light                            | SERC Reliability Corporation             |
| Dairyland Power Cooperative                       | Midwest Reliability Organization         |
| Duke Power Company                                | SERC Reliability Corporation             |
| East Kentucky Power Cooperative, Inc.             | SERC Reliability Corporation             |
| El Paso Electric Company                          | Western Electricity Coordinating Council |

# Table III-5 (continued).

| PCA Name                                         | NERC Name                                    |
|--------------------------------------------------|----------------------------------------------|
| Empire District Electric Co., The                | Southwest Power Pool                         |
| Entergy Services, Inc.                           | SERC Reliability Corporation                 |
| EON (formerly LG&E Energy Transmission Services) | SERC Reliability Corporation                 |
| ERCOT ISO                                        | Texas Regional Entity (formerly named ERCOT) |
| First Energy Corp.                               | Reliability First Corporation                |
| Florida Municipal Power Pool                     | Florida Reliability Coordinating Council     |
| Florida Power & Light                            | Florida Reliability Coordinating Council     |
| Florida Power Corporation                        | Florida Reliability Coordinating Council     |
| Gainesville Regional Utilities                   | Florida Reliability Coordinating Council     |
| Golden Valley Elec Assn Inc                      | Alaska Systems Coordinating Council          |
| Grand River Dam Authority                        | Southwest Power Pool                         |
| Great River Energy                               | Midwest Reliability Organization             |
| Hawaii Electric Light Co., Inc                   | Hawaiian Islands Coordinating Council        |
| Hawaii Misc                                      | Hawaiian Islands Coordinating Council        |
| Hawaiian Electric Co Inc                         | Hawaiian Islands Coordinating Council        |
| Hoosier Energy                                   | Reliability First Corporation                |
| Idaho Power Company                              | Western Electricity Coordinating Council     |
| Imperial Irrigation District                     | Western Electricity Coordinating Council     |
| Indianapolis Power & Light Company               | Reliability First Corporation                |
| ISO New England Inc.                             | Northeast Power Coordinating Council         |
| JEA                                              | Florida Reliability Coordinating Council     |
| Kansas City Power & Light, Co                    | Southwest Power Pool                         |
| Lincoln Electric System                          | Midwest Reliability Organization             |
| Los Angeles Department of Water and Power        | Western Electricity Coordinating Council     |
| Louisiana Energy & Power Authority               | Southwest Power Pool                         |
| Louisiana Generating, LLC                        | SERC Reliability Corporation                 |
| Madison Gas and Electric Company                 | Midwest Reliability Organization             |
| Maritime Area                                    | Northeast Power Coordinating Council         |
| Michigan Electric Coordinated Systems            | Reliability First Corporation                |
| MidAmerican Energy Company                       | Midwest Reliability Organization             |
| Minnesota Power, Inc.                            | Midwest Reliability Organization             |
| Muscatine Power and Water                        | Midwest Reliability Organization             |
| Nebraska Public Power District                   | Midwest Reliability Organization             |
| Nevada Power Company                             | Western Electricity Coordinating Council     |
| New York Independent System Operator             | Northeast Power Coordinating Council         |
| Northern Indiana Public Service Company          | Reliability First Corporation                |
| Northern States Power Company                    | Midwest Reliability Organization             |
| Ohio Valley Electric Corporation                 | Reliability First Corporation                |
| Oklahoma Gas and Electric                        | Southwest Power Pool                         |
| Omaha Public Power District                      | Midwest Reliability Organization             |
| Otter Tail Power Company                         | Midwest Reliability Organization             |
| PacifiCorp-East                                  | Western Electricity Coordinating Council     |
| PacifiCorp-West                                  | Western Electricity Coordinating Council     |
| PJM Interconnection                              | Reliability First Corporation                |
| PJM Interconnection                              | SERC Reliability Corporation                 |
| Portland General Electric Company                | Western Electricity Coordinating Council     |
| Progress Energy Carolinas – EAST                 | SERC Reliability Corporation                 |
| Public Service Company of Colorado               | Western Electricity Coordinating Council     |
| Public Service Company of New Mexico             | Western Electricity Coordinating Council     |

Table III-5 (continued).

| PCA Name                                            | NERC Name                                |
|-----------------------------------------------------|------------------------------------------|
| PUD No. 1 of Chelan County                          | Western Electricity Coordinating Council |
| PUD No. 1 of Douglas County                         | Western Electricity Coordinating Council |
| PUD No. 2 of Grant County                           | Western Electricity Coordinating Council |
| Puget Sound Energy                                  | Western Electricity Coordinating Council |
| Salt River Project                                  | Western Electricity Coordinating Council |
| Seattle Department of Lighting                      | Western Electricity Coordinating Council |
| Seminole Electric Cooperative                       | Florida Reliability Coordinating Council |
| Sierra Pacific Power Company                        | Western Electricity Coordinating Council |
| South Carolina Electric & Gas Company               | SERC Reliability Corporation             |
| South Carolina Public Service Authority (Santee Co) | SERC Reliability Corporation             |
| South Mississippi Electric Power Association        | SERC Reliability Corporation             |
| Southeastern Power Administration – Hartwell        | SERC Reliability Corporation             |
| Southern Company Services, Inc.                     | SERC Reliability Corporation             |
| Southern Illinois Power Cooperative                 | SERC Reliability Corporation             |
| Southern Indiana Gas & Electric Co.                 | Reliability First Corporation            |
| Southern Minnesota Municipal Power Agency           | Midwest Reliability Organization         |
| Southwestern Power Administration                   | Southwest Power Pool                     |
| Southwestern Public Service Company                 | Southwest Power Pool                     |
| Sunflower Electric Power Corporation                | Southwest Power Pool                     |
| Tacoma Power                                        | Western Electricity Coordinating Council |
| Tampa Electric Company                              | Florida Reliability Coordinating Council |
| Tennessee Valley Authority                          | SERC Reliability Corporation             |
| Tucson Electric Power Company                       | Western Electricity Coordinating Council |
| Turlock Irrigation District (new in eGRID2007)      | Western Electricity Coordinating Council |
| Upper Peninsula Power Co.                           | Midwest Reliability Organization         |
| Utilities Commission, City of New Smyrna Beach      | Florida Reliability Coordinating Council |
| WAPA - Colorado-Missouri                            | Western Electricity Coordinating Council |
| WAPA - Lower Colorado                               | Western Electricity Coordinating Council |
| WAPA - Upper Great Plains East                      | Midwest Reliability Organization         |
| WAPA - Upper Great Plains West                      | Western Electricity Coordinating Council |
| Western Farmers Electric Cooperative                | Southwest Power Pool                     |
| Western Resources dba Westar Energy                 | Southwest Power Pool                     |
| Wisconsin Energy Corporation                        | Reliability First Corporation            |
| Wisconsin Public Service Corporation                | Midwest Reliability Organization         |

A representation of the NERC region map used for eGRID2007 is included in Appendix B.

# 3. eGRID Subregion

eGRID subregions are identified and defined by EPA – using the 2007 NERC regions and PCAs as a guide – along with the older eGRID subregions. An eGRID subregion is often, but not always, equivalent to an Integrated Planning Model (IPM) subregion. The 26 eGRID subregions are subsets of the NERC regions as configured on December 31, 2007. The plant's associated PCA determines the plant's associated eGRID subregion, which is defined as a subset of the NERC region and is composed of entire PCAs, with the exception of PJM Interconnection and New York Independent System Operator PCAs (each is associated with three eGRID subregions). See Section IV for further information about eGRID subregions. The 26 eGRID subregion names and their acronyms are as follows:

- ASCC Miscellaneous (AKMS)
- ASCC Alaska Grid (AKGD)
- ERCOT All (ERCT)
- FRCC All (FRCC)
- HICC Miscellaneous (HIMS)
- HICC Oahu (HIOA)
- MRO East (MROE)
- MRO West (MROW)
- NPCC Long Island (NYLI)
- NPCC NYC/Westchester (NYCW)
- NPCC New England (NEWE)
- NPCC Upstate NY (NYUP)
- RFC East (RFCE)
- RFC Michigan (RFCM)
- RFC West (RFCW)
- SERC Midwest (SRMW)
- SERC Mississippi Valley (SRMV)
- SERC South (SRSO)
- SERC Tennessee Valley (SRTV)
- SERC Virginia/Carolina (SRVC)
- SPP North (SPNO)
- SPP South (SPSO)
- WECC California (CAMX)
- WECC Northwest (NWPP)
- WECC Rockies (RMPA)
- WECC Southwest (AZNM)

The relationship among PCAs, eGRID subregions, and NERC regions, as of December 31, 2007, is depicted in Table III-6 below.

Table III-6. PCA-eGRID Subregion - NERC Region Relationship

| PCA Name                                                    | eGRID Subregion Name  | NERC Region |
|-------------------------------------------------------------|-----------------------|-------------|
| Alabama Electric Cooperative, Inc.                          | SERC South            | SERC        |
| Alaska Misc                                                 | ASCC Miscellaneous    | ASCC        |
| Alliant Energy - CA – ALTE                                  | MRO East              | MRO         |
| Alliant Energy - CA – ALTW                                  | MRO West              | MRO         |
| Ameren - Illinois (formerly the IL part of Ameren           | SERC Midwest          | SERC        |
| Transmission Central Illinois Light Co., and Illinois Power |                       |             |
| PCAs)                                                       |                       |             |
| Ameren - Missouri (formerly the MO part of Ameren           | SERC Midwest          | SERC        |
| Transmission)                                               |                       |             |
| Anchorage, Municipality of                                  | ASCC Alaska Grid      | ASCC        |
| Aquila Networks – MPS                                       | SPP North             | SPP         |
| Aquila Networks – WPK                                       | SPP North             | SPP         |
| Arizona Public Service Company                              | WECC Southwest        | WECC        |
| Associated Electric Cooperative, Inc.                       | SERC Midwest          | SERC        |
| Avista Corp.                                                | WECC Northwest        | WECC        |
| Big Rivers Electric Corp.                                   | SERC Tennessee Valley | SERC        |
| Board of Public Utilities                                   | SPP North             | SPP         |
| Bonneville Power Administration                             | WECC Northwest        | WECC        |
| California Independent System Operator                      | WECC California       | WECC        |

# Table III-6 (continued).

| PCA Name                                              | eGRID Subregion Name    | NERC Region    |
|-------------------------------------------------------|-------------------------|----------------|
| Central and Southwest                                 | SPP South               | SPP            |
| Chugach Electric Assn Inc                             | ASCC Alaska Grid        | ASCC           |
| Cinergy Corporation                                   | RFC West                | RFC            |
| City of Homestead                                     | FRCC All                | FRCC           |
| City of Independence Missouri                         | SPP North               | SPP            |
| City of Lafayette                                     | SPP South               | SPP            |
| City of Tallahassee                                   | FRCC All                | FRCC           |
| City Water Light & Power (moved from RFC to SERC)     | SERC Mississippi Valley | SERC           |
| Cleco Corporation, Inc.                               | SPP South               | SPP            |
| Columbia Water & Light                                | SERC Midwest            | SERC           |
| Dairyland Power Cooperative                           | MRO West                | MRO            |
| Duke Power Company                                    | SERC Virginia/Carolina  | SERC           |
| East Kentucky Power Cooperative, Inc.                 | SERC Tennessee Valley   | SERC           |
| El Paso Electric Company                              | WECC Southwest          | WECC           |
| Empire District Electric Co., The                     | SPP North               | SPP            |
| Entergy Services, Inc.                                | SERC Mississippi Valley | SERC           |
| EON - US (formerly LG&E Energy Transmission Services) | SERC Tennessee Valley   | SERC           |
|                                                       |                         |                |
| ERCOT ISO                                             | ERCOT All               | TRE (new name) |
| First Energy Corp.                                    | RFC West                | RFC            |
| Florida Municipal Power Pool                          | FRCC All                | FRCC           |
| Florida Power & Light                                 | FRCC All                | FRCC           |
| Florida Power Corporation                             | FRCC All                | FRCC           |
| Gainesville Regional Utilities                        | FRCC All                | FRCC           |
| Golden Valley Elec Assn Inc                           | ASCC Alaska Grid        | ASCC           |
| Grand River Dam Authority                             | SPP South               | SPP            |
| Great River Energy                                    | MRO West                | MRO            |
| Hawaii Electric Light Co., Inc                        | HICC Miscellaneous      | HICC           |
| Hawaii Misc                                           | HICC Miscellaneous      | HICC           |
| Hawaiian Electric Co Inc                              | HICC Oahu               | HICC           |
| Hoosier Energy                                        | RFC West                | RFC            |
| Idaho Power Company                                   | WECC Northwest          | WECC           |
| Imperial Irrigation District                          | WECC Southwest          | WECC           |
| Indianapolis Power & Light Company                    | RFC West                | RFC            |
| ISO New England Inc.                                  | NPCC New England        | NPCC           |
| JEA                                                   | FRCC All                | FRCC           |
| Kansas City Power & Light, Co                         | SPP North               | SPP            |
| Lincoln Electric System                               | MRO West                | MRO            |
| Los Angeles Department of Water and Power             | WECC California         | WECC           |
| Louisiana Energy & Power Authority                    | SPP South               | SPP            |
| Louisiana Generating, LLC                             | SERC Mississippi Valley | SERC           |
| Madison Gas and Electric Company                      | MRO East                | MRO            |
| Maritime Area                                         | NPCC New England        | NPCC           |
| Michigan Electric Coordinated Systems                 | RFC Michigan            | RFC            |
| MidAmerican Energy Company                            | MRO West                | MRO            |
| Minnesota Power, Inc.                                 | MRO West                | MRO            |
| Muscatine Power and Water                             | MRO West                | MRO            |
| Nebraska Public Power District                        | MRO West                | MRO            |
| Nevada Power Company                                  | WECC Southwest          | WECC           |
| New York Independent System Operator                  | NPCC NYC/Westchester    | NPCC           |
|                                                       |                         |                |
| New York Independent System Operator                  | NPCC Long Island        | NPCC           |
| New York Independent System Operator                  | NPCC Upstate NY         | NPCC           |
| Northern Indiana Public Service Company               | RFC West                | RFC            |
| Northern States Power Company                         | MRO West                | MRO            |
| Ohio Valley Electric Corporation                      | RFC West                | RFC            |
| Oklahoma Gas and Electric                             | SPP South               | SPP            |

Table III-6 (continued).

| PCA Name                                                                                   | eGRID Subregion Name              | NERC Region  |
|--------------------------------------------------------------------------------------------|-----------------------------------|--------------|
| Omaha Public Power District                                                                | MRO West                          | MRO          |
| Otter Tail Power Company                                                                   | MRO West                          | MRO          |
| PacifiCorp-East                                                                            | WECC Northwest                    | WECC         |
| PacifiCorp-West                                                                            | WECC Northwest                    | WECC         |
| PJM Interconnection                                                                        | RFC East                          | RFC          |
| PJM Interconnection                                                                        | RFC West                          | RFC          |
| PJM Interconnection                                                                        | SERC Virginia/Carolina            | SERC         |
| Portland General Electric Company                                                          | WECC Northwest                    | WECC         |
| Progress Energy Carolinas – EAST                                                           | SERC Virginia/Carolina            | SERC         |
| Public Service Company of Colorado                                                         | WECC Rockies                      | WECC         |
| Public Service Company of New Mexico                                                       | WECC Southwest                    | WECC         |
| PUD No. 1 of Chelan County                                                                 | WECC Northwest                    | WECC         |
| PUD No. 1 of Douglas County                                                                | WECC Northwest                    | WECC         |
| PUD No. 2 of Grant County                                                                  | WECC Northwest                    | WECC         |
| Puget Sound Energy                                                                         | WECC Northwest                    | WECC         |
| Salt River Project                                                                         | WECC Southwest                    | WECC         |
| Seattle Department of Lighting                                                             | WECC Northwest                    | WECC         |
| Seminole Electric Cooperative                                                              | FRCC All                          | FRCC         |
| Sierra Pacific Power Company                                                               | WECC Northwest                    | WECC         |
| South Carolina Electric & Gas Company                                                      | SERC Virginia/Carolina            | SERC         |
| South Carolina Public Service Authority (Santee Cooper)                                    | SERC Virginia/Carolina            | SERC         |
| South Mississippi Electric Power Association                                               | SERC South                        | SERC         |
| South Mississippi Electric Fower Association  Southeastern Power Administration – Hartwell | SERC Virginia/Carolina            | SERC         |
| Southern Company Services, Inc.                                                            | SERC Virginia/Carolina SERC South | SERC         |
| Southern Illinois Power Cooperative                                                        | SERC Midwest                      | SERC         |
| Southern Indiana Gas & Electric Co.                                                        | RFC West                          | RFC          |
| Southern Minnesota Municipal Power Agency                                                  | MRO West                          | MRO          |
| Southwestern Power Administration                                                          | SPP South                         | SPP          |
| Southwestern Public Service Company                                                        | SPP South                         | SPP          |
| Sunflower Electric Power Corporation                                                       | SPP North                         | SPP          |
| Tacoma Power                                                                               | WECC Northwest                    | WECC         |
| Tacoma Power Tampa Electric Company                                                        |                                   |              |
|                                                                                            | FRCC All                          | FRCC<br>SERC |
| Tennessee Valley Authority                                                                 | SERC Tennessee Valley             |              |
| Tucson Electric Power Company                                                              | WECC Southwest                    | WECC         |
| Turlock Irrigation District (new, separated from California                                | WECC California                   | WECC         |
| Independent System Operator)                                                               | MDO F4                            | MDO          |
| Upper Peninsula Power Co.                                                                  | MRO East                          | MRO          |
| Utilities Commission, City of New Smyrna Beach                                             | FRCC All                          | FRCC         |
| WAPA - Colorado-Missouri                                                                   | WECC Rockies                      | WECC         |
| WAPA - Lower Colorado                                                                      | WECC Southwest                    | WECC         |
| WAPA - Upper Great Plains East                                                             | MRO West                          | MRO          |
| WAPA - Upper Great Plains West                                                             | WECC Northwest                    | WECC         |
| Western Farmers Electric Cooperative                                                       | SPP South                         | SPP          |
| Western Resources dba Westar Energy                                                        | SPP North                         | SPP          |
| Wisconsin Energy Corporation                                                               | RFC West                          | RFC          |
| Wisconsin Public Service Corporation                                                       | MRO East                          | MRO          |

A representation of the eGRID subregion map used in eGRID2007 is included in Appendix B.

# H. TREATMENT OF AGGREGATION LEVELS

All aggregation levels are based on the plant file. The State file data are developed by summing up the plant data (adjusted heat input, adjusted emissions, adjusted fuel-based emissions, net generation, fuel-based net generation, nameplate capacity, and the plant data values needed to calculate non-baseload

emission rates), based on the State in which the plant is located. The EGC (and parent company) location (operator)-based files are developed by summing up the plant data, based on the operator EGC (parent company, if it exists, of the operator EGC) of the plant. The PCA, eGRID subregion, and NERC region aggregations are done similarly, based on the plant data.

The EGC (and parent company) owner-based files are developed a bit differently from the location (operator)-based files, but using the same principles. If the owner EGC does not own 100% of the plant, it is not attributed with 100% of the plant's data. In particular, each of the owner EGCs (and parent company, if it exists, of the owner EGC) are attributed its ownership percent of each data element that is aggregated.

The totals from the plant, State, two EGC, PCA, eGRID subregion, NERC region, and U.S. files' adjusted heat input, adjusted emissions, adjusted fuel-based emissions, net generation, fuel-based net generation, and nameplate capacity data should be the same, after accounting for rounding. Some variables' totals in the EGC owner-based file may appear to differ from those in the other files because of ownership percent and rounding.

The totals from the two parent company files will be different from each other and different from the other eight files' since a plant is not necessarily associated with a location (operator)- and/or owner-based parent company.

# SECTION IV. SPECIFIC eGRID ID AND NAME CHANGES AND ASSOCIATIONS

eGRID2007 generally uses ID codes (for plants, companies, etc.) assigned by EIA. However, identifiers (IDs) and certain corresponding names have been changed in eGRID2007 in order to minimize confusion. If needed, entities that do not have an EIA designated ID are assigned values in eGRID. The specifics are delineated below.

#### A. PLANT LEVEL

One plant, Laramie River Station (ORISPL = 6204) in Wyoming, has three boilers and generators that supply power to two different power grids. Consequently, the first boiler (1) has become a separate plant in eGRID2007 with a dummy ORISPL = 6204.1 because it is operated within a PCA that is in the Eastern grid; while the second and third boilers have become a separate plant with a dummy ORISPL = 6204.2 because they are operated within a PCA that is in the Western grid. This plant representation occurs in all editions of eGRID.

# B. EGC, COMPANY LEVEL

EGCs, for purposes of eGRID files, are operators and owners of power plants for the given year. Each EGC has a unique code assigned by EIA, or by EPA for eGRID as described below.

Many eGRID EGCs, or companies, do not have a known ID code assigned by EIA, perhaps because they recently purchased or began to operate a plant. Thus, companies with unknown EIA EGC IDs are assigned a dummy negative three-digit EGC ID code beginning with -101.

Nonutility, or unregulated, companies that represent the same EGC are called nufronts in eGRID. They are grouped together under a nufront name and are given a dummy negative four-digit EGC ID code beginning with -1001. This practice began with the first edition of eGRID because there were so many individual companies that represented the same EGC but had a slightly different name or spelling of a name, and aggregation to the EGC level would have been meaningless if these separate EGCs were not related. Some nufronts are also parent company subsidiaries.

Additionally, some Ohio utility plants have more owners than they are able to report on the EIA-860, so eGRID has adopted their Ohio Municipal Electric Generation Agency (OMEGA) Joint Ventures categories that group these individual owners into OMEGA JV1, OMEGA JV2, OMEGA JV5, and OMEGA JV6 and uses these OMEGAJV names as single owners. These relationships have been updated for eGRID 2007 (AMP-Ohio, 2008).

Several other companies were broken up and given dummy IDs because the company operates in more than one power control area. These include:

- Basin Electric Power Coop (ID = 1307), which was broken up into two divisions: Basin Electric Power Coop-East (ID = 1307.1) and Basin Electric Power Coop-West (ID = 1307.2);
- Pacificorp (ID = 14354), which was broken up into two divisions: Pacificorp-Rocky Mtn (ID = 14354.1) and Pacificorp-Pacific (ID = 14354.2);
- Texas-New Mexico Power Co (ID = 40051), which was broken up into Texas-New Mexico Power Co-NM (ID = 40051.1) and Texas-New Mexico Power Co-TX (ID = 40051.2); and

• Aquila Inc (ID = 770), which was broken up into Aquila Networks Co-Colorado (ID = 770.1) and Aquila Networks-Missouri (ID = 770.3).

#### C. PARENT COMPANY LEVEL

Parent company refers to a company (such as a holding company) that owns one or more operating subsidiaries or divisions that generate electricity; it is not a legal definition. Data for parent companies are found in separate parent company spreadsheets, rather than in the company (EGC) spreadsheets. If eGRID breaks up an EGC (such as Pacificorp or Basin Electric) that operates in more than one PCA, the entire EGC is then also reunited and reported as a parent company. Federal entities (such as USBIA, USBR, and USCE) that consist of several EGCs are also treated as parent companies by eGRID. More detailed information about parent companies follows.

No parent company in eGRID has an assigned EIA ID, so eGRID assigns IDs of the form -7xxx.

The following EGCs, or companies (including some government agencies), which are divided at the company level, have been grouped as a single parent company at the parent company level and for eGRID purposes, are considered subsidiaries of parent companies:

- Aquila Inc (ID = -7062), which now includes one former Utilicorp United EGC division, Aquila Networks-Colorado (ID = 770.1), as well as the former Missouri Public Service Co, Aquila Networks-Missouri (ID = 770.3);
- Basin Electric Power Coop (ID = -7304), which includes two Basin Electric Power Coop EGC divisions (ID = 1307.1 and ID = 1307.2);
- Pacificorp (ID = 14354), which includes two Pacificorp EGC divisions (ID = 14354.1 and ID = 14354.2) absorbed by MidAmerican Energy Holdings Co parent company (ID = -7034);
- U.S. Army Corp of Engineers, USCE, (ID = -7059), which includes 14 EGCs that are divisions of the Corps of Engineers;
- U.S. Bureau of Indian Affairs, USBIA, (ID = -7060), which includes three EGCs that are divisions of the Bureau of Indian Affairs;
- U.S. Bureau of Reclamation (ID = -7061), which includes five EGCs that are divisions of the Bureau of Reclamation; and
- Northwestern Corp (ID = -7110), which includes Northwestern Energy (SD), EGC ID=13809 and Northwestern Energy (MT), EGC ID = 13902. These EGC IDs were both assigned to the same company name, but because of the different company headquarters, eGRID kept the EGCs separate.

# D. POWER CONTROL AREA (PCA) and NERC REGION LEVELS

More detailed information about power control areas (PCA) and NERC regions follow.

There have only been a few changes to both NERC regions and PCAs from eGRID2006 to eGRID2007, as specified in Table III-5 and Table III-6.

Two PCAs have dummy (negative) codes since there are none available from EIA: -1 for Alaska Misc, and -2 for Hawaii Misc.

In eGRID, a PCA associated with a plant is determined first by its utility operator. If the plant is operated by a nonutility, then the associated utility service area (a utility company with a specified area close to the plant's location) determines the PCA. There are some plants in eGRID that display both a utility operator

and a different utility service area. For some cases in eGRID, the utility service area is used to determine the PCA because the operator's location seems to be too far away. The eleven plants for which the utility service area rather than the utility operator were used to determine the PCA are ORISPL = 127 (Oklaunion, TX), ORISPL = 887 (Joppa Steam, IL), ORISPL = 1391 (Louisiana 1, LA), ORISPL = 1392 (Louisiana 2, LA), ORISPL = 1574 (Conowingo, MD), ORISPL = 6018 (East Bend, KY), ORISPL = 7128 (William F Matson Generating Station , PA), ORISPL = 7158 (Woodsdale, OH), ORISPL = 55202 (Pinckneyville, IL), ORISPL = 55417 (Raccoon Creek Energy Center, IL), and ORISPL = 55496 (Goose Creek Energy Center, IL).

See a representation of the eGRID2007 NERC region map in Appendix B.

#### E. eGRID SUBREGION LEVEL

eGRID subregions are developed as subsets of NERC regions. In eGRID2002 and earlier, these grid regions were similar to EPA's IPM subregions (except for the New York and California areas). Many of these older subregions no longer exist since their NERC regions no longer exist. At this juncture, NERC has only defined subregions in the WECC NERC region. Thus, for the WECC NERC region and for those other NERC regions that did not change configuration, the newer eGRID subregions will remain. Definitions of the other newer eGRID subregions were made by EPA/CPPD after consultation with NERC staff.

See a representation of the eGRID2007 subregion map in Appendix B.

[This page is intentionally left blank.]

#### SECTION V. DESCRIPTION OF DATA ELEMENTS

For year 2005 data, eGRID2007 has 12 aggregation files named BLR (boiler), GEN (generator), PLNT (plant), ST (State), EGCL (location (operator)-based EGC), EGCO (owner-based EGC), PRCL (location (operator)-based parent company), PRCO (owner-based parent company), PCAL (PCA), SRL (eGRID subregion), NRL (NERC region), and US (Unites States total). Appendix A provides file structures for the eGRID2007 2005 data year, which include variable descriptions and data sources. Definitions for like variables are not repeated after described in the plant file. For example, in the plant file, the net generation in MWh is defined at the plant level for the data element PLNGENAN. For each subsequent file, the net generation, nnNGENAN (where nn is ST, EG, PR, PC, SR, or NR) is not described in Appendix A; it is simply the sum of PLNGENAN attributed to the aggregation entity.

Descriptions of the 13<sup>th</sup> – 15<sup>th</sup> eGRID2007 files, the 2004 and 2005 Import-Export files and the U.S. Generation and Consumption file, are also included in this section.

#### A. THE BLR (BOILER) FILE

There are 34 variables in the first file, BLR, which contains unit level data. Note that summing the boiler unadjusted emissions to the plant level may not result in the same values as the plant unadjusted emissions since additional emissions from prime movers not covered by the ETS/CEM or EIA-767 data files may be included in the plant emissions values.

#### 1. eGRID2007 2005 File Boiler Sequence Number (SEQBLR05) –

The boiler records in this year 2005 data file are sorted by State postal code abbreviation, plant name, plant code, and boiler ID, and are assigned a unique sequential number beginning with 1. This sequence number is unlikely to be the same as the sequence number in the year 2004 eGRID file for the same entity.

#### 2. State Abbreviation (PSTATABB) –

This field contains the two character postal code abbreviation of the State in which the plant is located.

Source: EIA-860

#### 3. Plant Name (PNAME) –

This field is the name associated with each plant.

Source: EIA-860 + updates

#### 4. DOE/EIA ORIS Plant or Facility Code (ORISPL) –

This plant code corresponds to PNAME and was originally developed for power plants by the Office of the Regulatory Information System (ORIS), which was a part of the Federal Power Commission. It is now assigned by EIA and is used as a unique plant identification code for many EPA electric power databases, too. One plant code, that for Laramie River, has been altered. See Section IV for details.

Source: EIA-860

#### 5. Boiler ID (BLRID) –

This field identifies the unit ID for the unit that produces the emissions. The unit may be a steam boiler, combustion turbine, or engine.

Sources: ETS/CEM, EIA-767

#### 6. Acid Rain Program Flag (ARPFLAG) –

This field indicates if the unit reports ETS/CEM data annually under Title IV of the Clean Air Act Amendments of 1990 as part of the Acid Rain Program (1=Yes).

Source: ETS/CEM

#### 7. NO<sub>x</sub> Budget Program Flag (NBPFLAG) –

This field indicates if the unit reports ETS/CEM data as part of the NO<sub>x</sub> Budget Program (1=Yes).

Source: ETS/CEM

#### 8. Boiler Bottom and Firing Types (BOTFIRTY) –

This field displays the boiler bottom type followed by the firing type.

Possible values are:

For bottom type:

= Blank

DRY = Dry bottom WET = Wet bottom

For firing type:

= Blank

ARCH = Arch firing

CELL = Cell

CYCL = Cyclone firing DUCT = Duct burner

FLUIDI = Fluidized bed firing

OTHBLR = Other boiler OTHTRB = Other turbine

STOKER = Stoker

TANG = Tangential firing

TURBO = Turbo

VERT = Vertical firing

WALL = Wall Source: ETS/CEM, EIA-767

#### 9. Number of Associated Generators (NUMGEN) –

This field provides the number of generators associated with each EIA-767 boiler in the file.

Source: EIA-767 calculated

#### 10. Primary Boiler Fuel (FUELB1) –

This field specifies the primary fuel determined from EIA-767 reported data or the primary fuel reported to EPA's ETS/CEM.

Possible values are:

AB = Agricultural byproducts

BFG = Blast furnace gas
BIT = Bituminous coal
BLQ = Black liquor
COG = Coke oven gas

DFO = Distillate, light fuel oil, FO2, diesel oil DG = Digester gas (other biomass gases)

HY = Hydrogen LFG = Landfill gas LIG = Lignite coal

MSB = Municipal solid waste biomass component

NG = Natural gas
OG = Other gas
OOL = Other oil
PC = Petroleum coke
PRG = Process gas

RFO = Petroleum, heavy fuel oil, residual oil

RG = Refinery gas

SC = Synthetic coal (syncoal)

SLW = Sludge waste
SUB = Subbituminous coal
TDF = Tire-derived fuel
WC = Waste coal

WDL = Wood, wood waste liquids WDS = Wood, wood waste solids

WO = Waste oil

Sources: EIA-767 based, ETS/CEM

#### 11. Hours Connected to Load (LOADHRS) –

This field indicates the reported number of hours per year that the EIA-767 boiler operated.

Source: EIA-767

#### 12 Boiler Unadjusted Annual ETS/CEM Heat Input (HTIEAN) –

This field, in MMBtu, is the unit's unadjusted annual total heat input assigned by EPA/CAMD, based on the values reported to EPA's ETS/CEM. When not available, it is zero.

Source: ETS/CEM

#### 13. Boiler Unadjusted Ozone Season ETS/CEM Heat Input (HTIEOZ) –

This field, in MMBtu, is the unit's unadjusted ozone season (May through September) heat input, based on the values reported to EPA's ETS/CEM. When not available, it is zero.

Source: ETS/CEM

#### 14 Boiler Unadjusted Annual Total EIA-Based Calculated Heat Input (HTIFAN) –

This field, in MMBtu, provides the boiler's unadjusted annual total heat input, calculated using EIA-767 data, when available. When not available, it is zero.

#### 15. Boiler Unadjusted Ozone Season EIA-Based Calculated Heat Input (HTIFOZ) –

This field, in MMBtu, provides the boiler's unadjusted ozone season (May through September) heat input, calculated using EIA 767 based data, when available. If EIA-767 based ozone season data are not available, but EIA-767 based annual data are, then the value in this field is calculated as 5/12 of the annual value. Otherwise, the value is zero.

#### 16. Boiler Unadjusted Annual ETS/CEM NO<sub>x</sub> Emissions (NOXEAN) –

This field, in tons, is the unit's unadjusted NO<sub>x</sub> emissions assigned by EPA/CAMD based on the values reported to EPA's ETS/CEM. When not available, it is zero. Source: ETS/CEM

#### 17. Boiler Unadjusted Ozone Season ETS/CEM NO<sub>x</sub> Emissions (NOXEOZ) –

This field, in tons, is the unit's unadjusted ozone season (May through September)  $NO_x$  emissions based on values reported to EPA's ETS/CEM. When not available, it is zero. Source: ETS/CEM

#### 18. Boiler Unadjusted Annual EIA-Based Calculated NO<sub>x</sub> Emissions (NOXFAN) –

This field, in tons, is the boiler's unadjusted annual  $NO_x$  emissions, calculated using EIA-767 reported data, when available, and the EPA-approved emission factors. When not available, it is zero.

### 19. Boiler Unadjusted Ozone Season EIA-Based Calculated NO<sub>x</sub> Emissions (NOXFOZ) –

This field, in tons, is the boiler's unadjusted ozone season (May through September)  $NO_x$  emissions calculated from EIA-reported data and EPA-approved emission factors. If EIA-767- based ozone season data are not available, but EIA-767 based annual data are, then the value in this field is calculated as 5/12 of the annual value. Otherwise, the value is zero.

#### 20. Boiler Unadjusted Annual ETS/CEM SO<sub>2</sub> Emissions (SO2EAN) –

This field, in tons, is the unit's unadjusted annual  $SO_2$  emissions assigned by EPA/CAMD based on the values reported to EPA's ETS/CEM. When not available, it is zero. Delaware's Hay Road 1 and 2 (CCs) do not report annual  $SO_2$  emissions since they are not in the ARP, so the emissions were estimated using fuel quantity (back calculated from reported ETS/CEM heat input and average hear content) and the appropriate EPA-approved emission factor.

Source: ETS/CEM

#### 21. Boiler Unadjusted Annual EIA-Based Calculated SO<sub>2</sub> Emissions (SO2FAN) –

This field, in tons, is the boiler's unadjusted annual SO<sub>2</sub> emissions calculated using EIA-767 reported data, when available, and the EPA-approved emission factors. When not available, it is zero.

#### 22. Boiler Unadjusted Annual ETS/CEM CO<sub>2</sub> Emissions (CO2EAN) –

This field, in tons, is the unit's unadjusted annual CO<sub>2</sub> emissions assigned by EPA/CAMD based on the values reported to EPA's ETS/CEM. Delaware's Hay Road 1 and 2 (CCs) do not report annual CO<sub>2</sub> emissions since they are not in the ARP, so the emissions were estimated using reported ETS/CEM heat input and the appropriate IPCC GHG carbon coefficient. When not available, it is zero. If the fuel for this boiler is biomass, the CO<sub>2</sub> emissions are assigned a zero value (see the Methodology Section for the rationale for biomass adjustments for CO<sub>2</sub>).

Source: ETS/CEM

#### 23. Boiler Unadjusted Annual EIA-Based Calculated CO<sub>2</sub> Emissions (CO2FAN) –

This field, in tons, is the boiler's unadjusted annual CO<sub>2</sub> emissions calculated using EIA-767 reported data, when available, and IPCC GHG carbon coefficients. When not

available, it is zero. If the fuel for this boiler is biomass, the CO<sub>2</sub> emissions are assigned a zero value (see the Methodology Section).

#### 24. Source of "Best" Data from ETS/CEM or EIA-767 (SRCBEST) –

This field describes the one source of the "best" variables (HTIBAN, NOXBAN, SO2BAN, CO2BAN, HTIBOZ, NOXBOZ) – either ETS/CEM or EIA-767.

#### 25. Boiler Unadjusted Annual Best Heat Input (HTIBAN) –

This field, in MMBtu, contains the "best" unadjusted annual heat input value by taking HTIEAN as its value, if it exists; otherwise, HTIFAN's value is used.

#### 26. Boiler Unadjusted Ozone Season Best Heat Input (HTIBOZ) -

This field, in MMBtu, contains the "best" unadjusted ozone season (May through September) heat input value by taking HTIEOZ as its value, if it exists; otherwise, HTIFOZ's value is used.

#### 27. Boiler Unadjusted Annual Best NO<sub>x</sub> Emissions (NOXBAN) –

This field, in tons, contains the "best" unadjusted annual NO<sub>x</sub> value by taking NOXEAN as its value, if it exists; otherwise NOXFAN's value is used.

#### 28. Boiler Unadjusted Ozone Season Best NO<sub>x</sub> Emissions (NOXBOZ) –

This field, in tons, contains the "best" unadjusted ozone season (May through September)  $NO_x$  value by taking NOXEOZ as its value, if it exists; otherwise NOXFOZ's value is used.

#### 29. Boiler Unadjusted Annual Best SO<sub>2</sub> Emissions (SO2BAN) –

This field, in tons, contains the "best" unadjusted annual SO<sub>2</sub> value by taking SO2EAN as its value, if it exists; otherwise SO2FAN's value is used.

#### 30. Boiler Unadjusted Annual Best CO<sub>2</sub> Emissions (CO2BAN) –

This field, in tons, contains the "best" unadjusted annual CO<sub>2</sub> value by taking CO2EAN as its value, if it exists; otherwise CO2FAN's value is used.

#### 31. SO<sub>2</sub> (Scrubber) First Control Device (SO2CTLDV) –

This field contains the first reported  $SO_2$  control device. Values may be combined and separated by commas.

Possible values are:

BR = Jet bubbling reactor

CD = Circulating dry scrubber

DA = Dual alkali

DL FGD = Dry lime flue gas desulfurization unit

FBL = Fluidized bed

MA = Mechanically aided type

MO = Magnesium oxide

OT = Other

PA = Packed type SB = Sodium based SD = Spray dryer type

SP = Spray type

TR = Tray type

VE = Venturi type

WL FGD = Wet lime flue gas desulfurization unit

WLS = Wet limestone

Sources: ETS/CEM, EIA-767

#### 32. NO<sub>x</sub> First Control Device (NOXCTLDV) –

This field contains the first reported  $NO_x$  control device. Values may be combined and separated by commas.

Possible values are:

AA = Advanced overfire air

BF = Biased firing

CF = Fluidized bed combustor

CM = Combustion modification/fuel reburning DLNB = Dry low NO<sub>x</sub> premixed technology

FR = Flue gas recirculation
FU = Fuel reburning
H2O = Water injection
LA = Low excess air
LNB or LN = Low NO<sub>x</sub> burner

LNBO = Low  $NO_x$  burner with overfire air

LNC1 = Low  $NO_x$  burner technology with close-coupled overfire air

LNC2 = Low  $NO_x$  burner technology with separated OFA

LNC3 = Low NO<sub>x</sub> burner technology with close-coupled and separated

overfire air

LNCB = Low  $NO_x$  burner technology for cell burners

NH3 = Ammonia injection

OT = Other OFA or OV = Overfire air SC = Slagging

SCR or SR = Selective catalytic reduction SNCR or SN = Selective noncatalytic reduction

STM = Steam injection

Sources: ETS/CEM, EIA-767

#### 33. Hg Activated Carbon Injected System Flag (HGCTLDV) –

This field contains an activated carbon injection mercury control flag (1=Yes).

Source: EIA-767

#### 34. Boiler Year On-Line (BLRYRONL) –

The field provides the four digit boiler year on-line.

Source: ETS/CEM, EIA-767

#### B. THE GEN (GENERATOR) FILE

There are 15 variables in the second file, GEN, which contains generator level data. Note that summing the generator generation to the plant level may not result in the same values as the plant generation. This file includes generation from generators in the EIA-767, from nuclear units in the EIA-906/920, and from those plant-prime movers in the EIA-906/920 that have only one generator in the EIA-860. The source of generation in the plant file is primarily the EIA-906/920.

#### 1. eGRID2007 2005 File Generator Sequence Number (SEQGEN05) –

The generator records in this year 2005 data file are sorted by State postal code abbreviation, plant name, plant code, and generator ID, and are assigned a unique sequential number beginning with 1. This sequence number is unlikely to be the same as the sequence number in the year 2004 eGRID file for the same entity.

#### 2. State Abbreviation (PSTATABB) –

This field contains the two character postal code abbreviation of the State in which the plant is located.

Source: EIA-860

#### 3. Plant Name (PNAME) –

This field is the name associated with each plant.

Source: EIA-860 + updates

#### 4. DOE/EIA ORIS Plant or Facility Code (ORISPL) –

This plant code corresponds to PNAME and was originally developed for power plants by the Office of the Regulatory Information System (ORIS), which was a part of the Federal Power Commission. It is now assigned by EIA and is used as a unique plant identification code for many EPA electric power databases, too. One plant code, that for Laramie River, has been altered. See Section IV for details.

Source: EIA-860

#### 5. Generator ID (GENID) –

This field identifies the electrical generation unit (generator). In the majority of cases, there is a 1-to-1 correspondence with the boiler ID if it is a steam generator.

Sources: EIA-860, EIA-767

#### 6. Number of Associated Boilers (NUMBLR) –

This field provides the number of EIA-767 boilers associated with each generator in the

Source: EIA-767 calculated

#### 7. Generator Status (GENSTAT) –

This field indicates the reported generator status at the end of the given year. Possible values are:

BU = Cold storage, back-up

OP = Operating

OS = In commercial operation, but out of service

RE = Retired

SB = Cold stand-by (long-term storage)

#### THE GEN FILE

TS = Testing

V = More than 50% constructed

Source: EIA-860

#### 8. Prime Mover Type (PRMVR) –

This field indicates the reported generator's electric generator type. Possible values are:

BT = Binary cycle turbine

CA = Combined cycle steam turbine
CC = Combined cycle - total unit
CE = Compressed air energy storage
CS = Combined cycle - single shaft
CT = Combined cycle combustion turbine

GT = Combustion (gas) turbine

HY = Hydraulic turbine

IC = Internal combustion (diesel)

OT = Other turbine

PS = Hydraulic turbine - reversible (pumped storage)

PV = Photovoltaic

ST = Steam turbine (boiler, nuclear, geothermal)

WT = Wind turbine

Source: EIA-860

#### 9. Primary Generator Fuel (FUELG1) –

This field indicates the potential primary fuel reported for the generator. Possible values are:

AB = Agricultural byproducts

BFG = Blast furnace gas BIT = Bituminous coal BLQ = Black liquor

DFO = Distillate, light fuel oil, FO2, diesel oil DG = Digester gas (other biomass gases)

GEO = Geothermal
JF = Jet fuel
KER = Kerosene
LFG = Landfill gas
LIG = Lignite coal

MSB = Municipal solid waste biomass component

NG = Natural gas NUC = Nuclear materiel OBL = Other biomass liquid OBS = Other biomass solid

OG = Other gas OTH = Other unknown PC = Petroleum coke PUR = Purchased steam

RFO = Petroleum, heavy fuel oil, residual oil

SC = Synthetic coal (syncoal) SUB = Subbituminous coal

#### THE GEN FILE

SUN = Solar

TDF = Tire-derived fuel

WAT = Water WC = Waste coal

WDL = Wood, wood waste liquids WDS = Wood, wood waste solids

WH = Waste heat WND = Wind WO = Waste oil

Source: EIA-860

#### 10. Generator Nameplate Capacity (NAMEPCAP) -

This field indicates the nameplate capacity, in MW, of the generator.

Source: EIA-860

#### 11. Generator Capacity Factor (CFACT) –

This field is calculated at the generator level:

CFACT = (GENNTAN) / (NAMEPCAP \* 8760).

The value should be between 0 and 1 exclusive. However, there are outliers.

#### 12. Generator Annual Net Generation (GENNTAN) –

This field is the reported net generation in MWh. Note that summing the net generation of the generators in a plant may not provide a value that is the same as the plant generation value, PLNGENAN, since the data sources are often different.

Sources: EIA-767, EIA-906/920

#### 13. Generator Ozone Season Net Generation (GENNTOZ) –

This field is the generator five month ozone season (May through September) net generation in MWh. For plants that reported monthly data, it is based on monthly generator generation data. Otherwise, it is calculated as 5/12 of the annual value.

Sources: EIA-767, EIA-906/920

#### 14. Generation Data Source (GENERSRC) –

This field describes the data source of the generator net generation data. The three values are as follows:

767 = EIA-767,

906NK = EIA-906/920 nuclear unit

906NONK = EIA-906/920 only generator at that plant's prime mover

#### 15. Generator Year On-Line (GENYRONL) –

This field provides the four digit generator year on-line.

Source: EIA-860

#### C. THE PLNT (PLANT) FILE

There are 158 variables in PLNT. Some data may be outliers and should be viewed with caution.

#### 1. eGRID2007 2005 File Plant Sequence Number (SEQPLT05) –

The plant records in this year 2005 data file are sorted by State postal code abbreviation, plant name, and boiler ID, and are assigned a unique sequential number beginning with 1. This sequence number is unlikely to be the same as the sequence number in the year 2004 eGRID file for the same entity.

#### 2. State Abbreviation (PSTATABB) -

This field contains the two character postal code abbreviation of the State in which the plant is located.

Source: EIA-860

#### 3. Plant Name (PNAME) –

This field is the name associated with each plant.

Source: EIA-860 + updates

#### 4. DOE/EIA ORIS Plant or Facility Code (ORISPL) –

This plant code corresponds to PNAME and was originally developed for power plants by the Office of the Regulatory Information System (ORIS), which was a part of the Federal Power Commission. It is now assigned by EIA and is used as a unique plant identification code for many EPA electric power databases, too. One plant code, that for Laramie River, has been altered. See Section IV for details.

Source: EIA-860

#### 5. Plant EPA Facility Registry System FRS Identification Code (FRSID) –

This field is the EPA Facility Registry System (FRS) code associated with the ORISPL. This field is based on matches from EPA's FRS database as of October 2007.

Source: EPA FRS

#### 6. Plant Operator Name (OPRNAME) -

The name associated with each operating company (EGC) is contained in this field. Source: EIA-860 + updates

#### 7. Plant Operator ID (OPRCODE) –

This field corresponds to OPRNAME and contains the operating company ID. Each operating company has a unique company code assigned by EIA, with some exceptions. Some operator names do not have associated codes assigned by EIA and are EPA-assigned negative IDs beginning with -101; and some nonutility EGCs are grouped together, called nufronts, and are EPA-assigned negative IDs beginning with -1001. See Section IV for details.

Source: EIA-860 + updates

#### 8. Utility Service Area Name (UTLSRVNM) –

This field contains the name of the utility service area (a utility company or EGC) in which the nonutility plant is located. See Section IV for further details.

Source: EIA-860 + updates

#### 9. Utility Service Area ID (UTLSRVID) –

This field corresponds to UTLSRVNM and contains the unique ID code associated with each utility service area.

Source: EIA-860 + updates

#### 10. Parent Company ID Associated with the Operator (OPPRNUM) –

This field contains the ID of the parent company, if it exists, associated with the plant's operating company (EGC). It is zero otherwise. EIA did not assign IDs for most parent companies; thus, EPA assigned unique negative integer IDs beginning with -7001 as parent company IDs.

Source: EIA + updates

#### 11. Parent Company Name Associated with the Operator (OPPRNAME) –

This field corresponds to OPPRNUM and contains the name of the parent company, if it exists, associated with the plant's operating company. It is blank otherwise. See the Methodology Section and Section IV for further information about parent companies.

Source: EIA + updates

#### 12. Power Control Area Name (PCANAME) –

This field contains the name of the power control area for the plant. See the Methodology Section and Section IV for further information about PCAs.

Sources: NERC, EIA-861 + EPA updates

#### 13. Power Control Area ID (PCAID) –

This field corresponds to PCANAME and contains the ID of the power control area for the plant. See the Methodology Section and Section IV for further information about eGRID subregions.

Sources: NERC, EIA-861 + EPA updates

#### 14. NERC Region Acronym (NERC) -

This field contains the acronym for the NERC region in which the plant is located and is also the NERC region associated with the plant's PCA. See the Methodology Section and Section IV for further information about NERC regions. A representation of the eGRID2007 NERC region map is included in Appendix B.

Source: NERC

#### 15. eGRID Subregion Acronym (SUBRGN) –

This field contains the acronym for the eGRID subregion in which the plant is located. See the Methodology Section and Section IV for further information about eGRID subregions. A representation of the eGRID2007 eGRID subregion map is included in Appendix B.

Source: EPA

#### 16. eGRID Subregion Name (SRNAME) –

This field corresponds to SUBRGN and contains the name of the eGRID subregion in which the plant is located. See the Methodology Section and Section IV for further information about eGRID subregions.

Source: EPA

#### 17. Plant FIPS State Code (FIPSST) –

This field contains the two digit Federal Information Processing Standards (FIPS) State character code of the State in which the plant is located.

Source: NIST-derived

#### 18. Plant FIPS County Code (FIPSCNTY) –

This field contains the three digit FIPS county character code of the county in which the plant is located.

Source: NIST-derived

#### 19. Plant County Name (CNTYNAME) –

This field corresponds to FIPSST and contains the name of the county in which the plant is located.

Source: EIA-860, ETS/CEM

#### 20. Plant Latitude (LAT) –

This field contains the latitude, in degrees to four decimal places, associated with the plant. When not available, the plant's county centroid's y-coordinate is used.

Source: EPA/CAMD + updates

#### 21. Plant Longitude (LON) -

This field contains the longitude, in degrees to four decimal places, associated with the plant. When not provided, the plant's county centroid's x-coordinate is used.

Source: EPA/CAMD + updates

#### 22. Country centroid flag (CCFLAG) –

This field indicates if the latitude and longitude fields (# 20 and # 21) are based on the county centroid (1= county centroid used).

This is a new field in eGRID2007.

#### 23. Number of Boilers (NUMBLR) –

This field contains the number of boilers within a plant. Note that the meaning and sources of these data are different from the data element of the same name in the generator file.

Source: ETS/CEM, EIA-767 calculated

#### 24. Number of Generators (NUMGEN) –

This field contains the number of generators within a plant. Note that the meaning and source of these data are different from the data element of the same name in the boiler file.

Source: EIA-860 calculated

#### 25. Plant combustion status (COMBUST) –

This field contains the plant combustion status: Possible values are: 1 = Combusts, 0 = No combustion, 0.5 = Partial combustion.

This is a new field in eGRID2007.

#### 26. Plant Emissions Source(s) (SOURCEM) –

This field describes the source(s) of emissions data for the plant. There maybe multiple sources that are displayed in the order listed below and separated by commas and blanks (to indicate that there are some unused sources).

Possible values are:

| CEM | = | NO <sub>x</sub> , SO <sub>2</sub> , and CO <sub>2</sub> emissions reported to EPA's Emissions                       |
|-----|---|---------------------------------------------------------------------------------------------------------------------|
|     |   | Tracking System/Continuous Emissions Monitoring System                                                              |
|     |   | (ETS/CEM); CH <sub>4</sub> and N <sub>2</sub> O emission estimated by applying                                      |
|     |   | EPA-approved emission factors to ETS/CEM data                                                                       |
| 767 | = | NO <sub>x</sub> , SO <sub>2</sub> , CO <sub>2</sub> , CH <sub>4</sub> , and N <sub>2</sub> O emissions estimated by |
|     |   | applying EPA-approved emission factors to EIA-767 data                                                              |
| 906 | = | NO <sub>x</sub> , SO <sub>2</sub> , CO <sub>2</sub> , CH <sub>4</sub> , and N <sub>2</sub> O emissions estimated by |
|     |   | applying EPA-approved emission factors to EIA-906/920 data                                                          |
| ICR | = | Mercury emissions estimated using EPA's Year 2002 Coal                                                              |
|     |   | Mercury data, which is based on EPA's 1999 ICR                                                                      |
| MWC | = | Mercury emissions estimated using EPA's Year 2000 Large                                                             |
|     |   | MWC Boiler Database for mercury                                                                                     |

#### 27.

Plant Primary Fuel (PLPRMFL) —
This field contains the plant's primary fuel based on maximum heat input if the plant combusts any fuel or assignment if the plant does not combust any fuel. Possible values

| AB  | = | Agricultural byproducts                     |
|-----|---|---------------------------------------------|
| BFG | = | Blast furnace gas                           |
| BIT | = | Bituminous coal                             |
| BLQ | = | Black liquor                                |
| COG | = | Coke oven gas                               |
| DFO | = | Distillate, light fuel oil, FO2, diesel oil |
| DG  | = | Digester gas (other biomass gases)          |
| GEO | = | Geothermal steam                            |
| HY  | = | Hydrogen                                    |
| JF  | = | Jet fuel                                    |
| KER | = | Kerosene                                    |
| LFG | = | Landfill gas                                |
| LIG | = | Lignite coal                                |
| MSB | = | Municipal solid waste biomass component     |
| NG  | = | Natural gas                                 |
| NUC | = | Nuclear materiel                            |
| OBS | = | Other biomass solid                         |
| OG  | = | Other gas                                   |
| OOL | = | Other oil                                   |
| OTH | = | Other (unknown)                             |
| PC  | = | Petroleum coke                              |
| PG  | = | Propane gas/LPG                             |
| PRG | = | Process gas                                 |
| PUR | = | Purchased fuel (unknown)                    |
| RFO | = | Petroleum, heavy fuel oil, residual oil     |
| RG  | = | Refinery gas                                |
| SC  | = | Synthetic coal (syncoal)                    |
| SLW | = | Sludge waste                                |
| SUB | = | Subbituminous coal                          |
| SUN | = | Sun                                         |
| TDF | = | Tire-derived fuel                           |
|     |   |                                             |

WAT = Water WC = Waste coal

WDL = Wood, wood waste liquids

WDS = Wood, waste solids

WND = Wind WO = Waste oil

#### 28. Plant Primary Coal/Oil/Gas/Other Fossil Fuel Category (PLFUELCT) –

The value of this field is "COAL" if PLPRMFL is derived from coal, "OIL" if it is derived from oil, "GAS" if it is derived from gas, or "OFSL" if it is other fossil. Fossil fuel refers to any naturally occurring organic fuel, such as petroleum, coal, and natural gas. The fossil fuel category is defined differently in eGRID2007, including other fossil in addition to coal, oil, and gas, for the first time for year 2005 data. See the Methodology Section for a complete list of fuel codes and categories.

#### 29. Flag indicating if the plant used any amount of coal (COALFLAG) –

This field contains a flag to indicate if the plant used any amount of coal (1= Yes). This is a new field in eGRID2007.

#### 30. Plant Capacity Factor (CAPFAC) -

This field contains the plant capacity factor, expressed with four decimal places. It is calculated as follows:

CAPFAC = PLNGENAN / (NAMEPCAP \* 8760)

Although the value should be between 0 and 1 inclusive, there are outliers.

#### 31. Plant Nameplate Capacity (NAMEPCAP) –

This field contains the nameplate capacity of the plant, in MW.

Source: EIA-860 summed

#### 32. Renewable Methane/Biomass Plant Adjustment Flag (RMBMFLAG) –

This field contains the renewable methane (landfill gas, digester gas)/biomass adjustment flag. A biomass facility's emissions reported in eGRID may be different from that reported in other EPA sources such as EPA/CAMD's ETS/CEM. Possible values are: 0 = No biomass, 1= Renewable methane included, or 100 = Other biomass included. For details, see the Methodology Section.

#### 33. Combined Heat and Power (CHP) Plant Adjustment Flag (CHPFLAG) –

This field contains a flag to indicate if the plant is a CHP facility (1=Yes). A CHP facility's emissions and heat input reported in eGRID may be different from that reported in other EPA sources such as EPA/CAMD's ETS/CEM. For details, see the Methodology Section.

Source: eGRID CHP list

#### 34. CHP Plant Useful Thermal Output (USETHRMO) –

This field, in MMBtu, contains the useful thermal output estimated or reported for a CHP facility

Source: EIA 906/920 calculated, EIA-767

#### 35. CHP Plant Power to Heat Ratio (PWRTOHT) -

This field contains the power to heat ratio in a CHP facility, which is the ratio of heat value of electricity generated (3413 \* kWh output) to the facility's useful thermal output. There are outliers.

#### 36. CHP Plant Electric Allocation Factor (ELCALLOC) –

This field contains the decimal fraction of the emissions that is attributed to electricity. It is derived as the ratio of the electric heat output to the sum of the electric and steam heat outputs, where the steam output is 75% of the useful thermal output. The electric allocation factor is used to allocate emissions from a CHP facility to both electricity generation and useful thermal output. See CHP in the Methodology Section for further information. For non-CHP plants, eGRID uses an electric allocation factor of 1.0.

#### 37. Plant Pumped Storage Flag (PSFLAG) –

This field indicates if the plant has at least one pumped storage generator (1= Yes). Source: EIA-860

#### 38. Plant Annual Heat Input (PLHTIAN) –

This field is the total annual heat input, in MMBtu, for the plant. For CHP plants, the value is adjusted by the electric allocation factor. See the Methodology Section for details.

#### 39. Plant Ozone Season Heat Input (PLHTIOZ) –

This field is the five month ozone season (May through September) heat input, in MWh, for the plant. For CHP plants, the value is adjusted by the electric allocation factor. See the Methodology Section for details.

#### 40. Plant Annual Net Generation (PLNGENAN) –

This field is the total reported annual net generation, in MWh, for the plant. Sources: EIA-906/920, EIA-767

#### 41. Plant Ozone Season Net Generation (PLNGENOZ) –

This field, in MWh, is the five month ozone season (May through September) net generation for the plant.

Sources: EIA-906/920, EIA-767

#### 42. Plant Annual NO<sub>x</sub> Emissions (PLNOXAN) –

This field, in tons, is the total annual  $NO_x$  emissions for the plant. Renewable methane biomass components of this field are adjusted. For CHP plants, the value is adjusted by the electric allocation factor. See the Methodology Section for details.

This adjusted emissions field is estimated by first making the renewable methane adjustment (if it exists) and then applying the electric allocation factor (if the plant is a CHP). See the Methodology Section for details.

#### 43. Plant Ozone Season NO<sub>x</sub> Emissions (PLNOXOZ) –

This field, in tons, is the five month ozone season (May through September)  $NO_x$  emissions for the plant. Renewable methane biomass components of this field are adjusted. For CHP plants, the value is adjusted by the electric allocation factor. See the Methodology Section for details.

This adjusted emissions field is estimated by first making the renewable methane adjustment (if it exists) and then applying the electric allocation factor (if the plant is a CHP). See the Methodology Section for details.

#### 44. Plant Annual SO<sub>2</sub> Emissions (PLSO2AN) –

This field, in tons, is the total annual SO<sub>2</sub> emissions for the plant. Renewable methane biomass components of this field are adjusted. For CHP plants, the value is adjusted by the electric allocation factor. See the Methodology Section for details.

This adjusted emissions field is estimated by first making the renewable methane adjustment (if it exists) and then applying the electric allocation factor (if the plant is a CHP). See the Methodology Section for details.

#### 45. Plant Annual CO<sub>2</sub> Emissions (PLCO2AN) –

This field, in tons, is the total annual  $CO_2$  emissions for the plant. For biomass (including renewable methane) components of the plant emissions, the unadjusted and adjusted-forbiomass emission values are the same since there are no carbon coefficients for these fuels. For CHP plants, the value is adjusted by the electric allocation factor.

This adjusted emissions field is estimated by first making the biomass adjustment (if it exists) and then applying the electric allocation factor (if the plant is a CHP). See the Methodology Section for details.

#### 46. Plant annual CH<sub>4</sub> Emissions (PLCH4AN) –

This field, in lbs, is the total annual CH<sub>4</sub> emissions for the plant. For CHP plants, the value is adjusted by the electric allocation factor. See the Methodology Section for details.

This is a new field in eGRID2007.

#### 47. Plant annual N<sub>2</sub>O emissions (PLN2OAN) –

This field, in lbs, is the total annual  $N_2O$  emissions for the plant. For CHP plants, the value is adjusted by the electric allocation factor. See the Methodology Section for details.

This is a new field in eGRID2007.

#### 48. Plant Annual Hg Emissions (PLHGAN) –

This field, in lbs, is the total annual Hg emissions for the plant. For CHP plants, the value is adjusted by the electric allocation factor. See the Methodology Section for details.

#### 49. Plant Annual NO<sub>x</sub> Output Emission Rate (PLNOXRTA) –

This field, in lb/MWh, is calculated as follows: PLNOXRTA = 2000 \* PLNOXAN / PLNGENAN.

#### 50. Plant Ozone Season NO<sub>x</sub> Output Emission Rate (PLNOXRTO) –

This field, in lb/MWh, is calculated as follows: PLNOXRTO = 2000 \* PLNOXOZ / PLNGENOZ.

#### 51. Plant Annual SO<sub>2</sub> Output Emission Rate (PLSO2RTA) –

This field, in lb/MWh, is calculated as follows: PLSO2RTA = 2000 \* PLSO2AN / PLNGENAN.

#### 52. Plant Annual CO<sub>2</sub> Output Emission Rate (PLCO2RTA) –

This field, in lb/MWh, is calculated as follows: PLCO2RTA = 2000 \* PLCO2AN / PLNGENAN.

#### 53. Plant Annual CH<sub>4</sub> Output Emission Rate (PLCH4RTA) –

This field, in lb/GWh, is calculated as follows: P LCH4RTA = PLCH4AN / (PLNGENAN / 1000). This is a new field in eGRID2007.

#### 54. Plant Annual N<sub>2</sub>O Output Emission Rate (PLN2ORTA) –

This field, in lb/GWh, is calculated as follows: P LN2ORTA = PLN2OAN / (PLNGENAN / 1000). This is a new field in eGRID2007.

#### 55. Plant Annual Hg Output Emission Rate (PLHGRTA) –

This field, in lb/GWh, is calculated as follows: PLHGRTA = PLHGAN / (PLNGENAN / 1000).

#### 56. Plant Annual NO<sub>x</sub> Input Emission Rate (PLNOXRA) –

This field, in lb/MMBtu, is calculated as follows: PLNOXRA = 2000 \* PLNOXAN / PLHTIAN.

#### 57. Plant Ozone Season NO<sub>x</sub> Input Emission Rate (PLNOXRO) –

This field, in lb/MMBtu, is calculated as follows: PLNOXRO = 2000 \* PLNOXOZ / PLHTIOZ.

#### 58. Plant Annual SO<sub>2</sub> Input Emission Rate (PLSO2RA) –

This field, in lb/MMBtu, is calculated as follows: PLSO2RA = 2000 \* PLSO2AN / PLHTIAN.

#### 59. Plant Annual CO<sub>2</sub> Input Emission Rate (PLCO2RA) –

This field, in lb/MMBtu, is calculated as follows: PLCO2RA = 2000 \* PLCO2AN / PLHTIAN.

#### 60. Plant Annual Hg Input Emission Rate (PLHGRA) –

This field, in lb/BBtu, is calculated as follows: PLHGRA = PLHGAN / (PLHTIAN / 1000).

#### 61. Plant Annual NO<sub>x</sub> Combustion Output Emission Rate (PLNOXCRT) –

This field, in lb/MMBtu, is calculated as follows: PLNOXCRT = 2000 \* PLNOXAN / PLGENACY. This is a new field in eGRID2007.

### 62. Plant Ozone Season NO<sub>x</sub> Combustion Output Emission Rate (PLNOXCRO) –

This field, in lb/MMBtu, is calculated as follows:
PLNOXCRO = 2000 \* PLNOXOZ / (PLGENACY \* PLNGENOZ / PLNGENAN).
This is a new field in eGRID2007.

#### 63. Plant Annual SO<sub>2</sub> Combustion Output Emission Rate (PLSO2CRT) –

This field, in lb/MMBtu, is calculated as follows:

PLSO2CRT = 2000 \* PLSO2AN / PLGENACY.

This is a new field in eGRID2007.

#### 64. Plant Annual CO<sub>2</sub> Combustion Output Emission Rate (PLCO2CRT) –

This field, in lb/MMBtu, is calculated as follows:

PLCO2CRT = 2000 \* PLCO2AN / PLGENACY.

This is a new field in eGRID2007.

#### 65. Plant Annual CH<sub>4</sub> Combustion Output Emission Rate (PLCH4CRT) –

This field, in lb/BBtu, is calculated as follows:

PLCH4CRT = PLCH4AN / (PLGENACY / 1000).

This is a new field in eGRID2007.

#### 66. Plant Annual N₂O Combustion Output Emission Rate (PLN2OCRT) –

This field, in lb/BBtu, is calculated as follows:

PLN2OCRT = PLN2OAN / (PLGENACY / 1000).

This is a new field in eGRID2007.

#### 67. Plant Annual Hg Combustion Output Emission Rate (PLHGCRT) –

This field, in lb/BBtu, is calculated as follows:

PLHGCRT = PLHGAN / (PLGENACY / 1000).

This is a new field in eGRID2007.

#### 68. Plant Unadjusted Annual NO<sub>x</sub> Emissions (UNNOX) –

This field, in tons, is the total plant level unadjusted annual  $NO_x$  emissions. See the Methodology Section for details.

#### 69. Plant Unadjusted Ozone Season NO<sub>x</sub> Emissions (UNNOXOZ) –

This field, in tons, is the unadjusted five month ozone season (May through September)  $NO_x$  emissions for the plant. See the Methodology Section for details.

#### 70. Plant Unadjusted Annual SO<sub>2</sub> Emissions (UNSO<sub>2</sub>) –

This field, in tons, is the total plant level unadjusted annual  $SO_2$  emissions. See the Methodology Section for details.

#### 71. Plant Unadjusted Annual CO<sub>2</sub> Emissions (UNCO2) –

This field, in tons, is the total plant level unadjusted annual CO<sub>2</sub> emissions. For biomass components of the plant emissions, the adjusted and unadjusted emission values are the same since there are no carbon coefficients for these fuels. See the Methodology Section for details.

#### 72. Plant Unadjusted Annual CH<sub>4</sub> Emissions (UNCH4) –

This field, in lbs, is the total plant level unadjusted annual CH<sub>4</sub> emissions. See the Methodology Section for details.

This is a new field in eGRID2007.

#### 73. Plant Unadjusted Annual N<sub>2</sub>O Emissions (UNN2O) –

This field, in lbs, is the total plant level unadjusted annual  $N_2O$  emissions. See the Methodology Section for details.

This is a new field in eGRID2007.

#### 74. Plant Unadjusted Annual Hg Emissions (UNHG) –

This field, in lbs, is the total plant level unadjusted annual Hg emissions. Mercury emissions are reported for year 2002 for coal plants and for year 2000 for large municipal waste combustors, and for eGRID, are estimated for year 2005. See the Methodology Section for details.

#### 75. Plant Unadjusted Annual Heat Input (UNHTI) –

This field, in MMBtu, is the total plant level unadjusted annual heat input. See the Methodology Section for details.

Sources: ETS/CEM, EIA-906/920, EIA-767 calculated

#### 76. Plant Unadjusted Ozone Season Heat Input (UNHTIOZ) –

This field, in MMBtu, is the five month ozone season (May through September) heat input for the plant. See the Methodology Section for details.

Sources: ETS/CEM, EIA-906/920, EIA-767 calculated

#### 77. Plant Nominal Heat Rate (PLHTRT) –

This field, in Btu/kWh, contains the plant nominal heat rate. It is calculated as follows: PLHTRT = 1000 \* PLHTIAN / PLNGENAN.

For CHP plants, the value is, in effect, adjusted by the electric allocation factor, since the heat input has been adjusted.

#### 78. Plant Annual Coal Net Generation (PLGENACL) –

This field, in MWh, contains the plant annual net generation for coal. Fuel codes that are included in coal are BIT, SUB, LIG, WC, and SC.

#### 79. Plant Annual Oil Net Generation (PLGENAOL) –

This field, in MWh, contains the plant annual net generation for oil. Fuel codes included in oil are DFO, JF, KER, RFO, WO, OOL, PC, and RG.

#### 80. Plant Annual Gas Net Generation (PLGENAGS) –

This field, in MWh, contains the plant annual net generation for natural gas. Fuel codes included in gas are NG and PG.

#### 81. Plant Annual Nuclear Net Generation (PLGENANC) –

This field, in MWh, contains the plant annual net generation for nuclear if the fuel code is NUC. Note that one plant, North Anna, has both nuclear and hydro prime movers, but the greater generation is associated with nuclear.

#### 82. Plant Annual Hydro Net Generation (PLGENAHY) –

This field, in MWh, contains the plant annual net generation for hydro if the fuel code is WAT.

#### 83. Plant Annual Biomass Net Generation (PLGENABM) –

This field, in MWh, contains the plant annual net generation for biomass. Biomass is a fuel derived from organic matter such as wood and paper products, agricultural waste, or methane (e.g., from landfills). The renewable portion of solid waste, fuel code MSB, is included as biomass, as are WDS, WDL, PP, BLQ, AB, SLW, ME, DG, LFG, OBS, and OBL. See the Methodology Section for more information.

#### 84. Plant Annual Wind Net Generation (PLGENAWI) -

This field, in MWh, contains the plant annual net generation for wind if the fuel code is WND.

#### 85. Plant Annual Solar Net Generation (PLGENASO) –

This field, in MWh, contains the plant annual net generation for solar if the fuel code is SUN.

#### 86. Plant Annual Geothermal Net Generation (PLGENAGT) –

This field, in MWh, contains the plant annual net generation for geothermal if the fuel code is GEO.

#### 87 Plant Annual Other Fossil Net Generation (PLGENAOF) –

This field, in MWh, contains the plant annual net generation for other fossil fuel that cannot be categorized as coal, oil, or natural gas. Other fossil fuel codes include LB, MH, HY, OG, PRG, BFG, COG, TDF, and MSF.

#### 88. Plant Annual Other Unknown/ Purchased Fuel Net Generation (PLGENAOP) –

This field, in MWh, contains the plant annual net generation for other unknown/purchased if the fuel code is OTH or PUR.

#### 89. Plant Annual Total Nonrenewables Net Generation (PLGENATN) –

This field, in MWh, contains the annual total nonrenewables net generation for the plant. Nonrenewables are exhaustible energy resources such as coal, oil, natural gas, other fossil, nuclear power, and other unknown/purchased fuel. This field is the sum of PLGENACL, PLGENAOL, PLGENAGS, PLGENAOF, PLGENANC, and PLGENAOP.

#### 90. Plant Annual Total Renewables Net Generation (PLGENATR) –

This field, in MWh, contains the annual total renewables net generation for the plant. Renewables are inexhaustible energy resources such as biomass, wind, solar, geothermal, and hydro. This field is the sum of PLGENABM, PLGENAWI, PLGENASO, PLGENAGT, and PLGENAHY.

#### 91. Plant Annual Total Nonhydro Renewables Net Generation (PLGENATH) –

This field, in MWh, contains the annual total nonhydro renewables net generation for the plant. This field is the sum of PLGENABM, PLGENAWI, PLGENASO, and PLGENAGT.

#### 92. Plant Annual Total Combustion Net Generation (PLGENACY) –

This field, in MWh, contains the annual total combustion net generation for the plant. This field is the sum of PLGENACL, PLGENAOL, PLGENAGS, PLGENAOF, PLGENAOP, and PLGENABM.

This is a new field in eGRID2007.

#### 93. Plant Annual Total Noncombustion Net Generation (PLGENACN) –

This field, in MWh, contains the annual total noncombustion net generation for the plant. This field is the sum of PLGENANC, PLGENAHY, PLGENAWI, PLGENASO, and PLGENAGT.

This is a new field in eGRID2007.

#### 94. Plant Coal Generation Percent (PLCLPR) –

This field, the coal resource mix expressed as a percent of plant annual net generation, is calculated as follows:

PLCLPR = 100 \* PLGENACL / PLNGENAN.

#### 95. Plant Oil Generation Percent (PLOLPR) –

This field, the oil resource mix expressed as a percent of plant annual net generation, is calculated as follows:

PLOLPR = 100 \* PLGENAOL / PLNGENAN.

#### 96. Plant Gas Generation Percent (PLGSPR) –

This field, the gas resource mix expressed as a percent of plant annual net generation, is calculated as follows:

PLGSPR = 100 \* PLGENAGS / PLNGENAN.

#### 97. Plant Nuclear Generation Percent (PLNCPR) –

This field, the nuclear resource mix expressed as a percent of plant annual net generation, is calculated as follows:

PLNCPR = 100 \* PLGENANC / PLNGENAN.

#### 98. Plant Hydro Generation Percent (PLHYPR) –

This field, the hydro resource mix expressed as a percent of plant annual net generation, is calculated as follows:

PLHYPR = 100 \* PLGENAHY / PLNGENAN.

#### 99. Plant Biomass Generation Percent (PLBMPR) –

This field, the biomass resource mix expressed as a percent of plant annual net generation, is calculated as follows:

PLBMPR = 100 \* PLGENABM / PLNGENAN.

#### 100. Plant Wind Generation Percent (PLWIPR) –

This field, the wind resource mix expressed as a percent of plant annual net generation, is calculated as follows:

PLWIPR = 100 \* PLGENAWI / PLNGENAN.

#### 101. Plant Solar Generation Percent (PLSOPR) -

This field, the solar resource mix expressed as a percent of plant annual net generation, is calculated as follows:

PLSOPR = 100 \* PLGENASO / PLNGENAN.

#### 102. Plant Geothermal Generation Percent (PLGTPR) –

This field, the geothermal resource mix expressed as a percent of plant annual net generation, is calculated as follows:

PLGTPR = 100 \* PLGENAGT / PLNGENAN.

#### 103. Plant Other Fossil Generation Percent (PLOFPR) –

This field, the other fossil resource mix expressed as a percent of plant annual net generation, is calculated as follows:

PLOFPR = 100 \* PLGENAOF / PLNGENAN.

#### 104. Plant Other Unknown/Purchased Fuel Generation Percent (PLOPPR) –

This field, the other unknown/purchased fuel resource mix expressed as a percent of plant annual net generation, is calculated as follows:

PLOPPR = 100 \* PLGENAOP / PLNGENAN.

#### 105. Plant Total Nonrenewables Generation Percent (PLTNPR) –

This field, the total nonrenewables resource mix expressed as a percent of plant annual net generation, is calculated as follows:

PLTNPR = 100 \* PLGENATN / PLNGENAN.

#### 106. Plant Total Renewables Generation Percent (PLTRPR) –

This field, the total renewables resource mix expressed as a percent of plant annual net generation, is calculated as follows:

PLTRPR = 100 \* PLGENATR / PLNGENAN.

#### 107. Plant Total Nonhydro Renewables Generation Percent (PLTHPR) –

This field, the total nonhydro renewables resource mix expressed as a percent of plant annual net generation, is calculated as follows:

PLTHPR = 100 \* PLGENATH / PLNGENAN.

#### 108. Plant Total Combustion Generation Percent (PLCYPR) –

This field, the total combustion resource mix expressed as a percent of plant annual net generation, is calculated as follows:

PLCYPR = 100 \* PLGENACY / PLNGENAN.

This is a new field in eGRID2007.

#### 109. Plant Total Noncombustion Generation Percent (PLCNPR) -

This field, the total noncombustion resource mix expressed as a percent of plant annual net generation, is calculated as follows:

PLCYPR = 100 \* PLGENACN / PLNGENAN.

This is a new field in eGRID2007.

#### 110. Plant Owner Name (First) (OWNRNM01) -

This field contains the name of the first plant owner, a company or EGC.

Sources: EIA-860 + updates

#### 111. Plant Owner Code (First) (OWNRUC01) -

This field contains the unique company code associated with OWNRNM01 and assigned by EIA, with some exceptions. Some owner names do not have associated codes assigned by EIA and are EPA-assigned negative IDs beginning with -101; and some nonutility EGCs are grouped together, called nufronts, and are EPA-assigned negative IDs beginning with -1001. See Section IV for details.

Sources: EIA-860 + updates

#### 112. Plant Owner Percent (First) (OWNRPR01) –

This field contains the percent of the plant that is owned by OWNRNM01. It is calculated based on reported generator ownership data. If no information on ownership is provided, then it is assumed that the operator has 100% ownership. See the Methodology Section for details.

Source: EIA-860 + updates

#### 113. Plant Owner Name (Second) (OWNRNM02) –

This field contains the name of the second plant owner.

Source: EIA-860 + updates

#### 114. Plant Owner Code (Second) (OWNRUC02) -

This field contains the unique EIA-assigned number associated with OWNRNM02.

Source: EIA-860 + updates

#### 115. Plant Owner Percent (Second) (OWNRPR02) –

This field contains the percent of the plant that is owned by OWNRNM02. It is calculated based on reported generator ownership data.

Source: EIA-860 + updates

#### 116. - Plant Owner Name, Plant Owner Code, and Plant Owner Percent (Third -

#### 157. Sixteenth) -

The description of these fields contains the information for the third through sixteenth plant owners. See the descriptions in fields #110 through #112 above.

Source: EIA-860 + updates

#### 158. eGRID2006 2004 File Plant Sequence Number (SEQPLT04) –

This field contains the sequence number of the plant in the year 2004 data, if one exists. This sequence number is unlikely to be the same as the sequence number in the year 2005 eGRID file for the same plant.

#### D. THE ST (STATE) FILE

There are 109 variables in the fourth file, ST, which contains State level data. All size, heat input, generation, and emission values are derived by aggregating from the plant level based on the State in which the plant is located. Variables that are either identical to those in the plant file or different from those in the plant file by the first two letters of their names (e.g., STHTIAN instead of PLHTIAN) are not re-described. Aggregated variable names generally begin with "ST."

#### 1. eGRID2007 2005 File State Sequence Number (SEQST05) –

The State records in this year 2005 data file are sorted by State postal code abbreviation and are assigned a unique sequential number beginning with 1. This sequence number is unlikely to be the same as the sequence number in the year 2004 eGRID file for the same entity.

- 2. State Abbreviation (PSTATABB)
- 3. FIPS State Code (FIPSST)
- 4. State Generator Capacity (NAMEPCAP)
- 5. State Annual Heat Input (STHTIAN)
- 6. State Ozone Season Heat Input (STHTIOZ)
- 7. State Annual Net Generation (STNGENAN)
- 8. State Ozone Season Net Generation (STNGENOZ)
- 9. State Annual NO<sub>x</sub> Emissions (STNOXAN)
- 10. State Ozone Season NO<sub>x</sub> Emissions (STNOXOZ)
- 11. State Annual SO<sub>2</sub> Emissions (STSO2AN)
- 12. State Annual CO<sub>2</sub> Emissions (STCO2AN)
- 13. State Annual CH<sub>4</sub> Emissions (STCH4AN) This is a new field in eGRID2007.
- 14. State Annual N₂O Emissions (STN2OAN) This is a new field in eGRID2007.
- 15. State Annual Hg Emissions (STHGAN)
- 16. State Annual NO<sub>x</sub> Output Emission Rate (STNOXRTA) This field, in lb/MWh, is calculated as follows: STNOXRTA = 2000 \* STNOXAN / STNGENAN.

#### THE ST FILE

## 17. State Ozone Season NO<sub>x</sub> Output Emission Rate (STNOXRTO) – This field, in lb/MWh, is calculated as follows: STNOXRTO = 2000 \* STNOXOZ / STNGENOZ.

### 18. State Annual SO<sub>2</sub> Output Emission Rate (STSO2RTA) – This field, in lb/MWh, is calculated as follows: STSO2RTA = 2000 \* STSO2AN / STNGENAN.

### 19. State Annual CO<sub>2</sub> Output Emission Rate (STCO2RTA) – This field, in lb/MWh, is calculated as follows: STCO2RTA = 2000 \* STCO2AN / STNGENAN.

# 20. State Annual CH<sub>4</sub> Output Emission Rate (STCH4RTA) – This field, in lb/GWh, is calculated as follows: STHCH4RTA = STCH4AN / (STNGENAN / 1000). This is a new field in eGRID2007.

# 21. State Annual N<sub>2</sub>O Output Emission Rate (STN2ORTA) – This field, in lb/GWh, is calculated as follows: STN2ORTA = STN2OAN / (STNGENAN / 1000). This is a new field in eGRID2007

## 22. State Annual Hg Output Emission Rate (STHGRTA) – This field, in lb/GWh, is calculated as follows: STHGRTA = STHGAN / (STNGENAN / 1000).

## 23. State Annual NO<sub>x</sub> Input Emission Rate (STNOXRA) – This field, in lb/MMBtu, is calculated as follows: STNOXRA = 2000 \* STNOXAN / STHTIAN.

### **24.** State Ozone Season NO<sub>x</sub> Input Emission Rate (STNOXRO) – This field, in lb/MMBtu, is calculated as follows: STNOXRO = 2000 \* STNOXOZ / STHTIOZ.

### 25. State Annual SO<sub>2</sub> Input Emission Rate (STSO2RA) – This field, in lb/MMBtu, is calculated as follows: STSO2RA = 2000 \* STSO2AN / STHTIAN.

## 26. State Annual CO<sub>2</sub> Input Emission Rate (STCO2RA) – This field, in lb/MMBtu, is calculated as follows: STCO2RA = 2000 \* STCO2AN / STHTIAN.

### 27. State Annual Hg Input Emission Rate (STHGRA) – This field, in lb/BBtu, is calculated as follows: STHGRA = STHGAN / (STHTIAN / 1000).

# 28. State Annual NO<sub>x</sub> Combustion Output Emission Rate (STNOXCRT) – This field, in lb/MMBtu, is calculated as follows: STNOXCRT = 2000 \* STNOXAN / STGENACY. This is a new field in eGRID2007.

#### 29. State Ozone Season NO<sub>x</sub> Combustion Output Emission Rate (STNOXCRO) –

This field, in lb/MMBtu, is calculated as follows:

STNOXCRO = 2000 \* STNOXOZ / (STGENACY \* STNGENOZ / STNGENAN).

This is a new field in eGRID2007.

#### **30.** State Annual SO<sub>2</sub> Combustion Output Emission Rate (STSO2CRT) –

This field, in lb/MMBtu, is calculated as follows:

STSO2CRT = 2000 \* STSO2AN / STGENACY.

This is a new field in eGRID2007.

#### 31. State Annual CO<sub>2</sub> Combustion Output Emission Rate (STCO2CRT) –

This field, in lb/MMBtu, is calculated as follows:

STCO2CRT = 2000 \* STCO2AN / STGENACY.

This is a new field in eGRID2007.

#### 32. State Annual CH<sub>4</sub> Combustion Output Emission Rate (STCH4CRT) –

This field, in lb/BBtu, is calculated as follows:

STCH4CRT = STCH4AN / (STGENACY / 1000).

This is a new field in eGRID2007.

#### 33. State Annual N<sub>2</sub>O Combustion Output Emission Rate (STN2OCRT) –

This field, in lb/BBtu, is calculated as follows:

STN2OCRT = STN2OAN / (STGENACY / 1000).

This is a new field in eGRID2007.

#### 34. State Annual Hg Combustion Output Emission Rate (STHGCRT) –

This field, in lb/BBtu, is calculated as follows:

STHGCRT = STHGAN / (STGENACY / 1000).

This is a new field in eGRID2007.

#### **35.** State Coal Annual NO<sub>x</sub> Output Emission Rate (STCNOXRT) –

This field, in lb/MWh, is calculated as the sum of the annual NO<sub>x</sub> emissions from all plants in the State that have coal as its primary fuel (PLPRMFL) divided by the sum of the net generation from the same set of plants, and multiplied by a unit conversion factor. It is calculated in the same manner as is any output emission rate.

#### **36.** State Oil Annual NO<sub>x</sub> Output Emission Rate (STONOXRT) –

This field, in lb/MWh, is calculated as the sum of the annual NO<sub>x</sub> emissions from all plants in the State that have oil as its primary fuel (PLPRMFL) divided by the sum of the net generation from the same set of plants, and multiplied by a unit conversion factor. It is calculated in the same manner as is any output emission rate.

#### State Gas Annual NO<sub>x</sub> Output Emission Rate (STGNOXRT) – 37.

This field, in lb/MWh, is calculated as the sum of the annual NO<sub>x</sub> emissions from all plants in the State that have natural gas as its primary fuel (PLPRMFL) divided by the sum of the net generation from the same set of plants, and multiplied by a unit conversion factor. It is calculated in the same manner as is any output emission rate.

#### 38. State Fossil Fuel Annual NO<sub>x</sub> Output Emission Rate (STFSNXRT) –

This field, in lb/MWh, is calculated as the sum of the annual NO<sub>x</sub> emissions from all plants in the State that have coal, oil, or gas fossil fuel as its primary fuel (PLPRMFL) divided by the sum of the net generation from the same set of plants, and multiplied by a unit conversion factor. It is calculated in the same manner as is any output emission rate.

- 39. State Coal, Oil, Gas, Fossil Fuel Ozone Season NO<sub>x</sub> Output Emission Rates –
- 42. The descriptions of these fields, in lb/MWh, contain the same information for ozone season NO<sub>x</sub> as fields #35 through #38, respectively, do for annual NO<sub>x</sub>.
- 43. State Coal, Oil, Gas, Fossil Fuel Annual SO<sub>2</sub> Output Emission Rates –
- 46. The descriptions of these fields, in lb/MWh, contain the same information for annual  $SO_2$  as fields #35 through #38, respectively, do for annual  $NO_x$ .
- 47. State Coal, Oil, Gas, Fossil Fuel Annual CO<sub>2</sub> Output Emission Rates -
- 50. The descriptions of these fields, in lb/MWh, contain the same information for annual  $CO_2$  as fields #35 through #38, respectively, do for annual  $NO_x$ .
- 51. State Coal, Fossil Fuel Annual Hg Output Emission Rates -
- 52. The descriptions of these fields, in lb/GWh, contain the same information for annual Hg as fields #35 and #37, respectively, do for annual  $NO_x$ .
- 53. State Coal, Oil, Gas, Fossil Fuel Annual NOx, Ozone Season NOx, Annual SO2,
- 70. Annual CO<sub>2</sub>, Annual Hg Input Emission Rates —

  The description of these fields, primary fuel-specific input emission rates, contains the same information that fields #24 through #41 do for primary fuel-specific output emission rates except that the calculations include heat input, rather than net generation. Note that for Hg input emission rates, the units are lb/BBtu, not lb/MMBtu. These values are calculated in the same manner as are any input emission rates.
- 71. State Annual Non-baseload NO<sub>x</sub> Output Emission Rates (STNBNOX) –
  This field, in lb/MWh, is the sum of the annual non-baseload NO<sub>x</sub> emissions divided by the sum of annual non-baseload net generation in the State and then multiplied by a unit conversion factor. This field is intended to provide a more refined estimate of avoided emissions than the fossil-fuel average output emission rate. The non-baseload emissions and generation include only emissions and generation from combustion sources and exclude emissions and generation from plants that have high capacity factors. The remaining emissions and generation are weighted by a factor which is a function of capacity factor. For more information, see the Methodology Section.
- 72. State Ozone Season Non-baseload NO<sub>x</sub> Output Emission Rate (STNBNXO) The description of this field (as well as fields #73 through #77), in lb/MWh, contain the same information as field #71 does, but for the appropriate pollutant.
- 73. State Annual Non-baseload SO<sub>2</sub> Output Emission Rate (STNBSO<sub>2</sub>)
- 74. State Annual Non-baseload CO<sub>2</sub> Output Emission Rate (STNBCO2)
- 75. State Annual Non-baseload CH<sub>4</sub> Output Emission Rate (STNBCH4) This is a new field in eGRID2007.
- 76. State Annual Non-baseload N₂O Output Emission Rate (STNBN2O) This is a new field in eGRID2007.

#### THE ST FILE

99.

100.

101.

| T FILE |                                                                                                |
|--------|------------------------------------------------------------------------------------------------|
| 77.    | State Annual Non-baseload Hg Output Emission Rate (STNBHG) –                                   |
| 78.    | State Annual Coal Net Generation (STGENACL)                                                    |
| 79.    | State Annual Oil Net Generation (STGENAOL)                                                     |
| 80.    | State Annual Gas Net Generation (STGENAGS)                                                     |
| 81.    | State Annual Nuclear Net Generation (STGENANC)                                                 |
| 82.    | State Annual Hydro Net Generation (STGENAHY)                                                   |
| 83.    | State Annual Biomass Net Generation (STGENABM)                                                 |
| 84.    | State Annual Wind Net Generation (STGENAWI)                                                    |
| 85.    | State Annual Solar Net Generation (STGENASO)                                                   |
| 86.    | State Annual Geothermal Net Generation (STGENAGT)                                              |
| 87.    | State Annual Other Fossil Net Generation (STGENAOF)                                            |
| 88.    | State Annual Other Unknown/Purchased Net Generation (STGENAOP)                                 |
| 89.    | State Annual Total Nonrenewables Net Generation (STGENATN)                                     |
| 90.    | State Annual Total Renewables Net Generation (STGENATR)                                        |
| 91.    | State Annual Total Nonhydro Renewables Net Generation (STGENATH)                               |
| 92.    | State Annual Total Combustion Net Generation (STGENACY) – This is a new field in eGRID2007.    |
| 93.    | State Annual Total Noncombustion Net Generation (STGENACN) – This is a new field in eGRID2007. |
| 94.    | State Coal Generation Percent (STCLPR)                                                         |
| 95.    | State Oil Generation Percent (STOLPR)                                                          |
| 96.    | State Gas Generation Percent (STGSPR)                                                          |
| 97.    | State Nuclear Generation Percent (STNCPR)                                                      |
| 98.    | State Hydro Generation Percent (STHYPR)                                                        |

58

**State Biomass Generation Percent (STBMPR)** 

**State Wind Generation Percent (STWIPR)** 

**State Solar Generation Percent (STSOPR)** 

#### THE ST FILE

- 102. State Geothermal Generation Percent (STGTPR)
- 103. State Other Fossil Generation Percent (STOFPR)
- 104. State Other Unknown/Purchased Generation Percent (STOPPR)
- 105. State Total Nonrenewables Generation Percent (STTNPR)
- 106. State Total Renewables Generation Percent (STTRPR)
- 107. State Total Nonhydro Renewables Generation Percent (STTHPR)
- **State Total Combustion Generation Percent (STCYPR)** This is a new field in eGRID2007.
- **State Total Noncombustion Generation Percent (STCNPR)** This is a new field in eGRID2007.

#### E. THE EGCL AND EGCO (EGC) FILES

There are 111 variables in the fifth, EGCL, which contains location (operator)-based EGC data, and sixth EGCO, which contains owner-based EGC data, files. All generation and emission values are derived by aggregating from the plant level based on the EGC's plant operator, or ownership and ownership percentage. Even if an EGC is owned by a parent (holding) company, all data are reported in these files for individual EGCs. There are no variables that have not been described in previous file variable descriptions. Aggregated variable names generally begin with "EG."

#### F. THE PRCL AND PRCO (PARENT COMPANY) FILES

There are 109 variables in the seventh and eighth files, which contain company data organized by parent company for individual generating companies that are subsidiaries or divisions of a larger parent (holding) company. For PRCL/PRCO, all generation and emissions are derived by aggregating from the location (operator)/owner-based EGC level based on the EGC subsidiaries in the parent company. The totals for data in these files will not be the same as for the plant, State, and EGC files since these files are a subset of the others and do not include all aggregated emissions and generation. The PRCL/PRCO files will also not have the same number of records or data totals since there are different numbers of parent companies with EGCs that own/operate eGRID plants. There are no variables that have not been described in previous file variable descriptions. Aggregated variable names generally begin with "PR."

#### G. THE PCAL (PCA) FILE

There are 109 variables in the ninth file, PCAL, which contains location (operator)-based power control area (PCA) data. All generation and emission values are derived by aggregating from the plant level based on the associated PCA. There are no variables that have not been described in previous file variable descriptions. Aggregated variable names generally begin with "PC."

#### H. THE SRL (eGRID SUBREGION) FILE

There are 110 variables in the tenth file, SRL, which contains location (operator)-based eGRID subregions. All generation and emission values are derived by aggregating from the plant level based on the associated eGRID subregion. There are no variables that have not been described in previous file variable descriptions. Aggregated variable names generally begin with "SR."

#### I. THE NRL (NERC REGION) FILE

There are 109 variables in the eleventh file, NRL, which contains location (operator)-based NERC region data. All generation and emission values are derived by aggregating from the plant level based on the associated NERC region. There only variable in this file that has not been described in a previous file variable description is NERCNAME, the NERC region name associated with the NERC region acronym (see subsection G.2.of the Methodology Section). Aggregated variable names generally begin with "NR."

#### J. THE US (U.S.) FILE

There are 107 variables in the twelfth file, US, which contains data for the entire United States. All generation and emission values are derived by aggregating from the plant level. There are no variables that have not been described in previous file variable descriptions. Aggregated variable names generally begin with "US."

#### K. THE STIE04 (2004 STATE IMPORT-EXPORT) FILE

There are 13 variables in STIE04, which contains State import-export data for year 2004.

#### 1. eGRID2006 2004 State File Sequence Number (SEQST04) –

This field contains the State sequence number and is the same as the one in eGRID2006's ST; it can be used to link data for the same State.

#### 2. State Abbreviation (PSTATABB) –

This field contains the abbreviation of the State.

#### 3. Grid Region (GRIDRGN) -

This field contains the grid region in which the State is included. There are five distinct grid regions comprising one or more whole States:

E = Eastern grid (36 Eastern States plus DC)

W = Western grid (11 Western States)

AK = Alaska HI = Hawaii TX = Texas

#### 4. 2004 State Total Net Generation (STNGEN04) –

This field contains the 2004 total net generation, in GWh, for the given State, as reported by EIA.

Source: EIA's *Electric Power Annual*, data table (generation state.xls)

#### 5. 2004 State Sales to Ultimate Customers (STSLCN04) –

This field contains the 2004 sales to ultimate consumers, in GWh, for the given State, as reported by EIA.

Source: EIA Electric Sales, Revenue, and Average Price data table (sales state.xls)

#### 6. 2004 State Energy Consumed by Respondent Without Charge (STCNEL04) –

This field contains the 2004 energy consumed by the respondent without charge, in GWh, for the given State, as reported to EIA.

Source: EIA-861

#### 7. 2004 State Energy Furnished Without Charge (STCNFR04) –

This field contains the 2004 energy furnished without charge, in GWh, for the given State, as reported to EIA.

Source: EIA-861

#### 8. 2004 State Total Consumption (STCON04) –

This field contains the 2004 total consumption, in GWh, for the given State. It is the sum of STSLCN04, STCNEL04, and STCNFR04.

#### 9. 2004 Grid Gross Loss Factor (GRDLSF04) –

This field contains the 2004 grid gross loss factor, as a decimal with five places to the right of the decimal for the grid region which the given State is associated. The grid loss factor represents the percent difference, expressed as a decimal, between total generation

(including net foreign imports) and total consumption. The grid gross loss factor is calculated separately for each grid region.

#### 10. 2004 State Adjusted Total Net Generation (STADJG04) –

This field contains the 2004 adjusted total net generation, in GWh, for the given State. The algorithm is as follows: STADJG04 = ((1 - GRDLSF04) \* STNGEN04).

#### 11. 2004 State Estimated Net Imports (STESTI04) –

This field contains the 2004 estimated net imports, in GWh, for the given State. Positive values denote net imports; negative values denote net exports. The algorithm is as follows: STESTI04 = STCON04 – STADJG04.

#### 12. 2004 State Estimated Net Imports as a Percent of Total Consumption (STPRI04) –

This field contains the 2004 estimated net imports as a percent of the total consumption, for the given State. The algorithm is as follows:

STPRI94 = 100 \*(STESTI04 / STCON04).

Only positive values are displayed; Negative values are not meaningful.

### 13. 2004 State Estimated Net Exports as a Percent of Total Net Generation (STPRE04) –

This field contains the 2004 estimate net imports as a percent of total net generation, for the given State. The algorithm is as follows:

STPRE04 = 100 \* (-STESTI04 / STNGEN04).

Only positive values are displayed; Negative values are not meaningful.

#### L. THE STIE05 (2005 STATE IMPORT-EXPORT) FILE

There are 13 variables in STIE05, which contains State import-export data for year 2005. There are no variables in this file that have not been previously described in the previous file, STIE04.

#### M. THE USGC (U.S. GENERATION AND CONSUMPTION) FILE

There are 6 variables in USGC, which contains generation and consumption as well as net foreign import data for the United States for years 2004 and 2005.

#### 1. 2004 U.S. Total Net Generation (USTNGN04) –

This field contains the U.S. total net generation for 2004, in GWh.

#### 2. 2004 U.S. Total Consumption, (USTCON04) –

This field contains the U.S. total consumption for 2004, in GWh.

#### 3. 2004 Net Foreign Imports (USTNFI04) –

This field contains the total net foreign (Canadian and Mexican) imports for 2004, in GWh. These data are reported at the State level, are displayed in an internal EIA database, and are summed to the U.S. level.

#### 4. 2005 U.S. Total Net Generation (USTNGN05) –

This field contains the U.S. total net generation for 2005, in GWh.

#### 5. 2005 U.S. Total Consumption (USTCON05) –

This field contains the U.S. total consumption for 2005, in GWh.

#### 6. 2005 Net Foreign Imports (USTNFI05) –

This field contains the total net foreign (Canadian and Mexican) imports for 2005, in GWh. These data are reported at the State level, are displayed in an internal EIA database, and are summed to the U.S. level.

[This page intentionally left blank.]

#### SECTION VI. REFERENCES

- AMP-Ohio, 2008: American Municipal Power–Ohio, Inc. (Chris Stoneburg and Patrick McColley) and EPA (Art Diem) personal communications regarding OMEGA Joint Ventures, May 2008. <a href="http://www.amp-ohio.org/jointventures.html">http://www.amp-ohio.org/jointventures.html</a>
- CCAR, 2005: California Climate Action Registry, *California Registry Power-Utility Verification Protocol*, Version 1.0 April 2005, California Climate Action Registry. California, 2005. Table 5.2 and Equation 5d for CO<sub>2</sub>.

  <a href="http://www.climateregistry.org/resources/docs/verifiers/ca-registry-power-utility-reporting-protocol-version-2-april 2005.pdf">http://www.climateregistry.org/resources/docs/verifiers/ca-registry-power-utility-reporting-protocol-version-2-april 2005.pdf</a>
- DOE, 2003: U.S. Department of Energy, *Gas-Fired Distributed Energy Resource Technology Characterizations*, October 2003. <a href="http://www.eea-inc.com/dgchp">http://www.eea-inc.com/dgchp</a> reports/TechCharNREL.pdf.
- EEA, 2007: Energy and Environmental Analysis, an ICF International Company, "Combined Heat and Power Installation Database, maintained for DOE ORNL," Washington, DC, 2007, updated. <a href="http://www.eea-inc.com/chpdata/index.html">http://www.eea-inc.com/chpdata/index.html</a>
- EEI, 2004: Edison Electric Institute, 2003 Rankings of Shareholder-Owned Electric Companies, Washington, DC, June 2004, updated.
- EIA, 2006a: Energy Information Administration, "2005 Steam-Electric Plant Operation and Design Report," Form EIA-767, Washington, DC, 2006.
- EIA, 2006b: Energy Information Administration, "2005 Combined Heat and Power Plant Report," Form EIA-920, Washington, DC, 2006.
- EIA, 2006c: Energy Information Administration, "2005 Power Plant Report," Form EIA-906, Washington, DC, 2006.
- EIA, 2006d: Energy Information Administration, "2005 Monthly Cost and Quality of Fuels for Electric Plants Report (unregulated)," Form EIA-423, Washington, DC, 2006.
- EIA, 2006-2008: Energy Information Administration, *Electric Power Monthly*, "Plants Sold and Transferred," Washington, DC, 2006-2008. <a href="http://www.eia.doe.gov/cneaf/electricity/epm/epm\_sum.html">http://www.eia.doe.gov/cneaf/electricity/epm/epm\_sum.html</a>
- EIA, 2007a: Energy Information Administration, "2006 Annual Electric Generator Report," Form EIA-860, Washington, DC, 2007.
- EIA, 2007b: Energy Information Administration, "2006 Annual Electric Power Industry Report," Form EIA-861, Washington, DC, 2007.
- EIA, 2007c: Energy Information Administration. Tables B1 and B2, <a href="http://www.eia.doe.gov/cneaf/solar.renewables/page/mswaste/msw.pdf">http://www.eia.doe.gov/cneaf/solar.renewables/page/mswaste/msw.pdf</a>. Tables and updates based on EIA-EPA email exchanges from October 23, 2007 through November 15, 2007.

- EPA, 2001: U.S. Environmental Protection Agency, "Electric Utility Steam Generating Units Hazardous Air Pollutant Emission Study: 1999 Mercury Information Collection Effort (ICE) Database," Office of Air Quality Planning and Standards, Research Triangle Park, NC, December 2001.
- EPA, 2002: U.S. Environmental Protection Agency, "Large Municipal Waste Combustor 2000 Database," 2002.
- EPA, 2004: U.S. Environmental Protection Agency, Compilation of Air Pollutant Emission Factors, AP-42 last significant update September 2004.
- EPA, 2007: U.S. Environmental Protection Agency, 2005 Annual and Ozone Season ETS/CEM database, Washington, DC, downloaded August 24 and 31, 2007 from <a href="http://camddataandmaps.epa.gov/gdm/">http://camddataandmaps.epa.gov/gdm/</a>.
- EPA, 2008: U.S. Environmental Protection Agency, 2008 Table A-230, Annex 6.1, *Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2006*, Washington, D.C., April 15, 2008.
- EPA, undated1: U.S. Environmental Protection Agency's EPA CHP Partnership, *Catalogue of CHP Technologies*.

  <a href="http://www.epa.gov/chp/pdf/catalog-entire.pdf">http://www.epa.gov/chp/pdf/catalog-entire.pdf</a>
- EPA, undated2: U.S. Environmental Protection Agency, RACT/BACT/LAER Clearinghouse. Washington, DC, April 2005. http://cfpub.epa.gov/rblc/htm/bl02.cfm
- ERG and Pechan, 2004: Eastern Research Group, Inc. and E.H. Pechan & Associates, Inc., Table 6, "Documentation for the 2002 Electric Generating Unit (EGU) National Emissions Inventory (NEI)," prepared for the U.S. Environmental Protection Agency, Research Triangle Park, NC, September 2004.

  <a href="mailto:the compared by the compar
- FERC, 2006: Federal Energy Regulatory Commission, "2005 Monthly Cost and Quality of Fuels for Electric Plants Report (regulated)," Form FERC-423, Washington, DC, 2006.
- GEA, 2007: Alyssa Kagel, Diana Bates, and Karl Gawell. Table 3, Air Emissions Summary, in "A Guide to Geothermal Energy and the Environment", Geothermal Energy Association, Washington, D.C., April 2007. <a href="http://www.geo-energy.org/publications/reports/Environmental%20Guide.pdf">http://www.geo-energy.org/publications/reports/Environmental%20Guide.pdf</a>
- GEA, 2008: Geothermal generator type from State-plant information downloaded individually from the Geothermal Energy Association website, <a href="http://www.geo-energy.org/">http://www.geo-energy.org/</a>, Washington, D.C., June 2008.
- IPPC, 2007: The Intergovernmental Panel on Climate Change (IPCC). Table 2.2 for CH<sub>4</sub> and N<sub>2</sub>O in Chapter 2, "2006 IPCC Guidelines for National Greenhouse Gas Inventories", Japan, 2007. <a href="http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2">http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2</a> Volume2/V2 2 Ch2 Stationary Combustion.pdf
- NERC, 2008: North American Electric Reliability Corporation, http://www.nerc.com, 2008.

- NIST, undated: National Institute of Standards and Technology, Federal Information Processing Standards Publications, <a href="http://www.itl.nist.gov/fipspubs/index.htm">http://www.itl.nist.gov/fipspubs/index.htm</a>.
- Pechan, 2003a: E.H. Pechan & Associates, Inc., "The Emissions & Generation Resource Integrated Database for 2002 (eGRID2002) Version 2.1 Technical Support Document," prepared for the U.S. Environmental Protection Agency, Acid Rain Division, Washington, DC, May 2003.
- Pechan, 2003b: E.H. Pechan & Associates, Inc., "The Emissions & Generation Resource Integrated Database for 2002 (eGRID2002) Version 2.1 Users Manual," prepared for the U.S. Environmental Protection Agency, Acid Rain Division, Washington, DC, April 2003.
- Pechan, 2007: E.H. Pechan & Associates, Inc., "The Emissions & Generation Resource Integrated Database for 2006 (eGRID2006) Technical Support Document," prepared for the U.S. Environmental Protection Agency, Acid Rain Division, Washington, DC, May 2007.
- RTI, 2005: RTI International, "Electric Utility Mercury Emissions Estimates Prepared for Completion of the 2002 Stationary Point National Inventory for Criteria and Hazardous Air Pollutants," prepared for ERG under EPA Contract No. 68-D-02-079, WA No. 3-02, North Carolina, May 17, 2005.
- Ventyx, 2007: Ventyx' Global Energy Decisions' Velocity Suites data, downloaded on a trial basis with company permission, October-November 2007.
- Wheeler, 2007: David Wheeler, Senior Fellow, Center for Global Development, CARMA developer, personal communication, November 30, 2007.

[This page intentionally left blank.]

#### APPENDIX A. eGRID2007 FILE STRUCTURE – VARIABLE DESCRIPTIONS FOR 2005 DATA YEAR

The year 2005 data for eGRID2007 are initially in database format and are then transformed into Excel spreadsheets. The structure of the 12 aggregation, two State Import-Export, and one U.S. Generation and Consumption database files – including descriptions of the variables and original sources of data – are delineated below in the file structure. NOTE: *Italics indicates new field*; **bold indicates change.** 

#### Table A-1 eGRID2007 Version 1.0 File Structure 2005 BLR Boiler File\*

| 2 PS<br>3 PN<br>4 OF<br>5 BL<br>6 AF<br>7 NE     | STATABB NAME RISPL LRID RPFLAG  | Plant name                                                                                                                                              | EIA-860<br>EIA-860 + updates<br>EIA-860<br>ETS/CEM, EIA-767 |
|--------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 3 PN<br>4 OF<br>5 BL<br>6 AF<br>7 NE             | NAME<br>RISPL<br>LRID<br>RPFLAG | Plant name<br>DOE/EIA ORIS plant or facility code<br>Boiler ID                                                                                          | EIA-860 + updates<br>EIA-860                                |
| 4 OF<br>5 BL<br>6 AF<br>7 NE                     | RISPL<br>LRID<br>RPFLAG         | DOE/EIA ORIS plant or facility code<br>Boiler ID                                                                                                        | EIA-860                                                     |
| <ul><li>5 BL</li><li>6 AF</li><li>7 NE</li></ul> | LRID<br>RPFLAG                  | Boiler ID                                                                                                                                               |                                                             |
| 6 AF<br>7 NE                                     | RPFLAG                          |                                                                                                                                                         | ETS/CEM, EIA-767                                            |
| 7 NE                                             |                                 | Acid Rain Program flag: 1 = Yes                                                                                                                         |                                                             |
|                                                  | BPFLAG                          |                                                                                                                                                         | ETS/CEM                                                     |
| 8 BC                                             |                                 | NO <sub>x</sub> Budget Program flag: 1 = Yes                                                                                                            | ETS/CEM                                                     |
|                                                  | OTFIRTY                         | Boiler bottom and firing types                                                                                                                          | ETS/CEM, EIA-767                                            |
| 9 NL                                             | UMGEN                           | Number of associated generators                                                                                                                         | EIA-767 calculated                                          |
|                                                  | UELB1                           | Primary boiler fuel                                                                                                                                     | EIA-767 based, ETS/CEM                                      |
| 11 LC                                            | OADHRS                          | Hours connected to load                                                                                                                                 | EIA-767                                                     |
|                                                  | TIEAN                           | Boiler unadjusted annual ETS/CEM heat input (MMBtu)                                                                                                     | ETS/CEM                                                     |
| 13 HT                                            | TIEOZ                           | Boiler unadjusted ozone season ETS/CEM heat input (MMBtu)                                                                                               | ETS/CEM                                                     |
|                                                  | TIFAN                           | Boiler unadjusted annual total EIA-based calculated heat input (MMBtu)                                                                                  |                                                             |
| 15 HT                                            |                                 | Boiler unadjusted ozone season EIA-based calculated heat input (MMBtu)                                                                                  |                                                             |
| 16 NO                                            |                                 |                                                                                                                                                         | ETS/CEM                                                     |
|                                                  |                                 |                                                                                                                                                         | ETS/CEM                                                     |
|                                                  |                                 | Boiler unadjusted ozone season ETS/CEM NO <sub>x</sub> emissions (tons)  Boiler unadjusted annual EIA-based calculated NO <sub>x</sub> emissions (tons) | E15/CEIVI                                                   |
|                                                  |                                 | . , ,                                                                                                                                                   |                                                             |
| 19 INC                                           |                                 | Boiler unadjusted ozone season EIA-based calculated NO <sub>x</sub> emissions (tons)                                                                    |                                                             |
| 20 SC                                            | O2EAN                           | Boiler unadjusted annual ETS/CEM SO <sub>2</sub> emissions (tons)                                                                                       | ETS/CEM                                                     |
| 21 SC                                            | O2FAN                           | Boiler unadjusted annual EIA-based calculated SO <sub>2</sub> emissions (tons)                                                                          |                                                             |
| 22 CC                                            | O2EAN                           | Boiler unadjusted annual ETS/CEM CO <sub>2</sub> emissions (tons)                                                                                       | ETS/CEM                                                     |
| 23 CC                                            | O2FAN                           | Boiler unadjusted annual EIA-based calculated CO <sub>2</sub> emissions (tons)                                                                          |                                                             |
| 24 SF                                            | RCBEST                          | Source of "best" data from ETS/CEM or EIA-767                                                                                                           |                                                             |
| 25 HT                                            | TIBAN                           | Boiler unadjusted annual best heat input (MMBtu)                                                                                                        |                                                             |
|                                                  | TIBOZ                           | Boiler unadjusted ozone season best heat input (MMBtu)                                                                                                  |                                                             |
| 27 NC                                            | OXBAN                           | Boiler unadjusted annual best NO <sub>x</sub> emissions (tons)                                                                                          |                                                             |
| 28 NO                                            | OXBOZ                           | Boiler unadjusted ozone season best NO <sub>x</sub> emissions (tons)                                                                                    |                                                             |
|                                                  |                                 | Boiler unadjusted annual best SO <sub>2</sub> emissions (tons)                                                                                          |                                                             |
|                                                  | O2BAN                           | Boiler unadjusted annual best CO <sub>2</sub> emissions (tons)                                                                                          |                                                             |
|                                                  |                                 |                                                                                                                                                         | ETS/CEM, EIA-767                                            |
| 32 NC                                            |                                 |                                                                                                                                                         | ETS/CEM, EIA-767                                            |
| 33 HC                                            | GCTLDV                          | Hg Activated carbon injection system flag: 1 = Yes                                                                                                      | EIA-767                                                     |
|                                                  |                                 |                                                                                                                                                         | ETS/CEM, EIA-767                                            |

<sup>\*</sup>Note that summing the boiler unadjusted emissions to the plant level may not result in the same values as the plant unadjusted emissions since additional emissions from prime movers not covered by the EPA ETS/CEM or EIA-767 data files may be included in the plant emissions values.

#### Table A-1 eGRID2007 Version 1.0 File Structure 2005 GEN Generator File\*\*

| Field | Name     | Description                                   | Source(s)            |
|-------|----------|-----------------------------------------------|----------------------|
| 1     | SEQGEN05 | eGRID2007 2005 file generator sequence number |                      |
| 2     | PSTATABB | State abbreviation                            | EIA-860              |
| 3     | PNAME    | Plant name                                    | EIA-860 + updates    |
| 4     | ORISPL   | DOE/EIA ORIS plant or facility code           | EIA-860              |
| 5     | GENID    | Generator ID                                  | EIA-860, EIA-767     |
| 6     | NUMBLR   | Number of associated boilers                  | EIA-767 calculated   |
| 7     | GENSTAT  | Generator status                              | EIA-860              |
| 8     | PRMVR    | Prime mover type                              | EIA-860              |
| 9     | FUELG1   | Primary generator fuel                        | EIA-860              |
| 10    | NAMEPCAP | Generator nameplate capacity (MW)             | EIA-860              |
| 11    | CFACT    | Generator capacity factor                     |                      |
| 12    | GENNTAN  | Generator annual net generation (MWh)         | EIA-767, EIA-906/920 |
| 13    | GENNTOZ  | Generator ozone season net generation (MWh)   | EIA-767, EIA-906/920 |
| 14    | GENERSRC | Generation data source                        |                      |
| 15    | GENYRONL | Generator year on-line                        | EIA-860              |

<sup>\*\*</sup>Note that summing the generator generation to the plant level may not result in the same values as the plant generation. This file includes generation from generators in the EIA-767, from nuclear units in the EIA-906/920, and from those plant-prime movers in the EIA-906/920 that have only one generator in the EIA-860. For a few generators, EPA's ETS/CEM data are the generation source; see the Methodology Section of the TSD for details. The source of generation in the plant file is primarily the EIA-906/920.

### Table A-1 eGRID2007 Version 1.0 File Structure 2005 PLNT Plant File

| Field | Name     | Description                                                      | Source(s)                       |
|-------|----------|------------------------------------------------------------------|---------------------------------|
| 1     | SEQPLT05 | eGRID2007 2005 file plant sequence number                        | ( )                             |
| 2     | PSTATABB | State abbreviation                                               | EIA-860                         |
| 3     | PNAME    | Plant name                                                       | EIA-860 + updates               |
| 4     | ORISPL   | DOE/EIA ORIS plant or facility code                              | EIA-860                         |
| 5     | FRSID    | Plant EPA Facility Registry System (FRS) identification code     | EPA FRS                         |
| 6     | OPRNAME  | Plant operator name                                              | EIA-860 + updates               |
| 7     | OPRCODE  | Plant operator ID                                                | EIA-860 + updates               |
| 8     | UTLSRVNM | Utility service area name                                        | EIA-860, EIA + updates          |
| 9     | UTLSRVID | Utility service area ID                                          | EIA-860, EIA + updates          |
| 10    | OPPRNUM  | Parent company ID associated with the operator                   | EIA + updates                   |
| 11    | OPPRNAME | Parent company name associated with the operator                 | EIA + updates                   |
| 12    | PCANAME  | Power control area name                                          | NERC, EIA-861 + EPA updates     |
| 13    | PCAID    | Power control area ID                                            | NERC, EIA-861 + EPA updates     |
| 14    | NERC     | NERC region acronym                                              | NERC                            |
| 15    | SUBRGN   | eGRID subregion acronym                                          | EPA                             |
| 16    | SRNAME   | eGRID subregion name                                             | EPA                             |
| 17    | FIPSST   | Plant FIPS State code                                            | NIST-derived                    |
| 18    | FIPSCNTY | Plant FIPS county code                                           | NIST-derived                    |
| 19    | CNTYNAME | Plant county name                                                | EIA-860, ETS/CEM                |
| 20    | LAT      | Plant latitude                                                   | EPA/CAMD + updates              |
| 21    | LON      | Plant longitude                                                  | EPA/CAMD + updates              |
| 22    | CCFLAG   | County centroid flag: 1 = County centroid used                   | ·                               |
| 23    | NUMBLR   | Number of boilers                                                | ETS/CEM, EIA-767 calculated     |
| 24    | NUMGEN   | Number of generators                                             | EIA-860 calculated              |
| 25    | COMBUST  | Plant combustion status: 1 = Combusts, 0 = No combustion, 0.5 =  |                                 |
|       |          | Partial combustion                                               |                                 |
| 26    | SOURCEM  | Plant emissions source(s): CEM, 767, 906, ICR, MWC               |                                 |
| 27    | PLPRMFL  | Plant primary fuel                                               |                                 |
| 28    | PLFUELCT | Plant primary coal/oil/gas/other fossil fuel category            |                                 |
| 29    | COALFLAG | Flag indicating if the plant used any amount of coal: 1 = Yes    |                                 |
| 30    | CAPFAC   | Plant capacity factor                                            |                                 |
| 31    | NAMEPCAP | Plant nameplate capacity (MW)                                    | EIA-860 summed                  |
| 32    | RMBMFLAG | Renewable methane/biomass plant adjustment flag: 0 = No          |                                 |
|       |          | biomass; 1 = Renewable methane included; 100 = Other biomass     |                                 |
|       |          | included                                                         |                                 |
| 33    | CHPFLAG  | Combined heat and power (CHP) plant adjustment flag: 1 = Yes     | eGRID CHP List                  |
| 34    | USETHRMO | CHP plant useful thermal output (MMBtu)                          | EIA-906/920 calculated, EIA-767 |
| 35    | PWRTOHT  | CHP plant power to heat ratio                                    |                                 |
| 36    | ELCALLOC | CHP plant electric allocation factor                             |                                 |
| 37    | PSFLAG   | Plant pumped storage flag: 1 = Yes                               | EIA-860                         |
| 38    | PLHTIAN  | Plant annual heat input (MMBtu)                                  |                                 |
| 39    | PLHTIOZ  | Plant ozone season heat input (MMBtu)                            |                                 |
| 40    | PLNGENAN | Plant annual net generation (MWh)                                | EIA-906/920, EIA-767            |
| 41    | PLNGENOZ | Plant ozone season net generation (MWh)                          | EIA-906/920, EIA-767            |
| 42    | PLNOXAN  | Plant annual NO <sub>x</sub> emissions (tons)                    |                                 |
| 43    | PLNOXOZ  | Plant ozone season NO <sub>x</sub> emissions (tons)              |                                 |
| 44    | PLSO2AN  | Plant annual SO <sub>2</sub> emissions (tons)                    |                                 |
| 45    | PLCO2AN  | Plant annual CO <sub>2</sub> emissions (tons)                    |                                 |
| 46    | PLCH4AN  | Plant annual CH₄ emissions (lbs)                                 |                                 |
| 47    | PLN2OAN  | Plant annual N <sub>2</sub> O emissions (lbs)                    |                                 |
| 48    | PLHGAN   | Plant annual Hg emissions (lbs)                                  |                                 |
| 49    | PLNOXRTA | Plant annual NO <sub>x</sub> output emission rate (lb/MWh)       |                                 |
| 50    | PLNOXRTO | Plant ozone season NO <sub>x</sub> output emission rate (lb/MWh) |                                 |

## Table A-1 eGRID2007 Version 1.0 File Structure 2005 PLNT Plant File (continued).

| Field    | Name             | Description                                                                                                | Source(s)                                 |
|----------|------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 51       | PLSO2RTA         | Plant annual SO <sub>2</sub> output emission rate (lb/MWh)                                                 | , ,                                       |
| 52       | PLCO2RTA         | Plant annual CO <sub>2</sub> output emission rate (lb/MWh)                                                 |                                           |
| 53       | PLCH4RTA         | Plant annual CH₄ output emission rate (lb/GWh)                                                             |                                           |
| 54       | PLN2ORTA         | Plant annual N₂O output emission rate (lb/GWh)                                                             |                                           |
| 55       | PLHGRTA          | Plant annual Hg output emission rate (lb/GWh)                                                              |                                           |
| 56       | PLNOXRA          | Plant annual NOx input emission rate (lb/MMBtu)                                                            |                                           |
| 57       | PLNOXRO          | Plant ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)                                          |                                           |
| 58       | PLSO2RA          | Plant annual SO <sub>2</sub> input emission rate (lb/MMBtu)                                                |                                           |
| 59       | PLCO2RA          | Plant annual CO <sub>2</sub> input emission rate (lb/MMBtu)                                                |                                           |
| 60       | PLHGRA           | Plant annual Hg input emission rate (lb/BBtu)                                                              |                                           |
| 61       | PLNOXCRT         | Plant annual NO <sub>x</sub> combustion output emission rate (lb/MWh)                                      |                                           |
| 62       | PLNOXCRO         | Plant ozone season NO <sub>x</sub> combustion output emission rate (lb/MWh)                                |                                           |
| 63       | PLSO2CRT         | Plant annual SO₂ combustion output emission rate (lb/MWh)                                                  |                                           |
| 64       | PLCO2CRT         | Plant annual CO₂ combustion output emission rate (lb/MWh)                                                  |                                           |
| 65       | PLCH4CRT         | Plant annual CH₄ combustion output emission rate (lb/GWh)                                                  |                                           |
| 66       | PLN2OCRT         | Plant annual N₂O combustion output emission rate (lb/GWh)                                                  |                                           |
| 67       | PLHGCRT          | Plant annual Hg combustion output emission rate (lb/GWh)                                                   |                                           |
| 68       | UNNOX            | Plant unadjusted annual NO <sub>x</sub> emissions (tons)                                                   |                                           |
| 69       | UNNOXOZ          | Plant unadjusted ozone season NO <sub>x</sub> emissions (tons)                                             |                                           |
| 70       | UNSO2            | Plant unadjusted annual SO <sub>2</sub> emissions (tons)                                                   |                                           |
| 71       | UNCO2            | Plant unadjusted annual CO <sub>2</sub> emissions (tons)                                                   |                                           |
| 72       | UNCH4            | Plant unadjusted annual CH₄ emissions (lbs)                                                                |                                           |
| 73       | UNN2O            | Plant unadjusted annual N <sub>2</sub> O emissions (lbs)                                                   |                                           |
| 74       | UNHG             | Plant unadjusted annual Hg emissions (lbs)                                                                 |                                           |
| 75       | UNHTI            | Plant unadjusted annual heat input (MMBtu)                                                                 | ETO/OFNA EIA 000/000 0 EIA 707            |
| 76       | UNHTIOZ          | Plant unadjusted ozone season heat input (MMBtu)                                                           | ETS/CEM, EIA-906/920 & EIA-767 calculated |
| 77       | PLHTRT           | Plant nominal heat rate (Btu/kWh)                                                                          |                                           |
| 78       | PLGENACL         | Plant annual coal net generation (MWh)                                                                     |                                           |
| 79       | PLGENAOL         | Plant annual oil net generation (MWh)                                                                      |                                           |
| 80       | PLGENAGS         | Plant annual gas net generation (MWh)                                                                      |                                           |
| 81       | PLGENANC         | Plant annual nuclear net generation (MWh)                                                                  |                                           |
| 82       | PLGENAHY         | Plant annual hydro net generation (MWh)                                                                    |                                           |
| 83       | PLGENABM         | Plant annual biomass net generation (MWh)                                                                  |                                           |
| 84       | PLGENAWI         | Plant annual wind net generation (MWh)                                                                     |                                           |
| 85       | PLGENASO         | Plant annual solar net generation (MWh)                                                                    |                                           |
| 86       | PLGENAGT         | Plant annual geothermal net generation (MWh)                                                               |                                           |
| 87       | PLGENAOF         | Plant annual other fossil net generation (MWh)                                                             |                                           |
| 88       | PLGENAOP         | Plant annual other unknown/purchased fuel net generation (MWh)                                             |                                           |
| 89       | PLGENATN         | Plant annual total nonrenewables net generation (MWh)                                                      |                                           |
| 90       | PLGENATR         | Plant annual total renewables net generation (MWh)                                                         |                                           |
| 91       | PLGENATH         | Plant annual total nonhydro renewables net generation (MWh)                                                |                                           |
| 92       | PLGENACY         | Plant annual total combustion net generation (MWh)                                                         | -                                         |
| 93       | PLGENACN         | Plant annual total noncombustion net generation (MWh)                                                      |                                           |
| 94       | PLCLPR           | Plant coal generation percent (resource mix)                                                               |                                           |
| 95       | PLOLPR           | Plant oil generation percent (resource mix)                                                                |                                           |
| 96<br>97 | PLGSPR           | Plant gas generation percent (resource mix)  Plant nuclear generation percent (resource mix)               |                                           |
| 98       | PLNCPR<br>PLHYPR | Plant hydro generation percent (resource mix)  Plant hydro generation percent (resource mix)               | +                                         |
| 99       | PLBMPR           | Plant biomass generation percent (resource mix)  Plant biomass generation percent (resource mix)           |                                           |
| 100      | PLBMPR           | Plant biomass generation percent (resource mix)  Plant wind generation percent (resource mix)              | +                                         |
| 101      | PLSOPR           | Plant solar generation percent (resource mix)  Plant solar generation percent (resource mix)               |                                           |
| 101      | PLGTPR           | Plant geothermal generation percent (resource mix)  Plant geothermal generation percent (resource mix)     |                                           |
| 103      | PLOFPR           | Plant other fossil generation percent (resource mix)  Plant other fossil generation percent (resource mix) | +                                         |
| 103      | PLOPPR           | Plant other unknown/purchased fuel generation percent (resource                                            |                                           |
| 10-7     |                  | mix)                                                                                                       |                                           |
| 105      | PLTNPR           | Plant total nonrenewables generation percent (resource mix)                                                |                                           |
| 106      | PLTRPR           | Plant total renewables generation percent (resource mix)                                                   |                                           |
|          | PLTHPR           | Plant total nonhydro renewables generation percent (resource mix)                                          | +                                         |

## Table A-1 eGRID2007 Version 1.0 File Structure 2005 PLNT Plant File (continued).

| Field | Name     | Description                                                 | Source(s)         |
|-------|----------|-------------------------------------------------------------|-------------------|
| 108   | PLCYPR   | Plant total combustion generation percent (resource mix)    |                   |
| 109   | PLCNPR   | Plant total noncombustion generation percent (resource mix) |                   |
| 110   | OWNRNM01 | Plant owner name (first)                                    | EIA-860 + updates |
| 111   | OWNRUC01 | Plant owner code (first)                                    | EIA-860 + updates |
| 112   | OWNRPR01 | Plant owner percent (first)                                 | EIA-860 + updates |
| 113   | OWNRNM02 | Plant owner name (second)                                   | EIA-860 + updates |
| 114   | OWNRUC02 | Plant owner code (second)                                   | EIA-860 + updates |
| 115   | OWNRPR02 | Plant owner percent (second)                                | EIA-860 + updates |
| 116   | OWNRNM03 | Plant owner name (third)                                    | EIA-860 + updates |
| 117   | OWNRUC03 | Plant owner code (third)                                    | EIA-860 + updates |
| 118   | OWNRPR03 | Plant owner percent (third)                                 | EIA-860 + updates |
| 119   | OWNRNM04 | Plant owner name (fourth)                                   | EIA-860 + updates |
| 120   | OWNRUC04 | Plant owner code (fourth)                                   | EIA-860 + updates |
| 121   | OWNRPR04 | Plant owner percent (fourth)                                | EIA-860 + updates |
| 122   | OWNRNM05 | Plant owner name (fifth)                                    | EIA-860 + updates |
| 123   | OWNRUC05 | Plant owner code (fifth)                                    | EIA-860 + updates |
| 124   | OWNRPR05 | Plant owner percent (fifth)                                 | EIA-860 + updates |
| 125   | OWNRNM06 | Plant owner name (sixth)                                    | EIA-860 + updates |
| 126   | OWNRUC06 | Plant owner code (sixth)                                    | EIA-860 + updates |
| 127   | OWNRPR06 | Plant owner percent (sixth)                                 | EIA-860 + updates |
| 128   | OWNRNM07 | Plant owner name (seventh)                                  | EIA-860 + updates |
| 129   | OWNRUC07 | Plant owner code (seventh)                                  | EIA-860 + updates |
| 130   | OWNRPR07 | Plant owner percent (seventh)                               | EIA-860 + updates |
| 131   | OWNRNM08 | Plant owner name (eighth)                                   | EIA-860 + updates |
| 132   | OWNRUC08 | Plant owner code (eighth)                                   | EIA-860 + updates |
| 133   | OWNRPR08 | Plant owner percent (eighth)                                | EIA-860 + updates |
| 134   | OWNRNM09 | Plant owner name (ninth)                                    | EIA-860 + updates |
| 135   | OWNRUC09 | Plant owner code (ninth)                                    | EIA-860 + updates |
| 136   | OWNRPR09 | Plant owner percent (ninth)                                 | EIA-860 + updates |
| 137   | OWNRNM10 | Plant owner name (tenth)                                    | EIA-860 + updates |
| 138   | OWNRUC10 | Plant owner code (tenth)                                    | EIA-860 + updates |
| 139   | OWNRPR10 | Plant owner percent (tenth)                                 | EIA-860 + updates |
| 140   | OWNRNM11 | Plant owner name (eleventh)                                 | EIA-860 + updates |
| 141   | OWNRUC11 | Plant owner code (eleventh)                                 | EIA-860 + updates |
| 142   | OWNRPR11 | Plant owner percent (eleventh)                              | EIA-860 + updates |
| 143   | OWNRNM12 | Plant owner name (twelfth)                                  | EIA-860 + updates |
| 144   | OWNRUC12 | Plant owner code (twelfth)                                  | EIA-860 + updates |
| 145   | OWNRPR12 | Plant owner percent (twelfth)                               | EIA-860 + updates |
| 146   | OWNRNM13 | Plant owner name (thirteenth)                               | EIA-860 + updates |
| 147   | OWNRUC13 | Plant owner code (thirteenth)                               | EIA-860 + updates |
| 148   | OWNRPR13 | Plant owner percent (thirteenth)                            | EIA-860 + updates |
| 149   | OWNRNM14 | Plant owner name (fourteenth)                               | EIA-860 + updates |
| 150   | OWNRUC14 | Plant owner code (fourteenth)                               | EIA-860 + updates |
| 151   | OWNRPR14 | Plant owner percent (fourteenth)                            | EIA-860 + updates |
| 152   | OWNRNM15 | Plant owner name (fifteenth)                                | EIA-860 + updates |
| 153   | OWNRUC15 | Plant owner code (fifteenth)                                | EIA-860 + updates |
| 154   | OWNRPR15 | Plant owner percent (fifteenth)                             | EIA-860 + updates |
| 155   | OWNRNM16 | Plant owner name (sixteenth)                                | EIA-860 + updates |
| 156   | OWNRUC16 | Plant owner code (sixteenth)                                | EIA-860 + updates |
| 157   | OWNRPR16 | Plant owner percent (sixteenth)                             | EIA-860 + updates |
| 158   | SEQPLT04 | eGRID2006 2004 file plant sequence number                   |                   |

### Table A-1 eGRID2007 Version 1.0 File Structure 2005 ST State File

| Field | Nama     | Description                                                                  |
|-------|----------|------------------------------------------------------------------------------|
| Field | Name     | Description                                                                  |
| 1     | SEQST05  | eGRID2007 2005 file State sequence number                                    |
| 2     | PSTATABB | State abbreviation                                                           |
| 3     | FIPSST   | FIPS State code                                                              |
| 4     | NAMEPCAP | State nameplate capacity (MW)                                                |
| 5     | STHTIAN  | State annual heat input (MMBtu)                                              |
| 6     | STHTIOZ  | State ozone season heat input (MMBtu)                                        |
| 7     | STNGENAN | State annual net generation (MWh)                                            |
| 8     | STNGENOZ | State ozone season net generation (MWh)                                      |
| 9     | STNOXAN  | State annual NO <sub>x</sub> emissions (tons)                                |
| 10    | STNOXOZ  | State ozone season NO <sub>x</sub> emissions (tons)                          |
| 11    | STSO2AN  | State annual SO <sub>2</sub> emissions (tons)                                |
| 12    | STCO2AN  | State annual CO <sub>2</sub> emissions (tons)                                |
| 13    | STCH4AN  | State annual CH <sub>4</sub> emissions (lbs)                                 |
| 14    | STN2OAN  | State annual N <sub>2</sub> O emissions (lbs)                                |
| 15    | STHGAN   | State annual Hg emissions (lbs)                                              |
| 16    | STNOXRTA | State annual NO <sub>x</sub> output emission rate (lb/MWh)                   |
| 17    | STNOXRTO | State ozone season NO <sub>x</sub> output emission rate (lb/MWh)             |
| 18    | STSO2RTA | State annual SO <sub>2</sub> output emission rate (lb/MWh)                   |
| 19    | STCO2RTA | State annual CO <sub>2</sub> output emission rate (lb/MWh)                   |
| 20    | STCH4RTA | State annual CH₄ output emission rate (lb/GWh)                               |
| 21    | STN2ORTA | State annual N₂O output emission rate (lb/GWh)                               |
| 22    | STHGRTA  | State annual Hg output emission rate (lb/GWh)                                |
| 23    | STNOXRA  | State annual NO <sub>x</sub> input emission rate (lb/MMBtu)                  |
| 24    | STNOXRO  | State ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)            |
| 25    | STSO2RA  | State annual SO <sub>2</sub> input emission rate (lb/MMBtu)                  |
| 26    | STCO2RA  | State annual CO <sub>2</sub> input emission rate (lb/MMBtu)                  |
| 27    | STHGRA   | State annual Hg input emission rate (lb/BBtu)                                |
| 28    | STNOXCRT | State annual NO <sub>x</sub> combustion output emission rate (lb/MWh)        |
| 29    | STNOXCRO | State ozone season NO <sub>x</sub> combustion output emission rate (lb/MWh)  |
| 30    | STSO2CRT | State annual SO <sub>2</sub> combustion output emission rate (lb/MWh)        |
| 31    | STCO2CRT | State annual CO <sub>2</sub> combustion output emission rate (lb/MWh)        |
| 32    | STCH4CRT | State annual CH₄ combustion output emission rate (lb/GWh)                    |
| 33    | STN2OCRT | State annual N₂O combustion output emission rate (lb/GWh)                    |
| 34    | STHGCRT  | State annual Hg combustion output emission rate (lb/GWh)                     |
| 35    | STCNOXRT | State coal annual NO <sub>x</sub> output emission rate (lb/MWh)              |
| 36    | STONOXRT | State oil annual NO <sub>x</sub> output emission rate (lb/MWh)               |
| 37    | STGNOXRT | State gas annual NO <sub>x</sub> output emission rate (lb/MWh)               |
| 38    | STFSNXRT | State fossil fuel annual NO <sub>x</sub> output emission rate (lb/MWh)       |
| 39    | STCNXORT | State coal ozone season NO <sub>x</sub> output emission rate (lb/MWh)        |
| 40    | STONXORT | State oil ozone season NO <sub>x</sub> output emission rate (lb/MWh)         |
| 41    | STGNXORT | State gas ozone season NO <sub>x</sub> output emission rate (lb/MWh)         |
| 42    | STFSNORT | State fossil fuel ozone season NO <sub>x</sub> output emission rate (lb/MWh) |
| 43    | STCSO2RT | State coal annual SO <sub>2</sub> output emission rate (lb/MWh)              |
| 44    | STOSO2RT | State oil annual SO <sub>2</sub> output emission rate (lb/MWh)               |
| 45    | STGSO2RT | State gas annual SO <sub>2</sub> output emission rate (lb/MWh)               |
| 46    | STFSS2RT | State fossil fuel annual SO <sub>2</sub> output emission rate (lb/MWh)       |
| 47    | STCCO2RT | State coal annual CO <sub>2</sub> output emission rate (lb/MWh)              |
| 48    | STOCO2RT | State oil annual CO <sub>2</sub> output emission rate (lb/MWh)               |
| 49    | STGCO2RT | State gas annual CO <sub>2</sub> output emission rate (lb/MWh)               |
| 50    | STFSC2RT | State fossil fuel annual CO <sub>2</sub> output emission rate (lb/MWh)       |
| 51    | STCHGRT  | State coal annual Hg output emission rate (lb/GWh)                           |
| 52    | STFSHGRT | State fossil fuel annual Hg output emission rate (lb/GWh)                    |
| 53    | STCNOXR  | State coal annual NO <sub>x</sub> input emission rate (Ib/MMBtu)             |
| 54    | STONOXR  | State oil annual NO <sub>x</sub> input emission rate (lb/MMBtu)              |
| 55    | STGNOXR  | State gas annual NO <sub>x</sub> input emission rate (lb/MMBtu)              |
| 56    | STFSNXR  | State fossil fuel annual NO <sub>x</sub> input emission rate (lb/MMBtu)      |
| 57    | STCNXOR  | State coal ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)       |
| 58    | STONXOR  | State oil ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)        |
| 59    | STGNXOR  | State gas ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)        |
|       | ,        | · · · · · · · · · · · · · · · · · · ·                                        |

## Table A-1 eGRID2007 Version 1.0 File Structure 2005 ST State File (continued).

| Field | Name     | Description                                                                   |
|-------|----------|-------------------------------------------------------------------------------|
| 60    | STFSNOR  | State fossil fuel ozone season NO <sub>x</sub> input emission rate (lb/MMBtu) |
| 61    | STCSO2R  | State coal annual SO <sub>2</sub> input emission rate (lb/MMBtu)              |
| 62    | STOSO2R  | State oil annual SO <sub>2</sub> input emission rate (lb/MMBtu)               |
| 63    | STGSO2R  | State gas annual SO <sub>2</sub> input emission rate (lb/MMBtu)               |
| 64    | STFSS2R  | State fossil fuel annual SO <sub>2</sub> input emission rate (lb/MMBtu)       |
| 65    | STCCO2R  | State coal annual CO <sub>2</sub> input emission rate (lb/MMBtu)              |
| 66    | STOCO2R  | State oil annual CO <sub>2</sub> input emission rate (lb/MMBtu)               |
| 67    | STGCO2R  | State gas annual CO <sub>2</sub> input emission rate (Ib/MMBtu)               |
| 68    | STFSC2R  | State fossil fuel annual CO <sub>2</sub> input emission rate (lb/MMBtu)       |
| 69    | STCHGR   | State coal annual Hg input emission rate (lb/BBtu)                            |
| 70    | STFSHGR  | State fossil fuel annual Hg input emission rate (Ib/BBtu)                     |
| 71    | STNBNOX  | State annual non-baseload NO <sub>x</sub> output emission rate (lb/MWh)       |
| 72    | STNBNXO  | State ozone season non-baseload NO <sub>x</sub> output emission rate (lb/MWh) |
| 73    | STNBSO2  | State annual non-baseload SO <sub>2</sub> output emission rate (lb/MWh)       |
| 74    | STNBCO2  | State annual non-baseload CO <sub>2</sub> output emission rate (lb/MWh)       |
| 75    | STNBCH4  | State annual non-baseload CH <sub>4</sub> output emission rate (lb/GWh)       |
| 76    | STNBN2O  | State annual non-baseload N <sub>2</sub> O output emission rate (lb/GWh)      |
| 77    | STNBHG   | State annual non-baseload Hg output emission rate (lb/GWh)                    |
| 78    | STGENACL | State annual coal net generation (MWh)                                        |
| 79    | STGENAOL | State annual oil net generation (MWh)                                         |
| 80    | STGENAGS | State annual gas net generation (MWh)                                         |
| 81    | STGENANC | State annual nuclear net generation (MWh)                                     |
| 82    | STGENAHY | State annual hydro net generation (MWh)                                       |
| 83    | STGENABM | State annual biomass net generation (MWh)                                     |
| 84    | STGENAWI | State annual wind net generation (MWh)                                        |
| 85    | STGENASO | State annual solar net generation (MWh)                                       |
| 86    | STGENAGT | State annual geothermal net generation (MWh)                                  |
| 87    | STGENAOF | State annual other fossil net generation (MWh)                                |
| 88    | STGENAOP | State annual other unknown/purchased fuel net generation (MWh)                |
| 89    | STGENATN | State annual total nonrenewables net generation (MWh)                         |
| 90    | STGENATR | State annual total renewables net generation (MWh)                            |
| 91    | STGENATH | State annual total nonhydro renewables net generation (MWh)                   |
| 92    | STGENACY | State annual total combustion net generation (MWh)                            |
| 93    | STGENACN | State annual total noncombustion net generation (MWh)                         |
| 94    | STCLPR   | State coal generation percent (resource mix)                                  |
| 95    | STOLPR   | State oil generation percent (resource mix)                                   |
| 96    | STGSPR   | State gas generation percent (resource mix)                                   |
| 97    | STNCPR   | State nuclear generation percent (resource mix)                               |
| 98    | STHYPR   | State hydro generation percent (resource mix)                                 |
| 99    | STBMPR   | State biomass generation percent (resource mix)                               |
| 100   | STWIPR   | State wind generation percent (resource mix)                                  |
| 101   | STSOPR   | State solar generation percent (resource mix)                                 |
| 102   | STGTPR   | State geothermal generation percent (resource mix)                            |
| 103   | STOFPR   | State other fossil generation percent (resource mix)                          |
| 104   | STOPPR   | State other unknown/purchased fuel generation percent (resource mix)          |
| 105   | STTNPR   | State total nonrenewables generation percent (resource mix)                   |
| 106   | STTRPR   | State total renewables generation percent (resource mix)                      |
| 107   | STTHPR   | State total nonhydro renewables generation percent (resource mix)             |
| 108   | STCYPR   | State total combustion generation percent (resource mix)                      |
| 109   | STCNPR   | State total noncombustion generation percent (resource mix)                   |

### Table A-1 eGRID2007 Version 1.0 File Structure 2005 EGCL and EGCO Files

#### **Electric Generating Company Location (Operator)-based and Owner-based Files**

| Field | Name                  | Description                                                                    |
|-------|-----------------------|--------------------------------------------------------------------------------|
| 1     | SEQEGL05,<br>SEQEGO05 | eGRID2007 2005 file EGC location (operator)-based, owner-based sequence number |
| 2     | EGCNAME               | EGC name                                                                       |
| 3     | EGCCODE               | EGC ID                                                                         |
| 4     | PRNUM                 | Parent company ID associated with the EGC                                      |
|       | PRNAME                | Parent company name associated with the EGC                                    |
| 5     |                       |                                                                                |
| 7     | NAMEPCAP<br>EGHTIAN   | EGC nameplate capacity (MW)                                                    |
| 8     | EGHTIOZ               | EGC annual heat input (MMBtu)  EGC ozone season heat input (MMBtu)             |
| 9     | EGNGENAN              |                                                                                |
|       |                       | EGC annual net generation (MWh)  EGC ozone season net generation (MWh)         |
| 10    | EGNGENOZ              |                                                                                |
| 11    | EGNOXAN               | EGC annual NO <sub>x</sub> emissions (tons)                                    |
| 12    | EGNOXOZ               | EGC ozone season NO <sub>x</sub> emissions (tons)                              |
| 13    | EGSO2AN               | EGC annual SO <sub>2</sub> emissions (tons)                                    |
| 14    | EGCO2AN               | EGC annual CO <sub>2</sub> emissions (tons)                                    |
| 15    | EGCH4AN               | EGC annual CH₄ emissions (lbs)                                                 |
| 16    | EGN2OAN               | EGC annual N <sub>2</sub> O emissions (lbs)                                    |
| 17    | EGHGAN                | EGC annual Hg emissions (lbs)                                                  |
| 18    | EGNOXRTA              | EGC annual NO <sub>x</sub> output emission rate (lb/MWh)                       |
| 19    | EGNOXRTO              | EGC ozone season NO <sub>x</sub> output emission rate (lb/MWh)                 |
| 20    | EGSO2RTA              | EGC annual SO <sub>2</sub> output emission rate (lb/MWh)                       |
| 21    | EGCO2RTA              | EGC annual CO <sub>2</sub> output emission rate (lb/MWh)                       |
| 22    | EGCH4RTA              | EGC annual CH₄ output emission rate (lb/GWh)                                   |
| 23    | EGN2ORTA              | EGC annual N₂O output emission rate (Ib/GWh)                                   |
| 24    | EGHGRTA               | EGC annual Hg output emission rate (lb/GWh)                                    |
| 25    | EGNOXRA               | EGC annual NO <sub>x</sub> input emission rate (lb/MMBtu)                      |
| 26    | EGNOXRO               | EGC ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)                |
| 27    | EGSO2RA               | EGC annual SO <sub>2</sub> input emission rate (lb/MMBtu)                      |
| 28    | EGCO2RA               | EGC annual CO <sub>2</sub> input emission rate (lb/MMBtu)                      |
| 29    | EGHGRA                | EGC annual Hg input emission rate (lb/BBtu)                                    |
| 30    | EGNOXCRT              | EGC annual NO <sub>x</sub> combustion output emission rate (lb/MWh)            |
| 31    | EGNOXCRO              | EGC ozone season NO <sub>x</sub> combustion output emission rate (lb/MWh)      |
| 32    | EGSO2CRT              | EGC annual SO₂ combustion output emission rate (lb/MWh)                        |
| 33    | EGCO2CRT              | EGC annual CO₂ combustion output emission rate (lb/MWh)                        |
| 34    | EGCH4CRT              | EGC annual CH₄ combustion output emission rate (lb/GWh)                        |
| 35    | EGN2OCRT              | EGC annual N₂O combustion output emission rate (lb/GWh)                        |
| 36    | EGHGCRT               | EGC annual Hg combustion output emission rate (lb/GWh)                         |
| 37    | EGCNOXRT              | EGC coal annual NO <sub>x</sub> output emission rate (lb/MWh)                  |
| 38    | EGONOXRT              | EGC oil annual NO <sub>x</sub> output emission rate (lb/MWh)                   |
| 39    | EGGNOXRT              | EGC gas annual NO <sub>x</sub> output emission rate (lb/MWh)                   |
| 40    | EGFSNXRT              | EGC fossil fuel annual NO <sub>x</sub> output emission rate (lb/MWh)           |
| 41    | EGCNXORT              | EGC coal ozone season NO <sub>x</sub> output emission rate (lb/MWh)            |
| 42    | EGONXORT              | EGC oil ozone season NO <sub>x</sub> output emission rate (lb/MWh)             |
| 43    | EGGNXORT              | EGC gas ozone season NO <sub>x</sub> output emission rate (lb/MWh)             |
| 44    | EGFSNORT              | EGC fossil fuel ozone season NO <sub>x</sub> output emission rate (lb/MWh)     |
| 45    | EGCSO2RT              | EGC coal annual SO <sub>2</sub> output emission rate (lb/MWh)                  |
| 46    | EGOSO2RT              | EGC oil annual SO₂ output emission rate (lb/MWh)                               |
| 47    | EGGSO2RT              | EGC gas annual SO₂ output emission rate (lb/MWh)                               |
| 48    | EGFSS2RT              | EGC fossil fuel annual SO <sub>2</sub> output emission rate (lb/MWh)           |
| 49    | EGCCO2RT              | EGC coal annual CO <sub>2</sub> output emission rate (lb/MWh)                  |
| 50    | EGOCO2RT              | EGC oil annual CO <sub>2</sub> output emission rate (lb/MWh)                   |
| 51    | EGGCO2RT              | EGC gas annual CO₂ output emission rate (lb/MWh)                               |
| 52    | EGFSC2RT              | EGC fossil fuel annual CO₂ output emission rate (lb/MWh)                       |
| 53    | EGCHGRT               | EGC coal annual Hg output emission rate (lb/GWh)                               |
| 54    | EGFSHGRT              | EGC fossil fuel annual Hg output emission rate (lb/GWh)                        |
| 55    | EGCNOXR               | EGC coal annual NO <sub>x</sub> input emission rate (lb/MMBtu)                 |
| 56    | EGONOXR               | EGC oil annual NO <sub>x</sub> input emission rate (Ib/MMBtu)                  |
| 57    | EGGNOXR               | EGC gas annual NO <sub>x</sub> input emission rate (lb/MMBtu)                  |
|       |                       |                                                                                |

#### Table A-1 eGRID2007 Version 1.0 File Structure 2005 EGCL and EGCO Files (continued).

#### 2005 EGCL and EGCO Files (continued). Electric Generating Company Location (Operator)-based and Owner-based Files

| Field    | Name                 | Description                                                                                               |
|----------|----------------------|-----------------------------------------------------------------------------------------------------------|
| 58       | EGFSNXR              | EGC fossil fuel annual NO <sub>x</sub> input emission rate (lb/MMBtu)                                     |
| 59       | EGCNXOR              | EGC coal ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)                                      |
| 60       | EGONXOR              | EGC oil ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)                                       |
| 61       | EGGNXOR              | EGC gas ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)                                       |
| 62       | EGFSNOR              | EGC fossil fuel ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)                               |
| 63       | EGCSO2R              | EGC coal annual SO₂ input emission rate (lb/MMBtu)                                                        |
| 64       | EGOSO2R              | EGC oil annual SO₂ input emission rate (lb/MMBtu)                                                         |
| 65       | EGGSO2R              | EGC gas annual SO₂ input emission rate (lb/MMBtu)                                                         |
| 66       | EGFSS2R              | EGC fossil fuel annual SO₂ input emission rate (lb/MMBtu)                                                 |
| 67       | EGCCO2R              | EGC coal annual CO₂ input emission rate (lb/MMBtu)                                                        |
| 68       | EGOCO2R              | EGC oil annual CO₂ input emission rate (lb/MMBtu)                                                         |
| 69       | EGGCO2R              | EGC gas annual CO <sub>2</sub> input emission rate (lb/MMBtu)                                             |
| 70       | EGFSC2R              | EGC fossil fuel annual CO <sub>2</sub> input emission rate (lb/MMBtu)                                     |
| 71       | EGCHGR               | EGC coal annual Hg input emission rate (lb/BBtu)                                                          |
| 72       | EGFSHGR              | EGC fossil fuel annual Hg input emission rate (lb/BBtu)                                                   |
| 73       | EGNBNOX              | EGC annual non-baseload NO <sub>x</sub> output emission rate (lb/MWh)                                     |
| 74       | EGNBNXO              | EGC ozone season non-baseload NO <sub>x</sub> output emission rate (lb/MWh)                               |
| 75       | EGNBSO2              | EGC annual non-baseload SO <sub>2</sub> output emission rate (lb/MWh)                                     |
| 76       | EGNBCO2              | EGC annual non-baseload CO <sub>2</sub> output emission rate (lb/MWh)                                     |
| 77       | EGNBCH4              | EGC annual non-baseload CH₄ output emission rate (lb/GWh)                                                 |
| 78       | EGNBN2O              | EGC annual non-baseload N₂O output emission rate (lb/GWh)                                                 |
| 79       | EGNBHG               | EGC annual non-baseload Hg output emission rate (lb/GWh)                                                  |
| 80       | EGGENACL             | EGC annual coal net generation (MWh)                                                                      |
| 81       | EGGENAOL             | EGC annual oil net generation (MWh)                                                                       |
| 82       | EGGENAGS             | EGC annual gas net generation (MWh)                                                                       |
| 83       | EGGENANC             | EGC annual nuclear net generation (MWh)                                                                   |
| 84       | EGGENAHY             | EGC annual hydro net generation (MWh)                                                                     |
| 85<br>86 | EGGENABM             | EGC annual biomass net generation (MWh)                                                                   |
|          | EGGENAWI             | EGC annual wind net generation (MWh)                                                                      |
| 87<br>88 | EGGENASO<br>EGGENAGT | EGC annual solar net generation (MWh)  EGC annual geothermal net generation (MWh)                         |
| 89       | EGGENAOF             | EGC annual other fossil net generation (MWh)                                                              |
| 90       | EGGENAOP             | EGC annual other rossi het generation (MWM)  EGC annual other unknown/purchased fuel net generation (MWh) |
| 91       | EGGENATN             | EGC annual total nonrenewables net generation (MWh)                                                       |
| 92       | EGGENATR             | EGC annual total renewables net generation (MWh)                                                          |
| 93       | EGGENATH             | EGC annual total nonhydro renewables net generation (MWh)                                                 |
| 94       | EGGENACY             | EGC annual total combustion net generation (MWh)                                                          |
| 95       | EGGENACN             | EGC annual total noncombustion net generation (MWh)                                                       |
| 96       | EGCLPR               | EGC coal generation percent (resource mix)                                                                |
| 97       | EGOLPR               | EGC oil generation percent (resource mix)                                                                 |
| 98       | EGGSPR               | EGC gas generation percent (resource mix)                                                                 |
| 99       | EGNCPR               | EGC nuclear generation percent (resource mix)                                                             |
| 100      | EGHYPR               | EGC hydro generation percent (resource mix)                                                               |
| 101      | EGBMPR               | EGC biomass generation percent (resource mix)                                                             |
| 102      | EGWIPR               | EGC wind generation percent (resource mix)                                                                |
| 103      | EGSOPR               | EGC solar generation percent (resource mix)                                                               |
| 104      | EGGTPR               | EGC geothermal generation percent (resource mix)                                                          |
| 105      | EGOFPR               | EGC other fossil generation percent (resource mix)                                                        |
| 106      | EGOPPR               | EGC other unknown/purchased fuel generation percent (resource mix)                                        |
| 107      | EGTNPR               | EGC total nonrenewables generation percent (resource mix)                                                 |
| 108      | EGTRPR               | EGC total renewables generation percent (resource mix)                                                    |
| 109      | EGTHPR               | EGC total nonhydro renewables generation percent (resource mix)                                           |
| 110      | EGCYPR               | EGC total combustion generation percent (resource mix)                                                    |
| 111      | EGCNPR               | EGC total noncombustion generation percent (resource mix)                                                 |

## Table A-1 eGRID2007 Version 1.0 File Structure 2005 PRCL and PRCO Files

#### Parent Company Location (Operator)-based and Owner-based Files

| Field | Name      | Description                                                                               |
|-------|-----------|-------------------------------------------------------------------------------------------|
| 1     | SEQPRL05, | eGRID2007 2005 file Parent company location (operator)-based, owner-based sequence number |
|       | SEQPRO05  |                                                                                           |
| 2     | PRNUM     | Parent company ID                                                                         |
| 3     | PRNAME    | Parent company name associated with the parent company ID                                 |
| 4     | NAMEPCAP  | Parent company nameplate capacity (MW)                                                    |
| 5     | PRHTIAN   | Parent company annual heat input (MMBtu)                                                  |
| 6     | PRHTIOZ   | Parent company ozone season heat input (MMBtu)                                            |
| 7     | PRNGENAN  | Parent company annual net generation (MWh)                                                |
| 8     | PRNGENOZ  | Parent company ozone season net generation (MWh)                                          |
| 9     | PRNOXAN   | Parent company annual NO <sub>x</sub> emissions (tons)                                    |
| 10    | PRNOXOZ   | Parent company ozone season NO <sub>x</sub> emissions (tons)                              |
| 11    | PRSO2AN   | Parent company annual SO <sub>2</sub> emissions (tons)                                    |
| 12    | PRCO2AN   | Parent company annual CO <sub>2</sub> emissions (tons)                                    |
| 13    | PRCH4AN   | Parent company annual CH₄ emissions (lbs)                                                 |
| 14    | PRN2OAN   | Parent company annual N <sub>2</sub> O emissions (lbs)                                    |
| 15    | PRHGAN    | Parent company annual Hg emissions (lbs)                                                  |
| 16    | PRNOXRTA  | Parent company annual NO <sub>x</sub> output emission rate (lb/MWh)                       |
| 17    | PRNOXRTO  | Parent company ozone season NO <sub>x</sub> output emission rate (lb/MWh)                 |
| 18    | PRSO2RTA  | Parent company annual SO <sub>2</sub> output emission rate (lb/MWh)                       |
| 19    | PRCO2RTA  | Parent company annual CO <sub>2</sub> output emission rate (lb/MWh)                       |
| 20    | PRCH4RTA  | Parent company annual CH₄ output emission rate (lb/GWh)                                   |
| 21    | PRN2ORTA  | Parent company annual N₂O output emission rate (lb/GWh)                                   |
| 22    | PRHGRTA   | Parent company annual Hg output emission rate (lb/GWh)                                    |
| 23    | PRNOXRA   | Parent company annual NO <sub>x</sub> input emission rate (lb/MMBtu)                      |
| 24    | PRNOXRO   | Parent company ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)                |
| 25    | PRSO2RA   | Parent company annual SO <sub>2</sub> input emission rate (lb/MMBtu)                      |
| 26    | PRCO2RA   | Parent company annual CO <sub>2</sub> input emission rate (lb/MMBtu)                      |
| 27    | PRHGRA    | Parent company annual Hg input emission rate (lb/BBtu)                                    |
| 28    | PRNOXCRT  | Parent company annual NO <sub>x</sub> combustion output emission rate (lb/MWh)            |
| 29    | PRNOXCRO  | Parent company ozone season NO <sub>x</sub> combustion output emission rate (lb/MWh)      |
| 30    | PRSO2CRT  | Parent company annual SO <sub>2</sub> combustion output emission rate (lb/MWh)            |
| 31    | PRCO2CRT  | Parent company annual CO₂ combustion output emission rate (lb/MWh)                        |
| 32    | PRCH4CRT  | Parent company annual CH₄ combustion output emission rate (lb/GWh)                        |
| 33    | PRN2OCRT  | Parent company annual N <sub>2</sub> O combustion output emission rate (lb/GWh)           |
| 34    | PRHGCRT   | Parent company annual Hg combustion output emission rate (lb/GWh)                         |
| 35    | PRCNOXRT  | Parent company coal annual NO <sub>x</sub> output emission rate (lb/MWh)                  |
| 36    | PRONOXRT  | Parent company oil annual NO <sub>x</sub> output emission rate (lb/MWh)                   |
| 37    | PRGNOXRT  | Parent company gas annual NO <sub>x</sub> output emission rate (lb/MWh)                   |
| 38    | PRFSNXRT  | Parent company fossil fuel annual NO <sub>x</sub> output emission rate (lb/MWh)           |
| 39    | PRCNXORT  | Parent company coal ozone season NO <sub>x</sub> output emission rate (lb/MWh)            |
| 40    | PRONXORT  | Parent company oil ozone season NO <sub>x</sub> output emission rate (lb/MWh)             |
| 41    | PRGNXORT  | Parent company gas ozone season NO <sub>x</sub> output emission rate (lb/MWh)             |
| 42    | PRFSNORT  | Parent company fossil fuel ozone season NO <sub>x</sub> output emission rate (lb/MWh)     |
| 43    | PRCSO2RT  | Parent company coal annual SO <sub>2</sub> output emission rate (lb/MWh)                  |
| 44    | PROSO2RT  | Parent company oil annual SO <sub>2</sub> output emission rate (lb/MWh)                   |
| 45    | PRGSO2RT  | Parent company gas annual SO <sub>2</sub> output emission rate (lb/MWh)                   |
| 46    | PRFSS2RT  | Parent company fossil fuel annual SO <sub>2</sub> output emission rate (lb/MWh)           |
| 47    | PRCCO2RT  | Parent company coal annual CO <sub>2</sub> output emission rate (lb/MWh)                  |
| 48    | PROCO2RT  | Parent company oil annual CO <sub>2</sub> output emission rate (lb/MWh)                   |
| 49    | PRGCO2RT  | Parent company gas annual CO <sub>2</sub> output emission rate (lb/MWh)                   |
| 50    | PRFSC2RT  | Parent company fossil fuel annual CO <sub>2</sub> output emission rate (lb/MWh)           |
| 51    | PRCHGRT   | Parent company coal annual Hg output emission rate (lb/GWh)                               |
| 52    | PRFSHGRT  | Parent company fossil fuel annual Hg output emission rate (lb/GWh)                        |
| 53    | PRCNOXR   | Parent company coal annual NO <sub>x</sub> input emission rate (Ib/MMBtu)                 |
| 54    | PRONOXR   | Parent company oil annual NO <sub>x</sub> input emission rate (lb/MMBtu)                  |
| 55    | PRGNOXR   | Parent company gas annual NO <sub>x</sub> input emission rate (lb/MMBtu)                  |
| 56    | PRFSNXR   | Parent company fossil fuel annual NO <sub>x</sub> input emission rate (lb/MMBtu)          |
| 57    | PRCNXOR   | Parent company coal ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)           |

# Table A-1 eGRID2007 Version 1.0 File Structure 2005 PRCL and PRCO Files (continued). Parent Company Location (Operator)-based and Owner-based Files

| Field | Name     | Description                                                                            |
|-------|----------|----------------------------------------------------------------------------------------|
| 58    | PRONXOR  | Parent company oil ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)         |
| 59    | PRGNXOR  | Parent company gas ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)         |
| 60    | PRFSNOR  | Parent company fossil fuel ozone season NO <sub>x</sub> input emission rate (lb/MMBtu) |
| 61    | PRCSO2R  | Parent company coal annual SO₂ input emission rate (lb/MMBtu)                          |
| 62    | PROSO2R  | Parent company oil annual SO <sub>2</sub> input emission rate (lb/MMBtu)               |
| 63    | PRGSO2R  | Parent company gas annual SO <sub>2</sub> input emission rate (lb/MMBtu)               |
| 64    | PRFSS2R  | Parent company fossil fuel annual SO <sub>2</sub> input emission rate (lb/MMBtu)       |
| 65    | PRCCO2R  | Parent company coal annual CO <sub>2</sub> input emission rate (lb/MMBtu)              |
| 66    | PROCO2R  | Parent company oil annual CO <sub>2</sub> input emission rate (lb/MMBtu)               |
| 67    | PRGCO2R  | Parent company gas annual CO₂ input emission rate (lb/MMBtu)                           |
| 68    | PRFSC2R  | Parent company fossil fuel annual CO <sub>2</sub> input emission rate (lb/MMBtu)       |
| 69    | PRCHGR   | Parent company coal annual Hg input emission rate (lb/BBtu)                            |
| 70    | PRFSHGR  | Parent company fossil fuel annual Hg input emission rate (lb/BBtu)                     |
| 71    | PRNBNOX  | Parent company annual non-baseload NO <sub>x</sub> output emission rate (lb/MWh)       |
| 72    | PRNBNXO  | Parent company ozone season non-baseload NO <sub>x</sub> output emission rate (lb/MWh) |
| 73    | PRNBSO2  | Parent company annual non-baseload SO <sub>2</sub> output emission rate (lb/MWh)       |
| 74    | PRNBCO2  | Parent company annual non-baseload CO₂ output emission rate (lb/MWh)                   |
| 75    | PRNBCH4  | Parent company annual non-baseload CH₄ output emission rate (lb/GWh)                   |
| 76    | PRNBN2O  | Parent company annual non-baseload № output emission rate (Ib/GWh)                     |
| 77    | PRNBHG   | Parent company annual non-baseload Hg output emission rate (lb/GWh)                    |
| 78    | PRGENACL | Parent company annual coal net generation (MWh)                                        |
| 79    | PRGENAOL | Parent company annual oil net generation (MWh)                                         |
| 80    | PRGENAGS | Parent company annual gas net generation (MWh)                                         |
| 81    | PRGENANC | Parent company annual nuclear net generation (MWh)                                     |
| 82    | PRGENAHY | Parent company annual hydro net generation (MWh)                                       |
| 83    | PRGENABM | Parent company annual biomass net generation (MWh)                                     |
| 84    | PRGENAWI | Parent company annual wind net generation (MWh)                                        |
| 85    | PRGENASO | Parent company annual solar net generation (MWh)                                       |
| 86    | PRGENAGT | Parent company annual geothermal net generation (MWh)                                  |
| 87    | PRGENAOF | Parent company annual other fossil net generation (MWh)                                |
| 88    | PRGENAOP | Parent company annual other unknown/purchased fuel net generation (MWh)                |
| 89    | PRGENATN | Parent company annual total nonrenewables net generation (MWh)                         |
| 90    | PRGENATR | Parent company annual total renewables net generation (MWh)                            |
| 91    | PRGENATH | Parent company annual total nonhydro renewables net generation (MWh)                   |
| 92    | PRGENACY | Parent company annual total combustion net generation (MWh)                            |
| 93    | PRGENACN | Parent company annual total noncombustion net generation (MWh)                         |
| 94    | PRCLPR   | Parent company coal generation percent (resource mix)                                  |
| 95    | PROLPR   | Parent company oil generation percent (resource mix)                                   |
| 96    | PRGSPR   | Parent company gas generation percent (resource mix)                                   |
| 97    | PRNCPR   | Parent company nuclear generation percent (resource mix)                               |
| 98    | PRHYPR   | Parent company hydro generation percent (resource mix)                                 |
| 99    | PRBMPR   | Parent company biomass generation percent (resource mix)                               |
| 100   | PRWIPR   | Parent company wind generation percent (resource mix)                                  |
| 101   | PRSOPR   | Parent company solar generation percent (resource mix)                                 |
| 102   | PRGTPR   | Parent company geothermal generation percent (resource mix)                            |
| 103   | PROFPR   | Parent company other fossil generation percent (resource mix)                          |
| 104   | PROPPR   | Parent company other unknown/purchased fuel generation percent (resource mix)          |
| 105   | PRTNPR   | Parent company total nonrenewables generation percent (resource mix)                   |
| 106   | PRTRPR   | Parent company total renewables generation percent (resource mix)                      |
| 107   | PRTHPR   | Parent company total nonhydro renewables generation percent (resource mix)             |
| 108   | PRCYPR   | Parent company total combustion generation percent (resource mix)                      |
| 109   | PRCNPR   | Parent company total noncombustion generation percent (resource mix)                   |

# Table A-1 eGRID2007 Version 1.0 File Structure 2005 PCAL File Power Control Area (PCA) Location (Operator)-based File

| Field | Nama              | Description                                                                                    |
|-------|-------------------|------------------------------------------------------------------------------------------------|
| Field | Name<br>SEQPCL05  | Description                                                                                    |
| 1     |                   | eGRID2007 2005 file PCA location (operator)-based sequence number PCA ID                       |
| 2     | PCAID<br>PCANAME  | PCA ID  PCA name associated with the PCA ID                                                    |
| 3     | NAMEPCAP          | PCA nameplate capacity (MW)                                                                    |
| 5     | PCHTIAN           | PCA manieplate capacity (MWV)                                                                  |
| 6     | PCHTIOZ           | PCA ozone season heat input (MMBtu)                                                            |
| 7     | PCNGENAN          | PCA annual net generation (MWh)                                                                |
| 8     | PCNGENOZ          | PCA ozone season net generation (MWh)                                                          |
| 9     | PCNOXAN           | PCA annual NO <sub>x</sub> emissions (tons)                                                    |
| 10    | PCNOXAN           | PCA armual NO <sub>x</sub> emissions (tons)  PCA ozone season NO <sub>x</sub> emissions (tons) |
| 11    | PCSO2AN           | PCA annual SO <sub>2</sub> emissions (tons)                                                    |
| 12    | PCCO2AN           | PCA annual CO <sub>2</sub> emissions (tons)                                                    |
| 13    | PCCH4AN           | PCA annual CH <sub>4</sub> emissions (lbs)                                                     |
| 14    | PCN2OAN           | PCA annual N <sub>2</sub> O emissions (lbs)                                                    |
| 15    | PCHGAN            | PCA annual Hg emissions (lbs)                                                                  |
| 16    | PCNOXRTA          | PCA annual NO <sub>x</sub> output emission rate (lb/MWh)                                       |
| 17    | PCNOXRTO          | PCA arinda NO <sub>x</sub> output emission rate (Ib/MWh)                                       |
| 18    | PCSO2RTA          | PCA annual SO <sub>2</sub> output emission rate (Ib/MWh)                                       |
| 19    | PCCO2RTA          | PCA annual CO <sub>2</sub> output emission rate (lb/MWh)                                       |
| 20    | PCCU2RTA PCCH4RTA | PCA annual CH₄ output emission rate (lb/GWh)                                                   |
| 21    | PCN2ORTA          | PCA annual N <sub>2</sub> O output emission rate (lb/GWh)                                      |
| 22    | PCHGRTA           | PCA annual Hg output emission rate (Ib/GWh)                                                    |
| 23    | PCNOXRA           | PCA annual NO <sub>x</sub> input emission rate (Ib/MMBtu)                                      |
| 24    | PCNOXRO           | PCA ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)                                |
| 25    | PCSO2RA           | PCA annual SO <sub>2</sub> input emission rate (Ib/MMBtu)                                      |
| 26    | PCCO2RA           | PCA annual CO <sub>2</sub> input emission rate (Ib/MMBtu)                                      |
| 27    | PCHGRA            | PCA annual Hg input emission rate (lb/BBtu)                                                    |
| 28    | PCNOXCRT          | PCA annual NO <sub>x</sub> combustion output emission rate (lb/MWh)                            |
| 29    | PCNOXCRO          | PCA ozone season NO <sub>x</sub> combustion output emission rate (Ib/MWh)                      |
| 30    | PCSO2CRT          | PCA annual SO <sub>2</sub> combustion output emission rate (lb/MWh)                            |
| 31    | PCCO2CRT          | PCA annual CO <sub>2</sub> combustion output emission rate (lb/MWh)                            |
| 32    | PCCH4CRT          | PCA annual CH <sub>4</sub> combustion output emission rate (lb/GWh)                            |
| 33    | PCN2OCRT          | PCA annual N₂O combustion output emission rate (lb/GWh)                                        |
| 34    | PCHGCRT           | PCA annual Hg combustion output emission rate (lb/GWh)                                         |
| 35    | PCCNOXRT          | PCA coal annual NO <sub>x</sub> output emission rate (lb/MWh)                                  |
| 36    | PCONOXRT          | PCA oil annual NO <sub>x</sub> output emission rate (lb/MWh)                                   |
| 37    | PCGNOXRT          | PCA gas annual NO <sub>x</sub> output emission rate (lb/MWh)                                   |
| 38    | PCFSNXRT          | PCA fossil fuel annual NO <sub>x</sub> output emission rate (lb/MWh)                           |
| 39    | PCCNXORT          | PCA coal ozone season NO <sub>x</sub> output emission rate (lb/MWh)                            |
| 40    | PCONXORT          | PCA oil ozone season NO <sub>x</sub> output emission rate (lb/MWh)                             |
| 41    | PCGNXORT          | PCA gas ozone season NO <sub>x</sub> output emission rate (lb/MWh)                             |
| 42    | PCFSNORT          | PCA fossil fuel ozone season NO <sub>x</sub> output emission rate (lb/MWh)                     |
| 43    | PCCSO2RT          | PCA coal annual SO <sub>2</sub> output emission rate (lb/MWh)                                  |
| 44    | PCOSO2RT          | PCA oil annual SO <sub>2</sub> output emission rate (lb/MWh)                                   |
| 45    | PCGSO2RT          | PCA gas annual SO <sub>2</sub> output emission rate (lb/MWh)                                   |
| 46    | PCFSS2RT          | PCA fossil fuel annual SO <sub>2</sub> output emission rate (Ib/MWh)                           |
| 47    | PCCCO2RT          | PCA coal annual CO <sub>2</sub> output emission rate (lb/MWh)                                  |
| 48    | PCOCO2RT          | PCA oil annual CO <sub>2</sub> output emission rate (lb/MWh)                                   |
| 49    | PCGCO2RT          | PCA gas annual CO <sub>2</sub> output emission rate (lb/MWh)                                   |
| 50    | PCFSC2RT          | PCA fossil fuel annual CO <sub>2</sub> output emission rate (lb/MWh)                           |
| 51    | PCCHGRT           | PCA coal annual Hg output emission rate (lb/GWh)                                               |
| 52    | PCFSHGRT          | PCA fossil fuel annual Hg output emission rate (lb/GWh)                                        |
| 53    | PCCNOXR           | PCA coal annual NO <sub>x</sub> input emission rate (lb/MMBtu)                                 |
| 54    | PCONOXR           | PCA oil annual NO <sub>x</sub> input emission rate (Ib/MMBtu)                                  |
| 55    | PCGNOXR           | PCA gas annual NO <sub>x</sub> input emission rate (Ib/MMBtu)                                  |
| 56    | PCFSNXR           | PCA fossil fuel annual NO <sub>x</sub> input emission rate (lb/MMBtu)                          |
| 57    | PCCNXOR           | PCA coal ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)                           |
| 58    | PCONXOR           | PCA oil ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)                            |
|       |                   |                                                                                                |

# Table A-1 eGRID2007 Version 1.0 File Structure 2005 PCAL File (continued). Power Control Area (PCA) Location (Operator)-based File

| Field | Name             | Description                                                                 |  |
|-------|------------------|-----------------------------------------------------------------------------|--|
| 59    | PCGNXOR          | PCA gas ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)         |  |
| 60    | PCFSNOR          | PCA fossil fuel ozone season NO <sub>x</sub> input emission rate (lb/MMBtu) |  |
| 61    | PCCSO2R          | PCA coal annual SO₂ input emission rate (lb/MMBtu)                          |  |
| 62    | PCOSO2R          | PCA oil annual SO <sub>2</sub> input emission rate (lb/MMBtu)               |  |
| 63    | PCGSO2R          | PCA gas annual SO <sub>2</sub> input emission rate (lb/MMBtu)               |  |
| 64    | PCFSS2R          | PCA fossil fuel annual SO <sub>2</sub> input emission rate (lb/MMBtu)       |  |
| 65    | PCCCO2R          | PCA coal annual CO₂ input emission rate (lb/MMBtu)                          |  |
| 66    | PCOCO2R          | PCA oil annual CO <sub>2</sub> input emission rate (lb/MMBtu)               |  |
| 67    | PCGCO2R          | PCA gas annual CO₂ input emission rate (lb/MMBtu)                           |  |
| 68    | PCFSC2R          | PCA fossil fuel annual CO₂ input emission rate (lb/MMBtu)                   |  |
| 69    | PCCHGR           | PCA coal annual Hg input emission rate (lb/BBtu)                            |  |
| 70    | PCFSHGR          | PCA fossil fuel annual Hg input emission rate (lb/BBtu)                     |  |
| 71    | PCNBNOX          | PCA annual non-baseload NO <sub>x</sub> output emission rate (lb/MWh)       |  |
| 72    | PCNBNXO          | PCA ozone season non-baseload NO <sub>x</sub> output emission rate (lb/MWh) |  |
| 73    | PCNBSO2          | PCA annual non-baseload SO₂ output emission rate (lb/MWh)                   |  |
| 74    | PCNBCO2          | PCA annual non-baseload CO₂ output emission rate (lb/MWh)                   |  |
| 75    | PCNBCH4          | PCA annual non-baseload CH₄ output emission rate (lb/GWh)                   |  |
| 76    | PCNBN2O          | PCA annual non-baseload №0 output emission rate (lb/GWh)                    |  |
| 77    | PCNBHG           | PCA annual non-baseload Hg output emission rate (lb/GWh)                    |  |
| 78    | PCGENACL         | PCA annual coal net generation (MWh)                                        |  |
| 79    | PCGENAOL         | PCA annual oil net generation (MWh)                                         |  |
| 80    | PCGENAGS         | PCA annual gas net generation (MWh)                                         |  |
| 81    | PCGENANC         | PCA annual nuclear net generation (MWh)                                     |  |
| 82    | PCGENAHY         | PCA annual hydro net generation (MWh)                                       |  |
| 83    | PCGENABM         | PCA annual biomass net generation (MWh)                                     |  |
| 84    | PCGENAWI         | PCA annual wind net generation (MWh)                                        |  |
| 85    | PCGENASO         | PCA annual solar net generation (MWh)                                       |  |
| 86    | PCGENAGT         | PCA annual geothermal net generation (MWh)                                  |  |
| 87    | PCGENAOF         | PCA annual other fossil net generation (MWh)                                |  |
| 88    | PCGENAOP         | PCA annual other unknown/purchased fuel net generation (MWh)                |  |
| 89    | PCGENATN         | PCA annual total nonrenewables net generation (MWh)                         |  |
| 90    | PCGENATR         | PCA annual total renewables net generation (MWh)                            |  |
| 91    | PCGENATH         | PCA annual total nonhydro renewables net generation (MWh)                   |  |
| 92    | PCGENACY         | PCA annual total combustion net generation (MWh)                            |  |
| 93    | PCGENACN         | PCA annual total noncombustion net generation (MWh)                         |  |
| 94    | PCCLPR           | PCA coal generation percent (resource mix)                                  |  |
| 95    | PCOLPR           | PCA oil generation percent (resource mix)                                   |  |
| 96    | PCGSPR           | PCA gas generation percent (resource mix)                                   |  |
| 97    | PCNCPR           | PCA nuclear generation percent (resource mix)                               |  |
| 98    | PCHYPR           | PCA hydro generation percent (resource mix)                                 |  |
| 99    | PCBMPR           | PCA biomass generation percent (resource mix)                               |  |
| 100   | PCWIPR           | PCA wind generation percent (resource mix)                                  |  |
| 101   | PCSOPR           | PCA solar generation percent (resource mix)                                 |  |
| 102   | PCGTPR           | PCA geothermal generation percent (resource mix)                            |  |
| 103   | PCOFPR           | PCA other fossil generation percent (resource mix)                          |  |
| 104   | PCOPPR           | PCA other unknown/purchased fuel generation percent (resource mix)          |  |
| 105   | PCTNPR           | PCA total nonrenewables generation percent (resource mix)                   |  |
| 106   | PCTRPR           | PCA total renewables generation percent (resource mix)                      |  |
| 107   | PCTHPR<br>PCCYPR | PCA total nonhydro renewables generation percent (resource mix)             |  |
| 108   |                  | PCA total combustion generation percent (resource mix)                      |  |
| 109   | PCCNPR           | PCA total noncombustion generation percent (resource mix)                   |  |

# Table A-1 eGRID2007 Version 1.0 File Structure 2005 SRL File eGRID Subregion Location (Operator)-based File

| Field | Namo             | Description                                                                                 |  |
|-------|------------------|---------------------------------------------------------------------------------------------|--|
| 1     | Name<br>SEQSRL05 | Description   eGRID2007 2005 file eGRID subregion location (operator)-based sequence number |  |
| 2     | SUBRGN           | eGRID subregion acronym                                                                     |  |
| 3     | SRNAME           | eGRID subregion name associated with eGRID subregion acronym                                |  |
| 4     | NERC             | NERC acronym associated with the eGRID subregion                                            |  |
| 5     | NAMEPCAP         |                                                                                             |  |
| 6     | SRHTIAN          | eGRID subregion nameplate capacity (MW) eGRID subregion annual heat input (MMBtu)           |  |
| 7     | SRHTIOZ          | eGRID subregion ozone season heat input (MMBtu)                                             |  |
| 8     | SRNGENAN         | eGRID subregion annual net generation (MWh)                                                 |  |
| 9     | SRNGENOZ         | eGRID subregion ozone season net generation (MWh)                                           |  |
| 10    | SRNOXAN          | eGRID subregion annual NO <sub>x</sub> emissions (tons)                                     |  |
| 11    | SRNOXAN          | eGRID subregion armual NO <sub>x</sub> emissions (tons)                                     |  |
| 12    | SRSO2AN          | eGRID subregion annual SO <sub>2</sub> emissions (tons)                                     |  |
| 13    | SRCO2AN          | eGRID subregion annual CO <sub>2</sub> emissions (tons)                                     |  |
| 14    | SRCH4AN          | eGRID subregion annual CH <sub>4</sub> emissions (lbs)                                      |  |
| 15    | SRN2OAN          | eGRID subregion annual N₂O emissions (lbs)                                                  |  |
| 16    | SRHGAN           | eGRID subregion annual Hg emissions (lbs)                                                   |  |
| 17    | SRNOXRTA         | eGRID subregion annual NO <sub>x</sub> output emission rate (lb/MWh)                        |  |
| 18    | SRNOXRTO         | eGRID subregion ozone season NO <sub>x</sub> output emission rate (lb/MWh)                  |  |
| 19    | SRSO2RTA         | eGRID subregion annual SO <sub>2</sub> output emission rate (Ib/MWh)                        |  |
| 20    | SRCO2RTA         | eGRID subregion annual CO <sub>2</sub> output emission rate (Ib/MWh)                        |  |
| 21    | SRCH4RTA         | eGRID subregion annual CH₄ output emission rate (lb/GWh)                                    |  |
| 22    | SRN2ORTA         | eGRID subregion annual N₂O output emission rate (lb/GWh)                                    |  |
| 23    | SRHGRTA          | eGRID subregion annual Hg output emission rate (lb/GWh)                                     |  |
| 24    | SRNOXRA          | eGRID subregion annual NO <sub>x</sub> input emission rate (lb/MMBtu)                       |  |
| 25    | SRNOXRO          | eGRID subregion ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)                 |  |
| 26    | SRSO2RA          | eGRID subregion annual SO <sub>2</sub> input emission rate (Ib/MMBtu)                       |  |
| 27    | SRCO2RA          | eGRID subregion annual CO <sub>2</sub> input emission rate (lb/MMBtu)                       |  |
| 28    | SRHGRA           | eGRID subregion annual Hg input emission rate (lb/BBtu)                                     |  |
| 29    | SRNOXCRT         | eGRID subregion annual NO <sub>x</sub> combustion output emission rate (lb/MWh)             |  |
| 30    | SRNOXCRO         | eGRID subregion ozone season NO <sub>x</sub> combustion output emission rate (lb/MWh)       |  |
| 31    | SRSO2CRT         | eGRID subregion annual SO <sub>2</sub> combustion output emission rate (lb/MWh)             |  |
| 32    | SRC02CRT         | eGRID subregion annual CO <sub>2</sub> combustion output emission rate (lb/MWh)             |  |
| 33    | SRCH4CRT         | eGRID subregion annual CH <sub>4</sub> combustion output emission rate (lb/GWh)             |  |
| 34    | SRN2OCRT         | eGRID subregion annual №0 combustion output emission rate (Ib/GWh)                          |  |
| 35    | SRHGCRT          | eGRID subregion annual Hg combustion output emission rate (lb/GWh)                          |  |
| 36    | SRCNOXRT         | eGRID subregion coal annual NO <sub>x</sub> output emission rate (lb/MWh)                   |  |
| 37    | SRONOXRT         | eGRID subregion oil annual NO <sub>x</sub> output emission rate (lb/MWh)                    |  |
| 38    | SRGNOXRT         | eGRID subregion gas annual NO <sub>x</sub> output emission rate (lb/MWh)                    |  |
| 39    | SRFSNXRT         | eGRID subregion fossil fuel annual NO <sub>x</sub> output emission rate (lb/MWh)            |  |
| 40    | SRCNXORT         | eGRID subregion coal ozone season NO <sub>x</sub> output emission rate (lb/MWh)             |  |
| 41    | SRONXORT         | eGRID subregion oil ozone season NO <sub>x</sub> output emission rate (lb/MWh)              |  |
| 42    | SRGNXORT         | eGRID subregion gas ozone season NO <sub>x</sub> output emission rate (Ib/MWh)              |  |
| 43    | SRFSNORT         | eGRID subregion fossil fuel ozone season NO <sub>x</sub> output emission rate (Ib/MWh)      |  |
| 44    | SRCSO2RT         | eGRID subregion coal annual SO <sub>2</sub> output emission rate (lb/MWh)                   |  |
| 45    | SROSO2RT         | eGRID subregion oil annual SO <sub>2</sub> output emission rate (lb/MWh)                    |  |
| 46    | SRGSO2RT         | eGRID subregion gas annual SO <sub>2</sub> output emission rate (lb/MWh)                    |  |
| 47    | SRFSS2RT         | eGRID subregion fossil fuel annual SO <sub>2</sub> output emission rate (lb/MWh)            |  |
| 48    | SRCCO2RT         | eGRID subregion coal annual CO <sub>2</sub> output emission rate (lb/MWh)                   |  |
| 49    | SROCO2RT         | eGRID subregion oil annual CO <sub>2</sub> output emission rate (lb/MWh)                    |  |
| 50    | SRGCO2RT         | eGRID subregion gas annual CO <sub>2</sub> output emission rate (lb/MWh)                    |  |
| 51    | SRFSC2RT         | eGRID subregion fossil fuel annual CO <sub>2</sub> output emission rate (lb/MWh)            |  |
| 52    | SRCHGRT          | eGRID subregion coal annual Hg output emission rate (lb/GWh)                                |  |
| 53    | SRFSHGRT         | eGRID subregion fossil fuel annual Hg output emission rate (lb/GWh)                         |  |
| 54    | SRCNOXR          | eGRID subregion coal annual NO <sub>x</sub> input emission rate (lb/MMBtu)                  |  |
| 55    | SRONOXR          | eGRID subregion oil annual NO <sub>x</sub> input emission rate (lb/MMBtu)                   |  |
| 56    | SRGNOXR          | eGRID subregion gas annual NO <sub>x</sub> input emission rate (lb/MMBtu)                   |  |
| 57    | SRFSNXR          | eGRID subregion fossil fuel annual NO <sub>x</sub> input emission rate (lb/MMBtu)           |  |
| 58    | SRCNXOR          | eGRID subregion coal ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)            |  |
|       |                  |                                                                                             |  |

# Table A-1 eGRID2007 Version 1.0 File Structure 2005 SRL File (continued). eGRID Subregion Location (Operator)-based File

| Field      | Name             | Description                                                                                                                                  |  |
|------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| 59         | SRONXOR          | eGRID subregion oil ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)                                                              |  |
| 60         | SRGNXOR          | eGRID subregion gas ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)                                                              |  |
| 61         | SRFSNOR          | eGRID subregion fossil fuel ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)                                                      |  |
| 62         | SRCSO2R          | eGRID subregion coal annual SO₂ input emission rate (Ib/MMBtu)                                                                               |  |
| 63         | SROSO2R          | eGRID subregion oil annual SO <sub>2</sub> input emission rate (lb/MMBtu)                                                                    |  |
| 64         | SRGSO2R          | eGRID subregion gas annual SO <sub>2</sub> input emission rate (Ib/MMBtu)                                                                    |  |
| 65         | SRFSS2R          | eGRID subregion fossil fuel annual SO <sub>2</sub> input emission rate (lb/MMBtu)                                                            |  |
| 66         | SRCCO2R          | eGRID subregion coal annual CO <sub>2</sub> input emission rate (lb/MMBtu)                                                                   |  |
| 67         | SROCO2R          | eGRID subregion oil annual CO <sub>2</sub> input emission rate (lb/MMBtu)                                                                    |  |
| 68         | SRGCO2R          | eGRID subregion gas annual CO <sub>2</sub> input emission rate (lb/MMBtu)                                                                    |  |
| 69         | SRFSC2R          | eGRID subregion fossil fuel annual CO <sub>2</sub> input emission rate (lb/MMBtu)                                                            |  |
| 70         | SRCHGR           | eGRID subregion coal annual Hg input emission rate (lb/BBtu)                                                                                 |  |
| 71         | SRFSHGR          | eGRID subregion fossil fuel annual Hg input emission rate (lb/BBtu)                                                                          |  |
| 72         | SRNBNOX          | eGRID subregion annual non-baseload NO <sub>x</sub> output emission rate (lb/MWh)                                                            |  |
| 73         | SRNBNXO          | eGRID subregion ozone season non-baseload NO <sub>x</sub> output emission rate (lb/MWh)                                                      |  |
| 74         | SRNBSO2          | eGRID subregion annual non-baseload SO <sub>2</sub> output emission rate (lb/MWh)                                                            |  |
| 75         | SRNBCO2          | eGRID subregion annual non-baseload CO <sub>2</sub> output emission rate (Ib/MWh)                                                            |  |
| 76         | SRNBCH4          | eGRID subregion annual non-baseload CO <sub>2</sub> output emission rate (lb/GWh)                                                            |  |
| 77         | SRNBN20          | eGRID subregion annual non-baseload CH₄ output emission rate (Ib/GWh)  eGRID subregion annual non-baseload N₂O output emission rate (Ib/GWh) |  |
| 78         | SRNBHG           | eGRID subregion annual non-baseload Hg output emission rate (Ib/GWh)                                                                         |  |
| 79         | SRGENACL         | 0 1 1                                                                                                                                        |  |
| 80         | SRGENAOL         | eGRID subregion annual coal net generation (MWh) eGRID subregion annual oil net generation (MWh)                                             |  |
| 81         | SRGENAGS         | ŭ ( /                                                                                                                                        |  |
| 82         | SRGENANC         | eGRID subregion annual gas net generation (MWh)                                                                                              |  |
| 83         | SRGENAHY         | eGRID subregion annual nuclear net generation (MWh)                                                                                          |  |
| 84         | SRGENABM         | eGRID subregion annual hydro net generation (MWh) eGRID subregion annual biomass net generation (MWh)                                        |  |
| 85         | SRGENAWI         | eGRID subregion annual wind net generation (MWh)                                                                                             |  |
| 86         | SRGENASO         | eGRID subregion annual solar net generation (MWh)                                                                                            |  |
| 87         | SRGENAGT         | eGRID subregion annual geothermal net generation (MWh)                                                                                       |  |
| 88         | SRGENAOF         | eGRID subregion annual other fossil net generation (MWh)                                                                                     |  |
| 89         | SRGENAOP         | eGRID subregion annual other unknown/purchased fuel net generation (MWh)                                                                     |  |
| 90         | SRGENATN         | eGRID subregion annual total nonrenewables net generation (MWh)                                                                              |  |
| 91         | SRGENATR         | eGRID subregion annual total nonrenewables net generation (MWh)                                                                              |  |
| 92         | SRGENATH         |                                                                                                                                              |  |
| 93         | SRGENACY         | eGRID subregion annual total nonhydro renewables net generation (MWh) eGRID subregion annual total combustion net generation (MWh)           |  |
| 94         | SRGENACN         | eGRID subregion annual total noncombustion net generation (MWh)                                                                              |  |
| 95         | SRCLPR           | eGRID subregion coal generation percent (resource mix)                                                                                       |  |
| 96         | SROLPR           | eGRID subregion coal generation percent (resource mix)                                                                                       |  |
| 97         | SRGSPR           |                                                                                                                                              |  |
| 98         | SRNCPR           | eGRID subregion gas generation percent (resource mix)                                                                                        |  |
| 99         | SRHYPR           | eGRID subregion nuclear generation percent (resource mix) eGRID subregion hydro generation percent (resource mix)                            |  |
| 100        | SRBMPR           | eGRID subregion biomass generation percent (resource mix)                                                                                    |  |
| 100        | SRWIPR           | eGRID subregion wind generation percent (resource mix)                                                                                       |  |
| 101        | SRSOPR           | eGRID subregion solar generation percent (resource mix)                                                                                      |  |
| 102        | SRGTPR           |                                                                                                                                              |  |
| 103        | SROFPR           | eGRID subregion geothermal generation percent (resource mix) eGRID subregion other fossil generation percent (resource mix)                  |  |
| 104        | SROPPR           |                                                                                                                                              |  |
|            |                  | eGRID subregion other unknown/purchased fuel generation percent (resource mix)                                                               |  |
| 106<br>107 | SRTNPR<br>SRTRPR | eGRID subregion total nonrenewables generation percent (resource mix)                                                                        |  |
|            | SRTHPR           | eGRID subregion total renewables generation percent (resource mix)                                                                           |  |
| 108<br>109 | SRCYPR           | eGRID subregion total nonhydro renewables generation percent (resource mix)                                                                  |  |
| 110        | SRCNPR           | eGRID subregion total combustion generation percent (resource mix)                                                                           |  |
| 110        | SKUNFK           | eGRID subregion total noncombustion generation percent (resource mix)                                                                        |  |

# Table A-1 eGRID2007 Version 1.0 File Structure 2005 NRL File NERC Region Location (Operator)-based File

| Field    | Name                | Description                                                                                                                             |
|----------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 1        | SEQNRL05            | Description   eGRID2007 2005 file NERC region location (operator)-based sequence number                                                 |
|          | NERC                | NERC region acronym                                                                                                                     |
| 3        | NERCNAME            | NERC region acronym<br>  NERC name associated with the NERC region acronym                                                              |
| 4        | NAMEPCAP            | NERC region nameplate capacity (MW)                                                                                                     |
| 5        | NRHTIAN             | NERC region nameplate capacity (MW)                                                                                                     |
| 6        | NRHTIOZ             | NERC region armual meat input (MMBtu)                                                                                                   |
| 7        | NRNGENAN            | NERC region annual net generation (MWh)                                                                                                 |
| 8        | NRNGENOZ            | NERC region ozone season net generation (MWh)                                                                                           |
| 9        | NRNOXAN             | NERC region annual NO <sub>x</sub> emissions (tons)                                                                                     |
| 10       | NRNOXAN             | NERC region ozone season NO <sub>x</sub> emissions (tons)                                                                               |
| 11       | NRSO2AN             | NERC region annual SO <sub>2</sub> emissions (tons)                                                                                     |
| 12       | NRCO2AN             | NERC region annual CO <sub>2</sub> emissions (tons)                                                                                     |
| 13       | NRCH4AN             | NERC region annual CH <sub>4</sub> emissions (lbs)                                                                                      |
| 14       | NRN2OAN             | NERC region annual N₂O emissions (lbs)                                                                                                  |
| 15       | NRHGAN              | NERC region annual Hg emissions (lbs)                                                                                                   |
| 16       | NRNOXRTA            | NERC region annual NO <sub>x</sub> output emission rate (lb/MWh)                                                                        |
| 17       | NRNOXRTO            | NERC region ozone season NO <sub>x</sub> output emission rate (lb/MWh)                                                                  |
| 18       | NRSO2RTA            | NERC region annual SO <sub>2</sub> output emission rate (lb/MWh)                                                                        |
| 19       | NRCO2RTA            | NERC region annual CO <sub>2</sub> output emission rate (lb/MWh)                                                                        |
| 20       | NRCH4RTA            | NERC region annual CH₄ output emission rate (lb/GWh)                                                                                    |
| 21       | NRN2ORTA            | NERC region annual N₂O output emission rate (lb/GWh)                                                                                    |
| 22       | NRHGRTA             | NERC region annual Hg output emission rate (lb/GWh)                                                                                     |
| 23       | NRNOXRA             | NERC region annual NO <sub>x</sub> input emission rate (lb/MMBtu)                                                                       |
| 24       | NRNOXRO             | NERC region ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)                                                                 |
| 25       | NRSO2RA             | NERC region annual SO₂ input emission rate (lb/MMBtu)                                                                                   |
| 26       | NRCO2RA             | NERC region annual CO <sub>2</sub> input emission rate (lb/MMBtu)                                                                       |
| 27       | NRHGRA              | NERC region annual Hg input emission rate (lb/BBtu)                                                                                     |
| 28       | NRNOXCRT            | NERC region annual NO <sub>x</sub> combustion output emission rate (lb/MWh)                                                             |
| 29       | NRNOXCRO            | NERC region ozone season NO <sub>x</sub> combustion output emission rate (lb/MWh)                                                       |
| 30       | NRSO2CRT            | NERC region annual SO <sub>2</sub> combustion output emission rate (lb/MWh)                                                             |
| 31       | NRCO2CRT            | NERC region annual CO₂ combustion output emission rate (lb/MWh)                                                                         |
| 32       | NRCH4CRT            | NERC region annual CH₄ combustion output emission rate (lb/GWh)                                                                         |
| 33       | NRN2OCRT            | NERC region annual N₂O combustion output emission rate (lb/GWh)                                                                         |
| 34       | NRHGCRT             | NERC region annual Hg combustion output emission rate (lb/GWh)                                                                          |
| 35       | NRCNOXRT            | NERC region coal annual NO <sub>x</sub> output emission rate (lb/MWh)                                                                   |
| 36       | NRONOXRT            | NERC region oil annual NO <sub>x</sub> output emission rate (lb/MWh)                                                                    |
| 37       | NRGNOXRT            | NERC region gas annual NO <sub>x</sub> output emission rate (lb/MWh)                                                                    |
| 38       | NRFSNXRT            | NERC region fossil fuel annual NO <sub>x</sub> output emission rate (lb/MWh)                                                            |
| 39       | NRCNXORT            | NERC region coal ozone season NO <sub>x</sub> output emission rate (lb/MWh)                                                             |
| 40       | NRONXORT            | NERC region oil ozone season NO <sub>x</sub> output emission rate (lb/MWh)                                                              |
| 41       | NRGNXORT            | NERC region gas ozone season NO <sub>x</sub> output emission rate (lb/MWh)                                                              |
| 42       | NRFSNORT            | NERC region fossil fuel ozone season NO <sub>x</sub> output emission rate (lb/MWh)                                                      |
| 43       | NRCSO2RT            | NERC region coal annual SO <sub>2</sub> output emission rate (lb/MWh)                                                                   |
| 44       | NROSO2RT            | NERC region oil annual SO <sub>2</sub> output emission rate (lb/MWh)                                                                    |
| 45       | NRGSO2RT            | NERC region gas annual SO <sub>2</sub> output emission rate (lb/MWh)                                                                    |
| 46       | NRFSS2RT            | NERC region fossil fuel annual SO <sub>2</sub> output emission rate (lb/MWh)                                                            |
| 47       | NRCCO2RT            | NERC region coal annual CO <sub>2</sub> output emission rate (lb/MWh)                                                                   |
| 48       | NROCO2RT            | NERC region oil annual CO <sub>2</sub> output emission rate (lb/MWh)                                                                    |
| 49<br>50 | NRGCO2RT            | NERC region gas annual CO <sub>2</sub> output emission rate (lb/MWh)                                                                    |
| 51       | NRFSC2RT            | NERC region fossil fuel annual CO <sub>2</sub> output emission rate (lb/MWh)  NERC region coal annual Hg output emission rate (lb/GWh)  |
| 52       | NRCHGRT             | NERC region coal annual Hg output emission rate (lb/GWh)                                                                                |
| 53       | NRFSHGRT<br>NRCNOXR | NERC region rossil fuel annual Hg output emission rate (lb/GWh)  NERC region coal annual NO <sub>x</sub> input emission rate (lb/MMBtu) |
|          | NRONOXR             | NERC region coal annual NO <sub>x</sub> input emission rate (lb/MMBtu)                                                                  |
| 54<br>55 | NRGNOXR             | NERC region on annual NO <sub>x</sub> input emission rate (Ib/MMBtu)                                                                    |
| 56       | NRFSNXR             | NERC region fossil fuel annual NO <sub>x</sub> input emission rate (lb/MMBtu)                                                           |
| 57       | NRCNXOR             | NERC region lossifider affidat NO <sub>x</sub> input emission rate (ib/MMBtu)                                                           |
| 58       | NRONXOR             | NERC region oil ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)                                                             |
| 50       | MINOMANON           | The two region on ozone season thos input emission rate (ib/iviivibitu)                                                                 |

# Table A-1 eGRID2007 Version 1.0 File Structure 2005 NRL File (continued). NERC Region Location (Operator)-based File

| Field | Name       | Description                                                                         |  |
|-------|------------|-------------------------------------------------------------------------------------|--|
| 59    | NRGNXOR    | NERC region gas ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)         |  |
| 60    | NRFSNOR    | NERC region fossil fuel ozone season NO <sub>x</sub> input emission rate (lb/MMBtu) |  |
| 61    | NRCSO2R    | NERC region coal annual SO₂ input emission rate (Ib/MMBtu)                          |  |
| 62    | NROSO2R    | NERC region oil annual SO <sub>2</sub> input emission rate (lb/MMBtu)               |  |
| 63    | NRGSO2R    | NERC region gas annual SO <sub>2</sub> input emission rate (lb/MMBtu)               |  |
| 64    | NRFSS2R    | NERC region fossil fuel annual SO <sub>2</sub> input emission rate (lb/MMBtu)       |  |
| 65    | NRCCO2R    | VERC region coal annual CO <sub>2</sub> input emission rate (lb/MMBtu)              |  |
| 66    | NROCO2R    | NERC region oil annual CO <sub>2</sub> input emission rate (lb/MMBtu)               |  |
| 67    | NRGCO2R    | NERC region gas annual CO <sub>2</sub> input emission rate (lb/MMBtu)               |  |
| 68    | NRFSC2R    | NERC region fossil fuel annual CO <sub>2</sub> input emission rate (lb/MMBtu)       |  |
| 69    | NRCHGR     | NERC region coal annual Hg input emission rate (lb/BBtu)                            |  |
| 70    | NRFSHGR    | NERC region fossil fuel annual Hg input emission rate (lb/BBtu)                     |  |
| 71    | NRNBNOX    | NERC region annual non-baseload NO <sub>x</sub> output emission rate (lb/MWh)       |  |
| 72    | NRNBNXO    | NERC region ozone season non-baseload NO <sub>v</sub> output emission rate (lb/MWh) |  |
| 73    | NRNBSO2    | NERC region annual non-baseload SO <sub>2</sub> output emission rate (lb/MWh)       |  |
| 74    | NRNBCO2    | NERC region annual non-baseload CO <sub>2</sub> output emission rate (lb/MWh)       |  |
| 75    | NRNBCH4    | NERC region annual non-baseload CH₄ output emission rate (lb/GWh)                   |  |
| 76    | NRNBN2O    | NERC region annual non-baseload N₂O output emission rate (lb/GWh)                   |  |
| 77    | NRNBHG     | NERC region annual non-baseload Hg output emission rate (lb/GWh)                    |  |
| 78    | NRGENACL   | NERC region annual coal net generation (MWh)                                        |  |
| 79    | NRGENAOL   | NERC region annual oil net generation (MWh)                                         |  |
| 80    | NRGENAGS   | NERC region annual gas net generation (MWh)                                         |  |
| 81    | NRGENANC   | NERC region annual nuclear net generation (MWh)                                     |  |
| 82    | NRGENAHY   | NERC region annual hydro net generation (MWh)                                       |  |
| 83    | NRGENABM   | NERC region annual biomass net generation (MWh)                                     |  |
| 84    | NRGENAWI   | NERC region annual wind net generation (MWh)                                        |  |
| 85    | NRGENASO   | NERC region annual solar net generation (MWh)                                       |  |
| 86    | NRGENAGT   | NERC region annual geothermal net generation (MWh)                                  |  |
| 87    | NRGENAOF   | NERC region annual other fossil net generation (MWh)                                |  |
| 88    | NRGENAOP   | NERC region annual other unknown/purchased fuel net generation (MWh)                |  |
| 89    | NRGENATN   | NERC region annual total nonrenewables net generation (MWh)                         |  |
| 90    | NRGENATR   | NERC region annual total renewables net generation (MWh)                            |  |
| 91    | NRGENATH   | NERC region annual total nonhydro renewables net generation (MWh)                   |  |
| 92    | NRGENACY   | NERC region annual total combustion net generation (MWh)                            |  |
| 93    | NRGENACN   | NERC region annual total noncombustion net generation (MWh)                         |  |
| 94    | NRCLPR     | NERC region coal generation percent (resource mix)                                  |  |
| 95    | NROLPR     | NERC region oil generation percent (resource mix)                                   |  |
| 96    | NRGSPR     | NERC region gas generation percent (resource mix)                                   |  |
| 97    | NRNCPR     | NERC region nuclear generation percent (resource mix)                               |  |
| 98    | NRHYPR     | NERC region hydro generation percent (resource mix)                                 |  |
| 99    | NRBMPR     | NERC region biomass generation percent (resource mix)                               |  |
| 100   | NRWIPR     | NERC region wind generation percent (resource mix)                                  |  |
| 101   | NRSOPR     | NERC region solar generation percent (resource mix)                                 |  |
| 102   | NRGTPR     | NERC region geothermal generation percent (resource mix)                            |  |
| 103   | NROFPR     | NERC region other fossil generation percent (resource mix)                          |  |
| 104   | NROPPR     | NERC region other unknown/purchased fuel generation percent (resource mix)          |  |
| 105   | NRTNPR     | NERC region total nonrenewables generation percent (resource mix)                   |  |
| 106   | NRTRPR     | NERC region total renewables generation percent (resource mix)                      |  |
| 107   | NRTHPR     | NERC region total nonhydro renewables generation percent (resource mix)             |  |
| 108   | NRCYPR     | NERC region total combustion generation percent (resource mix)                      |  |
| 100   | NRCNPR     | NERC region total noncombustion generation percent (resource mix)                   |  |
| 103   | TVINCIVITY | NETTO region total noncombustion generation percent (resource mix)                  |  |

## Table A-1 eGRID2007 Version 1.0 File Structure 2005 US File United States File

| Field | Name     | Description                                                               | Source(s)                                                                         |
|-------|----------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1     | SEQUS05  | eGRID2007 2005 file US sequence number                                    |                                                                                   |
| 2     | NAMEPCAP | US nameplate capacity (MW)                                                |                                                                                   |
| 3     | USHTIAN  | US annual heat input (MMBtu)                                              |                                                                                   |
| 4     | USHTIOZ  | US ozone season heat input (MMBtu)                                        | EIA's Electric Power Annual, data table (generation_state.xls)                    |
| 5     | USNGENAN | US annual net generation (MWh)                                            | EIA Electric Sales, Revenue, and<br>Average Price data table<br>(sales_state.xls) |
| 6     | USNGENOZ | US ozone season net generation (MWh)                                      | EIA-861                                                                           |
| 7     | USNOXAN  | US annual NO <sub>x</sub> emissions (tons)                                | EIA-861                                                                           |
| 8     | USNOXOZ  | US ozone season NO <sub>x</sub> emissions (tons)                          |                                                                                   |
| 9     | USSO2AN  | US annual SO <sub>2</sub> emissions (tons)                                |                                                                                   |
| 10    | USCO2AN  | US annual CO <sub>2</sub> emissions (tons)                                |                                                                                   |
| 11    | USCH4AN  | US annual CH₄ emissions (lbs)                                             |                                                                                   |
| 12    | USN2OAN  | US annual N₂O emissions (lbs)                                             |                                                                                   |
| 13    | USHGAN   | US annual Hg emissions (lbs)                                              |                                                                                   |
| 14    | USNOXRTA | US annual NO <sub>x</sub> output emission rate (lb/MWh)                   |                                                                                   |
| 15    | USNOXRTO | US ozone season NO <sub>x</sub> output emission rate (lb/MWh)             |                                                                                   |
| 16    | USSO2RTA | US annual SO <sub>2</sub> output emission rate (lb/MWh)                   |                                                                                   |
| 17    | USCO2RTA | US annual CO <sub>2</sub> output emission rate (lb/MWh)                   |                                                                                   |
| 18    | USCH4RTA | US annual CH₄ output emission rate (lb/GWh)                               |                                                                                   |
| 19    | USN2ORTA | US annual N₂O output emission rate (lb/GWh)                               |                                                                                   |
| 20    | USHGRTA  | US annual Hg output emission rate (lb/GWh)                                |                                                                                   |
| 21    | USNOXRA  | US annual NO <sub>x</sub> input emission rate (lb/MMBtu)                  |                                                                                   |
| 22    | USNOXRO  | US ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)            |                                                                                   |
| 23    | USSO2RA  | US annual SO <sub>2</sub> input emission rate (lb/MMBtu)                  |                                                                                   |
| 24    | USCO2RA  | US annual CO <sub>2</sub> input emission rate (lb/MMBtu)                  |                                                                                   |
| 25    | USHGRA   | US annual Hg input emission rate (lb/BBtu)                                |                                                                                   |
| 26    | USNOXCRT | US annual NO <sub>x</sub> combustion output emission rate (lb/MWh)        |                                                                                   |
| 27    | USNOXCRO | US ozone season NO <sub>x</sub> combustion output emission rate (lb/MWh)  |                                                                                   |
| 28    | USSO2CRT | US annual SO₂ combustion output emission rate (lb/MWh)                    |                                                                                   |
| 29    | USCO2CRT | US annual CO₂ combustion output emission rate (lb/MWh)                    |                                                                                   |
| 30    | USCH4CRT | US annual CH₄ combustion output emission rate (lb/GWh)                    |                                                                                   |
| 31    | USN2OCRT | US annual N₂O combustion output emission rate (lb/GWh)                    |                                                                                   |
| 32    | USHGCRT  | US annual Hg combustion output emission rate (lb/GWh)                     |                                                                                   |
| 33    | USCNOXRT | US coal annual NO <sub>x</sub> output emission rate (lb/MWh)              |                                                                                   |
| 34    | USONOXRT | US oil annual NO <sub>x</sub> output emission rate (lb/MWh)               |                                                                                   |
| 35    | USGNOXRT | US gas annual NO <sub>x</sub> output emission rate (lb/MWh)               |                                                                                   |
| 36    | USFSNXRT | US fossil fuel annual NO <sub>x</sub> output emission rate (lb/MWh)       |                                                                                   |
| 37    | USCNXORT | US coal ozone season NO <sub>x</sub> output emission rate (lb/MWh)        |                                                                                   |
| 38    | USONXORT | US oil ozone season NO <sub>x</sub> output emission rate (lb/MWh)         |                                                                                   |
| 39    | USGNXORT | US gas ozone season NO <sub>x</sub> output emission rate (lb/MWh)         |                                                                                   |
| 40    | USFSNORT | US fossil fuel ozone season NO <sub>x</sub> output emission rate (lb/MWh) |                                                                                   |
| 41    | USCSO2RT | US coal annual SO <sub>2</sub> output emission rate (lb/MWh)              |                                                                                   |
| 42    | USOSO2RT | US oil annual SO <sub>2</sub> output emission rate (lb/MWh)               |                                                                                   |
| 43    | USGSO2RT | US gas annual SO <sub>2</sub> output emission rate (lb/MWh)               |                                                                                   |
| 44    | USFSS2RT | US fossil fuel annual SO <sub>2</sub> output emission rate (lb/MWh)       |                                                                                   |
| 45    | USCCO2RT | US coal annual CO <sub>2</sub> output emission rate (lb/MWh)              |                                                                                   |
| 46    | USOCO2RT | US oil annual CO <sub>2</sub> output emission rate (lb/MWh)               |                                                                                   |
| 47    | USGCO2RT | US gas annual CO <sub>2</sub> output emission rate (lb/MWh)               |                                                                                   |
| 48    | USFSC2RT | US fossil fuel annual CO <sub>2</sub> output emission rate (lb/MWh)       |                                                                                   |
| 49    | USCHGRT  | US coal annual Hg output emission rate (lb/GWh)                           |                                                                                   |
| 50    | USFSHGRT | US fossil fuel annual Hg output emission rate (lb/GWh)                    |                                                                                   |
| 51    | USCNOXR  | US coal annual NO <sub>x</sub> input emission rate (lb/MMBtu)             |                                                                                   |
| 52    | USONOXR  | US oil annual NO <sub>x</sub> input emission rate (lb/MMBtu)              |                                                                                   |
| 53    | USGNOXR  | US gas annual NO <sub>x</sub> input emission rate (lb/MMBtu)              |                                                                                   |
| 54    | USFSNXR  | US fossil fuel annual NO <sub>x</sub> input emission rate (lb/MMBtu)      |                                                                                   |
| 55    | USCNXOR  | US coal ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)       |                                                                                   |

# Table A-1 eGRID2007 Version 1.0 File Structure 2005 US File (continued). United States File

| Field | Name     | Description                                                                | Source(s) |
|-------|----------|----------------------------------------------------------------------------|-----------|
| 56    | USONXOR  | US oil ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)         |           |
| 57    | USGNXOR  | US gas ozone season NO <sub>x</sub> input emission rate (lb/MMBtu)         |           |
| 58    | USFSNOR  | US fossil fuel ozone season NO <sub>x</sub> input emission rate (lb/MMBtu) |           |
| 59    | USCSO2R  | US coal annual SO <sub>2</sub> input emission rate (lb/MMBtu)              |           |
| 60    | USOSO2R  | US oil annual SO <sub>2</sub> input emission rate (lb/MMBtu)               |           |
| 61    | USGSO2R  | US gas annual SO <sub>2</sub> input emission rate (lb/MMBtu)               |           |
| 62    | USFSS2R  | US fossil fuel annual SO <sub>2</sub> input emission rate (lb/MMBtu)       |           |
| 63    | USCCO2R  | US coal annual CO <sub>2</sub> input emission rate (lb/MMBtu)              |           |
| 64    | USOCO2R  | US oil annual CO <sub>2</sub> input emission rate (lb/MMBtu)               |           |
| 65    | USGCO2R  | US gas annual CO <sub>2</sub> input emission rate (lb/MMBtu)               |           |
| 66    | USFSC2R  | US fossil fuel annual CO <sub>2</sub> input emission rate (lb/MMBtu)       |           |
| 67    | USCHGR   | US coal annual Hg input emission rate (lb/BBtu)                            |           |
| 68    | USFSHGR  | US fossil fuel annual Hg input emission rate (lb/BBtu)                     |           |
| 69    | USNBNOX  | US annual non-baseload NO <sub>x</sub> output emission rate (lb/MWh)       |           |
| 70    | USNBNXO  | US ozone season non-baseload NO <sub>x</sub> output emission rate (lb/MWh) |           |
| 71    | USNBSO2  | US annual non-baseload SO <sub>2</sub> output emission rate (lb/MWh)       |           |
| 72    | USNBCO2  | US annual non-baseload CO <sub>2</sub> output emission rate (lb/MWh)       |           |
| 73    | USNBCH4  | US annual non-baseload CH₄ output emission rate (lb/GWh)                   |           |
| 74    | USNBN2O  | US annual non-baseload N₂O output emission rate (lb/GWh)                   |           |
| 75    | USNBHG   | US annual non-baseload Hg output emission rate (lb/GWh)                    |           |
| 76    | USGENACL | US annual coal net generation (MWh)                                        |           |
| 77    | USGENAOL | US annual oil net generation (MWh)                                         |           |
| 78    | USGENAGS | US annual gas net generation (MWh)                                         |           |
| 79    | USGENANC | US annual nuclear net generation (MWh)                                     |           |
| 80    | USGENAHY | US annual hydro net generation (MWh)                                       |           |
| 81    | USGENABM | US annual biomass net generation (MWh)                                     |           |
| 82    | USGENAWI | US annual wind net generation (MWh)                                        |           |
| 83    | USGENASO | US annual solar net generation (MWh)                                       |           |
| 84    | USGENAGT | US annual geothermal net generation (MWh)                                  |           |
| 85    | USGENAOF | US annual other fossil net generation (MWh)                                |           |
| 86    | USGENAOP | US annual other unknown/purchased fuel net generation (MWh)                |           |
| 87    | USGENATN | US annual total nonrenewables net generation (MWh)                         |           |
| 88    | USGENATR | US annual total renewables net generation (MWh)                            |           |
| 89    | USGENATH | US annual total nonhydro renewables net generation (MWh)                   |           |
| 90    | USGENACY | US annual total combustion net generation (MWh)                            |           |
| 91    | USGENACN | US annual total noncombustion net generation (MWh)                         |           |
| 92    | USCLPR   | US coal generation percent (resource mix)                                  |           |
| 93    | USOLPR   | US oil generation percent (resource mix)                                   |           |
| 94    | USGSPR   | US gas generation percent (resource mix)                                   |           |
| 95    | USNCPR   | US nuclear generation percent (resource mix)                               |           |
| 96    | USHYPR   | US hydro generation percent (resource mix)                                 |           |
| 97    | USBMPR   | US biomass generation percent (resource mix)                               |           |
| 98    | USWIPR   | US wind generation percent (resource mix)                                  |           |
| 99    | USSOPR   | US solar generation percent (resource mix)                                 |           |
| 100   | USGTPR   | US geothermal generation percent (resource mix)                            |           |
| 101   | USOFPR   | US other fossil generation percent (resource mix)                          |           |
| 102   | USOPPR   | US other unknown/purchased fuel generation percent (resource mix)          |           |
| 103   | USTNPR   | US total nonrenewables generation percent (resource mix)                   |           |
| 104   | USTRPR   | US total renewables generation percent (resource mix)                      |           |
| 105   | USTHPR   | US total nonhydro renewables generation percent (resource mix)             |           |
| 106   | USCYPR   | US total combustion generation percent (resource mix)                      |           |
| 107   | USCNPR   | US total noncombustion generation percent (resource mix)                   |           |

# Table A-1 eGRID2007 Version 1.0 File Structure STIE04 File 2004 State Import-Export File

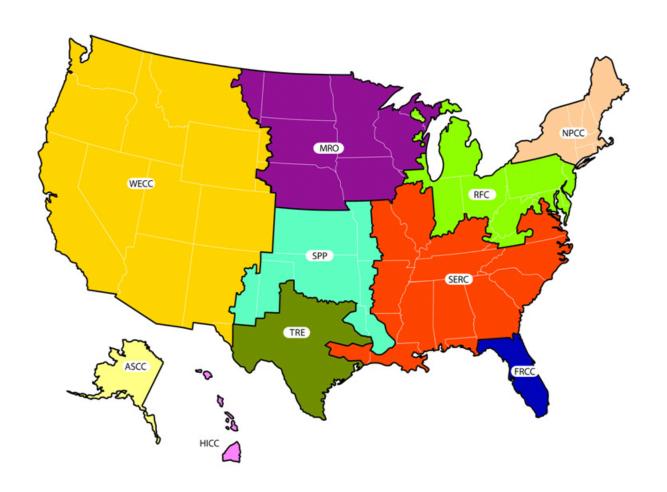
| Field | Name     | Description                                                                                          | Source(s)                                                                         |
|-------|----------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1     | SEQST04  | eGRID2006 2004 file State sequence number                                                            |                                                                                   |
| 2     | PSTATABB | State abbreviation                                                                                   |                                                                                   |
| 3     | GRIDRGN  | Grid region (E = Eastern grid, W = Western grid, AK = Alaska, HI = Hawaii, TX=Texas)                 |                                                                                   |
| 4     | STNGEN04 | 2004 State total net generation (GWh)                                                                | EIA Electric Power Annual, data table (generation_state.xls)                      |
| 5     | STSLCN04 | 2004 State sales to ultimate customers (GWh)                                                         | EIA Electric Sales, Revenue, and<br>Average Price data table<br>(sales_state.xls) |
| 6     | STCNEL04 | 2004 State energy consumed by respondent without charge (GWh)                                        | EIA-861                                                                           |
| 7     | STCNFR04 | 2004 State energy furnished without charge (GWh)                                                     | EIA-861                                                                           |
| 8     | STCON04  | 2004 State total consumption (= STSLCN04 + STCNEL04 + STCNFR04) (GWh)                                |                                                                                   |
| 9     | GRDLSF04 | 2004 grid gross loss factor                                                                          |                                                                                   |
| 10    | STADJG04 | 2004 State adjusted total net generation (= (1 - GRDLSF04) * STNGEN04) (GWh)                         |                                                                                   |
| 11    | STESTI04 | 2004 State estimated net imports (= STCON04 - STADJG04) (GWh)                                        |                                                                                   |
| 12    | STPRI04  | 2004 State estimated net imports as a percent of total consumption (= 100 * STESTI04/STCON04)        |                                                                                   |
| 13    | STPRE04  | 2004 State estimated net exports as a percent of total net generation (= 100 *(- STESTI04/STNGEN04)) |                                                                                   |

# Table A-1 eGRID2007 Version 1.0 File Structure STIE05 File 2005 State Import-Export File

| Field | Name     | Description                                                                                          | Source(s)                                                                         |
|-------|----------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1     | SEQST05  | eGRID2007 2005 file State sequence number                                                            |                                                                                   |
| 2     | PSTATABB | State abbreviation                                                                                   |                                                                                   |
| 3     | GRIDRGN  | Grid region (E = Eastern grid, W = Western grid, AK = Alaska, HI = Hawaii, TX=Texas)                 |                                                                                   |
| 4     | STNGEN05 | 2005 State total net generation (GWh)                                                                | EIA Electric Power Annual, data table (generation_state.xls)                      |
| 5     | STSLCN05 | 2005 State sales to ultimate customers (GWh)                                                         | EIA Electric Sales, Revenue, and<br>Average Price data table<br>(sales_state.xls) |
| 6     | STCNEL05 | 2005 State energy consumed by respondent without charge (GWh)                                        | EIA-861                                                                           |
| 7     | STCNFR05 | 2005 State energy furnished without charge (GWh)                                                     | EIA-861                                                                           |
| 8     | STCON05  | 2005 State total consumption (= STSLCN05 + STCNEL05 + STCNFR05) (GWh)                                |                                                                                   |
| 9     | GRDLSF05 | 2005 grid gross loss factor                                                                          |                                                                                   |
| 10    | STADJG05 | 2005 State adjusted total net generation (= (1 - GRDLSF05) * STNGEN05) (GWh)                         |                                                                                   |
| 11    | STESTI05 | 2005 State estimated net imports (= STCON05 - STADJG05)<br>(GWh)                                     |                                                                                   |
| 12    | STPRI05  | 2005 State estimated net imports as a percent of total consumption (= 100 * STESTI05/STCON05)        |                                                                                   |
| 13    | STPRE05  | 2005 State estimated net exports as a percent of total net generation (= 100 *(- STESTI05/STNGEN05)) |                                                                                   |

#### Table A-1 eGRID2007 Version 1.0 File Structure USGC File

#### 2004-2005 U.S. Generation and Consumption File


| Field | Name     | Description                                                |
|-------|----------|------------------------------------------------------------|
| 1     | USTNGN04 | 2004 U.S. total net generation (GWh)                       |
| 2     | USTCON04 | 2004 U.S. total consumption (GWh)                          |
| 3     | USTNFI04 | 2004 net foreign imports (GWh), based on internal EIA data |
| 4     | USTNGN05 | 2005 U.S. total net generation (GWh)                       |
| 5     | USTCON05 | 2005 U.S. total consumption (GWh)                          |
| 6     | USTNFI05 | 2005 net foreign imports (GWh), based on internal EIA data |

#### APPENDIX B. eGRID2007 eGRID SUBREGION AND NERC REGION REPRESENTATIONAL MAPS

Figure B-1. eGRID2007 eGRID Subregion Representational Map





