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[1] The nonlinear nature of the point-scale soil moisture-

transpiration relationship, combined with the highly heterogeneous

spatial structure of soil moisture fields and the limited horizontal

resolution of spaceborne microwave radiometers, has generated

considerable interest in the soil moisture aggregation problem.

Specifically, understanding the impact of aggregating soil moisture

information up to regional grid-scales (�103 km2) on the grid-scale

prediction of surface water and energy fluxes within the land

surface component of a weather prediction model. Using data from

the 1997 Southern Great Plains Hydrology Experiment (SGP’97), a

conceptual link is presented between the impact of soil moisture

aggregation on surface energy flux prediction and the spatial

scaling properties of soil moisture fields. INDEX TERMS: 1833

Hydrology: Hydroclimatology, 1866 Hydrology: Soil moisture,

1878 Hydrology: Water/energy interactions

1. Introduction

[2] A critical issue in efforts to improve the modeling of land
surface water and energy balance processes is the discontinuity
between the scale at which physical relationships between forcing
variables and surface fluxes are valid and the resolution at which
forcing data will be available in the foreseeable future. This
incompatibility appears especially severe when assimilating soil
moisture data derived from spaceborne passive microwave remote
sensing into land surface models. At best, next-generation space-
borne sensors will have horizontal resolutions of 102 to 302 km2

[Jackson et al., 1999]. While the relationship between soil moisture
and transpiration is relatively well understood at the point-scale,
the nonlinear nature of the relationship, in combination with the
vast array of scales at which soil moisture exhibits spatial varia-
bility, suggests that it is inappropriate to apply these point-scale
relationships at spatial scales equivalent to a microwave remote
sensing footprint.
[3] Recognition of this incompatibility has led to considerable

interest concerning the ‘‘soil moisture aggregation effect.’’ That
is, in the presence of subgrid-scale heterogeneity, what is the
effect of aggregating soil moisture up to grid-scales near 103

km2 on the prediction of grid-scale water and energy fluxes. The
problem is well studied in terms of grid-scale evapotranspiration
[Wetzel and Chang, 1988; Famiglietti and Wood, 1995]. Since
the impact of aggregation is determined by the magnitude of
subgrid variability, the scaling properties of soil moisture fields
have also received considerable attention. Most studies of multi-
scale soil moisture spatial variability have utilized simple- or
multi-scaling concepts to convey the lack of any characteristic
length scale within soil moisture fields [Rodriguez-Iturbe et al.,
1996; Hu et al., 1998].
[4] Using a common model of the nonlinear soil moisture-

transpiration relationship and data from the 1997 Southern Great
Plains Field Experiment (SGP’97), this paper will formalize the

conceptual link between the soil moisture aggregation effect and
the spatial scaling properties of soil moisture fields. Two separate
questions will be addressed. First, how is the impact of degrading
the resolution of soil moisture information from the field-scale (�1
squ. km) to a regional-scale (�103 km2) linked to the spatial
scaling properties of soil moisture? Second, based on the spatial
statistics of soil moisture fields sampled during SGP’97, at what
grid-scales are extreme assumptions of zero versus large subgrid-
scale soil moisture variability appropriate for grid-scale surface
energy flux prediction?

2. SGP’97 data sets

[5] One of the few data sets capable of providing multi-scale
surface (5 cm) soil moisture data over an extended period of
time was produced during the 1997 Southern Great Plains
Hydrology Experiment (SGP’97). The experiment was a
NASA-funded field campaign run from June 16 to July 17,
1997 within central Oklahoma. The two SGP’97 data sets of
interest here are the soil impedance probe and gravimetric soil
moisture measurements. Gravimetric sampling was designed to
measure mean field-scale soil moisture and carried out on 23
fields within the 603-km2 Little Washita Basin. Impedance probe
measurements were designed to estimate subfield-scale soil
moisture variability and made along fixed grids set up on three
fields in the basin. The impedance probe sampling configuration
for each field consisted of 49 nodal locations spaced 100 m
apart in a square 7 by 7 grid. Figure 1 shows a map of the
study location and illustrates the scales considered in the
analysis.

3. Role of multi-scale variability

[6] Figure 1 demonstrates the three spatial scales of interest
for soil moisture (q) in this analysis: the point-scale (q

0
), the

field-scale (q), and the regional-scale (�q). The field-scale soil
moisture-transpiration relationship is represented by E(q). For an
individual field, the error associated with using a regionally
averaged soil moisture value to calculate transpiration is given
by a Taylor’s series expansion of E(q) around �q. The expect-
ation of such an expansion for all field-scale locations within a
region describes the impact on regional-scale transpiration of
aggregating soil moisture from the field- to regional-scale:

E qð Þ ¼ E �q
� �

þ
X1
i¼2

1

i!
q� �q
� �i diE qð Þ

dqð Þi

" #
�q

: ð1Þ

Taking only the first two terms of the expansion yields:

E qð Þ � E �q
� �

	 1

2
s2q

d2E qð Þ
dqð Þ2

" #
�q

ð2Þ
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where sq
2 is the field-scale soil moisture variance within a given

region.
[7] Many land surface schemes follow Wetzel and Chang

[1987] and model point-scale evapotranspiration (E0) as the mini-
mum of a potential (EP) and threshold evapotranspiration (E 0

T):

E0 ¼ Min EP;E
0
T

� �
ð3Þ

where the dependence of E 0
T on q0 is expressed in a simplified

linear form:

E0
T ¼

0 q0 < qw
ETð Þmax 


q0�qw
qc�qw

� 	
qw < q0 < qc

ETð Þmax q0 > qc:

8><
>: ð4Þ

The threshold evapotranspiration is defined as the maximum
evapotranspiration the soil-plant system is capable of sustaining for
a given level of soil moisture. Potential evapotranspiration follows
the definition of ‘‘unstressed evapotranspiration’’ given by Federer
[1979] as the rate at which well-watered vegetation will transpire.
Combining (3) and (4) and assuming EP � (ET)max yields the
following E0 parameterization:

E0
T ¼

0 q0 < qw
EP 
 q0�qw

q�c�qw

� 	
qw < q0 < q�c

EP q0 > q�c :

8><
>: ð5Þ

where:

q�c ¼ qw þ EP 
 qc � qwð Þ
ETð Þmax

: ð6Þ

[8] The E0(q0) relationship described in (5) is only strictly valid
at a point-scale. Scaling the relationship up to the field-scale
requires that it be integrated over all subfield-scale soil moisture
levels:

E qð Þ ¼
Z 1

0

E0 q0ð Þf q0ð Þdq0 ð7Þ

where f (q0) is the histogram of point-scale soil moisture measure-
ments within a given field. The choice of a normal probability
distribution for soil moisture histograms at these scales is
suggested by Bell et al. [1980]. Assuming f to represent a normal
distribution N(q, sq0

2), where sq0
2 is taken to be the point-scale

variability of soil moisture field around the field scale mean q,
Figure 2 shows E(q) curves corresponding to various levels of sq0

2 .
Combining (7) with (5) and taking a second-derivative with respect
to q gives:

d2E qð Þ
dqð Þ2

" #
�q

¼
EP �exp � q�c��qð Þ2

2s2
q0

� �
þ exp � qw��qð Þ2

2s2
q0

� �� �
sq0

ffiffiffiffiffiffi
2p

p
q�c � qw
� �

:
ð8Þ

Inserting this expression into (2) yields:

E qð Þ � E �q
� �

	
s2qEP

�
�exp � ðq�c��qÞ

2

2s2
q0

� �
þ exp � ðqw��qÞ2

2s2
q0

� ��
2sq0

ffiffiffiffiffiffi
2�

p
q�c � qw
� � : ð9Þ

Setting �q equal to either qw or qc*, and assuming sq0
2 is small

relative to (qc* � qw)
2, provides a measure of the maximum

Figure 1. Location of Little Washita Basin within the state of
Oklahoma and illustration of spatial scales considered in the
analysis.

Figure 2. Appropriate field-scale transpiration-soil moisture
relationships for various levels of subgrid soil moisture variability
sq0 [cmwater

3 cmsoil
�3 ]. Also shown is the extreme case of large sq0 —

a linear relationship between zero and qsat.

8 - 2 CROW AND WOOD: SOIL MOISTURE AGGREGATION



absolute error associated with aggregation of soil moisture within
a region:

Max E qð Þ � E �q
� ���� ���h i

	 s2qEP

sq0 q�c � qw
� �

2
ffiffiffiffiffiffi
2p

p
�����

�����: ð10Þ

Equation (10) demonstrates that the effect of degrading soil
moisture resolution from the field- to the regional-scale does not
depend strictly on levels of field-scale variability, but rather is
proportional to the dimensionless ratio sq

2 /sq0(qc* � qw). Increasing
the subfield variability sq0 linearizes the field-scale E(q) relation-
ship (see Figure 2) and reduces the aggregation impact associated
with averaging field-scale values up to the regional-scale.
[9] Assuming the regional-scale to be the entire 603-km2 Little

Washita Basin, Figure 3 evaluates (9) for the basin during
SGP’97. Values for E qð Þ � E �q

� �
range between �100 and 75

Wm�2. Impedence probe measurements are used to estimate
average point-scale soil moisture variability around each field-
scale mean (sq0

2 ) and gravimetric data to estimate field-scale
variability around the regional-scale mean (sq

2). Using impedance
probe data from SGP’97, Famiglietti et al. [1999] argues that a
Beta distribution is a better fit for subfield-scale soil moisture
histograms than a normal distribution. To accommodate this
suggestion, values derived from a numerical evaluation of (2)
assuming a Beta distribution shape for f in (7) are also plotted on
Figure 3. Soil type was taken to be silty loam/loam and
vegetation to be rangeland grass and agricultural crops. EP was
taken as 450 Wm�2 and (ET)max as 750 Wm�2 based on values
quoted for various agricultural crops in Choudhury and Idso
[1985]. Values for qw and qc were chosen to be consistent with
the observed soil texture within the basin and Jacquemin and
Noilhan [1990].

4. Grid-scale modeling strategies

[10] Let sq0
2 (l) be the point-scale soil moisture variability

contained within an arbitrary grid-scale l. In the absence of any
information regarding the magnitude of sq0

2 (l), grid-scale models
must make one of two contrasting assumptions. The first option is
to assume sq0

2 (l) is zero and apply a point-scale model at the grid-
scale. The error associated with this assumption is:

e1 ¼
Z 1

0

E0 q0ð Þf q; s2q0 lð Þ
� �

dq0 � E0 �q
� �

: ð11Þ

The second option is to assume sq0
2 (l) is large enough such that the

appropriate field-scale E(q) relationship is effectively linearized
between zero and saturation (qsat) (see Figure 2). The error
associated with this approach is:

e2 ¼
Z 1

0

E0 q0ð Þf q; s2q0 lð Þ
� �

dq0 � EP

�q
qsat

: ð12Þ

For low levels of sq0
2 (l), e2 is the larger error term. As sq0

2 (l) rises,
assuming zero subgrid variability becomes steadily less appro-
priate. Consequently, e1 rises and e2 falls until a second regime of
large sq0

2 (l) is entered where e1 is the dominate error term. A
critical level of subgrid variability (sq0crit

2 ) exists where both errors
are equal.
[11] Assuming �q equal to qc* (the point of greatest concavity and

thus largest aggregation impact), small sq0
2 , and a normal proba-

bility distribution for f, e1 can be approximated as:

e1 	
�EPsq0ffiffiffiffiffiffi

2�
p

q�c � qw
� � ; ð13Þ

and e2 as:

e2 	
EP qsat � q�c

� �
qsat

� EPsq0ffiffiffiffiffiffi
2p

p
q�c � qw
� � : ð14Þ

The subgrid soil moisture variability at which the absolute value of
both terms will be equal is:

sq0crit 	
ffiffiffi
p
2

r
qsat � q�c
� �

q�c � qw
� �

qsat
: ð15Þ

Inserting values of qsat, qc*, and qw used in Figure 3 yields a sq0crit
estimate of 0.067 cmwater

3 cmsoil
�3 .

[12] As first described by Reynolds [1974], values of sq0
2 (l) rise

monotonically with scale l; therefore, this critical level of varia-
bility is uniquely associated with a grid-scale lcrit. Using soil and
vegetation parameters typical for the Little Washita Basin, and a
numerical evaluation of (11) and (12) assuming f represents a Beta
distribution, the root-mean-squared magnitudes of e1 and e2 were
evaluated at the point-, field- (�1 squ. km), and regional-scale
(�103 km2) during SGP’97.
[13] Results demonstrate that the assumption of zero (large)

subgrid variability becomes steadily less (more) appropriate as the
grid-scale is coarsened. Root-mean-squared (RMS) values for e1 of
0.0, 58, and 82 Wm�2 are found at grid-scales corresponding to the
point-, field-, and regional-scale respectively. Conversely, RMS
values for e2 are 164, 108, and 77 Wm�2 along the same series of
grid-scales. This suggests an assumption of zero subgrid variability
is more accurate than an assumption of large subgrid variability at
the field-scale (�1 squ. km) but not the regional-scale (�103 km2).
Qualitatively similar results are found when f is assumed to
represent a normal distribution.

5. Summary and conclusions

[14] This paper uses SGP’97 soil moisture data to draw a
conceptual link between the spatial scaling of soil moisture fields
and pertinent questions surrounding the impact of soil moisture

Figure 3. Following (9), errors in transpiration (E) associated
with the aggregation of soil moisture from the field- to regional-
scale within the Little Washita Basin during SGP’97.
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aggregation on efforts to estimate the surface energy balance at
regional scales.
[15] Equation (10) demonstrates that the impact of degrading

soil moisture from the field- to the regional-scale on regional-
scale energy flux prediction is directly proportional to the
variance of field-scale soil moisture within the region and
inversely proportional to the average standard deviation of
point-scale soil moisture variability within each field. Conse-
quently, the role of soil moisture spatial heterogeneity with
respect to the soil moisture aggregation question varies accord-
ing to the length scales at which this heterogeneity is expressed
and how the scaling properties of soil moisture fields evolve
with time [Crow and Wood, 1999].
[16] Evaluation of (11) and (12) demonstrate the role of

subgrid-scale variability in determining the optimal strategy for
grid-scale transpiration prediction and the manner in which this
strategy varies with grid size. During SGP’97 it is shown that
the transition between an assumption of zero and large subgrid
variability should occur between the field- (�1 squ. km) and
regional-scale (�103 km2). This transition scale corresponds to
the grid-scale at which subgrid levels of variability exceed the
threshold described in (15).

[17] Acknowledgments. This work was supported by NASA grants
NAG8-1517 and NAG5-6494.
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