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[1] Using existing data sets of spaceborne soil moisture
retrievals, streamflow and precipitation for 26 basins in the
United States Southern Great Plains, a 5-year analysis is
performed to quantify the value of soil moisture retrievals
derived from the Tropical Rainfall Measuring Mission
(TRMM) Microwave Imager (TMI) X-band (10.7 GHz)
radiometer for forecasting storm event-scale runoff ratios.
The predictive ability of spaceborne soil moisture retrievals
is objectively compared to that obtainable using only
available rainfall observations and the antecedent
precipitation index (API). The assimilation of spaceborne
observations into an API soil moisture proxy is
demonstrated to add skill to the forecasting of land
surface response to precipitation. Citation: Crow, W. T., R.

Bindlish, and T. J. Jackson (2005), The added value of spaceborne

passive microwave soil moisture retrievals for forecasting

rainfall-runoff partitioning, Geophys. Res. Lett., 32, L18401,

doi:10.1029/2005GL023543.

1. Introduction

[2] Within small and intermediate-scale basins, knowl-
edge of antecedent soil moisture conditions provides a key
source of skill for short-term (1- to 3-day) streamflow
forecasting. Current operational approaches in the United
States attempt to exploit this skill by estimating soil
moisture through consideration of antecedent precipitation
indices and/or the application of surface water balance
models. In the near future, supplemental surface soil
moisture information will be operationally available from
microwave remote sensing. Previous work examining the
added value of observed soil moisture for streamflow
forecasting have considered observations derived from
spaceborne radar [Pauwels et al., 2002; Francois et al.,
2003], airborne passive [Goodrich et al., 1994; Jacobs et
al., 2003], and in situ sensors [Aubert et al., 2003]. Less
work has been focused on soil moisture data estimates
derived from passive spaceborne radiometers. Utilizing
passive spaceborne observations for surface soil moisture
retrievals presents an unique set of advantages (e.g. more
frequent and spatially extensive observations than
spaceborne radar, airborne passive, or ground-based obser-
vations and generally higher accuracy than spaceborne

radar) and disadvantages (e.g. relatively poor spatial
resolution). Examining the effect of these attributes on
streamflow forecasting is further motivated by the expected
windfall of global, passive-based soil moisture data
expected from the upcoming Soil Moisture and Ocean
Salinity (SMOS) [Kerr et al., 2001], Hydrosphere State
(Hydros) [Entekhabi et al., 2004] and Conically Scanning
Microwave Imager/Sounder (CMIS) [Chauhan, 2003]
spaceborne missions.
[3] A critical benchmark for evaluating the value of such

observations for hydrologic forecasting is whether their
inclusion into a modeling system leads to improvements
above and beyond what is possible using existing
observational resources. Within the context of rainfall-
runoff modeling, the issue is whether remotely-sensed soil
moisture provides information concerning antecedent soil
moisture that is more valuable for hydrologic forecasting
than soil moisture proxies that are commonly available from
observations of antecedent precipitation and simple soil
moisture modeling.
[4] Using long-term daily rainfall/runoff data sets

collected as part of the MOdel Parameterization EXperi-
ment (MOPEX), satellite-based precipitation observations
from the Global Precipitation Climatology Project (GPCP),
and nearly five years of remotely-sensed soil moisture
derived from the 10.7-GHz band of the Tropical Rainfall
Mission (TRMM) Microwave Image (TMI), this analysis
examines the value of simple precipitation-based soil
moisture proxies - derived with and without the assimilation
of remotely-sensed soil moisture retrievals – for the short-
term (1–3 day) forecasting of storm event-scale runoff
ratios (runoff/precipitation). The goal will be to definitely
isolate the added value (if any) of spaceborne soil
moisture retrievals for forecasting land surface response to
precipitation.

2. Data

[5] MOPEX data sets provide high-quality, daily obser-
vations of streamflow, air temperature, and precipitation for
a large number of intermediate-scale (500 to 10000 km2)
basins in the United States [Schaake et al., 2001]. Prior to
their inclusion into MOPEX, individual basins are screened
according to the quality (and density) of rain gauges
observations in the basin and degree of anthropogenic
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diversion and impoundment. All MOPEX basins within a
box extending from �99 to �90 degrees longitude and
south of 39 degrees latitude (the maximum latitude of
TRMM observations) are considered (Table 1). To the west
of �99 degrees longitude, runoff magnitudes are generally
too low (1 to 2% of annual rainfall) to obtain an adequate
sample of storm events with significant streamflow
responses, and the predominance of forested land cover
east of �90 degrees latitude greatly complicates the remote
retrieval of soil moisture.
[6] The retrieval of surface soil moisture observations

from 10.7 GHz TMI observations is described in detail by
Bindlish et al. [2003]. Retrievals have a �3dB spatial
resolution of 382 km2. Due to TRMM orbital characteristics,
overpass times vary but retrievals are generally available
on a daily basis. Satellite-based precipitation fields are
derived from one latitude/longitude degree daily (1DD)
Global Precipitation Climatology Project (GPCP) products
based on infrared retrievals from the Television Infrared
Observation Satellite (TIROS) Operational Vertical Sounder
(TOVS) and the Geostationary Operational Environmental
Satellite (GOES) and passive microwave measurements
from the Special Sensor Microwave Imager (SSM/I)
[Huffman et al., 2001].

3. Soil Moisture Proxies

[7] Three different soil moisture proxies are calculated:
the antecedent precipitation index (API), TMI-based surface
soil moisture retrievals (qTMI), and API updated with daily
qTMI using a Kalman filter (APITMI). API for day i is defined
as

APIi ¼ gAPIi�1 þ Pi ð1Þ

where Pi is daily precipitation and g is the loss coefficient.
Both rain gauge data and satellite-based rainfall products
will be used to estimate P.
[8] Kalman filtering is used to update API predictions

from (1) with remotely-sensed surface soil moisture from
TMI. The relationship between API and TMI-derived
surface soil moisture (qTMI) is derived by fitting a linear
least-squares regression line (with slope b and intercept a)
to daily scatter plots of each quantity. Due to the known
sensitivity of this relationship to vegetation amount,
separate fits are individually derived for each basin listed
in Table 1. Using this measurement operator, the state
update equation for the Kalman filter becomes

APIþTMIi
¼ API�TMIi

þ Ki qTMIi � a� bAPI�TMIi

� �
ð2Þ

where K is the Kalman gain

Ki ¼ b T�
i = b2 T�

i þ R
� �

; ð3Þ

T the forecasting error in model API predictions, and R the
error in qTMI retrievals. Between daily updates, the model
state APITMIi

is temporally updated using (1). Forecasting
error T is propagated in time using

T�
i ¼ g2 Tþ

i�1 þ Q ð4Þ

and then adjusted at measurement times via

Tþ
i ¼ 1� bKið ÞT�

i : ð5Þ

The filter requires that two error parameters, Q and R, be set
equal to the variance of daily error in API calculations and
qTMI retrievals, respectively. Based on validation results for
qTMI in Bindlish et al. [2003] and the known sensitivity of
R to vegetation amount, R is assumed to be (2%)2 volumetric
for basins in the lightly vegetated western portion of the
region (west of �97 degrees latitude), (4%)2 for heavily
vegetated eastern portions of the basin (east of �92 degree
latitude) and (3%)2 for basins located in between.
Following Dee [1995], modeling error is calculated by
tuning Q such that normalized filter innovations - [qTMIi

�
(a + b APITMIi

�)]2/(b2Ti
� + R) - have a temporal mean of

one. During tuning, all basins are lumped together to
obtain a single calibrated Q value.

4. Approach

[9] For each of the 26 basins described in Table 1, API,
qTMI, and APITMI were calculated on a daily basis between
December 1997 and September 2002. Each moisture proxy
was then used to estimate moisture levels on the day prior to
the start of a storm event. The value of various soil moisture
proxies for runoff forecasting were intercompared based on
the Spearman-rank correlation coefficient (SR) calculated
between their pre-storm value and the subsequent time-
integrated runoff ratio (total streamflow/total rainfall)
observed during the event.
[10] A storm event is initiated when at least 2 mm of

rainfall is recorded on single day and lasts for the next
7 days or until a day of above-threshold rainfall is recorded

Table 1. Outlet Location, Basin Size, and Long-Term Runoff

Ratios for MOPEX Basins Used in the Analysis

Basin USGS Number Lat/Long Size, km2 Runoff Ratio

1 02486000 �90.178/32.281 7927 0.263
2 06908000 �93.196/38.992 2800 0.294
3 06913500 �95.256/38.616 3125 0.236
4 06933500 �91.977/37.929 7100 0.229
5 07019000 �90.591/38.505 9470 0.253
6 07052500 �93.461/36.805 2467 0.256
7 07056000 �92.745/35.983 2072 0.283
8 07057500 �92.248/36.622 1402 0.336
9 07058000 �92.304/36.626 1425 0.230
10 07067000 �91.014/36.991 4167 0.347
11 07068000 �90.847/36.621 5095 0.381
12 07144200 �97.387/37.832 3317 0.136
13 07144780 �97.935/37.844 1967 0.073
14 07147070 �97.012/37.795 1065 0.185
15 07147800 �96.994/37.224 4700 0.260
16 07152000 �97.277/36.811 4647 0.211
17 07172000 �96.315/37.003 1112 0.232
18 07177500 �95.954/36.278 2262 0.254
19 07183000 �95.430/37.890 9545 0.216
20 07186000 �94.566/37.245 2910 0.213
21 07196500 �94.920/35.921 2397 0.282
22 07197000 �94.838/35.921 767 0.270
23 07243500 �96.065/35.675 5045 0.195
24 07290000 �90.696/32.347 7030 0.340
25 07346000 �94.498/32.749 2125 0.244
26 08055500 �96.944/32.965 6147 0.103
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following a day of below-threshold rainfall. To limit the
impact of convoluted streamflow responses from closely
following storms, only events lasting 5 days or more were
considered and any event preceded by streamflow greater
than 2 mm day�1 was deemed too close to a preceding
event and dropped from the analysis. To minimize the
impact of frozen precipitation, events beginning on days
in which the average of minimum and maximum tempera-
ture was below 0 C were also masked. For the remaining
events, cumulative rainfall and streamflow totals were
obtained by summing observations made within individual
storm periods and used to calculate a storm-scale runoff
ratio (total streamflow/total precipitation) for each event.
No attempt was made to separate out the base flow
component of streamflow.

5. Results

[11] Figure 1 shows time series of qTMI, API and
APITMI proxies for a single basin (Deep Fork River at
Beggs, OK - USGS number 07243500) between July 2000
and June 2001 and, for storms between December 1997 and
September 2002, scatter-plots of pre-storm values of each
proxy versus subsequent storm-scale runoff ratios. All three
proxies demonstrate a positive and statistically significant
Spearman-rank correlation coefficient (SR) between their
pre-storm values and subsequent storm-scale runoff ratios.
A higher correlation coefficient is obtained for the merged
APITMI proxy (Figure 1f) than for either qTMI or API in
isolation (Figures 1b and 1d). Figure 2a repeats the analysis

for all 26 basins in Table 1 and plots SR values calculated
between the pre-storm value of proxies and subsequent
event-scale runoff ratios. Despite exhibiting more basin-to-
basin variability, SR values for qTMI are generally comparable
with correlation levels for API. However, the merger of qTMI

into API to form APITMI increases the observed correlation
for all 26 basins (Figure 2a).

5.1. Impact of Satellite-Based Precipitation

[12] Only basins with sufficiently dense ground-based
rain gauge observations are considered in MOPEX. Conse-
quently the reliability of daily rainfall accumulations used to
derive API values in Figures 1 and 2 is very high and not
globally representative of typical rainfall accuracies. The
results in Figure 2b are based on modifying the analysis in
Figure 2a by using satellite-based GPCP-1DD daily rainfall
estimates instead of rain gauge data to estimate P in (1).
Switching between gauge- and satellite-based precipitation
products leads to a reduction in the ability of API to forecast
runoff-ratios (Figure 2b). However, when TMI observations
are assimilated into API(GPCP) to form APITMI(GPCP), the
increase in SR is large enough to fully compensate for
the deficiencies of the GPCP-1DD precipitation forcing
(Figure 2b). That is, an appropriate combination of
satellite-based precipitation and TMI soil moisture obser-
vations provides as much (or more) land surface infor-
mation than high quality rain gauge-based API predictions
lacking any soil moisture assimilation.

5.2. Impact of Model Complexity

[13] API results for all basins in Figure 2 were derived
assuming g = 0.85 in (1). Sensitivity tests (not shown)
reveal little qualitative variation in Figure 2 when g is
varied. However, given that (1) represents an extremely
simplistic soil moisture model, it is worthwhile to consider
the impact of increased model complexity. If daily temper-
ature data is available, then g can be modified to reflect

Figure 1. For a single basin (USGS number 07243500),
1-year time series of soil moisture proxies and scatter
plots (for all five years) of proxies on the day prior to
precipitation events versus subsequent storm event-scale
runoff ratios. Each circle represents a separate event.
Spearman-rank correlation coefficients (SR) are given for
each scatter plot.

Figure 2. a) Comparison of SR calculated between
pre-storm values of soil moisture proxies versus storm
event-scale runoff ratios using gauge-based precipitation
and API, qTMI, and APITMI proxies. Basin numbers on the
x-axis correspond to the first column of Table 1. b) Same
as a), except proxies are gauged-based API (API(Gauge)),
satellite-based API (API(GPCP)), and the merged proxy
based on the assimilation of qTMI into API(GPCP)
(APITMI(GPCP)).
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enhanced (reduced) soil loss due to evapotranspiration
during warm (cold) days

g ¼ 0:85þ d 20� Tmax C½ �ð Þ ð6Þ

where Tmax is the daily maximum temperature and d a
sensitivity parameter. Figure 3a demonstrates how results
change for this model modification by plotting SR (averaged
across all 26 basins) between event-scale runoff-ratio and
both API and APITMI for various choices of d in (6). Gauge-
based precipitation observations were used for all results
and g values bounded at a maximum value of one. Note that
each choice for d requires a separate recalibration of Q in
(4) to maintain proper innovation statistics. A d of
zero corresponds to the previous approach where g is fixed.
At d = 0, Figure 3a demonstrates that the assimilation proxy
APITMI is superior to just API. However, increasing d leads
to a sharper rise in SR values for API than for APITMI. In
fact, near d = 0.0075 [C�1], the incremental value of
assimilating qTMI into API vanishes. This suggests that for
more complex models, the primary value of TMI observa-
tions will evolve towards the selection of static model
parameters (i.e. calibration of d) as opposed to the dynamic
updating of API via data assimilation. Figure 3b illustrates
the feasibility of this calibration strategy by demonstrating
that values of d associated with high SR for API in Figure 3a
are also associated with a high correlation between API
and qTMI.

6. Summary and Conclusions

[14] Relative to the skill obtainable through consideration
of only gauge-based antecedent precipitation, the assimila-
tion of TMI-based soil moisture estimates (qTMI) into a
simple API model leads to an enhanced ability to forecast
rainfall-runoff partitioning (i.e. an increase in Spearman-
rank correlation between pre-storm soil moisture proxies

and subsequent storm-event runoff ratios) for all twenty-six
of the basins listed in Table 1 (Figure 2a). The added value
of TMI observations is enhanced when lower quality, but
more readily available, satellite-based precipitation data sets
are used to drive API predictions. In fact, Kalman filter-
based assimilation of qTMI into an API model driven
by satellite-based GPCP precipitation data leads to
runoff-ratio forecasting skill that is slightly better than
API models driven by high-quality ground-based gauge
data (Figure 2b). That is, for this particular application,
TMI-based soil moisture estimates are capable of
compensating for the relative deficiency of satellite-based
precipitation products versus higher-quality (but less readily
available) rain gauge observations.
[15] However, the added value of assimilating qTMI is

sharply reduced when an API-based approach is properly
calibrated to exploit air temperature observations (Figure 3a)
- suggesting that the proper interpretation of air temperature
data can effectively reproduce the innovative dynamic
information provided by the remotely-sensed soil moisture
data. In such cases, the primary value of remote sensing
observations will be for calibration of model parameters
(Figure 3b). Therefore, for this particular application, data
assimilation will likely be the appropriate approach only
when the limited availability (or poor quality) of modeling
forcing data necessitates a simplistic modeling approach.
However, relative to the 10.7 GHz TMI observations
utilized here, future spaceborne surface soil moisture
missions (e.g. SMOS and Hydros) will be based on lower
frequency observations capable of improved retrieval
accuracy and deeper soil sampling volumes. These
improvements will almost certainly enhance the value
of remotely-sensed surface soil moisture products for
hydrologic applications.
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